Convex Preferences

Take one particular consumption bundle \mathbf{x} : the at least as good as set $\succeq (\mathbf{x})$ is the set of all consumption bundles which the person finds at least as good as the "reference bundle" \mathbf{x} .

In other words, $\succeq (\mathbf{x})$ is the set consisting of all the consumption bundles on the indifference curves through \mathbf{x} , or on better indifference curves. (If preferences are strictly monotonic, then $\succeq (\mathbf{x})$ consists of all the bundles on or above the indifference curve through \mathbf{x} .)

Preferences are said to be convex if, for **any** reference bundle $\mathbf{x} \in X$, the at least as good as set $\succeq (\mathbf{x})$ is a **convex set**.

An (equivalent) alternate definition : preferences are convex if : for any consumption bundle \mathbf{x} , if $\mathbf{x}^1 \succeq \mathbf{x}$, and if $\mathbf{x}^2 \succeq \mathbf{x}$, and if

$$\mathbf{x}^3 \equiv t\mathbf{x}^1 + (1-t)\mathbf{x}^2$$

where t is any number between 0 and 1,

then

$$\mathbf{x}^3 \succeq \mathbf{x}$$
.

That is, if \mathbf{x}^1 and \mathbf{x}^2 are both at least as good as \mathbf{x} , then any **convex combination** of \mathbf{x}^1 and \mathbf{x}^2 is at least as good as \mathbf{x} . A convex combination of two vectors is defined as any point between the two vectors, on the line connecting the two vectors : every point on the line connecting \mathbf{x}^1 and \mathbf{x}^2 can be expressed as some fraction of the way along that line, $t\mathbf{x}^1+(1-t)\mathbf{x}^2$, where t is the fraction of the way along the line that the point is.

Strictly Convex Preferences

Strict convexity of preferences is a **stronger** property than just plain convexity. Preferences are strictly convex if: for any consumption bundle \mathbf{x} , if $\mathbf{x}^1 \succeq \mathbf{x}$, and if $\mathbf{x}^2 \succeq \mathbf{x}$, (with $\mathbf{x}^1 \neq \mathbf{x}^2$) then for any 0 < t < 1,

$$t\mathbf{x}^1 + (1-t)\mathbf{x}^2 \succ \mathbf{x}$$

So, in two dimensions, with strictly monotonic preferences, strict convexity says that if two consumption bundles are each on the same indifference curve as \mathbf{x} , then any point on a line connecting these two points (except for the points themselves) will be on a **higher** indifference curve than \mathbf{x} .

In two dimensions, if indifference curves are straight lines, then preferences are convex, but **not** strictly convex.

Utility Functions

A utility function is **quasi-concave** if and only if the preferences represented by that utility function are **convex**.

A utility function is **strictly quasi-concave** if and only if the preferences represented by that utility function are **strictly convex**.