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Misoprostol, a prostaglandin type E analogue, has been implicated in a number of neurodevelopmental
disorders. However, its mode of action in the nervous system is not well understood. Misoprostol acts
on the same receptors as prostaglandin E2 (PGE2), a natural lipid-derived compound, which mediates
important physiological functions in the nervous system via activation of four EP receptors (EP1-4). In
this study we use a ratiometric calcium imaging with fura-2 AM as a calcium indicator to show that miso-
prostol alters intracellular calcium levels in mouse neuroblastoma (Neuro-2a) cells via similar mecha-
nisms as PGE2. We demonstrate that the misoprostol-induced increase in calcium is mediated by a
protein kinase A (PKA)-dependent mechanism and that the EP4 receptor signaling pathway may play
an inhibitory role on calcium regulation. Overall, this study provides further support for the involvement
of PGE2 signaling in calcium homeostasis and suggests its important role in the nervous system.

Crown Copyright � 2010 Published by Elsevier Inc. All rights reserved.
1. Introduction

Misoprostol is a drug that is structurally similar to the naturally
occurring family of lipid-derived prostaglandin type E [1]. It has
been shown that misoprostol can activate the same receptors as
the endogenous compound prostaglandin E2 (PGE2) [2–5]. PGE2 is
a 20-carbon fatty acid derived from plasma membrane arachidonic
acid. PGE2 exerts its diverse effects in the nervous system through
four G-protein coupled EP receptors: EP1-EP4 [6,7]. Generally, EP1
receptor activation is associated with increase in intracellular cal-
cium concentration, [Ca2+]i, mediated by the action of molecules
such as phospholipase C and inositol 1,4,5-trisphosphate (IP3)
[2,8,9]. EP2 and EP4 receptors are both known to couple to stimula-
tory G-protein (Gs) and mediate activation of protein kinase A (PKA)
through the action of cyclic adenosine monophosphate (cAMP)
[2,10]. In the recent years additional EP4 signaling pathways have
been proposed via G proteins other than Gs [10–13]. The EP3 recep-
tor has multiple isoforms formed through alternative splicing,
which further diversify the action of PGE2 [8,14]. It has been shown
that EP3 can increase or decrease cAMP concentration and intracel-
lular calcium levels via coupling to Gs, Gi, or Gq proteins [15–19].

Misoprostol, the prostaglandin E analogue, has a broad array of
therapeutic applications such as prevention and treatment of gas-
tric ulcers [20–23] induction of uterine contractions, and medical
termination of pregnancy [24–26]. Misuse of misoprostol in some
010 Published by Elsevier Inc. All r
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cases of self-attempted termination of pregnancy has linked this
drug to development of neurodevelopmental conditions such as
Möbius syndrome and autism related disorders [27–30] suggesting
that the drug might have neurotoxic effects in the developing ner-
vous system. Interestingly, our previous study has shown that
misoprostol elevates the amplitude of calcium fluctuations in
growth cones of mouse neuroblastoma (Neuro-2a) cells and in-
duces neurite retraction demonstrating for the first time its effects
on cell function [31].

Since the molecular mechanisms of misoprostol action are not
clearly understood this study investigates the effects of the drug
on the intracellular level of calcium in Neuro-2a cells and describes
the potential signaling pathways involved. We provide evidence
that misoprostol alters calcium level in the cytosol via a PKA-med-
iated pathway with a novel role carried out by EP4 receptor signal-
ing. Our study furthers our understanding of the molecular
mechanisms of misoprostol action and shows that it may interfere
with PGE2 signaling pathway in Neuro-2a cells.

2. Materials and methods

2.1. Cell culture

Mouse Neuro-2a cells were maintained in an incubator contain-
ing 5% CO2, 95% humidified environment and at 37 �C. Cells were
obtained from American Tissue Culture Collection (ATCC) and
grown in Dulbecco’s modified Eagle’s medium (Invitrogen) supple-
mented with 10% fetal bovine serum (FBS) and 100 U/mL penicil-
lin/streptomycin (Invitrogen).
ights reserved.
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Fig. 1. Concentration-dependent increase in [Ca2+]i in response to misoprostol and
PGE2 treatments. (A) Treatments with 1.0 and 10.0 lM of misoprostol elevated

2+
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2.2. Effects of prostaglandin E2 and misoprostol treatments on
cytosolic calcium level in Neuro-2a cells

PGE2- and misoprostol-dependent measurement of intracellular
calcium level ([Ca2+]i) in Neuro-2a cells was determined using the
ratiometric fura-2AM calcium indicator as we previously described
[31,32]. Changes in [Ca2+]i were determined in Neuro-2a cells in re-
sponse to 1.0 and 10.0 lM PGE2 and misoprostol following the incu-
bation of the cells with fura-2AM as described before [31]. First, the
basal R value was measured before adding the drug to establish a
stable baseline of calcium level. After addition of the drug, the
340/380 ratio (R) was monitored for a total of 10 min. The fluores-
cence ratio of 340/380 in fura-2AM loaded Neuro-2a cells was mea-
sured in 100–400 cells and then [Ca2+]i was calculated [32]. All the
concentrations in nM were converted to a percentage, with the basal
[Ca2+]i set as 100%. The cells were also incubated with 20 lM
SC19220 (2-acetylhydrazide 10(11H)-carboxylic acid, 8-chlorodi-
benz[b,f][1,4]oxazepine-10(11H)-carboxylic acid, EP1 antagonist),
AH6809 (6-isopropoxy-9-10oxoxanthene-2-carboxylic acid, EP1/2
antagonist), AH23848 hemicalcium salt hydrate ((4Z)-7-[(rel-
1S,2S,5R)-5-((1,10-biphenyl-4-yl)methoxy)-2-(4-morpholinyl)-3-
oxocyclopentyl]-4-heptenoic acid hemicalcium salt hydrate, EP4
antagonist), 100 nM wortmannin (phosphoinositide 3-kinases
blocker, PI3K) or 10 lM H89 (PKA blocker) for 20 min during the
de-esterification process. The controls for the dose–response condi-
tions include HBSS and ethanol (HBSSEtOH) at the concentration used
in PGE2 and misoprostol solutions. Our results were normalized to
EP receptor antagonists and kinase blockers alone in HBSS used as
controls for the respective experiments. All the reagents were pur-
chased from Sigma–Aldrich.

2.3. Data analysis and statistics

Statistical analysis was performed with Student’s t-test and a
value of p < 0.05 was considered statistically significant.
[Ca ]i by 10% and 20% and (B) PGE2 induced an increase of 20% and 31%,
respectively. The y-axes represent percentage of [Ca2+]i and x-axes depict the time
in seconds with time 0 representing time of addition of the drug (dashed line).
Results represent a minimum of three independent experiments. MP = misoprostol.
3. Results

3.1. Effects of misoprostol and PGE2 treatment on intercellular free
calcium concentration in Neuro-2a Cells

Ratiometric real-time calcium imaging was used to investigate
whether misoprostol can alter calcium homeostasis in Neuro-2a
cells and mimic PGE2’s action and whether the changes in [Ca2+]i

are concentration-dependent. Previous studies in CHO or HEK-293
cells overexpressing EP receptors reported the affinity of PGE2 for
the EP receptors in the range of concentrations below 1 lM [3,33].
Since Neuro-2a cells express adequate levels of the EP receptors
[31] in this study we used untransfected cells to measure the
PGE2- and misoprostol-dependent changes in the intracellular cal-
cium level. The basal intracellular calcium level for Neuro-2a cells
was found to be 100 ± 40 nM. We did not observe any significant in-
crease in [Ca2+]i when Neura-2a cells were treated with concentra-
tions lower than 0.1 lM (data not shown). Exposure to 1.0 and
10.0 lM misoprostol induced 10% (N = 230) and 20% (N = 246,
p = 0.022) increase in [Ca2+]i (Fig. 1A). Moreover, treatment with
the same concentrations of PGE2 resulted in [Ca2+]i increase by
20% (N = 284, p = 0.028) and 31% (N = 280, p = 0.002) (Fig. 1B). In
summary, these results have shown that the drug misoprostol in-
creases [Ca2+]i in Neuro-2a cells and mimics the action of the endog-
enous compound PGE2. Calcium increases due to misoprostol seem
to be generally lower than that of PGE2. We have determined, by
using an IP3 receptor (IP3R) blocker (2-APB), that the source of cal-
cium increase in response to misoprostol and PGE2 is from intracel-
lular calcium stores, such as the ER (data not shown).
3.2. Effects of blocking EP2 signaling pathway on misoprostol- and
PGE2-induced changes in intracellular calcium concentration

To characterize the mechanism involved in the [Ca2+]i elevation
commonly used EP receptor antagonists and downstream kinase
blockers were used in conjunction with misoprostol or PGE2. To en-
sure that the responses were drug specific, antagonists or blockers
alone were applied to the cells and no changes in the [Ca2+]i was
observed. The results were normalized to these controls. Addition
of SC19220, an antagonist for EP1 receptor, did not result in a
reduction in the intracellular calcium increase following the drug
treatments (data not shown). AH6809 is a species-specific EP1/2
receptor antagonist which shows no binding affinity for EP1 recep-
tor in mouse and only binds to EP2 receptor [3]. Misoprostol treat-
ment alone induced an increase of 24% in [Ca2+]i (N = 307,
p < 0.0001) and misoprostol with AH6809 caused a similar increase
of 27% (N = 304, p = 0.001) (Fig. 2A). When the cells were incubated
with AH6809 and treated with PGE2, [Ca2+]i increased by 25%
(N = 257, p = 0.004), which was significantly lower (p = 0.006) than
the 40% increase caused by the PGE2 alone (N = 201, p = 0.001)
(Fig. 2B). These results indicate that activation of EP2 may contrib-
ute to the increase of cytosolic calcium level in Neuro-2a cells in
response to PGE2 but not misoprostol.

Since there is no specific EP3 receptor antagonist available com-
mercially we tested a potential involvement of PKA, the down-
stream activator of EP2 and EP3 receptors. PKA activation has
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Fig. 2. Misoprostol- and PGE2-induced changes in [Ca2+]i in presence of EP2 receptor antagonist and PKA blocker. (A and B) Treatment with misoprostol or PGE2 along with
EP2 antagonist. (A) In response to misoprostol [Ca2+]i increased by 24% in presence and 27% in absence of EP2 antagonist. (B) PGE2 increased [Ca2+]i by 25% and 43% in
presence and absence of EP2 antagonist. (C and D) With H89 [Ca2+]i remained at the baseline in response to misoprostol or PGE2. Results represent a minimum of three
independent experiments. MP = misoprostol, antg = antagonist.
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been shown to play a role in increase of [Ca2+]i in various cell types
via a number of mechanisms [34–37]. Our results show that miso-
prostol- (N = 138) and PGE2-induced (N = 159) elevations of [Ca2+]i

were attenuated in the presence of 10 lM H89, a commonly used
PKA blocker (Fig. 2C and D) suggesting the involvement of PKA-
dependent responses to the drugs.

3.3. Effects of blocking EP4 signaling pathway on misoprostol- and
PGE2-induced changes in intracellular calcium concentration

To assess whether activation of EP4 receptor had an effect on
the changes in [Ca2+]i in response to PGE2 and misoprostol,
AH23848 hemicalcium salt hydrate was used as an EP4 receptor
antagonist. Our results show that the addition of 20 lM
AH23848 resulted in an unexpected 76% (N = 384, p = 0.001) and
73% (N = 284, p = 0.003) increase of [Ca2+]i in response to misopros-
tol and PGE2, respectively (Fig. 3A and B). These percent increases
were significantly higher than the typical [Ca2+]i increases induced
by misoprostol (p < 0.0001) and PGE2 (p < 0.0001). These results
suggest that EP4 receptor pathway might be involved in the inhibi-
tion of the intracellular calcium level in the Neuro-2a cells.

To further confirm these results wortmannin was used to inhi-
bit activation of PI3K, one of the downstream regulators of the EP4
receptor pathway [10–12]. Blocking PI3K with 100 nM wortman-
nin resulted in similar calcium responses as seen with EP4 receptor
antagonist. In the presence of wortmannin [Ca2+]i increased by 67%
(N = 408, p < 0.0001) and 90% (N = 312, p < 0.0001) in response to
misoprostol and PGE2 treatments, respectively (Fig. 3C and D). Cal-
cium responses were significantly higher (p < 0.0001) than those
mediated by misoprostol (27%, N = 109) and PGE2 (55%, N = 124)
treatments only. These results were in agreement with the EP4
antagonist data suggesting a unique involvement of the EP4 path-
ways in the inhibition of [Ca2+]i in Neuro-2a cells.

4. Discussion

In the present study we show that the exogenous drug miso-
prostol, a prostaglandin type E agonist, and the endogenous com-
pound PGE2, increases [Ca2+]i in Neuro-2a cells through similar
mechanisms to PGE2. We provide evidence that misoprostol and
PGE2 elevate [Ca2+]i via a PKA-mediated pathway and describe a
novel inhibitory role carried out by the EP4 receptor signaling
pathway.

Our imaging results show that both misoprostol and PGE2 ele-
vate [Ca2+]i. We observed significant elevation of [Ca2+]i in Neu-
ro-2a in response to 1.0 and 10.0 lM. Previous studies in HEK-
293 and CHO cells stably overexpressing the EP receptors have
shown cellular responses to concentrations lower than 1.0 lM
[3,4,33]. Our study uses untransfected Neuro-2a cells expressing
endogenous levels of EP receptors to measure [Ca2+]i, which poten-
tially explains responses to higher concentrations. Generally, the
elevation of [Ca2+]i were more profound in response to PGE2 com-
pared to misoprostol, which could be attributed to the higher affin-
ity of PGE2 for the EP receptors [3,38]. It has been shown previously
that PGE2 acts on all four EP receptors with varying affinities and
predominantly on EP3 and EP4 receptors (EP3 > EP4� EP2 > EP1)
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Fig. 3. [Ca2+]i traces in response to misoprostol and PGE2 in presence of EP4 receptor antagonist and PI3K blocker. In the presence of EP4 antagonist [Ca2+]i increased by 76%
and 73% in response to (A) misoprostol and (B) PGE2, respectively, and by 26% and 41% in response to (A) misoprostol and (B) PGE2 alone. In the presence of wortmannin
[Ca2+]i increased by 67% in response to (C) misoprostol and 90% in response to (D) PGE2. Results represent a minimum of three independent experiments.
WORT = wortmannin. MP = misoprostol.
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[8,38]. According to previous studies misoprostol also acts on EP
receptors but with much lower affinities than PGE2 and mainly
on the EP3 receptor [3].

Current literature from various tissues and cell lines typically
links EP1 receptor activation to calcium mobilization in cells. Our
results show that the EP1 receptor did not contribute to changes
in the calcium during misoprostol or PGE2 treatments in Neuro-
2a cells, likely due to its low expression in these cells [31]. More-
over, EP1 has a much lower affinity for PGE2 (compared to other
EP receptors) and it is not activated by misoprostol [3,8], therefore
the possibility of it mediating the [Ca2+]i increase in Neuro-2a cells
seems to be unlikely. When the EP2 receptor pathway was blocked,
we observed a smaller calcium elevation in response to PGE2 treat-
ment, whereas misoprostol-induced calcium increase was not af-
fected indicating that the receptor likely contributes to the
increase in [Ca2+]i in response to PGE2, but not misoprostol in Neu-
ro-2a cells. The EP2 receptor is typically associated with an in-
crease of cAMP concentration via activation of adenylyl cyclase
(AC). Evidence linking EP2 receptors to increases in [Ca2+]i comes
from rat primary astrocytes [39]. In this study we provide further
evidence for the possibility of this novel role carried out by the
EP2 signaling pathway.

Various studies have confirmed the existence of three splice
variants of EP3 receptor in mouse: EP3a, EP3ß and EP3c, which
all can couple to Gi, and EP3c can also bind to Gs [15,40–42].
The existence of different splice variants and coupling to multi-
ple G proteins (Gi, Gs and Gq) diversifies the action of EP3 signal-
ing in the cells. Previous research has linked EP3 receptor to
calcium mobilization in different cell types such as EP3-transfec-
ted canine dorsal root, COS-7 and HEK-293 cells [16,17,43]. Since
the affinity of PGE2 and misoprostol for the EP3 receptor seems
to be the highest [3,4,8,38], and because Neuro-2a cells express
high levels of EP3c [31] its contribution to PGE2- and misopros-
tol-induced elevation of [Ca2+]i is a likely possibility. It has been
previously reported that PGE2–dependent stimulation of EP2, EP4
and Gs-coupled EP3 receptors may lead to activation of AC and
subsequent production of cAMP and PKA [10,42,44]. It is also
shown that PKA activation can mediate release of calcium from
intracellular calcium stores via different mechanisms [39,45,46].
In this study we demonstrated that the calcium increases in re-
sponse to PGE2 and misoprostol in Neuro-2a cells are PKA-
dependent.

In additions, our study also shows that EP4 receptor might be
involved in the inhibition of the [Ca2+]i in Neuro-2a cells. EP4
receptor has been often associated with increase in cAMP in cells,
however with much less efficiency than EP2 [10]. Emerging evi-
dence has established an additional pathway mediated by the
EP4 receptor via activation of PI3K, which is thought to be the pre-
dominant EP4 pathway [10,11]. In our study, we showed that
blocking EP4 receptor or PI3K resulted in greater elevation of intra-
cellular calcium in response to PGE2 and misoprostol. A similar
EP4-dependent inhibition of cAMP response element binding pro-
tein (CREB) activation has been previously reported in EP4-trans-
fected HEK-293 cells [11,12]. In this study, we show for the first
time that the inhibitory role of EP4 receptor may regulate the
[Ca2+]i in Neuro-2a cells. We propose a possible mechanism by
which EP4 receptor signaling pathway contributes to the calcium
regulation in those cells (Fig. 4).



Fig. 4. Model for misoprostol- and PGE2-mediated intracellular calcium increase in
Neuro-2a cells. Misoprostol and PGE2 act on EP2, EP3 and EP4 receptors to alter
[Ca2+]i to various degrees via PKA-dependent mechanism. EP4 receptor activation of
PI3K results in inhibition of PKA and reduction of [Ca2+]i. The increases in calcium
levels are due to release of calcium from intracellular stores through the activation
of IP3R.
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This study shows that treatment with misoprostol and PGE2 sig-
nificantly increases [Ca2+]i in Neuro-2a cells. Although further
studies on primary cells or in vivo are needed, the present study
and our previous findings [31] suggest that PGE2 and misoprostol
can alter calcium homeostasis in Neuro-2a cells and contribute
to abnormal cell function. Calcium signaling is essential for ele-
mentary forms of neuronal communication and many aspects of
neuronal development, including gene expression, neuronal migra-
tion and differentiation [47,48]. Interestingly, we have previously
shown that the expression of EP1, EP2, EP3b and EP4 receptors is
significantly higher during the neurogenesis period in mouse [31]
suggesting the importance of the PGE2 signaling pathway in the
developing nervous system. Therefore, imbalances in calcium
homeostasis can potentially affect early neuronal development.
In fact, it has been documented by various studies that alterations
in calcium homeostasis play a role in the pathogenesis of autism
spectrum disorders [49,50].

In summary, our study shows that misoprostol and PGE2 work
via similar mechanisms to induce an elevation of [Ca2+]i level in
neuronal-type cells. The responses are PKA-dependent with the
EP4 receptor playing a novel inhibitory role. This study furthers
our understanding the molecular mechanisms of misoprostol sig-
naling and an important role of PGE2 signaling in the nervous
system.
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