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ABSTRACT 

R a t e  c o n s t a n t s  m e a s u r e d  w i th  t h e  f l owi ng  a f t e r g l o w  t e c h n i q u e  a t  298  *-2 K are  
reported " + " for the proton transfer reactmns of HCO with CH20, CH3CHO, (CHs)2CO, 
H C O O H ,  C H 3 C O O H ,  H C O O C H 3 ,  CH3OH,  C 2 H s O H ,  ( C H 3 ) 2 0  , a n d  CH2CO.  D i s soc i a t i ve  
p r o t o n  t r a n s f e r  c h a n n e l s  were  o b s e r v e d  w i t h  C 2 H s O H  a n d  C H 3 C O O H .  T h e  r a t e  c o n s t a n t s  
a re  c o m p a r e d  w i t h  t h e  p r e d i c t i o n s  o f  va r ious  t h e o r i e s  f o r  i o n - - m o l e c u l e  co l l i s ions .  T h e  
p r o t o n a t i o n  is d i scussed  in t e r m s  o f  t h e  e n e r g e t i c s  o f  poss ib l e  s i tes  o f  p r o t o n a t i o n  and  in 
terms of  the energetics and mechanisms of  various modes of  dissociation. 

I N T R O D U C T I O N  

L a b o r a t o r y  s t u d i e s  o f  t h e  c h e m i s t r y  o f  t h e  f o r m y l  i o n ,  H C O  ÷, h a v e  n o t  
b e e n  e x t e n s i v e .  T h e  o n l y  s y s t e m a t i c  i n v e s t i g a t i o n  o f  H C O  ÷ r e a c t i o n s  w h i c h  
h a s  b e e n  r e p o r t e d  p r e v i o u s l y  is t h a t  o f  P r i t c h a r d  a n d  H a r r i s o n  [ 1 ] .  T h e s e  
a u t h o r s ,  as  p a r t  o f  a g e n e r a l  s t u d y  o f  i o n - - m o l e c u l e  r e a c t i o n s  p o s t u l a t e d  t o  
o c c u r  in h y d r o c a r b o n  f l a m e s ,  d e t e r m i n e d  r a t e  c o n s t a n t s  f o r  r e a c t i o n s  o f  
H C O  ÷ w h i c h  o c c u r r e d  w h e n  t h i s  i o n  w a s  p r o d u c e d  f r o m  v a r i o u s  o x y g e n a t e d  
m o l e c u l e s  e x p o s e d  t o  i o n i z i n g  e l e c t r o n s  in  t h e  i o n  s o u r c e  o f  a m e d i u m -  
p r e s s u r e  m a s s  s p e c t r o m e t e r  a t  a p p r o x i m a t e l y  1 0 0 ° C  a n d  an  i o n  e x i t  e n e r g y  
o f  e i t h e r  2 .4  o r  3 . 4  e V .  T h e  f e w  f l o w i n g  a f t e r g l o w  s t u d i e s  o f  H C O  ÷ r e a c t i o n s  
w h i c h  h a v e  b e e n  r e p o r t e d  p r e v i o u s l y  w e r e  l a rge ly  i n c i d e n t a l  t o  i n v e s t i g a t i o n s  
d i r e c t e d  t o w a r d s  s y s t e m a t i c  a s s e s s m e n t s  o f  c lass ical  t h e o r i e s  o f  i o n - - m o l e -  
c u l e  co l l i s i ons  [ 2 - - 5 ]  a n d  d e ~ r m i u a t i o n s  o f  t h e  k i n e t i c  e n e r g y  d e p e n d e n c e  
o f  p r o t o n - t r a n s f e r  r a t e  c o n s t a n t s  [ 6 ] .  We r e p o r t  h e r e  a n  e x t e n s i v e  f l o w i n g  
a f t e r g l o w  s t u d y  o f  t h e  k i n e t i c s  o f  r e a c t i o n s  i n v o l v i n g  H C O  ÷ w h i c h  w a s  u n d e r -  
~Lken p r i m a r i l y  in  r e s p o n s e  t o  t h e  r e n e w e d  i n t e r e s t  in  th ;~  i o n  w h i c h  h a s  
r e c e n t l y  b e e n  e x p r e s s e d  in severa l  d ive r se  a reas  o f  c h e m i s t r y .  F o r m y l  i o n ,  
H C O  ÷, h a s  b e e n  p r o p o s e d  t o  p l a y  a p i v o t a l  r o l e  in  m o d e l s  o f  t h e  i o n  c h e m i s -  
t r y  b e l i e v e d  t o  occ t t r  in  d e n s e  i n t e r s t e l l a r  c l o u d s  [ 7 , 8 ] .  R e c e n t  o b s e r v a t i o n s  
w h i c h  h a v e  c o n f i r m e d  t h e  p r e s e n c e  o f  H C O  ÷ in  t h e s e  c l o u d s  a t t e s t  t o  t h e  
r e l e v a n c e  o f  i t s  r e a c t i o n s  i n  t h e s e  e n v i r o n m e n t s  [ 9 ] .  C u r r e n t  i n v e s t i g a t i o n s  o f  



154 

the  in situ chemical  ionizat ion proceeding in atmospheric-pressure hydro-  
carbon flames have indicated a need  for fur ther  kinet ic  in format ion  for 
HCO ÷ reactions which are postula ted  to  domina te  the  upstream ion chem- 
istTy proceeding  in these fl~mes [10] .  The formyl  ion has also been  impli- 
cated as an impor tan t  in termedia te  in solut ion chemist ry  al though i t  has, as 
yet ,  n o t  been  observed even in " favorable"  super acid media  at low temper-  
atures in spite of  several serious a t t empts  to  de tec t  i t  [11] .  Finally, this gen- 
era] impor tance  of  HCO ÷ has also inspired several extensive theoret ical  
studies of  its structures and  propert ies  [12 ,13] .  

EXPERIMENTAL 

The majori ty of  the  measurements  were made  in a convent ional  f lowing 
plasma mass spec t rometer  (f lowing afterglow) system which has been de- 
scribed previously [ 14].  Hydrogen  was used as the  carrier gas. A few of  the  
measurements  were made  wi th  the  apparatus in the  selected ion f low tube  
(SIFT) configurat ion model led  after the  original design repor ted  by Adams 
and Smith [15] .  In this configurat ion a differential ly p l imped quadrupole  
mass filter was interposed be tween  the  ion p roduc t ion  and ion reaction 
regions. The HCO ÷ ions, after being p roduced  in the  convent ional  manner  
f rom the  react ion of  I~3 with CO, were extracted from the  ion product ion  
region through a 1-mm d iemete r  orifice in to  the  quadrupole  mass filter 
which commun ica t ed  wi th  the  f low tube  through a 5-ram diameter  gas 
en t ra inment  orifice. After  inject ion in to  the  f low tube  at ca. 40 eV, the  
HCO ÷ ions were al lowed to  therrna!iT.e by collision before they  entered the  
react ion region 106 cm downst ream.  In this way one  could avoid the  intro- 
duc t ion  of  ion types o ther  than  HCO ÷ in to  the  react ion region, al though 
some H30* was p roduced  prior  to  the  react ion zone  as a result  of  the  reac- 
t ion of  HCO* with  the  HzO impuri ty  in the  H2 c~au'ier gas. This procedttre 
also e l iminated CO, the  parent  gas of  HCO ÷, f rom the  react ion region. 

The reactant  neutral  species were added in to  the  react ion region as 
vapours e i ther  in their  pure form or di lu ted wi th  hel ium. The de te rmina t ion  
of  their  flows required separate viscosity measurements ,  as has been de- 
scribed [16] .  Rate constants  were de te rmined  in the  usual manner  f rom 
measurements  of  the  m/z  29 signal as a funct ion  of  addi t ion of  vapour  into 
the  reaction region. Produc t  ion signals were measured concomi tan t ly .  The 
operat ing condi t ions  in these  exper iments  encompassed tota l  gas pressures, 
P, in the  range 0 .301--0 .713 torr,  average gas velocities, ~, in the  range (7.5--  
8.1) X 103 cm s -1, effective react ion lengths,  L, of  60 and 85 cm and a gas 
tempera ture ,  T, of  298 +- 2 K. 

The vapours were derived f rom the  fol lowing liquids: CH3OH, I~ICOOH 
and (CH3)2CO (BDH Chemicals, Analytical  Reagent  Grade),  C2HsOH (Con- 
sol idated Alcohols,  Absolute) ,  CH3CHO (BDH Chemicals, Laboratory 
Reagent  Grade,  99.0% min.) ,  HCOOCH3 (BDH Chemicals, 98%), CHsCOOH 
(Anachemia  Chemicals,  Glacial, 99.7%) and (CH3)20 (Matheson, 99.8% (typ- 
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ical)). F o r m a l d e h y d e  was prepared  by the  low pressure dist i l lat ion of  para- 
f o rma lde hyde  (Fisher Scientif ic,  Purif ied Grade)  by  an adapta t ion  of  the  
m e t h o d  o f  Spence  and  Wild [17] .  Ke tene  was prepared  by the  pyrolysis  o f  
ace tone  at  ca. 800 K. The m o n o m e r i c  gas was purif ied by passing it th rough 
a cold trap at  250 K (CC14 slush) and  col lect ing it  ,as a l iquid a t  144 K 
(pen tane  slush). 

The  flows of  formic  acid and  acet ic  acid were  cor rec ted  for  d imer iza t ion  
using the  dissociat ion equi l ibr ium constants  Kp ( t o r t ) =  2 .704 and 0.5458 
respect ively,  at  299 K [18 ,19] .  This cor rec t ion  was based on the  reasonable 
ass , ,mpt ion tha t  the  dimers  were  presen t  in thei r  equi l ibr ium Amounts bo th  
in the  storage bulbs and  pr ior  to  the i r  en t ry  in to  the  reac t ion  region.  A sep- 
arate  expe r im en t  was pe r fo rmed  to de t e rmine  the  e x t e n t  of  d imer iza t ion  in 
ke tene  vapour .  The  infrared spec t rum of  a sample of  ke tene  vapour  was 
r eco rded  over a per iod of  several days  and  was c o m p a r e d  to  those  of  the  
ke tene  m o n o m e r  [20,21]  and d imer  [22] .  Over the  range of  pressure and 
storage t ime of  our  exper imenta l  gas s~mples, the  mole  f rac t ion  o f  d imer  in 
t he  vapour  phase appeared  to  be negligible. 

RESULTS AND DISCUSSION 

Protonat ion o f  CO 

Pro tona t ion  of  CO was convenien t ly  accompl i shed  in the  H2 buffer  gas 
th rough  the  rapid p ro ton  t ransfer  

+ CO -> I-I-CO + + H2 (la) 

t he  ~ itself being established by  the  rapid reac t ion  

÷ H 2 --~ ~ 4- H (2 )  

We have remeasured  the  rate cons tan t  for  the  reac t ion  of  ~ wi th  CO and  
f o u n d  it to  be (2.0 -+ 0.4) × 10 -9 cm 3 molecule  -I s -I, s o m e w h a t  h igher  than 
the  value of  (1.4 -+ 0.4) × 10 -9 cm 3 molecu le  -I s -I previously repor ted  by 
Burr e t  al. [23] .  Some zmbigui ty  exists regarding the  s t ruc ture  o f .p ro ton -  
a ted  CO prepared  in this manner .  Ab init io molecu la r  orbital  calculat ions  
indicate  t ha t  the  p ro ton  aff ini ty of  the  carbon site in the  CO molecu le  is 
on ly  ca. 18 kcal tool -I h igher  than  tha t  of  the  oxygen  site [12] .  Conse- 
quen t ly ,  i t  appears tha t  two  isomers are energet ical ly accessible in the  pro- 
t ona t i on  of  CO by Hi  according to  react ions  ( l a )  and  ( Ib )  

+ CO -~ COH* + H2 ( l b )  

which  wou ld  be 42 and 24 kcal tool -1 exo the rmic ,  respect ively,  given a pro- 
t on  zff ini ty of  142.6 -+ 1.0 kcal tool -I for  the  ca rbon  site [24] and  a p r o t o n  
aff ini ty for  H2 of  101 -+ I kcal tool  -I [25] .  The exper iments  r epo r t ed  here  
do  n o t  provide any in fo rmat ion  regarding the  e x t e n t  of  initial f o rma t ion  of  
the  COH + isomer.  Should  such fo rma t ion  be proceed ing  and  the  COH ÷ no t  
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isomerize to  HCO ÷, e i ther  tmimolecular ly  or  by collision wi th  H2 b, ,ffer  
molecules ,  one  would  nevertheless expec t  the  HCO ÷ form to  be preferred 
u l t imate ly  as a result  o f  the  p ro ton  transfer  

COH ~ + CO ~ HCO ÷ + CO (3) 

which  would  be 18 kcal m o l - '  exo the rmic  and  wou ld  be p r o m o t e d  u n d e r  
ou r  exper imenta l  condi t ions  by the  presence of  the  CO paren t  gas. 

Several observations were made  which  were  cons is tent  wi th  these expec- 
ta t ions.  The  rate cons tan t  and branching  rat io for  observed p roduc t  ions 
de t e rmined  for  the  react ion of  the m / z  29 ion with  C~HsOH were found  to  be 
i n d e p e n d e n t  o f  the  m o d e  of  p roduc t ion  of  this ion when  it was genera ted 
e i ther  by reac t ion  (1) o r  reac t ion  (4) 

CI-Ys + CO -~ HCO ÷ + CH4 (4) 

which is only 11 kcal mol  -~ exo the rmic ,  assuming a p ro ton  aff ini ty  for  CH4 
of  131.5-+ 2.2 kcal mol  -j [26] .  The  fo rma t ion  of  COH + by reac t ion  (4) 
should therefore  be prec luded  on energet ic  grounds,  given the  18 kcal too l - '  
d i f ference in energy be tween  COH ÷ and HCO+ pred ic ted  by the  molecular  
orbital  calculat ions.  Fu r the rmore ,  in several S IFT exper iments  in which  the  
m/z  29 ion was p roduced  by reac t ion  (1), this ion was observed to t ransfer  
a p ro ton  to N20 wi th  a rate  cons t an t  in agreement  with the  value of  
3.5 × 10 -'2 cm ~ molecu le  -~ s - '  for  the  e n d o t h e r m i c  p ro ton  t ransfer  reac- 
t ion 

HCO + + N20 -~ N2OH + + CO (5) 

which can be deduced from our equilibrium measurements for this reaction 
[27]. There was no evidence for a significant contribution to the observed 
m/z 29 decay by the corresponding reaction involving the COH ÷ isomer 
which would be ca. 14 kcal mol -I exothermic and therefore expected to 
proceed rapidly. 

Kinetics o f  pro ton  transfer f rom HCO + 

Table 1 summarizes  the  rate  cons tants  de t e rmined  at  298 -+ 2 K for  the  
ten  reac t ions  of  HCO ÷ with  oxygena ted  bases investigated in this s tudy and 
several o thers  which have been  o b ~ r v e d  previously here.  The major i ty  of  
these  react ions  appeared  to  proceed  s imply by  the  t ransfer  of  a p ro ton  
u n a c c o m p a n i e d  by fur ther  decompos i t ion  of  the  p ro tona t ed  p roduc t ,  bu t  
fo l lowed by its solvation e i ther  wi th  the  paren t  base or, as was the  case 
with  C2H;, the  H~ buffer  gas. For  example ,  as is evident  f rom Fig. 1, the  
reac t ion  of  HCO ÷ wi th  (CH3)20 p roduced  (CH3)2OI-F as the  on ly  pr imary 
p r o d u c t  ion which  then  reac ted  fu r ther  wi th  (CH3hO by  solvation to  form 
the  cluster  ion (CH3)2OI-V - (CH3)20 presumably  via the  th ree-body associ- 
a t ion  reac t ion  

(CH3)zOI-I + + (CH3)20  + H2 -> (CH3)2OI-I*- ( C H 3 ) 2 0  + H2 (6)  
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Fig. 1. The variation of  the major positive ions observed u p o n  the addition of  (CH3)20 into 
• . ° - P  . . . . .  • - i -  

a flowing CO--H2 plasma m which HCO m lmtmlly a dominant  son. The decay of HCO 
provides a r a t e  constant of  2.3 × 10 -9 cm 3 m o l e c u l e  - l  s - ! .  T = 2 9 8  K ,  P = 0.311 tort,  

= 7 . 7 ×  1 0 3 c m s  - l ,  and L -- 84 cm. 

T ab l e  1 a lso  i n c l u d e s  c o m p a r i s o n s  w i t h  t h e  r a t e  c o n s t a n t s  r e p o r t e d  b y  
P r i t c h a r d  a n d  H a r r i s o n  [1]  a n d  severa l  p r a c t i t i o n e r s  o f  t h e  i o n - c y c l o t r o n -  
r e s o n a n c e  t e c h n i q u e  [ 2 8 , 2 9 ] .  T h e  a g r e e m e n t  w i t h  t h e  l a t t e r  r e su l t s  is o f  
v a r y i n g  qua l i t y .  T h e  va lues  r e p o r t e d  b y  P r i t c h a r d  a n d  H a r r i s o n  [1 ]  are  all 
l o w e r ,  b y  as m u c h  as a f a c t o r  o f  2 . 5  in  t h e  case  o f  H 2 0 ,  t h a n  t h o s e  o b t a i n e d  
in t h e  p r e s e n t  s t u d y .  H o w e v e r ,  s u c h  a s y s t e m a t i c  d i f f e r e n c e  is q u a l i t a t i v e l y  
in a c c o r d  w i t h  e x p e c t a t i o n s ,  g iven  t h e  f l o w - d r i f t  t u b e  m e a s u r e m e n t s  r e p o r t -  
e d  b y  L i n d i n g e r  e t  al. [6 ]  w h i c h  s h o w  t h a t  t h e  r a t e  c o n s t a n t s  f o r  e x o t h e r m i c  
p r o t o n  t r a n s f e r  r e a c t i o n s  gene ra l l y  e x h i b i t  a g r adua l  d e c r e a s e  w i t h  i nc r ea s ing  
i o n  k ine t i c  e ne rgy .  F o r  e x a m p l e ,  f o r  t h e  o n e  p r o t o n  t r a n s f e r  r e a c t i o n  
i n v o lv ing  H C O  ÷ w h i c h  was  s t u d i e d  b y  t h e s e  a u t h o r s ,  viz.  t h e  r e a c t i o n  o f  
H C O  ÷ w i t h  NH~, t h e  r a t e  c o n s t a n t  d e c l i n e d  f r o m  a va lue  o f  2 .1  × 10  -9 c m  s 
m o l e c u l e  -~ s -~ a t  3 0 0  K t o  ca.  1 .3  × 10  -9 c m  3 m o l e c u l e  -~ s -1 a t  a c e n t e r - o f -  
m a s s  k i n e t i c  e n e r g y  o f  1 eV.  T h e  m e d i u m - p r e s s u r e  m a s s  s p e c t r o m e t e r  m e a -  
s u r e m e n t s  o f  P r i t c h a r d  a n d  H a r r i s o n  [1 ]  w e r e  m a d e  a t  an  i o n  s o u r c e  t e m p e r -  
a t u r e  a p p r o x i m a t e l y  75  K h i g h e r  t h a n  o u r  o p e r a t i n g  t e m p e r a t u r e  a n d  a lso  a 
c o n s t a n t  r e p e l l e r  f ie ld  c o r r e s p o n d i n g  t o  an  i o n  e x i t  e n e r g y  o f  e i t h e r  2 . 4  o r  
3 . 4  eV.  T h e  o b s e r v e d  s y s t e m a t i c  d i f f e r e n c e  in  t h e  t w o  sets  o f  r a t e  c o n s t a n t s  
m a y  also,  in  p a r t ,  b e  a t t r i b u t a b l e  t o  pos s ib l e  d i f f e r e n c e s  in  t h e  i n t e r n a l  s t a t e  
o f  e x c i t a t i o n  o f  t h e  H C O  ÷ w h i c h  w a s  g e n e r a t e d  in  t w o  d i s t i n c t l y  d i f f e r e n t  
w a y s :  via  t h e  d i s soc ia t ive  i o n i z a t i o n  o f  o x y g e n  bases  by  e l e c t r o n  i m p a c t  in  
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Fig. 2. A comparison of measured rate constants with capture rate constants predicted 
by various theories of collision for proton tran-~fer reactions of HCO + with polar mole- 
cules. The solid bars represent the estimated accuracy of the measurements, k L is the 
collision rate constant determined from the Langevin expression. 

the  ion source exper iments ,  and via the  p ro tona t ion  of  CO by ion--molecule  
react ion in the  f lowing afterglow experiments .  

Figure 2 compares  all the  proton- t ransfer  rate constants  given in Table 1 
with the  capture rate constants  predicted by various ion--molecule  colK~ion 
theories:  the  Langevin theory  which ignores the  inf luence of  the  pe rmanen t  
dipole  m o m e n t  o f  the  molecule  [35] ,  the  average-dipole-orientation (ADO) 
theory  ( the cos ~ mode l )  [36] ,  the  theory  of  Barker and  Ridge [37] ,  and the  
locked~lipole  Hmit [38] .  The pe rmanen t  dipole  momen t s ,  PD, were all taken 
f rom the  compi la t ion  of Nelson et  al. [39] .  The polarizabilities, a ,  for H20, 
CH20, HCN, CH3OH, (CH3)2CO, and NH3 were taken from e×i~ting compila- 
t ions [40--42] .  The mean  polarizabilities of  the  remaining molecules  were 
calculated f rom bond  and group polarizabilities [41] to  be 3.09, 5.2, 4.40, 
5.17, 5.03, 4.56, 5.90, 6.04 and 4.12/~3 for  HCOOH, CH3NO2, CH3CHO, 
C2HsOH, CH3COOH, CH~CN, HCOOCH3, (CH3)20 and CHzCO, respectively. 
It is apparent  f rom Fig. 2 tha t  the  p ro ton  transfer to  these molecules  f rom 
HCO + proceeds with essentially uni t  probabil i ty ,  in concer t  with the  behav- 
ior repor ted  previously for o ther  analogous systems [43] .  The small devi- 
at ion of  the  measured proton-transfer  rate constants  f rom the calculated cap- 
ture rate constants,  which is evident  f rom Fig. 2, is reminiscent  of  similar 
deviat ions observed here previously for  o the r  p ro ton  transfer reactions.  
Barker and Ridge [37] have also discussed the  implicat ions of  these devi- 
at-ions. No new substantial insight is evident  f rom the  compar ison repor ted  
here  bu t  the  results do provide an addi t ional  useful data  base for the  assess- 
m e n t  o f  any future  deve lopments  in theories  of  ion- -molecule  collision and 
react ion.  
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Site(s) of  protonation 

Many of  the  molecules  investigated in this s tudy  con ta in  more  than  one  
potent ia l  site o f  p ro tona t ion ,  albei t  the  measuremen t s  r epor ted  here  do  n o t  
provide any  direct  evidence for  the  site(s) actual ly  p r o t o n a t e d  by HCO ÷. 
Some insight in to  the  availability o f  the  various potent ia l  sites to  the  p ro ton-  
a t ion by HCO ÷ may  be gained f rom t h e r m o d y n a m i c  cons idera t ions  made  
possible by recen t  molecular  orbital  calculat ions [44--46]  and  ionizat ion 
energy correlat ions [47]  which  have provided est imates  of  the  intrinsic 
p ro ton  affinities o f  various sites in m a n y  o f  these molecules .  The p ro ton  
affinities listed in Table 1 are derived f rom e x p e r i m e n t  and  should  refer  to  
the  site o f  highest  p ro ton  aff ini ty,  viz. the  fo rmat ion  of  the  lowest  energy 
t au tomer ,  since they  are based on step-wise equi l ibr ium cons tan t  measure-  
ments  for  series of  near ly  t he rmoneu t r a l  react ions.  The  exo thermic i t i es  
quo t ed  in Table 1 should therefore  refer  to  the  lowest  energy rou te  of  pro- 
tona t ion  and  thus  be a measure  of  the  m a x i m u m  excess energy m a d e  avail- 
able by reac t ion  wi th  HCO ÷. A par t icular  higher-energy site o f  p ro tona t i on  
will then  be available to  HCO ÷ only  if this excess energy exceeds  the  differ- 
ence  in energy (or  p r o t o n  aff ini ty)  be tween  the  high-energy and ground-  
state t au tomers .  The  ex t en t  to  which  this is the  case for  the  c o m p o u n d s  
investigated in this s tudy  will n o w  be cons idered  in tu rn .  

HCN, CH3CN. The high-energy t a u t o m e r  resul t ing f rom p ro tona t ion  on 
the  cyano  carbon  a tom should n o t  be accessible at  r oom t empera tu re  for  
ground-sta te  reactants .  In the  case of  HCN, accord ing  to the  theore t ica l  dif- 
ference  of  71 kcal tool -1 in the  p r o t o n  a l l ,  dries of  the  two sites [44]  and  
the  m a x i m u m  excess energy o f  only  28 kcal mo1-1 made  available by reac- 
t-ion with  HCO ÷, p ro tona t ion  on carbon  should  be e n d o t h e r m i c  by 43 kcal 
tool -1 and  consequen t ly  highly unfavorable .  

CH20, CH3CHO, (CH~)~CO. Molecular  orbital  calculat ions predic t  an 
energy dif ference of  at  least 40 kcal tool -~ be tween  the  two  t au tomers  o f  
CH20 cor responding  to  carbon  and oxygen  a tom p ro tona t ion  [44] .  This 
energy  is h igher  than the  m a x i m u m  ~8 kcal tool -1 available f rom the  reac- 
t ion  of  CH20 wi th  HCO ÷ which  is consequen t ly  expec ted  to  p ro tona t e  pre- 
ferent ial ly  at  the  oxygen  site. Similar theore t ica l  predic t ions  for  the  energy 
d i f ference  be tween  the  t au tomers  cor responding  to  ca rbonyl  ca rbon  and 
oxygen  p ro tona t ion  are n o t  available for  CH~CHO and (CH3)2CO, a l though 
p ro tona t i on  at  oxygen  in CH3CHO has been shown to  lead to  Lwo isomers 
cor responding  to a syn (or  c/s) and  anti (or trans) ar rangement  o f  the  p ro ton  
to  the  carbonyl  hyd rogen  on ly  1.2 keal tool -~ apar t  in ene rgy , . t he  fo rmer  
being m o r e  stable. Both of  these  isomers should  be accessible to  t he  reac t ion  
o f  HCO ÷ wi th  CH3CHO. 

HC.OOH, CH3UOOH. Molecular  orbital  calculat ions indicate  t ha t  the  high- 
energy  fo rm cor responding  to  prot(~nation on the  h y d r o x y  oxygen  in 
HCOOH lies 25 kcal tool -1 above the  lowest  o f  th ree  conformers  which  can 
r e s u l t f r o m  p ro tona t ion  on the  carboxyl  group [45] .  The  ionizat ion energy  
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correla t ions  of  Benoi t  and Harrison [47] predic t  a similar energy  d i f ference  
of  26 +- 3 kcal tool -1 in the case of  HCOOH and a d i f ference  of  27 -+ 3 kcal 
tool -1 in the  case of  CH3COOH. Pro tona t ion  by HCO ÷ at  the  h y d r o x y  oxy- 
gen posi t ion in these two  carboxyl ic  acids should there fore  be exo the rmic  by 
ca. 9 and  17 kcal tool -1, respectively.  

HCOOCH3. Molecular  orbi tal  calculat ions are no t  available in this case. 
The  ionizat ion energy correlat ions [47]  indicate  t ha t  the  p ro ton  aff ini ty  o f  
the  m e t h o x y  oxygen  is only ca. 22 kcal tool -1 less than  tha t  of  the  carbonyl  
oxygen.  This means  tha t  the  45 +- 3 kcal  tool -~ available f rom the  reac t ion  
with HCO ÷ is suff ic ient  to  p ro tona t e  both  sites even if only  one-half  of  the  
exo the rmic i ty  appears as internal  exc i ta t ion .  

CI-I2CO. Molecular  orbital  calculat ions indicate  tha t  the  energies of  the 
oxygen-p ro tona ted  ke t ene  and the ~-carbon p r o t o n a t e d  isomer lie 29 and 
65 kcal tool -1, respectively,  above tha t  of  the  ace ty l  ion,  CH3CO ÷ [46] .  The 
reac t ion  of  ke tene  wi th  HCO+ is 51 ± 3 kcal mo1-1 exo the rmic  so tha t  pro- 
t ona t i on  a t  oxygen  is energet ical ly feasible. 

Dissociative proton transfer 

Although the  major i ty  of  the  react ions  of  HCO ÷ s tudied in this investi- 
gat ion appeared  to proceed  simply by p r o t o n  t ransfer  to  form predominan t -  
ly (>99%)  MH ÷, the  pr imary  p r o d u c t  spectmJm observed with  C2H5OH and  
CH3COOH inc luded substantial  amoun t s  o f  ions o the r  than  MH ÷ wi th  lower  
values of  m/z. Evident ly  the  t ransfer  of  a p ro ton  to these molecules  caused 
subs tan t i , I  dissociat ion of  MH + according to  

HCO ÷ + M -~ [MH+] * + CO (7) 

L, p roduc t s  (7a) 

where  the  internal  energy requi red  for  the  tmimolecular  decompos i t i on  o f  
[MH ÷] * is provided by the  depos i t ion  of  a substantial  f ract ion of  the  excess 
energy  which  is in the  form of  reac t ion  exo the rmic i ty .  The  ex t en t  to  which  
this decompos i t ion  is m o d e r a t e d  u n d e r  our  exper imenta l  condi t ions  by col- 
lisional stabil ization of  [MI-I*]* is uncer ta in ;  the  inf luence  of  the  H2 bath 
pressure on  the  p r imary  p r o d u c t  spect~Jm, was n o t  investigated systemati-  
cally.  Dissociative p ro ton  t ransfer  is also t h e r m o d y n a m i c a l l y  feasible for  the  
react ions  of  HCO + wi th  CHaOH, (CHa)20, CH20,  CH3CHO, (CH3)2CO, 
HCOOCHa and HCOOH. These will be considered in the  sect ion fol lowing,  
toge the r  wi th  the  two  react ions  for  which  some dissociative p ro ton  trans- 
fer  was actual ly  observed.  The  excess energy  available in the  form of  reac- 
t ion  exo the rmic i ty  is given by the  d i f ference  in the  p ro ton  aff ini ty of  CO 
and M which  is inc luded  in Table 1. Auxil iary t he rmochemica l  in fo rmat ion  
was t aken  f rom the  r ecen t  compi la t ion  of  Rosens tock  e t  al. [48] .  

CHaOH, C2I-IsOH. The exclusive fo rmat ion  of  p r o t o n a t e d  m e t h a n o l  ob- 
served for  the  reac t ion  of  HCO + wi th  CH3OH is readi ly unde r s tood  in te rms  
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of  the  energetics of  the  tmimolecular  decompos i t ion  of  this ion recen t ly  
inferred f rom the  r emi t s  o f  investigations of  the  reac t ion  of  CH3OH with  H~ 
done  in a convent ional  ICR mass spec t romete r  [49] ,  a t andem- - ICR mass 
spec t romete r  [50] ,  and a high-pressure chemical  ionizat ion source [51] .  
These investigations have suggested tha t ,  in the  l imit  o f  comple t e  collisional 
deact iva t ion ,  ~ ions reac t  wi th  CH3OH at  near- thermal  kinet ic  energies to 
p roduce  CH3OH~ ions and of  these a significant f rac t ion  have suff ic ient  
energy to  decompose  e i ther  by cleavage of  the  C--O bond  to  p roduce  CI-I~3 or  
by vicinal H2 e l iminat ion  to p roduce  CH2OH* according to  

+ CH3OH -~ [CH~OH~]* + H2 + 80 (8) 

~ CI-F3 + H20 --  64 (8a) 

CH2OI-I* + H2 - -  3 2  ( S b )  

where  s tandard en tha lpy  changes have been indica ted  in kcal t oo l - ' .  The  
validity of  this in te rpre ta t ion  was established f rom the  results o f  investiga- 
t ions of  analogous react ions  involving D~ [49 ,50] .  The  d i rec t  p roduc t i on  of  
CH2OH ÷ by exo the rmic  hydr ide  ion abst ract ion 

I~3 + CH3OH -~ CH2OH + + 2H2 + 48 (9) 

was observed to  be restr icted to highly exci ted  Hi  ions [49 ,50] .  In contras t ,  
t he  observat ions r epor t ed  here  indica ted  _,~ de tec tab le  decompos i t ion  
(<0.1%) w h e n  CH3OH was p ro tona t ed  with  H C O *  no r  any evidence for  the  
occur rence  of  hydr ide  abstract ion according to  

HCO ÷ + CH3OH -* CH2OH* + H2CO + 6 

In this case the  energetics  for  dissociative p r o t o n  t ransfer  are as fol lows 

HCO + + CH3OH -~ [CH3OI-r2 ]* + CO + 38 

(10) 

(11) 

~ CI-Ya + H20 -- 64 ( l la)  

CH2OH ++ H2 -- 32 (11b) 

The 38 -+ 4 kcal tool-t excess energy in the form of reaction exothermicity 
is much  less than the  80 -+ 4 kcal too l - '  available f rom the  reac t ion  wi th  I-F3. 
In fact,  C - O  cleavage is very e n d o t h e r m i c  so tha t  it is n o t  expec ted  to  occur ,  
whereas  H2 e l iminat ion has remained  exo the rmic  by 6 kcal t oo l - ' .  However ,  
this la t ter  f ragmenta t ion  is also expec ted  to  be unfavorable ,  in this case 
because of  the  presence of  a kinet ic  barrier  which  has been established f rom 
observat ions of  the  metas table  decompos i t i on  of  [CH3OH~]* genera ted f rom 

[51] .  The kinet ic  energy release ca lcula ted  for  the  metas table  H2 elimi- 
na t ion  f rom thi~ ion ~mounts  to  a barrier he igh t  for  the  inverse association 
of  CH2OI-I + with  H2 of  > 2 1  kcal too l - '  which  is more  than  suff ic ient  to  
a c c o u n t  for  o u r  failure to  observe t he  fo rmat ion  of  CH2OH+ via reac t ion  
( l lb) .  

Similar considerat ions  appear  to  apply for  the  reac t ion  of  HCO + wi th  the  
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Fig.  3.  T h e  v a r i a t i o n  o f  the  m a j o r  pos i t i ve  i o n s  o b s e r v e d  u p o n  t h e  a d d i t i o n  of C 2 H s O H  
i n t o  a f l o w i n g  C O - - H 2  p l a s m a  in  w h i c h  H C O  + is i n i t i a l l y  a d o m i n a n t  i o n .  T h e  d e c a y  o f  
H C O  + p r o v i d e s  a r a t e  c o n s t a n t  o f  2 .2  X 1 0  - 9  c m  3 m o l e c u l e  -1 s - 1 .  T - -  2 9 8  K ,  P = 0 . 4 4 2  
t o r t ,  ~ -- 8 .0  x 103 c m  s -1 ,  a n d  L = 85  c m .  

next member in the homologous series, C2HsOH, for which the energetics 
a r e  a s  f o l l o w s  

HCO ++ C2HsOH -* [C2HsOI-F2]* + CO + 44 (12) 

~ C21Ts + H20 -- 37 (12a) 

C2H4OI-I + + H2 -- 18 (12b) 

where C2H4OH * has been assumed to be protonated acetaldehyde. Our mea- 
surements indicated no evidence (<1%) for H2 elimination to form a m/z 
45 ion either by the decomposition (12b) which, by analogy with CH3OH, 
is likely to have a kinetic barrier, or the hydride abstraction 

HCO + + C2HsOH -~ C2H4OH++ H2CO + 25 (13) 

Figure 3 shows that H30 + was the only ptd_maty product ion observed apart 
from C2HsOI-I~2. The extent of C--O bond scission to produce C21~s could not  
be ascertained since this ion could not be distinguished with out mass spec- 
Ixometer from the reactant HCO ÷ ion. Consequently the rate constant deter- 
mined in this study from the decay of the m/z 29 ion may only be a lower 
limit. The observed H30 + variation, corrected for mass discrimination, was 
fitted to provide a branching probability of 0.45 + 0.1 for H30 ÷ production 
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and thus  0 .55 -+ 0.1 for  C2HsOI-I~2 p roduc t ion .  These probabi l i t ies  were  n o t  
m o n i t o r e d  over  a large range in H2 pressLtre and m a y  bo th  on ly  be uppe r  
l imits  i f  some C2I-l~s is indeed  produced  and  i f  i t  reacts  fu r the r  wi th  C2HsOH 
to form H 3 0  ÷. We propose  t h a t  the  observed p roduc t iov  of  H30* may  be 
reasonably  viewed to resul t  f rom C--O bond scission in IC2HsOH~z]* wi th  
synch ronous  or  near - synchronous  p r o ton  t ransfer  f rom C2I-I;s to H20  pr ior  
to  separa t ion in to  products .  

(CH3)20. Only  47 -+ 3 kcal too l - '  is available as exce~s energy  in the  fo rm 
of  reac t ion  exo the rmic i ty  in the  p r o t o n a t i o n  of  dimeth.~ 1 e the r  by  HCO*. This  
is n o t  enough energy to  bring abou t  the  C--O rup tu re  o f  [(CH3)2oH*]* in to  
CI-I~a and CH3OH which  requires 79 kcal tool  -1. O the r  conceivable  decom- 
pos i t ion  channels  which are al lowed on t h e r m o d y n a m i c  grounds  are 

(CH3)2OH*-~ CH3CHOH* + H2 - - 9  (14a) 

CH2OI-~ + C H 4  - -  19 (14b) 

-~ H30 + + C2H4 -- 23 (14c) 

These appeared not to be favorable, presumably because of the elaborate 
chemical redispo,-!tion which must be involved. 

OH20, CH3RHO, (CH3)2C0. Not unexpectedly, reaction with HCO + was 
observed in all of these cases to result in simp]e protona~ion of the mole- 
cule with no subsequent decomposition under our experimental condi- 
tions. The least endothermic routes of decomposition of the protonated 
aldehydes correspond to vicinal H2 elimination according to 

CH2OI-Y -~ HCO* + H: --28 (15) 

CH3CHOIC -~ CH3CO + + Hz -- 20 (16) 

Other studies have shown that CH2OI-I* undergoes symmetry-forbidden 
1,2-elimination of H~ only in a reaction requiring at ]east 61 kcal tool-' 
[52]. This is evident from Fig. 4 which shows the reaction coordinate for 

r~ 

~L 

_ _  co" 

HCO' .Jv2  __j_ 

CH 2 OH + 

Fig. 4 .  R e a c t i o n  coord ina te  vs. potent ia l  energy  for  the  CH2OH + s y s t e m  f o r m e d  by  reac- 
t i on  o f  ground-state  HCO ÷ ions  with  C H 2 0 .  All energies  are in kcal  too l  - l  . 
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the  decompos i t ion  of  CH2OI-1 ~ in to  HCO + and H2, including the  weakly  
b o u n d  in te rmedia te  HCO ÷- H2. Figure 4 has been cons t ruc ted  f rom pre- 
viously repor ted  low- tempera ture  equi l ibr ium studies of  the reverse associ- 
a t ion  [53]  and  measurements  of  the  kinet ic  energy  release in metas tab le  
decompos i t ion  [54] .  The excess energy available to  CH2OI-I + f rom HCO + 
is only 28 -+ 2 kcal tool -~, well below the  requi red  61 kcal tool  -1. Similar 
considerat ions  Mould  apply to the  e l iminat ion  of  H2 f rom CHaCHOH + for 
which  a m a x i m u m  of  42-+ 3 kcal mol  -! of  excess energy is available for  
depos i t ion  f rom HCO +. However ,  a second rou te  of  decompos i t ion  may  
n o w  become exo the rmic ,  viz. 

CHaCHOH ÷-* HCO ÷ + CHa --  38 (17) 

This decompos i t ion  involves a 1,3-shift of  a hydrogen  a tom,  a process 
thermal ly  forb idden  for  the  isoelectronic p ropene  [55] and  also shown 
t o  have a high barrier for  the  in terconvers ion of  vinyl a lcohol  and acetal- 
d e h y d e  [56] .  In view of  these high barriers it  is unl ike ly  tha t  this m o d e  
of  decompos i t ion  wou ld  occur .  Again, hyd r ide  t ransfer  is exo the rmic  and 
is no t  observed to c o m p e t e  wi th  the  p r o t o n  transfer  in CHaCHO. In the  
case of  CH20,  p roduc t ion  of  HCO ÷ by hydr ide  t ransfer  wou ld  lead to  an 
anomalous ly  low rate  cons tan t .  

In the  reac t ion  wi th  (CH~)zCO, suff ic ient  excess energy (51 +-3 kcal 
tool -1) is conceivably available f rom HCO ÷ to  
modes of  decompos i t i on  

(CHa)2 COH + ~ CHACO + + CH4 --  22 
4- 

-* CH2""CH"-=CH2 + H20 --  46 

al low the  fo l lowing two  

(18a) 

(18b) 

Nei ther  of  these products  were  observed.  Again high barriers are l ikely 
to be associated with their  fo rma t ion  as they  bo th  involve 1,3 hydro-  
gen-atom shifts f rom and  to the  oxygen  a tom,  respectively.  

HCOOH, CHaCOOH, HCOOCHa. For  these molecules  p ro ton  t ransfer  was 
again the p r e d o m i n a n t  reac t ion  channel .  However  some dissociat ion of  
MH + was evident  for  CHaCOOH and HCOOCHs as indicated in Figs. 5 and 
6. These observations can mos t  reasonably  be explained in terms of  C--O 
fission corresponding  to the  AAcl mechan i sm c o m m o n l y  invoked for  the  
cleavage of  esters, Amides, and carboxyl ic  acids in concen t r a t ed  acid solu- 
t ions [57] .  Fo r  acet ic  acid this mechan i sm is 

O 

c + , CH-~- ~ CH3C=O, H20-O (19)  

and  requires p ro tona t ion  at  the  h y d r o x y  oxygen.  As discussed earlier, suffi- 
c ien t  excess energy is available wi th  HCO ÷ to  p ro tona t e  this site. Alternat ive-  
ly,  this t~automer may  be achieved indirect ly  th rough  ca rbony l  p r o t o n a t i o n  
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F i g .  5 .  V a r i a t i o n  o f  i o n  s i g n a l s  r e c o r d e d  u p o n  t h e  a d d i t i o n  o f  C H 3 C O O H  i n t o  t h e  r e a c t i o n  
r e g i o n  in  t h e  S I F T  c o n f i g u r a t i o n .  B u f f e r  gas  = H2,  T = 3 0 0  K ,  P = 0 . 3 5 6  t o r t ,  ~ = 7 . 8  × 103  
c m  s -1 ,  a n d  L = 5 9  c m .  

Fig. 6.  T h e  var ia t ion  in the  ma jo r  posi t ive ions observed  u p o n  the  add i t ion  o f  I tCO O CH  3 
in to  a f lowing CO--H2 plasma in which HCO ÷ is initially a d o m l n e n t  ion. T h e  decay  
o f  HCO ÷ provides  a ra te  cons t an t  o f  2.8 × l 0  -9  c a  3 molecu le  - l  s - l .  T =  299  K, P = 
0 .367 tor r ,  ~ = 7.6 × 103 cm s -1, and  L = 85 cm.  

f o l l o w e d  b y  a 1 , 3  h y d r o g e n  s h i f t  a c c o r d i n g  t o  

-27 (20) 

However, this route seems more improbable as barriers to 1,3 hydrogen 
shifts in similar systems are known to be high [56,58]. The results plotted in 
Fig. 5 indicate Sat about 20% of the protonated acetic acid acquires suffi- 
cient energy under our expm~_men~ conditions to decompose ultimately 
i n t o  C H 3 C O  ÷ a n d  H 2 0 .  

T h e  a n a l o g o u s  d e c o m p o s i t i o n  o f  I-ICOOI-I~2 i n t o  H C O  ÷ a n d  H z O  is  7 k c a l  
t o o l - '  e n d o t h e r m i c  a n d  t h e r e f o r e  n o t  e x p e c t e d  t o  o c c u r .  H o w e v e r ,  i n ' t h i ~  
c a s e  a n  a l t e r n a t e  r o u t e  o f  d e c o m p o s i t i o n  b e c o m e s  e x o t h e r m i c ,  v i z .  

HCOOH~ -~ H30 + + CO -- 18 (21) 

which can also be viewed as an AAel cleavage, albeit accompanied by the 
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synchronous  t ransfer  o f  the  p ro ton  f rom the  carbon a tom:  

._/o (22) 

H 

H30 ÷ was n o t  observed to  be a p r o d u c t  indicat ing perhaps tha t  t oo  small a 
f ract ion of  the  35 kcal mol  -~ of  excess energy is available to  overcome the  
overall barrier to  C--O cleavage, which  is at  least 25 kcal tool -1 [45 ,47] .  
I n d e p e n d e n t  measuremen t s  pe r fo rmed  here ,  which  will be repor ted  else- 
where  [59] ,  have established t ha t  this m o d e  of  decompos i t ion  does  occur  to  
an appreciable ex t en t  wi th  the  m u c h  s t ronger  acid I-I~3. 

T h e  small p r o d u c t i o n  (3 -+ 1%) of  CH3OI-I~ shown in Fig. 6 which  appar- 
en t ly  arises f rom the  reac t ion  o f  HCO ÷ wi th  HCOOCHs could  again be ex- 
plained in terms of  the  modi f i ed  AAcl mechan i sm in which  the  p ro ton  f rom 
the  ca rbon  a tom is t ransferred synchronous ly  to  the  developing me thano l  
molecule .  This channel  is exo the rmic  by 28 kcal  mol  -~ while  the  fo rmat ion  
of  the  p roduc t s  HCO + + CH3OH via the  AAel mechan i sm w i t h o u t  concomi-  
t an t  p ro ton  t ransfer  is 10 kcal mo1-1 endo the rmic .  However ,  a pur i ty  check  
with convent iona l  gas chromatograph- -mass  spec t romete r  t echniques  indi- 
ca ted  tha t  the  m e t h y l  fo rmate  con ta ined  2 + 1% m e t h a n o l  which  is suffi- 
c ient  to  a c c oun t  for  the  bulk  of  the  observed increase in the  CH3OH~ signal. 
As previously no ted ,  HCO* rapidly transfers a p ro ton  to me thano l .  Other  
dissociative p r o t o n  t ransfer  channels  can be envisaged, e.g. 

HCOO(CH3)I-I + -* CH3CO + + H20 - -  7 (23a) 

-* H30 + + CH2CO --  36 (23b) 

bu t  these were  n o t  observed,  p robably  because considerable  skeletal  rearrange- 
m e n t  wou ld  be requi red  to  achieve them.  I t  is evident  f rom Fig. 6 t ha t  the  
CH3OH~2 reacts fu r ther  wi th  HCOOCH3 by  p r o t o n  transfer.  The H30 + ion 
present  initially as a result  o f  H20 impuri t ies  in the  f lowing plasma also 
reacts wi th  HCOOCH3 in a m a n n e r  similar to tha t  o f  HCO +, as will be report-  
ed  elsewhere [60] ,  bu t  does no t  con t r ibu te  significantly to  the  rise in the  
CH3OH~ signal shown in Fig. 6. 
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