Short Communication

THE PROTON AFFINITY OF C₃ AND HEAT OF FORMATION OF C₃H $^+$

A.B. RAKSHIT and D.K. BOHME

Department of Chemistry and Centre for Research in Experimental Space Science, York University, Downsview, Ont. M3J 1P3 (Canada)

(Received 7 June 1982)

The energy and structure of C_3H^+ have been the subject of numerous studies for more than 25 years. Recent theoretical treatments have provided a reasonable structure for the most stable form of this ion [1,2]. The determination of its heat of formation has been attempted in the past, primarily through appearance energy measurements. Early measurements of the electron impact appearance energies of C_3H^+ from various unsaturated hydrocarbon molecules have led to reported heats of formation for this ion in the range from 280 to 418 kcal mol^{-1} [3,4]. More recently Stockdale and coworkers [5] made a series of careful photoionization appearance energy measurements which led to values ranging only from 381 to 390 kcal mol^{-1} with allene, propyne and cyclopropene as parent molecules. Here we report the results of experimental measurements of the heat of formation of C₃H⁺ based on an entirely different approach; namely on measurements of its reactivity in ion/molecule reactions. Specifically, we have used a series of reactions chosen to explore the tendency of C_3H^+ to loose a proton. The resulting value for the proton affinity of C_3 , $PA(C_3)$, leads to a heat of formation for C_2H^+ since it is related to $PA(C_2)$ by eqn. (1)

$$PA(C_3) = \Delta H_f^0(C_3) + \Delta H_f^0(H^+) - \Delta H_f^0(C_3H^+)$$
(1)

Our own investigations of the energetics of this ion have been motivated primarily by an interest in its role as a reactive intermediate in interstellar ion chemistry [2,6].

The experiments were done in the selected ion flow tube apparatus at York University which has been described previously [7]. The C_3H^+ was produced from propylene at low pressures in an axial electron impact ionizer (Extranuclear Laboratories, Model 041-3) at an electron energy of 45 V. After formation it was injected into a helium carrier gas in the flow tube at a low energy of ca. 8 eV. The total pressure in the flow tube was held at ca.

TABLE 1

Reaction		Product distribution ^a	PA ^b	k °
$\overline{C_3H^+ + ND_3}$	$\rightarrow ND_3H^+ + C_3$	0.4	200	1.7 ± 0.34
	$\rightarrow ND_3^+ + C_3H$	0.25		
	$\rightarrow D_2 CN^+ + HC_2 D$	0.2		
	\rightarrow HC ₁ ND ₂ ⁺ +D	0.15		
$C_3H^+ + CH_3CN$	$\mathbf{N} \rightarrow \mathbf{C}_2 \tilde{\mathbf{H}}_3^+ (\tilde{\mathbf{H}} \mathbf{C} \mathbf{N}^+) + \mathbf{H} \mathbf{C} \mathbf{N}_3 (\mathbf{C}_4 \mathbf{H}_3)$	0.4	187	2.5 ± 0.6
	$\rightarrow C_3 NH_2^+ + C_2 H_2$	0.3		
	$\rightarrow CH_3CNH^+ + C_3$	0.2		
	$\rightarrow C_3 H^+ \cdot CH_3 CN$	0.1		
$C_3H^+ + CH_3OH$	$H \rightarrow HC_3O^+ + CH_4$	0.7	181	2.2 ± 0.6
	$\rightarrow CH_3O^+ + C_3H_2$	0.2		
	$\rightarrow CH_3^+ + C_3H_2O$	0.1		
	$\rightarrow CH_3OH_2^+ + C_3$	≤0.01		
$C_3H^+ + HCN$	$\rightarrow C_3 H^+ \cdot HCN$	1.0	171	1.1 ± 0.2
	\rightarrow H ₂ CN ⁺ +C ₃	≤0.01		

Summary of reactions observed at 296 \pm 2 K between C₃H⁺ and molecules with adjacent proton affinities

^a Product distributions were determined with the method described in ref. [8].

^b Proton affinity of the neutral reactant in kcal mol^{-1} as reported in ref. [9].

^c Rate constant for the disappearance of C_3H^+ in units of 10^{-9} cm³ molecule⁻¹ s⁻¹.

0.35 torr. The neutral reagents were chosen to cover a range of proton affinities and included, in order of increasing proton affinity, the molecules N_2 , CO₂, CO, H₂O, HCN, CH₃OH, CH₃CN and ND₃. These molecules provide a range in proton affinity from 117 to 200 kcal mol⁻¹

Proton transfer was observed to be a product channel only with CH₃CN and NH₃, the two molecules with the highest proton affinities. The observed reactions are shown in Table 1. There was no evidence for the occurrence of proton transfer with CH₃OH and HCN or any of the other molecules with lower proton affinity. These results therefore bracket the proton affinity of C₃ between those of CH₃OH and CH₃CN, viz. $PA(CH_3OH) < PA(C_3) <$ $PA(CH_3CN)$. The recent compilation of proton affinities by Walder and Franklin [9] indicates values for $PA(CH_3OH)$ and $PA(CH_3CN)$ of 181 or 182 and 186 to 188 kcal mol⁻¹, respectively. Consequently our results indicate a value for $PA(C_3)$ of 184 ± 4 kcal mol⁻¹. With the heats of formation at 298 K reported for H⁺ and C₃ in the JANAF tables [10], viz. 367.2 ± 0.01 and 196 ± 4 kcal mol⁻¹, respectively, this result implies a heat of formation for C₃H⁺ of 379 ± 8 kcal mol⁻¹. Current revisions of the JANAF tables appear to favour a value of 200 ± 4 kcal mol⁻¹ for the heat of formation of C₃ [11]. This latter value leads to a higher heat of formation for C_3H^+ of 383 ± 8 kcal mol⁻¹ which is in good agreement with the more recent range of values reported by Stockdale and coworkers [5].

The high proton affinity of C_3 arises from resonance stabilization in the carbene cation (2) produced on protonation. Ab initio molecular orbital theory has shown that $C_{\infty\nu}$ symmetry is the most stable [1]. A second, non-linear structure with $C_{2\nu}$ symmetry has been found to have an energy 45.9 kcal mol⁻¹ greater than the structure below.

$$H-\overset{+}{C}=C=C:\leftrightarrow H-C\equiv C-\overset{+}{C}:$$
(2)

In spite of the high proton affinity of C_3 , the C_3H^+ ion is a very reactive species. We have observed fast reactions other than proton transfer with all of the molecules studied except N_2 . The results of these investigations will be reported separately.

ACKNOWLEDGEMENT

We thank the Natural Science and Engineering Council of Canada for financial support.

REFERENCES

- 1 L. Radom, P.C. Hariharan, J.A. Pople and Pv.R. Schleyer, J. Am. Chem. Soc., 98 (1976) 10.
- 2 S. Wilson and S. Green, Astrophys. J., 240 (1980) 968.
- 3 J.L. Franklin, J.G. Dillard, H.M. Rosenstock, J.T. Herron, K. Draxl and F.H. Field, Natl. Stand. Ref. Data Ser., 26 (1969) 41.
- 4 H.M. Rosenstock, K. Draxl, B.W. Steiner and J.T. Herron, J. Phys. Chem. Ref. Data Ser. Suppl. 1, 6 (1977) 106.
- 5 A.C. Parr, A.J. Jason and R. Stockbauer, Int. J. Mass Spectrom. Ion Phys., 33 (1980) 243.
- 6 H.I. Schiff and D.K. Bohme, Astrophys. J., 232 (1979) 740.
- 7 G.I. Mackay, G.D. Vlachos, D.K. Bohme and H.I. Schiff, Int. J. Mass Spectrom. Ion Phys., 36 (1980) 259.
- 8 N.G.Adams and D. Smith, J. Phys. B, 9 (1976) 1439.
- 9 R. Walder and J.L. Franklin, Int. J. Mass Spectrom. Ion Phys., 36 (1980) 85.
- 10 JANAF Thermochemical Tables, 2nd edn. Natl. Stand. Ref. Data Ser. 37 (1971).
- 11 A. Syevrud, private communication, 1982.