STUDIES OF REACTIONS OF C_3H^+ IONS IN THE GAS PHASE AT 296 ± 2 K

A.B. RAKSIT and D.K. BOHME

Department of Chemistry and Centre for Research in Experimental Space Science, York University, Downsview, Ontario M3J 1P3 (Canada)

(Received 1 June 1983)

ABSTRACT

Rate constants and product distributions have been determined for ion-molecule reactions between C_3H^+ and H_2 , D_2 , CO, N_2 , O_2 , CO_2 , OCS, H_2O , H_2S , CH_3OH , NO, N_2O , NH_3 , ND_3 , CH_4 , HCN, CH_3CN , C_2N_2 , C_2H_2 , C_2D_2 and C_2H_4 . The measurements were done using the Selected-Ion Flow Tube or SIFT technique at 296 ± 2 K. The observed reactions exhibit a wide range in reactivity and a large variety of pathways including proton transfer, charge transfer, hydride abstraction, complex formation and association. Many of these reactions provide routes for C-H, C-C, C-O, C-N or C-S bond formation in the ion and/or neutral product which are of relevance in molecular synthesis by ion chemistry.

INTRODUCTION

The mass-spectrometric observation of C_3H^+ has a long history and there has been a long-standing interest in the experimental determination of its energy [1,2]. Nevertheless, very little information has been forthcoming about the chemical reactivity of this species. A need for such information has recently become apparent, especially in connection with interstellar ion chemistry [3–5], which has provided the motivation for the experiments reported here. We have chosen a large variety of molecules containing C, O, N and S as neutral substrates to explore fully the many pathways of the reactions of this interesting ion at room temperature. Molecular orbital theory has shown the most stable structure of C_3H^+ to be linear and stabilized by resonance [4,6] as in

$$H-C^{+}=C=C: \leftrightarrow H-C=C-C^{+}: \tag{1}$$

Both cationic and carbene character are indicated by this structure. These properties, together with the high energy and low acidity of C_3H^+ [7] and its low electron-recombination energy, also make this ion a most attractive candidate for providing further insight into the more chemical aspects of ion-molecule reactions in general.

EXPERIMENTAL

The measurements were done with the Selected-Ion Flow Tube, SIFT, apparatus at York University. An early version of this apparatus has been described in detail elsewhere [8]. A number of important modifications have been made for most of the measurements reported here. These are incorporated in the schematic diagram which appears in Fig. 1. The miniature flowing afterglow source can now be replaced with an axial electron impact ionizer (Extranuclear, Model 041-3). The Bendix magnetic electron multiplier can be replaced with a high current CEM Channeltron multiplier (Galileo Electro-Optics Corp., Model 4830). Also the mass range of the analysis quadrupole has been extended up to m/z = 425 with the use of a new combination of a high-Q head (Extranuclear, Model 13) and quadrupole mass filter (Extranuclear, Model 4-162-8).

The C_3H^+ was produced from propylene either in the miniature flowing afterglow source in a He buffer at total pressures of ca. 0.3 Torr, or from the pure gas at much lower pressures in the axial electron impact ionizer at 45-60 eV. The results were found to be independent of the ion source employed. After formation, the C_3H^+ was selected and injected at ca. 80 V

Fig. 1. Schematic diagram of the selected-ion flow tube and flowing afterglow apparatus.

or 8–20 V, respectively, into a helium carrier gas at a total pressure of ca. 0.35 Torr unless indicated otherwise. The ions were allowed to thermalize by collisions with the carrier gas prior to their entry into the reaction region. However, in the process, the selected ions may undergo collisional dissociation and reaction with impurities in the buffer gas and with any propylene which may "leak" through the aspirator. For example, at the high ion injection energy which was required with the flowing afterglow source, C_3H^+ was observed to be dissociated to C^+ , giving rise to a C_3H^+/C^+ ion signal ratio at the downstream detector of only about 10/1. At the much lower injection energies of the electron impact source, this ratio was much higher, $\sim 10^4/1$, but reactions with impurities gave rise to small signals, especially at m/z 27, 29, 39, 53 and 54. Nevertheless, the selected C₂H⁺ signal was always at least 200 times as large as any of these impurity peaks. As a consequence, the assignment of product ions could be made with confidence to levels as low as about 1%. Optimum operation of the electron impact source with the off-axis Channeltron detector provided currents for C_3H^+ in excess of 10^{-8} A and count rates in excess of 5×10^4 counts s⁻¹.

As has been the case in our previous studies, all of the reagent gases and vapours as well as the helium buffer gas were of high purity. This was especially true for the three least reactive gases, viz. O_2 , N_2 and CO_2 , for which low rate constants are reported. These gases had a minimum purity of 99.99 mol %. All measurements were made at an ambient temperature of 296 \pm 2 K.

RESULTS AND DISCUSSION

Table 1 summarizes the rate constants and product distributions obtained in this study. Both bimolecular and termolecular products were observed. Rate constants were derived as before [8] and product distributions were determined using the method described by Adams and Smith [9]. The results are discussed in the following section in groups of neutral reagents, in part to emphasize common features in their chemistry.

Reactions with H_2 , D_2 , CO, and N_2

Hydrogen, deuterium and carbon monoxide were observed to add to C_3H^+ in helium buffer gas to form $C_3H_3^+$, $C_3HD_2^+$ and HC_4O^+ , respectively. The effective two-body rate constants for these three association reactions were measured at total pressures in the range from 0.33 to 0.75 Torr. Their observed dependences on pressure are shown in Fig. 2 and lead to three-body rate constants of $(1.9 \pm 0.8) \times 10^{-27}$, $(7.7 \pm 3.1) \times 10^{-28}$ and $(2.9 \pm 1.2) \times 10^{-27}$ cm⁶ molecule⁻² s⁻¹, respectively. No adduct was ob-

Summary of the rate constants an	d product	distributions	measured a	at 296 <u>+</u> 2 K	for reactions
of C ₃ H ⁺					

Neutral	Products ^b	Product	k ^d
reactant ^a		distribution ^c	
$\overline{\mathbf{H}_{2}(\mathbf{He})}$	C ₂ H ⁺	1.0	$1.9(-27)^{e}$
D_{2} (He)	$C_1 HD_1^+$	1.0	$7.7(-28)^{\circ}$
CO (He)	$HC_{1}O^{+}$	1.0	$2.9(-27)^{\circ}$
N ₂	4-	2.0	<1(-13)
O ₂	$HCO^+ + C_2O$	0.6	2.5(-11)
	$HC_{2}O^{+} + O$	0.3	
	$HC_{2}O^{+} + CO$	0.1	
CO ₂	$HC_{2}O^{+} + CO$	10	2.0(-12)
COS	$CS^+ + HC_2O$	0.7	6.1(-10)
	$HC_{2}O^{+} + CS$	0.2	0.1 (10)
	$HC_{3}S^{+} + CO$	0.1	
H ₂ O	$CHO^+ + C_2H_2$	0.55	45(-10)
1120	$C_{2}H_{1}^{+}+CO$	0.40	
	$HC_{2}O^{+} + H_{2}$	0.05	
H-S	$CHS^+ + C_2H_2$	0.63	1.2(-9)
	$C_{2}H_{2}^{+}+CS$	0.30	
	$HC_{2}S^{+} + H_{2}$	0.07	
сн он	$HC_{2}O^{+} + CH_{2}$	0.8	22(-9)
chijoni	$CH_{2}O^{+} + C_{2}H_{2}$	0.0	2.2 ())
	$CH_{+}^{+} + H_{-}C_{-}O$	0.1	
NO	$HC_{\circ}N^{+}+CO$	0.75	55(-10)
	$NO^+ + C_{*}H$	0.25	
NO	$NO^+ + HC_N$	0.55	
1.20	$HC_{2}O^{+} + N_{2}$	0.4	
	$HCN^+ + C_2NO$	0.05	
NH ₁	$NH_{+}^{+} + C_{2}$	0.5	1.6(-9)
	$H_2CN^+ + C_2H_2$	0.3	
	$NH_{1}^{+} + C_{2}H$	0.15	
	$HC_1NH_1^+ + H$	0.05	
ND ₁	$ND_{1}H^{+}+C_{2}$	0.5	1.7(-9)
	$D_2CN^+ + C_2HD$	0.2	
	$ND_{2}^{+} + C_{2}H$	0.2	
	$HC_{1}ND_{1}^{+}+D$	0.1	
CH	$\mathbf{C}_{2}\mathbf{H}_{1}^{+}+\mathbf{C}_{2}\mathbf{H}_{2}$	0.7	5.5(-10)
	$C_{1}H_{1}^{+} + CH_{1}^{-}$	0.2	
	$C_4 H_2^+ + H_2$	0.1	
HCN (He)	$C_4H_3N^+$	1.0	1.0(-9)
CH ₃ CN	$C_{1}NH_{2}^{+}+C_{2}H_{2}$	0.35	3.0(-9)
	C ₃ H ⁺ ·CH ₃ CN	0.3	
	$C_1H_1^+ + HC_1N$	0.2	
	$CH_{3}CNH^{+}+C_{3}$	0.15	
CD ₃ CN	$C_3 NHD^+ + C_2 D_2$	0.3	3.0 (-9)
	C ₃ H ⁺ ·CD ₃ CN	0.3	
	$C_2 D_3^+ + HC_3 N$	0.15	
	$CD_3CNH^+ + C_3$	0.15	
	$C_2ND_2^+ + C_2D_2$	0.1	

TABLE 1 (continued)

Neutral Products ^b reactant ^a		Product k^{d} distribution ^c	
C_2N_2 (He)	$C_{5}HN_{2}^{+}$	1.0	\geq 4.4 (-10)
C_2H_2 (He)	$C_5H_3^+$	0.7	1.0 (-9)
	$C_5H_2^+ + H$	0.3	
C_2D_2 (He)	$C_{5}HD_{7}^{+}$	0.7	9.3 (-10)
	$C_{5}HD^{+}+D$	0.3	
C ₂ H ₄	$C_{3}H_{3}^{+}+C_{2}H_{2}$	0.95	9.5 (-10)
	$C_5H_3^+ + H_2$	0.05	

^a For termolecular reactions, the third body is indicated in parentheses.

^b The neutral products were not detected in the present experiments. In writing the neutral products, only the most exothermic channel is indicated.

^c We estimate that the absolute branching ratio may be in error by as much as $\pm 30\%$ due to the possible mass discrimination effects in the mass spectrometer. For ionic products over a narrow mass range (≤ 5 u) these effects are negligible.

^d Unless otherwise indicated, k is the effective bimolecular rate constant for the disappearance of C_3H^+ in units of cm³ molecule⁻¹ s⁻¹ in helium buffer gas at a total pressure of ca. 0.35 Torr. The accuracy is estimated to be better than $\pm 30\%$. Rate constants are expressed as a(-b) to represent $a \times 10^{-b}$.

^e Termolecular rate constant in units of cm^6 molecule⁻² s⁻¹.

served to be formed between C_3H^+ and N_2 : the C_3H^+ failed to react altogether with N_2 at 0.36 Torr, $k \le 1 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹. Insofar as the magnitude of a three-body rate constant correlates with the stability of the association complex [10,11], the relatively high values of the three-body rate constants for the reactions with H_2 , D_2 and CO, as well as the failure of C_3H^+ to form an adduct with N_2 , are indicative of the formation with H_2 , D_2 and CO of "tight" adducts through chemical bonding rather than "loose" adducts through electrostatic interaction. Thus the $C_3H_3^+$ and $C_3HD_2^+$ ions formed by association of C_3H^+ with H_2 and D_2 , respectively, are likely to be cyclopropenium or propargyl cations, while the HC_4O^+ formed from C_3H^+ and CO is likely to have the linear structure $H-\dot{C}=C=C=C=O$. The isotope effect observed for the termolecular association reactions with H_2 and D_2 is quite large, $k_{H_2}/k_{D_2} = 2.5$. An isotope effect of 1.38 can be attributed to the difference in the reduced mass of the reacting species in the first step of the two-step mechanism for such reactions.

Reactions with O_2 , CO_2 and OCS

The reaction with O₂ was observed to be quite slow, $k = 2.5 \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹, but a number of interesting product channels appeared. The

Fig. 2. Observed dependence of the effective two-body rate constant on the total pressure for the associations of C_3H^+ with H_2 , D_2 and CO at 296 ± 2 K. In the H_2 and D_2 experiments, the C_3H^+ ions were produced from pure propylene with the axial electron impact ionizer at ca. 60 eV. In the CO experiments, the C_3H^+ ions were derived from a propylene/helium mixture at 0.4 Torr and 50 eV in the miniature flowing afterglow source (solid points). The open square refers to selection of $C_3H_3^+$ from the same mixture with subsequent collisional dissociation with He to C_3H^+ prior to the reaction region.

 HCO^+ and HC_2O^+ ions are likely to arise from side-on attack by O_2 and subsequent proton transfer before the products separate. The HC_3O^+ channel can arise directly by O atom abstraction.

The reaction with CO₂ was observed to occur even less rapidly, $k = 2.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, and in this case in only one fashion: by O atom abstraction to produce HC₃O⁺.

Substitution of a sulphur atom for one of the oxygen atoms in CO_2 was observed to give rise to a very substantial enhancement in the specific rate of reaction with C_3H^+ . Carbonyl sulfide, OCS, reacts at close to the collision rate and gives rise to three product ions which can be accounted for by a mechanism which involves attack at either end of the molecule. The HC_3O^+ ion may arise as before with CO_2 by O atom abstraction to leave CS. The CS has a low ionization energy (IE = 11.8 eV) and so may be ionized by charge transfer before the products separate. Attack at the opposite end of COS will yield HC_3S^+ and CO. The CO has a much higher ionization energy (IE = 14.1 eV) than CS and this may account for the failure to observe production of CO⁺, the analogue of CS⁺.

Reaction with H_2O , H_2S and CH_3OH

As anticipated, C_3H^+ was observed to react with H_2O and H_2S in a very similar fashion. Figure 3 shows the raw data obtained for the reaction with H_2S . Rearrangement to eliminate C_2H_2 was the major reaction channel. The CHS⁺ (or CHO⁺ in the case of H_2O) may transfer a proton to C_2H_2 before the products completely separate and so account for the observed $C_2H_3^+$ product. The eventual decline in the $C_2H_3^+$ seen in Fig. 3 is due to the

Fig. 3. The observed variation in ion signals detected upon the addition of H_2S into the reaction region of the SIFT apparatus in which C_3H^+ is initially established in helium buffer gas. The C_3H^+ ions were generated in the electron impact ionizer from propylene at low pressures with 45 eV electrons. The conditions in the reaction region were P = 0.358 Torr, $\bar{v} = 7.6 \times 10^3$ cm s⁻¹, L = 46 cm and T = 298 K.

further reaction with H_2S by proton transfer. A small fraction of the reactions of C_3H^+ with H_2O and H_2S led to the elimination of H_2 to produce HC_3O^+ and the sulphur analogue HC_3S^+ , respectively. The failure to observe charge transfer is noteworthy in the case of H_2S . This molecule has a relatively low ionization energy (IE = 10.47 eV) and so failure to observe charge transfer in this case may provide an upper limit to the ionization energy of C_3H .

Many channels are exothermic for the reaction of C_3H^+ with CH_3OH but only a few are actually selected by these reactants. The analogues of the main channels with H_2O , viz. production of $HCO^+ + CH_3CCH$ or CH_3CO^+ $+ C_2H_2$ and $CH_3CCH_2^+ + CO$ or $C_2H_3^+ + CH_2CO$, were not observed even though they are all exothermic. Instead, the analogue of the minor channel observed with H_2O , viz. production of $HC_3O^+ + CH_4$, becomes the preferred channel with CH_3OH . The CH_3^+ product can arise from hydride transfer to produce $H_2C=C=C=O$ before the HC_3O^+ and CH_4 completely separate. The observed CH_3O^+ product ion likely arises by direct hydride abstraction from CH_3OH . Protonated methanol was observed in the product spectrum, but the product analysis showed that it was not produced directly from C_3H^+ . Instead, it could be attributed entirely to the secondary protontransfer reactions of CH_3O^+ and HC_3O^+ with CH_3OH . The CH_3^+ product was observed to undergo the known secondary reaction with CH_3OH which produces CH_3O^+ .

Reactions with NO and $N_{2}O$

Nitric and nitrous oxides were observed to react with C_3H^+ in very different ways. Nitric oxide, NO, the most stable oxide of nitrogen, reacts by rearrangement to eliminate CO and by charge transfer. Rearrangement is the major channel. The HC₂N⁺ ion produced along with the CO may have the resonance-stabilized structure $H-\overline{C=C-N} \cdot .$ In contrast, N₂O reacts primarily by N⁽⁻⁾ abstraction to form NO⁺ and a neutral species, which is probably cyanoacetylene, as well as by oxygen-atom abstraction to produce HC₃O⁺ and N₂. These two reaction paths can be envisaged to result from attack at either of the two negative ends of the N₂O molecule.

Reactions with NH_3 , ND_3 and CH_4

Multiple products were observed for all three of these reactions. NH_3 and ND_3 were observed to react predominantly by the direct processes of proton transfer and charge transfer and by C–N bond formation while CH_4 reacted exclusively by C–C and C–H bond formation.

Fig. 4. The observed variation in ion signals detected upon the addition of ND₃ into the reaction region in which C_3H^+ has been established with the SIFT technique using the electron impact ionizer at 60 eV. P = 0.349 Torr, $\bar{v} = 7.5 \times 10^3$ cm s⁻¹, L = 46 cm and T = 296 K.

Figure 4 shows data recorded for the reaction of C_3H^+ with ND₃. The product analysis indicated that the major channel was proton transfer to produce ND₃H⁺ which appears to react further with ND₃ by H/D exchange to form ND₄⁺. The latter ion is also generated by secondary reactions of the charge-transfer product ND₃⁺ and the product ion at m/z = 30. Experiments with NH₃ indicated a shift of the product ion at m/z = 30 to m/z = 28, which is consistent with the formation of D₂CN⁺ rather than C₂D₃⁺. A minor fraction of the reaction of C₃H⁺ with ND₃ appears to proceed by condensation with elimination of a deterium atom to form a radical cation which may have the structure $H\overline{C=C-C}-ND_2$. Also, there was some indication of the formation of an ion at m/z 41 (HC₃D₂⁺, HC₂ND⁺?) with a branching ratio of ≤ 0.02 , but the corresponding ions at m/z = 39 or 40 did not appear to be produced with NH₃.

The products observed for the reaction of C_3H^+ with CH_4 were of the type $C_nH_3^+$ with n = 2, 3 and 4 and correspond to the elimination from the intermediate complex of acetylene, methylene and hydrogen, respectively. As

Fig. 5. The observed variation in ion signals detected with the addition of CH₄ into the reaction region in which C₃H⁺ has been established with the SIFT technique using the electron impact ionizer at 45 eV. P = 0.353 Torr, $\bar{v} = 7.4 \times 10^3$ cm s⁻¹, L = 46 cm and T = 297 K.

regards the production of $C_3H_3^+$, it is interesting to note that currently available heats of formation for C_3H^+ and $C_3H_3^+$ [1,2] indicate that only the formation of the cyclopropenium ion (and not, for example, the propargyl cation) is exothermic in this case. The $C_4H_3^+$ ion may arise from insertion at a C-H bond with concomitant elimination of H₂, in which case $H\overline{C=C-C}=CH_2$ would be a reasonable structure for this ion.

Reactions with HCN, CH₃CN, CD₃CN, and C_2N_2

Four product ions were observed for the reaction of C_3H^+ with CH_3CN . Experiments with CD_3CN confirmed that the product at m/z = 27 was $C_2H_3^+$ rather than HCN^+ and that the product at m/z = 52 was $C_3NH_2^+$ rather than $C_4H_4^+$. The $C_3H_3^+$ may arise through complex formation with the elimination of cyanoacetylene. Transfer of a proton to the developing cyanoacetylene molecule can account for the observation of $C_3NH_2^+$. The observation with CD_3CN of $C_3ND_2^+$ as well as C_3NHD^+ suggests that some

Fig. 6. The observed variation in ion signals detected with the addition of CD₃CN into the reaction region in which C₃H⁺ has been established with the SIFT technique using the electron impact ionizer at 60 eV. P = 0.345 Torr, $\bar{v} = 7.5 \times 10^3$ cm s⁻¹, L = 46 cm and T = 296 K.

H/D exchange may also occur in the complex before the products separate. Both $C_2H_3^+$ and $C_3NH_2^+$ were observed to react further with CH_3CN apparently by proton transfer. Figure 5 shows the corresponding results with CD_3CN . The reaction of $C_2H_3^+$ is expected since the proton affinity of C_2H_2 is known to be less than that of CH_3CN . The secondary reaction of $C_3NH_2^+$ also places the proton affinity of cyanoacetylene below that of CH_3CN .

The observation of a primary proton-transfer channel places an upper limit on the proton affinity of C_3 [7]. The nature of the adduct formed between C_3H^+ and CH_3CN (or CD_3CN) is uncertain; insertion at a C-H bond could result in a linear resonance-stabilized ion of type (2a) or, upon isomerization, the cyclic structure (2b).

Only the adduct was observed to be formed with HCN and C_2N_2 . The high values of the effective two-body rate constants which were measured suggest that these associations proceed at the saturated rate. With HCN, insertion at the C-H bond may proceed again to form the linear or cyclic resonance-stabilized ions (3a) or (3b). With C_2H_2 , insertion at the C-C bond may lead to an ion of the type $HC_2 - C(CN)_2$.

Reactions with C_2H_2 , C_2D_2 and C_2H_4

 $C_5H_3^+$ and $C_5H_2^+$ were both observed as product ions for the reaction of C_3H^+ with C_2H_2 in helium buffer gas at 0.35 Torr. The former product corresponds to formation of the adduct while the latter involves the elimination of a hydrogen atom. Both ions may arise from insertion at a C-H bond and so have structures of the type $H\overline{C}=\overline{C}-\overline{C}H-C\equiv CH$ and $H\overline{C}=\overline{C}-\overline{C}-C$

C=CH, respectively. Further isomerization could lead to cyclic structures of the type (2b) and (3b). Experiments with C_2D_2 indicated that the hydrogen atom is eliminated from C_2H_2 rather than C_3H^+ . Previous flowing afterglow measurements failed to reveal the formation of the adduct, apparently because of insufficient resolution of the mass spectrometer [3].

 C_3H^+ was observed to react rapidly with C_2H_4 to produce $C_3H_3^+$ with elimination of C_2H_2 . In this case, formation of either the cyclopropenium or the propargyl isomer is exothermic. Formation of $C_5H_3^+$ with elimination of H_2 was indicated by the product analysis to account for about 5% of the reaction.

CONCLUSIONS

The measurements reported here show that C_3H^+ reacts with simple inorganic and organic molecules in the gas phase at room temperature in a variety of different ways with a large range in reactivity. The observed pathways of reaction were proton transfer, charge transfer, hydride abstraction, complex formation and association.

Proton transfer was observed with molecules having proton affinities greater than 187 kcal mol⁻¹ but not with molecules having proton affinities

less than 181 kcal mol⁻¹. These observations have provided values for the proton affinity of C₃, PA(C₃) = 184 ± 4 kcal mol⁻¹, and for the heat of formation of C₃H⁺, $\Delta H_{f_{298}}^{o}$ (C₃H⁺) = 383 ± 8 kcal mol⁻¹ [7].

Charge transfer was observed with molecules having ionization potentials less than 10.21 eV but not with molecules having ionization potentials greater than 10.47 eV. These observations suggest values for the adiabatic ionization energy of C₃H, IE(C₃H) = 10.35 ± 0.15 eV, and for the heat of formation of C₃H, $\Delta H_{1,298}^{\circ}$ (C₃H) = 144 ± 12 kcal mol⁻¹.

Many of the observed reaction channels are in accord with a carbenoid character associated with C_3H^+ [12]. Coordination with a non-bonded electron pair on oxygen in H₂O, CO₂, OCS, N₂O and CH₃OH can account for the common product ion HC₃O⁺ observed with these reagents. Likewise, coordination with a non-bonded electron pair on sulphur in H₂S and OCS and on carbon in CO can account for the product ions HC₃S⁺ and HC₄O⁺, respectively.

Insertion can account for several of the product channels observed with the molecules containing C-H, N-H, O-H or S-H sigma bonds, in particular the channels leading to formation of C_2H_2 or $C_2H_3^+$. Also, it appears from the high rates of association that the adducts which have been observed with H₂, HCN, CH₃CN and C₂H₂ may have structures corresponding to strongly bound chemical species which may be formed by sigma bond C-H insertion.

Several of the observed reactions are of relevance to molecular synthesis by means of ion chemistry as, for example, in astrochemical environments: the C_3H^+ ion has been implicated in the chemistry of dense interstellar clouds where it may be formed by reaction of C⁺ with C_2H_2 [3] or C₃⁺ with H_2 [5]. In the present study, members of a homologous series of product ions of the type HC_nO⁺, with possible structures which may be represented by $HC=C_n=O$, have been observed in the reactions with CO, O₂, CO₂, OCS,

 H_2O , CH_3OH and N_2O . Neutralization of these ions by proton transfer, electron-ion recombination or hydride transfer may lead to the formation of molecules of the type : $C=C_n=O$ or ketene-like molecules of the type $H_2C=C_n=O$. The reactions of C_3H^+ with N_2O and CH_3CN are potential sources of cyanoacetylene. The reactions with CH_4 , C_2H_2 and C_2H_4 can lead to the build-up of carbon skeletons. The nature of the adducts observed with HCN, CH_3CN and C_2H_2 is uncertain, but they appear to allow the formation of larger organonitrogen molecules, particularly at elevated pressures.

Clearly, C_3H^+ is a very aggressive chemical species in the gas phase. Its reactivity has only been sampled in the present study, but it is evident from the results obtained that this ion can be an important intermediate in molecular growth by ion chemistry.

ACKNOWLEDGEMENT

We thank the Natural Science and Engineering Council of Canada for financial support.

REFERENCES

- 1 J.L. Franklin, J.G. Dillard, H.M. Rosenstock, J.T. Herron, K. Draxl and F.H. Field, Natl. Stand. Ref. Data, Ser. Natl. Bur. Stand., 26 (1969).
- 2 H.M. Rosenstock, K. Draxl, B.W. Steiner and J.T. Herron, J. Phys. Chem. Ref. Data, Suppl. 1, 6 (1977).
- 3 H.I. Schiff and D.K. Bohme, Astrophys. J., 232 (1979) 740.
- 4 S. Wilson and S. Green, Astrophys. J., 240 (1980) 968.
- 5 G.F. Mitchell, J.L. Ginsburg and P.J. Kuntz, Astrophys. J., Suppl. Ser., 38 (1978) 39.
- 6 K. Raghavachari, R.A. Whiteside, J.A. Pople and P.V.R. Schleyer, J. Am. Chem. Soc., 103 (1981) 5649.
- 7 A.B. Raksit and D.K. Bohme, Int. J. Mass Spectrom. Ion Phys., 49 (1983) 275.
- 8 G.I. Mackay, G.D. Vlachos, D.K. Bohme and H.I. Schiff, Int. J. Mass Spectrom. Ion Phys., 36 (1980) 259.
- 9 N.G. Adams and D. Smith, J. Phys. B, 9 (1976) 1439.
- 10 E. Herbst, J. Chem. Phys., 70 (1979) 2201.
- 11 A. Good, Trans. Faraday Soc., 67 (1971) 3495.
- 12 D.K. Bohme, A.B. Raksit and A. Fox, J. Am. Chem. Soc., 105 (1983) 5481.