# Flow-tube studies of reactions of selected ions with cyanoacetylene

A. B. RAKSIT AND D. K. BOHME

Department of Chemistry and Centre for Research in Experimental Space Science, York University,

Downsview, Ont., Canada M3J 1P3

Received August 10, 1984

A. B. RAKSIT and D. K. BOHME. Can. J. Chem. 63, 854 (1985).

Rate constants and product distributions have been determined for ion/molecule reactions of cyanoacetylene (HC<sub>3</sub>N) with He<sup>+</sup>, C<sup>+</sup>(<sup>2</sup>P), CH<sub>3</sub><sup>+</sup>, C<sub>2</sub><sup>+</sup>, C<sub>2</sub>H<sup>+</sup>, C<sub>2</sub>H<sub>2</sub><sup>+</sup>, CN<sup>+</sup>, C<sub>2</sub>N<sub>2</sub><sup>+</sup>, N<sub>2</sub><sup>+</sup>, CO<sup>+</sup>, H<sub>3</sub><sup>+</sup>, N<sub>2</sub>H<sup>+</sup>, HCO<sup>+</sup>, C<sub>2</sub>H<sub>3</sub><sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, CH<sub>3</sub>NO<sub>2</sub>H<sup>+</sup>, CH<sub>3</sub>CNH<sup>+</sup>, (CH<sub>3</sub>)<sub>2</sub>COH<sup>+</sup>, *i*-C<sub>3</sub>H<sub>7</sub>OH<sub>2</sub><sup>+</sup>, C<sub>3</sub>H<sup>+</sup>, and C<sub>4</sub>N<sup>+</sup>. The measurements were performed with the selected-ion flow-tube (SIFT) technique at 296  $\pm$  2 K. The observed reactions exhibit a variety of pathways including charge transfer, proton transfer, condensation, and association. The condensation and association reactions are suited for molecular growth by ion/molecule reactions. Special consideration is given to the active role of cyanoacetylene in the possible molecular synthesis which occurs in dense interstellar gas clouds by ion/molecule reactions.

A. B. RAKSIT et D. K. BOHME. Can. J. Chem. 63, 854 (1985).

On a déterminé les constantes de vitesse et les distributions des produits des réactions ions/molécules entre le cyanoacétylène  $(HC_3N)$  et les ions  $He^+$ ,  $C^+(^2P)$ ,  $CH_3^+$ ,  $C_2^+$ ,  $C_2H_2^+$ ,  $CN^+$ ,  $C_2N_2^+$ ,  $C_2N_2^+$ ,  $N_2^+$ ,  $CO^+$ ,  $N_3^+$ ,  $N_2H^+$ ,  $HCO^+$ ,  $C_2H_3^+$ ,  $H_3O^+$ ,  $CH_3NO_2H^+$ ,  $CH_3CNH^+$ ,  $(CH_3)_2COH^+$ , i- $C_3H_7OH_2^+$ ,  $C_3H^+$  et  $C_4N^+$ . On a effectué les mesures à 296 ± 2 K en faisant appel à la technique des tubes à écoulement avec ions sélectifs (TEIS). Les réactions observées présentent une variété de voies réactionnelles, y compris des transferts de charges, des transferts de protons, des condensations et des associations. Les réactions de condensations et d'associations se prêtent bien à une croissance moléculaire par des réactions ions/molécules. On a accordé une considération spéciale au rôle actif que pourrait jouer le cyanoacétylène dans les synthèses moléculaires qui peuvent se produire, par des réactions ions/molécules, dans les nuages gazeux interstellaires denses.

[Traduit par le journal]

#### Introduction

Cyanoacetylene has attracted attention recently in astrochemistry as a consequence of its identification in the radiospectrum of several interstellar sources including cold dark molecular clouds and the circumstellar shells of late type stars (1). The molecular cloud TMC-1 is an example of such a source. This cloud also has been found to contain many related molecules such as the cyanopolyynes,  $HC_{2n}CN$ , with values of *n* up to 4, methylcyanoacetylene,  $CH_3C_2CN$ , and the radicals  $C_4H$  and  $C_3N$  (2). The concomitance of these molecules suggests that they have a common chemical lineage and that perhaps cyanoacetylene itself is a key progenitor. Here we report laboratory measurements of gas-phase reactions of various carbonaceous and organonitrogen ions with cyanoacetylene which begin to explore the latter possibility.

Gas-phase ion/molecule reactions have been invoked successfully in astrochemistry to account for the molecular synthesis of many simple molecules in interstellar clouds (3-5). Ion/molecule reactions are also expected to play an important role in the formation and destruction of larger and more complex molecules. The chemical paths to larger molecules become increasingly more difficult to track as the molecules become more complex and so they are not understood nearly as well. The studies reported here represent an attempt to identify such paths which are specific to cyanoacetylene.

A previous laboratory study of ion/molecule reactions with cyanoacetylene has led to the conclusion that the positive ion chemistry of cyanoacetylene is dominated by charge-transfer or proton-transfer reactions and is thus, by implication, of minor importance to the chemical synthesis of larger molecules (6). The observations reported here establish serious discrepancies with the earlier results for a number of key reactions and point towards an active rather than a passive role for cyanoacetylene in molecular growth by ion/molecule reactions.

### Experimental

The measurements were performed with the selected-ion flow

tube/flowing afterglow apparatus in the Ion Chemistry Laboratory at York University (7, 8). The reagent ions were derived from suitable parent gases by electron impact at low pressures. An axial electron impact ionizer (Extranuclear, Model 041-3) was used as the ion source. Typical ion injection energies were in the range 10 to 15 V. The carrier gas was either helium or hydrogen. To remove traces of water vapour the buffer gases were passed through zeolite traps (a 50:50 mixture of Union Carbide molecule sieves 4A and 13X) cooled to liquid nitrogen temperature. The cyanoacetylene was prepared in the laboratory from methyl propiolate (Aldrich) (9). Experiments with H<sub>3</sub><sup>+</sup> as the "chemical ionization" reagent indicated a purity of greater than 99%. All measurements were made at an ambient temperature of 296  $\pm$  2 K.

### Results

The reaction rate constants and product distributions obtained in this study for reactions of ions with cyanoacetylene are summarized in Table 1. Rate constants and product distributions were determined in the manner described previously (7, 10). Table 1 includes all the primary product ions which were observed to contribute more than 5% to the total product spectrum. The branching ratios have been rounded off to the nearest 5% and are accurate to  $\pm 30\%$ . The experimental rate constants are compared with collision rate constants,  $k_c$ , derived according to a recent combined variational transition state theory/classical trajectory study of thermal energy ion polar molecule capture collisions (11) with an estimated polarizability for HC<sub>3</sub>N of 5.29 Å<sup>3</sup> (12) and a dipole moment of 3.6 D (13).

#### $He^+$

He<sup>+</sup> was derived from helium by electron impact at 26 eV and injected into helium buffer gas. Approximately 30% conversion to He<sub>2</sub><sup>+</sup> was observed at pressures of about 0.3 Torr. The conversion occurs by termolecular association along the length of the flow tube. The added cyanoacetylene was observed to react rapidly with both He<sup>+</sup> and He<sub>2</sub><sup>+</sup> although some of the observed decrease in the He<sub>2</sub><sup>+</sup> signal was due to depletion of the precursor He<sup>+</sup>. Figure 1 shows the plethora of product

| TABLE 1. Summary of rate constants (in units of 10 <sup>-9</sup> cm <sup>3</sup> molecule <sup>-1</sup> |
|---------------------------------------------------------------------------------------------------------|
| s <sup>-1</sup> ) and product distributions measured for ion-molecule reactions                         |
| with cyanoacetylene using the SIFT technique at 296 $\pm$ 2 K                                           |

|                          |                              | Branching |                    |            |
|--------------------------|------------------------------|-----------|--------------------|------------|
| Reactant ion             | Products                     | ratio     | k <sub>exp</sub> " | $k_c$      |
| He <sup>+</sup>          | $C_2^+, C_3^+, C_2H^+,$      |           | 6.9 (8.2)          | 9.0        |
| $a^{\pm}(2n)$            | $CN^+, C_2N^+, C_3N^+$       | 0.0       |                    | <i></i>    |
| $C^{+}(P)$               | $C_3H + CN$                  | 0.8       | 6.1 (8.7)          | 5.6        |
| CII +                    | $C_4N + H$                   | 0.2       | 4 26 (2 7)         | <i>с</i> 1 |
| $CH_3$                   | $C_3H_3 + HCN$               | 0.6       | $4.2^{\circ}(2.7)$ | 5.1        |
| o †                      | $CH_3 \rightarrow HC_3N$     | 0.4       | 4.0                | 4.2        |
| $C_2$                    | $C_3N + C_2H$                | 0.5       | 4.8                | 4.3        |
|                          | $C_5N + H$                   | 0.2       |                    |            |
|                          | $C_3H + C_2N$                | 0.2       |                    |            |
| o 11 <sup>+</sup>        | $C_2N + C_3H$                | 0.1       | 2.0                | 4.0        |
| $C_2H$                   | $HC_3NH + C_2$               | 0.5       | 3.2                | 4.2        |
|                          | $C_4H_2$ + CN                | 0.2       |                    |            |
|                          | $HC_5N^+ + H$                | 0.2       |                    |            |
| a 11 t                   | $HC_3N + C_2H$               | 0.1       | 2 00 11 0          |            |
| $C_2H_2$                 | $C_4H_2$ + HCN               | 0.5       | 3.2 (1.9)          | 4.2        |
| out                      | $C_2H_2 \rightarrow HC_3N$   | 0.5       | 2 2 (5 2)          |            |
| CN                       | $HC_3N + CN$                 | 0.8       | 3.9 (5.3)          | 4.2        |
| ~+                       | $C_3N + HCN$                 | 0.2       |                    |            |
| C₂N '                    | $C_3H^+ + C_2N_2$            | 1.0       | 3.1                | 3.7        |
| $C_2N_2^+$               | $HC_3N' + C_2N_2$            | 1.0       | 1.6                | 3.4        |
| $N_2$                    | $HC_3N' + N_2$               | 1.0       | 4.1                | 4.1        |
| COT                      | $HC_3N^+ + CO$               | 1.0       | 3.1 (2.3)          | 4.1        |
| $H_3^+$                  | $HC_3NH^+ + H_2$             | 1.0       | 10.5 (9.1)         | 10.3       |
| $N_2H^+$                 | $HC_3NH^+ + N_2$             | 1.0       | 4.2 (4.2)          | 4.0        |
| HCO <sup>+</sup>         | $HC_3NH^+ + CO$              | 1.0       | 4.0 (3.7)          | 4.0        |
| $C_2H_3^+$               | $HC_3NH^+ + C_2H_2$          | 1.0       | 3.9 (1.8)          | 4.1        |
| $H_3O^+$                 | $HC_3NH^+ + H_2O$            | 1.0       | 3.8 (4.0)          | 4.7        |
| $CH_3NO_2H^+$            | $HC_3NH^+ + CH_3NO_2$        | 0.5       | 1.8                | 3.3        |
|                          | $(H_4C_4N^+ + HNO_2)$        | 0.5       |                    |            |
| CH₃CNH <sup>+</sup>      | CH₃CNH <sup>+</sup> · HC₃N   | 1.0       | 0.5"               | 3.6        |
| $(CH_3)_2COH^+$          | $(CH_3)_2COH^+ \cdot HC_3N$  | 1.0       | $0.05^{c}$         | 3.3        |
| $i-C_{3}H_{7}OH_{2}^{+}$ | $i-C_3H_7OH_2^+ \cdot HC_3N$ | 1.0       | 0.6'               | 3.3        |
| $C_3H^+$                 | $C_3H^+ \cdot HC_3N$         | 1.0       | $1.3^{f}$          | 3.7        |
| $C_4N^+$                 | $C_4N^+ \cdot HC_3N$         | 0.1       | $\Gamma$           | 3.3        |

"The accuracy of the rate constants is estimated to be better than  $\pm 30\%$ . Values in parentheses are the flowing afterglow results reported by Freeman *et al.* in ref. 6.

<sup>h</sup>Collision rate constants derived from the combined variational transition state theory/classical trajectory study of Su and Chesnavich (11).

<sup>c</sup> In helium buffer gas at a total pressure of 0.31 Torr and concentration of  $1.0 \times 10^{16}$  atoms cm<sup>-3</sup>.

<sup>*d*</sup> In hydrogen buffer gas at a total pressure of 0.21 Torr and concentration of  $6.8 \times 10^{15}$  molecules cm<sup>-3</sup>.

<sup>c</sup> In hydrogen buffer gas at a total pressure of 0.185 Torr and concentration of  $6.0 \times 10^{15}$  molecules cm<sup>-3</sup>.

<sup>1</sup> In helium buffer gas at a total pressure of 0.347 Torr and concentration of  $1.1 \times 10^{16}$  atoms cm<sup>-3</sup>.

ions which appeared in response to these reactions. All of them can be derived by dissociative charge transfer.  $C^+$ ,  $CH^+$ , and  $HCN^+$  were also observed as primary product ions but they were produced in relatively small amounts and are not shown in Fig. 1. Also it should be noted that formation of  $HC_3N^+$  itself was observed but the data analysis indicated that it could be accounted for entirely by secondary reactions. The secondary product spectrum was complex as would be expected from the high reactivity of all the primary product ions which is evident from the decays shown in Fig. 1. Several of these secondary reactions are elucidated in the following sections.

# $C^+$

The  $C^+$  ions were produced from  $C_2N_2$  at an electron energy



FIG. 1. The observed variations in ion signals recorded for the addition of HC<sub>3</sub>N into the reaction region of the SIFT apparatus in which He<sup>+</sup> is initially established in helium buffer gas. P = 0.332 Torr,  $\bar{\nu} = 7.4 \times 10^3$  cm s<sup>-1</sup>, L = 46 cm, and T = 297 K. He<sup>+</sup> is derived from He at an electron energy of 25.7 eV.

of 32 eV and selected with an injection energy of 12.4 V. HCO<sup>+</sup> and  $C_2N^+$  were two other ions observed in the C<sup>+</sup> spectrum downstream but with intensities less than 10% and 1% of the C<sup>+</sup> signal, respectively. Their origin can be attributed to reactions of C<sup>+</sup> with H<sub>2</sub>O impurity in the buffer gas and with  $C_2N_2$  which leaks through the selection quadrupole region. Separate experiments in which CO was added into the reaction region indicated that more than 95% of the C<sup>+</sup> generated in this fashion was in the <sup>2</sup>P ground state (14). Charge transfer to form CO<sup>+</sup> which is exothermic only with the excited <sup>4</sup>P state of C<sup>+</sup> was observed to proceed with less than 5% of the initial C<sup>+</sup> population.

Figure 2 shows data observed for the reaction of C<sup>+</sup> with HC<sub>3</sub>N proceeding in our SIFT apparatus. The predominant primary product ion was identified as  $C_3H^+$  and it was accompanied by some production of  $C_4N^+$ . The  $C_3H^+$  and  $C_4N^+$  ions may be formed by C—H insertion with elimination of CN and H, respectively. Formation of  $C_3^+$  + HCN was not observed. Available heats of formation for  $C_3H^+$  and  $C_3^+$  (15, 16) indicate that formation of  $C_3^+$  is approximately 30 kcal mol<sup>-1</sup> less exothermic. The  $C_3H^+$  product is likely to be the carbene cation :C—C=CH whose chemistry we have investigated in detail in a separate study (8). The structure of the  $C_4N^+$  product is uncertain as either CCCCN<sup>+</sup> or CCCNC<sup>+</sup> may be formed depending on which end of the molecule is attacked. Carbene character is also likely to be associated with this ion, as for example in :C—C=C—CN. Figure 2 also shows rapid reac-



FIG. 2. The observed variations in ion signals recorded for the addition of HC<sub>3</sub>N into the reaction region of the SIFT apparatus in which C<sup>+</sup> is initially established in helium carrier gas. P = 0.314 Torr,  $\bar{\nu} = 7.2 \times 10^3$  cm s<sup>-1</sup>, L = 46 cm, and T = 296 K. C<sup>+</sup> is derived from C<sub>2</sub>N<sub>2</sub> at an electron energy of 32 eV.

tions of  $C_3H^+$  and  $C_4N^+$  with  $HC_3N$  to form the adducts  $C_3H^+ \cdot HC_3N$  and  $C_4N^+ \cdot HC_3N$ . Also  $HC_3N^+$  was produced as a primary ion and it reacted further to form the adduct  $HC_3N^+ \cdot HC_3N$ . The production of  $HC_3N^+$ , which accounts for about 5% of the initial C<sup>+</sup>, may be attributed entirely to the excited <sup>4</sup>P component of C<sup>+</sup> which can react with  $HC_3N$  in an exothermic fashion by charge transfer. Not shown in Fig. 2 are the impurity ions at m/z 29 ( $HCO^+$ ) and 38 ( $C_2N^+$ ) which were present initially at levels of less than 10% and 1% of the initial C<sup>+</sup> signal, respectively. Separate experiments indicated that  $HCO^+$  reacts by proton transfer to yield  $H_2C_3N^+$  and that  $C_2N^+$  produces  $C_3H^+$ . Also the observations allowed for some production (5%) of  $C_2N^+$  directly from the reaction of C<sup>+</sup> with  $HC_3N$ .

### $CH_{3}^{+}$

This ion was derived from CH<sub>4</sub> at 24 eV. Background ions were present at m/z = 19, 29, and 33. These were ascribed to H<sub>3</sub>O<sup>+</sup>, N<sub>2</sub>H<sup>+</sup>, and CH<sub>3</sub><sup>+</sup> · H<sub>2</sub>O. Figure 3 shows the appearance of the product ions which were assigned to the reaction of CH<sub>3</sub><sup>+</sup> with cyanoacetylene. Major primary products were observed at m/z = 39 and 66. Since formation of HC<sub>2</sub>N<sup>+</sup> (m/z 39) + C<sub>2</sub>H<sub>3</sub> is endothermic, the m/z 39 product must be C<sub>3</sub>H<sub>3</sub><sup>+</sup>. The ion with m/z 66 must be the adduct CH<sub>3</sub><sup>+</sup> · HC<sub>3</sub>N. Both product ions reacted further to form the adducts C<sub>3</sub>H<sub>3</sub><sup>+</sup> · HC<sub>3</sub>N and CH<sub>3</sub><sup>+</sup> · (HC<sub>3</sub>N)<sub>2</sub>. An ion with m/z 52 was also observed in the product spectrum with an intensity up to 5% of the total product ions but its origin could be attributed entirely to proton-transfer



FIG. 3. The observed variations in ion signals recorded for the addition of HC<sub>3</sub>N into the reaction region of the SIFT apparatus in which CH<sub>3</sub><sup>+</sup> is initially established in helium carrier gas. P = 0.311 Torr,  $\bar{\nu} = 7.4 \times 10^3$  cm s<sup>-1</sup>, L = 46 cm, and T = 295 K. CH<sub>3</sub><sup>+</sup> is derived from CH<sub>4</sub> at an electron energy of 24.1 eV.

reactions with the impurity ions.

The two primary product channels appear to reflect the position of attack on the cyanoacetylene molecule. Attack at the carbon  $\alpha$  to the cyanogen group can lead to elimination of HCN and formation of the propargyl cation while attack at the  $\beta$ carbon would make HCN elimination less favourable and lead preferentially to an adduct which could be the cyanopropenylium ion, CH<sub>3</sub>—CH==C—CN. However, neither of these structures can be considered to be established by these measurements. Alternatives include formation of the cyclopropenium isomer of C<sub>3</sub>H<sub>3</sub><sup>+</sup> which is also exothermic and formation of an adduct which is electrostatically bound.



This ion was derived from  $C_2N_2$  by electron impact at 50 eV. Background ions of known identity and origin were present at levels of less than 5% of the initial  $C_2^+$  signal. Primary product ions with a contribution of more than 5% of the total observed included m/z 50 ( $C_3N^+$ ), 74 ( $C_5N^+$ ), 37 ( $C_3H^+$ ), and 38 ( $C_2N^+$ ). The corresponding reactions dictated by thermochemistry and their product distributions are indicated in Table 1. The predominant channel to produce  $C_3N^+$  corresponds to hydride transfer. H atom elimination to form  $C_5N^+$  leads to carbon chain lengthening. The mechanisms of the two remaining channels is less certain but they may arise from side-on attack by  $C_2^+$ . The adducts  $C_3N^+ \cdot HC_3N$ ,  $C_5N^+ \cdot HC_3N$ , and  $C_3H^+ \cdot HC_3N$  appeared to be formed rapidly by secondary reac-



FIG. 4. The observed variations in ion signals recorded for the addition of HC<sub>3</sub>N into the reaction region of the SIFT apparatus in which C<sub>2</sub>H<sup>+</sup> is initially established in helium carrier gas. P = 0.339 Torr,  $v = 7.1 \times 10^3$  cm s<sup>-1</sup>, L = 46 cm, and T = 297 K. C<sub>2</sub>H<sup>+</sup> is derived from cyanoacetylene by electron impact at 31 eV.

tions with cyanoacetylene. Only the adduct of  $C_2N^+$  was not observed. It is shown in a later section that this ion reacts with  $HC_3N$  to produce  $C_3H^+$ .

# $C_2H^+$

This ion was generated from HC<sub>3</sub>N by electron impact at 31 eV. The main impurity ions present initially were m/z 19  $(H_3O^+)$ , 26  $(C_2H_2^+)$ , and 42  $(H_2C_2O^+)$  at 5%, 2%, and 2%, respectively, of the initial  $C_2H^+$  signal. All three of these impurity ions have been shown in separate experiments to be derivatives of the reaction of  $C_2H^+$  with H<sub>2</sub>O impurity. Their presence was taken into account in the product analysis. The evolution of the product ions observed with addition of HC<sub>3</sub>N is shown in Fig. 4. The predominant product channel corresponds to proton transfer and the minor channel apparently to charge transfer although CN transfer cannot be excluded. The two other intermediate channels both appear to result in C-C bond formation. The  $C_4H_2^+$  product is likely to be ionized diacetylene which may arise by attack at the carbon  $\alpha$  to CN while HC<sub>5</sub>N<sup>+</sup>, presumably ionized cyanodiacetylene, may be the result of attack at the  $\beta$  carbon with elimination of H. All four of the product ions reacted further with HC<sub>3</sub>N to rapidly establish the adducts  $(HC_3N)_2H^+$ ,  $(HC_3N)_2^+$ ,  $C_4H_2^+ \cdot HC_3N$ , and  $HC_5N^+ \cdot HC_3N$ .

# $C_2 H_2^+$ , $C_4 H_2^+$

The  $C_2H_2^+$  was derived from acetylene by electron impact at

31 to 51 eV. Major primary products were observed at m/z 50 and 77 which were assigned to  $C_4H_2^+$  and  $C_5H_2^+ \cdot HC_3N$ , respectively. Production of m/z 50 = C<sub>3</sub>N<sup>+</sup> is endothermic according to available heats of formation (16). The m/z 77 ion is produced exclusively from  $C_2H_2^+$  and not from a secondary reaction of  $C_4H_2^+$  with HC<sub>3</sub>N which was shown in the  $C_2H^+$ experiments to produce only the adduct  $C_4H_2^+ \cdot HC_3N$ . There was no indication for the formation of an ion at m/z 52 which would be indicative of proton transfer. Evidently carbon chain lengthening and association are the only two primary product channels. Proton transfer was identified as the only channel by earlier flowing afterglow measurements (6). It is possible that proton transfer is in fact endothermic although the energetics for proton transfer are not well known due to the uncertainty in the heat of formation of  $C_{2}H$  (17). Within the uncertainties of  $PA(C_{2}H)$  and  $PA(HC_{3}N)$  the change in enthalpy for the proton transfer is  $-4 \pm 9$  kcal mol<sup>-1</sup>.

 $CN^+$ 

 $CN^+$  was derived from  $C_2N_2$  by electron impact at ca. 55 eV.  $CN^+$  reacts rapidly with  $H_2O$  and a number of ions derived from this reaction were present as impurity ions. The major reaction channel between  $CN^+$  and  $HC_3N$  corresponds to charge transfer although  $C_2H$  transfer is also a possibility. Some production of an ion with m/z 50 was observed and it was ascribed to formation of  $C_3N^+$  + HCN which may result from hydride transfer. Also an ion with m/z 52 (HC<sub>3</sub>NH<sup>+</sup> or  $C_2N_2^+$ ) was observed to be produced but its origin could be attributed entirely to a proton transfer between  $H_2O^+$  and cyanoacetylene. The  $C_3N^+$ ,  $HC_3N^+$ , and m/z 52 ions were all observed to undergo secondary reactions to form adducts with HC<sub>3</sub>N.

 $C_2N^+$ 

This ion was derived from cyanoacetylene at an electron energy of 35 eV.  $C_3H^+$  was the only primary product observed and it reacted further to form the adduct  $C_3H^+ \cdot HC_3N$ . Separate experiments performed in our laboratory have shown that the  $C_2N^+$  derived from HC<sub>3</sub>N (and also from  $C_2N_2$ ) is a mixture of at least two states. One component has been found to react rapidly with  $O_2$  to form  $C_2NO^+$  and  $O_2^+$  and comprises about 5% of the total mixture. The remaining 95% was observed to be unreactive towards  $O_2$ . It is not clear whether the observed difference in reactivity is due to the two structural isomers  $C-N-C^+$  and  $C-C-N^+$  or whether singlet and triplet forms of this carbene cation are involved. Calculations have shown the  $C-N-C^+$  isomer to be more stable than the  $C-C-N^+$  isomer by ca. 30 kcal mol<sup>-1</sup> (18).

## $H_{3}^{+}$ , $N_{2}H^{+}$ , $HCO^{+}$ , $C_{2}H_{3}^{+}$ , $H_{3}O^{+}$

We have investigated proton transfer reactions with cyanoacetylene in a separate study directed towards a determination of the proton affinity of HC<sub>3</sub>N by the bracketing technique (19). All five of the protonated species listed above were observed to react rapidly with HC<sub>3</sub>N by proton transfer with rate constants in close agreement with predicted collision rate constants. The observations recorded for the fastest of these reactions, viz. the reaction with H<sub>3</sub><sup>+</sup>, are shown in Fig. 5 which also includes the reactive behaviour of the impurity ions H<sub>3</sub>O<sup>+</sup> and N<sub>2</sub>H<sup>+</sup>. The protonated cyanoacetylene reacts further to establish the protonated dimer.

### $CH_{1}NO_{2}H^{+}$ , $NO^{+}$

These two ions were generated by injecting  $CH_3NO_2^+$  into  $H_2$  buffer gas (19). At the injection energies employed (12.4 V) some NO<sup>+</sup> was present ( $\approx 10\%$ ) which is presumed to arise



FIG. 5. The observed variations in ion signals recorded for the addition of HC<sub>3</sub>N into the reaction region of the SIFT apparatus in which  $H_3^+$  is initially established in hydrogen carrier gas. P = 0.188 Torr,  $v = 6.5 \times 10^3$  cm s<sup>-1</sup>, L = 45 cm, and T = 296 K. The selected ion is  $H_2^+$  derived from  $H_2$  by electron impact at 30 eV.  $H_3O^+$  and  $N_2H^+$  arise from reactions of  $H_3^+$  with impurities in the carrier gas.

from collisional dissociation of CH<sub>3</sub>NO<sub>2</sub><sup>+</sup>. The NO<sup>+</sup> was observed to react only slowly to form the adduct NO<sup>+</sup> · HC<sub>3</sub>N. The rate constant for this association is estimated to be  $< 1 \times 10^{-10}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> at a total pressure of 0.18 Torr and a hydrogen density of 5.9 × 10<sup>15</sup> molecules cm<sup>-3</sup>. The CH<sub>3</sub>NO<sub>2</sub>H<sup>+</sup> was observed to react rapidly to form two products in about equal proportions: an ion at m/z 52 which corresponds to protonated HC<sub>3</sub>N and an ion at m/z 66 which may be H<sub>4</sub>C<sub>4</sub>N<sup>+</sup>, H<sub>2</sub>C<sub>4</sub>O<sup>+</sup>, or C<sub>3</sub>NO<sup>+</sup>. The possible m/z 66 product ions would involve concomitant production of the neutrals HNO<sub>2</sub>, H<sub>3</sub>N<sub>2</sub>O, and H<sub>5</sub>CNO, respectively. The first option appears most likely and could produce the cyanopropenylium ion as shown in reaction [1]

$$[1] CH_{3}NO_{2}H^{+} + HC \equiv C - CN \rightarrow CH_{3} - CH = C - CN + HNO_{2}$$

 $N_2^+$ ,  $CO^+$ ,  $C_2N_2^+$ 

 $N_2^+$  was derived from  $N_2$  at an electron energy of 45 eV,  $C_2N_2^+$  from  $C_2N_2$  at 51 eV, and CO<sup>+</sup> from OCS at 34 eV. All these ions have recombination energies higher than the ionization energy of cyanoacetylene so that charge transfer was observed to be the dominant channel (>95%) for all three ions. Impurity ions were present at m/z 18 (H<sub>2</sub>O<sup>+</sup>), 19 (H<sub>3</sub>O<sup>+</sup>), and 29 (N<sub>2</sub>H<sup>+</sup> or HCO<sup>+</sup>) and these reacted predictably by proton transfer to establish HC<sub>3</sub>NH<sup>+</sup>. Both the HC<sub>3</sub>N<sup>+</sup> produced by charge transfer and the HC<sub>3</sub>NH<sup>+</sup> produced by proton transfer reacted further by addition of  $HC_3N$  to form  $(HC_3N)_2^+$  and  $(HC_3N)_2H^+$ , respectively.

# $(CH_3)_2COH^+$ , $CH_3CNH^+$ , $i-C_3H_7OH_2^+$

These three protonated species were observed to form adduct ions with cyanoacetylene. Each was generated in  $H_2$  buffer gas by reaction [2]

$$[2] \quad X^+ + H_2 \rightarrow XH^+ + H$$

where X<sup>+</sup> was derived by electron impact of X =  $(CH_3)_2CO$ , CH<sub>3</sub>CN, and *i*-C<sub>3</sub>H<sub>7</sub>OH, respectively (19). Table 1 shows that the association reactions with CH<sub>3</sub>CNH<sup>+</sup> and *i*-C<sub>3</sub>H<sub>7</sub>OH<sub>2</sub><sup>+</sup> are quite rapid and about 10 times faster than the association reaction with (CH<sub>3</sub>)<sub>2</sub>COH<sup>+</sup>. The adduct of CH<sub>3</sub>CNH<sup>+</sup> was observed to react further with HC<sub>3</sub>N in a manner which may be described by the solvated proton transfer reaction [3].

$$[3] \quad CH_3CNH^+ \cdot HC_3N + HC_3N \rightarrow HC_3NH^+ \cdot HC_3N + CH_3CN$$

The reverse of reaction [3] is actually the preferred direction. This was shown in a separate study in which  $HC_3NH^+ \cdot HC_3N$  was generated in  $H_2$  buffer gas by the reaction sequence [4] and [5]

 $[4] \quad H_2^+(H_3^+) + HC_3N \rightarrow HC_3NH^+ + H(H_2)$ 

 $[5] HC_3NH^+ + HC_3N \rightarrow HC_3NH^+ \cdot HC_3N$ 

The HC<sub>3</sub>NH<sup>+</sup> · HC<sub>3</sub>N adduct was observed to react rapidly with CH<sub>3</sub>CN by the reverse of reaction [3] with a rate constant of 1.9  $\times$  10<sup>-9</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>. The analogue of reaction [3] was not observed for the adduct ions (CH<sub>3</sub>)<sub>2</sub>COH<sup>+</sup> · HC<sub>3</sub>N and *i*-C<sub>3</sub>H<sub>7</sub>OH<sub>2</sub><sup>+</sup> · HC<sub>3</sub>N. The smaller rate constants for these two reactions are consistent with the larger intrinsic basicities of (CH<sub>3</sub>)<sub>2</sub>CO (PA = 194 kcal mol<sup>-1</sup>) and *i*-C<sub>3</sub>H<sub>7</sub>OH (PA = 190 kcal mol<sup>-1</sup>). Finally, the observations indicated no measurable tendency of any of the adduct ions to add a second HC<sub>3</sub>N molecule. The rate of addition of the second molecule of HC<sub>3</sub>N is estimated to be at least 10 times slower than the rate of addition of the first. This difference in rate is likely to reflect a difference in the nature of the bonding in these adduct ions.

### $C_3H^+$ , $C_4N^+$

These two ions are likely to be the carbene cations with the linear structures : $C-C\equiv C-H$  and : $C-C\equiv C-CN$ . When generated from the reaction of C<sup>+</sup> with HC<sub>3</sub>N both ions were observed to add one molecule of HC<sub>3</sub>N rapidly (see Fig. 2 and Table 1). Representative data for a separate study of the reaction of C<sub>3</sub>H<sup>+</sup> with HC<sub>3</sub>N where C<sub>3</sub>H<sup>+</sup> is derived from electron impact of propylene is shown in Fig. 6. The two reactions were not investigated as a function of pressure. Stabilization of the adduct ions may proceed by collision with the buffer gas atoms but radiative association cannot be ruled out. The further addition of a second molecule of HC<sub>3</sub>N was observed to proceed much more slowly.

### **Discussion and conclusions**

The measurements reported here show that cyanoacetylene is very reactive towards ions at room temperature. The reactivity is manifested in a number of different ways. The moderate ionization potential of  $HC_3N$  and its moderately high proton affinity ensure that charge transfer and proton transfer can be effective. Cyanoacetylene also exhibits a range of interesting and rapid condensation and association reactions which are suited for molecular growth by ion/molecule reactions.

The ions selected in this study for reaction with cyano-



FIG. 6. The observed variations in ion signals recorded for the addition of HC<sub>3</sub>N into the reaction region of the SIFT apparatus in which  $C_3H^+$  is initially established in helium carrier gas. P = 0.347 Torr,  $\bar{\nu} = 7.3 \times 10^3$  cm s<sup>-1</sup>, L = 46 cm, and T = 296 K.  $C_3H^+$  is derived from propylene by electron impact at 55 eV.

acetylene span a large range in recombination energy up to 24.6 eV for He<sup>+</sup>. Charge transfer is exothermic for ions with a recombination energy greater than  $11.60 \pm 0.01$  eV which is the ionization energy of HC<sub>3</sub>N (20). Indeed charge transfer was an observed product channel with all of the ions which met this criterion, viz. He<sup>+</sup> (24.6), C<sup>+</sup> (<sup>4</sup>P) (16.6), N<sub>2</sub><sup>+</sup> (15.6), CN<sup>+</sup> (15.1), CO<sup>+</sup> (14.0), C<sub>2</sub>N<sub>2</sub><sup>+</sup> (13.4), and C<sub>2</sub>H<sup>+</sup> (11.6), where the recombination energy is given in parentheses in eV (21). The charge transfer with He<sup>+</sup> was completely dissociative. For dissociative charge transfer to be exothermic to form any of the product ions indicated for He<sup>+</sup> in Table 1 the recombination energy of the ion must be greater than 17.7 eV and this is the case only for He<sup>+</sup>. For the reactions of the other ions dissociative charge transfer is endothermic and was not observed. Charge transfer was observed to be only a minor channel with  $C_2H^+$ . The recombination energy of this ion is quite uncertain but appears to be very close to the ionization energy of cyanoacetylene. Values of 11.96  $\pm$  0.05 eV (22), 11.6  $\pm$  0.5 eV (17), 11.51 eV, <sup>1</sup> and 11.31  $\pm$  0.13 eV (24) have been reported in the literature. Given this large uncertainty it is conceivable that charge transfer between  $C_2H^+$  and  $HC_3N$  is in fact slightly endothermic at room temperature but this would still be consistent with our observation.

Freeman *et al.* (6) have reported flowing afterglow measurements of the charge transfer reactions of  $He^+$ ,  $CN^+$ , and

CO<sup>+</sup>. The rate constants agree with those obtained in the SIFT study reported here within the combined error estimates of both experiments. However, Freeman et al. (6) did not report any dissociative charge transfer with He<sup>+</sup> and apparently also did not observe the small production of  $C_3N^+$  from  $CN^+$  which proceeds by hydride transfer. Furthermore these authors reported exclusive charge transfer for the reaction of C<sup>+</sup> with HC<sub>3</sub>N which is not in agreement with our observations. Charge transfer between HC<sub>3</sub>N and the  $C^+(^2P)$  ground state is endothermic since the ionization energy of HC<sub>3</sub>N (11.60  $\pm$  0.01 eV) is higher than the recombination energy (11.260 eV) of  $C^+(^2P)$ . Charge transfer with C<sup>+</sup> should therefore not proceed rapidly at room temperature unless it is mostly in the  $({}^{4}P)$  excited state. About 5% of the C<sup>+</sup> appeared to be in the  $({}^{4}P)$  state in the SIFT experiments reported here and a charge transfer product was observed consistent with this population but the remaining 95% of the C<sup>+</sup> ions was seen to react to build up the carbon chain in the formation of  $C_3H^+$  and  $C_4N^+$ .

Proton-transfer reactions with cyanoacetylene have been discussed in detail in a separate study directed towards a determination of the proton affinity of HC<sub>3</sub>N (24). A value of 184  $\pm$  4 kcal mol<sup>-1</sup> was derived from bracketing measurements. Proton transfer was observed to proceed with  $H_3^+$  (101),  $N_2H^+$ (117), HCO<sup>+</sup> (141),  $C_2H_3^+$  (153),  $H_3O^+$  (166), and  $CH_3NO_2H^+$ (180) but not with the  $CH_3CNH^+$  (187) or  $(CH_3)_2COH^+$  (194) where proton affinities are given in parentheses in kcal  $mol^{-1}$ . Proton transfer was observed by Freeman *et al.* (6) for  $H_3^+$ .  $N_2H^+$ , HCO<sup>+</sup>,  $C_2H_3^+$ , and  $H_3O^+$  and the rate constants obtained for these reactions with the two techniques again are in good accord. However, there are serious discrepancies for the reactions of  $CH_3^+$  and  $C_2H_2^+$  for which Freeman *et al.* (6) have also reported exclusive proton transfer. For these two ions the SIFT measurements indicate only condensation and association. The proton affinity of CH<sub>2</sub> can be calculated to be 197 kcal mol<sup>-1</sup> from available thermochemical information (21) and this makes the proton transfer with HC<sub>1</sub>N endothermic. The energetics of the proton-transfer reaction between  $C_2H_2^+$  and  $HC_3N$ is less certain due to the uncertainty in the heat of formation of  $C_2H$  (17). Within the uncertainties of  $PA(C_2H)$  and  $PA(HC_3H)$ the change in enthalpy is  $-4 \pm 9$  kcal mol<sup>-1</sup>. The SIFT measurements did not indicate occurrence of proton transfer which suggests that this channel is in fact endothermic also.

The remaining reactions which were investigated result predominantly in condensation and association and are of interest in chemical synthesis by ion/molecule reactions. Several condensation reactions lead to the buildup of purely carbonaceous ions as in the generation of  $C_3H^+$  from  $C^+$ ,  $C_3H_3^+$  from  $CH_3^+$ , and  $C_4H_2^+$  from  $C_2H^+$  and  $C_2H_2^+$ . Others lead to the lengthening of the carbon backbone of the cyanoacetylene as in the formation of  $C_4N^+$  from  $C^+$ ,  $C_5N^+$  from  $C_2^+$ ,  $HC_5N^+$  from  $C_2H^+$  and possibly  $H_4C_4N^+$  from  $CH_3NO_2H^+$ . The association reactions which were observed with HC<sub>1</sub>N exhibited an interesting range in specific rate. The apparent bimolecular rate constants were generally  $\geq 5 \times 10^{-11}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> which is close to the collision limit. These are large values and as such are indicative of the formation "tight" adducts in which the bonding is quite strong (25, 26). Strong bonding is not entirely unexpected for the adducts observed. CH<sub>3</sub>CNH<sup>+</sup>, *i*-C<sub>3</sub>H<sub>7</sub>OH<sub>2</sub><sup>+</sup>, and (CH<sub>3</sub>)<sub>2</sub>COH<sup>+</sup> should form proton bound adducts with HC<sub>3</sub>N. The proton affinities of CH<sub>3</sub>CN, *i*-C<sub>3</sub>H<sub>7</sub>OH, and  $(CH_3)_2CO$  are within 10 kcal mol<sup>-1</sup> of that for HC<sub>3</sub>N. Charge delocalization is possible with  $(CH_3)_2COH^+$  as is expressed in the resonance structures [6].

S. I. Miller and J. Berkowitz. Referred to in ref. 22.

$$[6] \begin{array}{c} CH_3 & CH_3 \\ C = OH^+ \leftrightarrow {}^+C - OH \\ CH_3 & CH_3 \end{array}$$

This may result in a weaker proton bond in this case and thus account for the smaller rate constant observed for the formation of  $(CH_3)_2COH^+ \cdot HC_3N$ .

With  $C_3H^+$  and  $C_4N^+$  and possibly also  $C_2H_2^+$  and  $C_4H_2^+$  the bonding in the observed adducts is likely to be covalent. The carbene cations  $C_3H^+$  and  $C_4N^+$  should react with HC<sub>3</sub>N by C—H  $\sigma$  bond insertion in a manner analogous to the bimolecular insertion reactions already reported for  $C_3H^+$  (8, 27). Sigma bond insertion would lead to the product ions [7] and [8].

$$[7] HC \equiv C - CH - C \equiv C - C \equiv N$$

$$[8] N \equiv C - C \equiv C - C H - C \equiv C - C \equiv N$$

Charge delocalization is possible in these two ions and this may account for the observed decrease in the rate of addition of a second molecule of  $HC_3N$ . The nature of the bonding in the adducts  $C_2H_2^+ \cdot HC_3N$  and  $C_4H_2^+ \cdot HC_3N$  is less certain.

In ionized environments such as, for example, dense molecular interstellar clouds, ion/molecule reactions proceed in competition with neutralization reactions. Neutralization may proceed by electron-ion recombination (EIR), charge transfer (CT), or proton transfer (PT) and, when coupled to an ion/molecule reaction leading to bond formation in the ion, may result in the synthesis of a neutral molecule in which the new bond is preserved (23). For example, electron-ion recombination or proton-transfer reactions with the carbonaceous ions  $C_3H^+$ ,  $C_3H_3^+$ , and  $C_4H_2^+$  may establish the neutral molecules C<sub>3</sub>, C<sub>3</sub>H<sub>2</sub>, and C<sub>4</sub>H, and with H<sub>4</sub>C<sub>4</sub>N<sup>+</sup> may establish methylcyanoacetylene.  $C_4H_2^+$  may neutralize by charge transfer to form diacetylene while  $HC_5N^+$  may charge transfer to form cyanodiacetylene. The new bond may also be preserved directly in the neutral product of an ion/molecule reaction as in the reaction of  $C_2N^+$  with HC<sub>3</sub>N to form  $C_3H^+$  where the neutral product must be  $C_2N_2$ .

For the specific case of the molecular cloud TMC-1 the results obtained in this study provide an indication of the possible role of cyanoacetylene in the synthesis of derivative molecules. Efficient routes are available for the synthesis of  $C_4H$  and  $C_4N$  according to reactions [9] and [10], respectively.

$$[9] \quad C_{2}H_{2}^{+} \xrightarrow{HC_{3}N} C_{4}H_{2}^{+} \xrightarrow{PT} C_{4}H$$

$$[10] \quad C^{+} \xrightarrow{HC_{3}N} C_{4}N^{+} \xrightarrow{CT} C_{4}N$$

 $C^+$  and  $C_2H_2^+$  are attractive ionic precursors in models of interstellar ion chemistry as they react with H<sub>2</sub> only slowly by association (23).  $CH_3^+$  is attractive for the same reason. With cyanoacetylene it yields the propargyl cation which may neutralize to form the carbene H<sub>2</sub>C==C=C: as shown in reaction [11].

$$[11] \quad CH_3^+ \xrightarrow{HC_3N} C_3H_3^+ \xrightarrow{PT} C_3H_2$$

The  $CH_3^+ \cdot HC_3N$  adduct observed in the laboratory may form in the molecular cloud by radiative association and then neutralize to form methylcyanoacetylene according to reaction [12].

[12] 
$$CH_3^+ \xrightarrow{HC_3N} CH_3 - CH = \stackrel{+}{C} - CN \xrightarrow{PT} CH_3C_2CN$$

Another possible route towards methylcyanoacetylene is reaction [13]

[13] 
$$CH_3NO_2H^+ \xrightarrow{HC_3N} CH_3 - CH = \overset{+}{C} - CN \xrightarrow{PT} EIR CH_3C_2CN$$

but this route is less attractive for TMC-1 as  $CH_3NO_2$  has not been identified. Plausible routes are also available for the synthesis of cyanopolyynes. Cyanodiacetylene may be produced directly from  $C_2H^+$  according to reaction [14].

$$\begin{bmatrix} 14 \end{bmatrix} C_2 H^+ \xrightarrow{HC_3 N} HC_5 N^+ \xrightarrow{CT} HC_5 N$$

Several of the primary product ions allow build up of the cyanopolyynes in secondary reactions. For example, recent measurements of the reaction of  $C_4N^+$  with  $CH_4$  in our laboratory indicate a channel leading the  $H_2C_5N^+$  which may neutralize to form cyanodiacethylene. Other intriguing possibilities include the neutralization of the adducts  $C_2H_2^+ \cdot HC_3N$  and  $C_4H_2^+ \cdot HC_3N$  to form  $HC_5N$  and  $HC_7N$ , respectively, by elimination of  $H_2$ . Also the radiative recombination counterparts of the adduct formation observed in the flow tube for the carbene cations  $C_3H^+$  and  $C_4N^+$  expressed in reactions [15] and [16]

$$[15] C_3H^+ + HC_3N \rightarrow HC \equiv C - CH - C \equiv C - CN + h\nu$$

$$[16] C_4N^+ + HC_3N \rightarrow NC - C \equiv C - CH - C \equiv C - CN + h\nu$$

may provide direct routes for the synthesis in the interstellar medium of the large neutral carbenes : $C(C_2H)C_2CN$  and : $C(C_2CN)_2$ . These may form on neutralization by proton transfer or electron-ion recombination. They constitute a new class of complex organonitrogen molecules whose presence may provide still further opportunities for molecular growth in the interstellar medium.

#### Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for financial support. Also we thank N. Haese for valuable discussions and A. Fox for preparing samples of  $HC_3N$ .

- 1. G. WINNEWISER and C. M. WAMSLEY. Astrophys. Space Sci. 65, 83 (1979).
- N. W. BROTEN, J. M. MACLEOD, L. W. AVERY, W. M. IRVINE, B. HOGLUND, P. FRIBERG, and A. HJALMARSON. Astrophys. J. 276, L25 (1984).
- 3. E. HERBST. In Protostars and planets. Edited by T. Gehrels. Tucson, U. of Arizona Press. 1978. pp. 88-99.
- 4. S. S. PRASAD and W. T. HUNTRESS. Astrophys. J. Suppl. 43, 1 (1980).
- 5. S. S. PRASAD and W. T. HUNTRESS. Astrophys. J. 239, 151 (1980).
- C. G. FREEMAN, P. W. HARLAND, and M. J. MCEWAN. Mon. Not. R. Astr. Soc. 187, 441 (1979).
- G. I. MACKAY, G. D. VLACHOS, D. K. BOHME, and H. I. SCHIFF. Int. J. Mass Spectrom. Ion Phys. 36, 259 (1980).
- 8. A. B. RAKSIT and D. K. BOHME. Int. J. Mass Spectrom. Ion Phys. 55, 69 (1983).
- 9. C. MOUREU and J. C. BONGRAND. Ann. Chim. Rome, 14, 47 (1920).
- 10. N. G. ADAMS and D. SMITH. J. Phys. B, 9, 1439 (1976).
- 11. T. SU and W. J. CHESNAVICH. J. Chem. Phys. 76, 5183 (1982).

860

- 12. E. R. LIPPINCOTT and J. M. STUTMAN. J. Phys. Chem. 68, 3976 (1964).
- 13. A. A. WESTENBERG and E. B. WILSON. J. Ann. Chem. Soc. 72, 199 (1950).
- 14. M. TICHY, A. B. RAKSHIT, D. G. LISTER, N. D. TWIDDY, N. G. ADAMS, and D. SMITH. Int. J. Mass Spectrom. Ion Phys. 23, 123 (1977).
- A. B. RAKSIT and D. K. BOHME. Int. J. Mass Spectrom. Ion Phys. 49, 275 (1983).
- J. L. FRANKLIN, J. G. DILLARD, H. M. ROSENSTOCK, J. T. HERRON, K. DRAXL, and F. H. FIELD. Natl. Stand. Ref. Data Ser. 26, 41 (1969).
- 17. J. R. WYATT and F. E. STAFFORD. J. Phys. Chem. 76, 1913 (1972).
- M. YOSHIMINE and W. P. KRAEMER. Chem. Phys. Lett. 90, 145 (1982).

- A. B. RAKSIT and D. K. BOHME. Int. J. Mass Spectrom. Ion Processes, 57, 211 (1984).
- 20. C. BAKER and D. W. TURNER. Proc. R. Soc. London, A**308**, 19 (1968).
- 21. H. M. ROSENSTOCK, K. DRAXL, B. W. STENER, and J. T. HER-RON. J. Phys. Chem. Ref. Data Ser. 6, Suppl. 1 (1977).
- 22. H. OKABE and V. H. DIBELER. J. Chem. Phys. 59, 2430 (1973).
- 23. H. I. SCHIFF and D. K. BOHME. Astrophys. J. 232, 740 (1979).
- 24. Y. ONO and C. Y. NG. J. Chem. Phys. 74, 6985 (1981).
- 25. E. HERBST. J. Chem. Phys. 70, 2201 (1979).
- 26. A. GOOD. Trans. Faraday Soc. 67, 3495 (1971).
- 27. D. K. BOHME, A. B. RAKSIT, and A. FOX. J. Am. Chem. Soc. 105, 5481 (1983).