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Abstract 

Results of an experimental study using the selection-ion flow tube technique are reported for reactions of bare Fe + and 
iron containing FeX ÷ cations (X = C6H 6 (or B), c-C5n 5 (or Cp), O, (Cp)2, B 2) with dinitrogen at 294 _+ 3 K and at a 
helium buffer-gas pressure of 0.35 _+ 0.01 Torr. Fe z, B2Fe + and Cp2Fe + do not react with dinitrogen. A very slow 
sequential addition of two N z molecules was observed with FeO +. CpFe + and BFe + reacted without the subsequent 
addition of a second N 2 molecule. These results provide insight into the bonding of N 2 as a ligand with Fe as the 
coordination centre in the gas-phase, and into intrinsic kinetic aspects of dinitrogen addition. 

Iron is the only transition metal common to all 
biological  systems of  dinitrogen fixation [1,2]. Re- 
cent experimental  and theoretical studies [3-11]  of  
transition metal ca t ion-dini t rogen and other small 
l igand complexes in the gas-phase have found that 
the binding energies of  these complexes are much 
larger than theoretical values based on electrostatic 
bonding alone. It has been shown that charge trans- 
f e r / cha rge -quadrupo le  interaction and covalent  
bonding are also important [4-7].  We present here 
the first experimental evidence for the coordination 
of  unsaturated FeX + cations, in particular c- 

C s H s F e  + (CpFe+) ,  CaH6Fe  + (BFe +) and FeO ÷ 
with dinitrogen as a ligand to iron in the gas-phase at 
294 ± 3 K. Also,  kinetic measurements are reported 
here which provide the first insight into the intrinsic 

eff iciency of dinitrogen addition reactions. 
The results reported here (see Table 1) were 

obtained using a selected-ion flow tube (SIFT) which 
has been described previously [12,13]. Al l  measure- 

ments were performed at 294 _ 3 K and at a helium 
buffer-gas pressure of 0.35 _ 0.01 Torr. The reactant 
cations Fe z, CpFe ÷ and CpzFe ÷ were produced in a 
low pressure ionization source by 2 0 - 7 0  eV elec- 
tron-impact ionization of  Cp2Fe vapour. In the ex- 
periments with BFe + and BEFe + cations were pro- 
duced from Fe z all the way upstream in the flow 
tube by adding benzene (1.1 × 1017 molecule s -1 )  
through the aspirator gas inlet together with the 
helium buffer gas. FeO + was derived from the reac- 
tion Fe z + N20 --~ FeO + + N 2 in a mixture of  
Fe(CO) 5 and N20  in a high-pressure ionization 
source. Al l  the regent cations were allowed to ther- 
malize upstream of  the flow tube by = 4 × 10 4 

collisions with He atoms before adding N 2. 
The adduct complexes BFe ÷ and CpFe ÷, which 

have a pyramidal  structure [14,15], were observed to 
react with dinitrogen and formed adducts without the 
subsequent addition of  a second molecule of  N 2. 
Rate coefficients are summarized in Table 1 and a 
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Table 1 

Rate coefficients a for  selected react ions between Fe+-conta in ing  

ions and N 2 at 294 +_ 3 K and at a hel ium buffer -gas  pressure of  

0.35+_0.01 Torr  

I o n  kobs b kcap  c k ( 3 ) o b  s d 

Fe + < 1 0  -a4  7 . 1 5 × 1 0  -10 < 9 X 1 0  -31 

FeO +c 5 . 0 × 1 0  -14 6.88 X 10 10 4 . 4 X  1 0 -  30 

FeO(N2)  + ~< 1 .5X 10 -14 6 . 6 0 × 1 0  - 1 °  ~< 1 .3X 10 30 

FeO(N2)  ~- < 1 0  -14 6 . 4 5 × 1 0  - l o  < 9 X 1 0  -31 

CpFe + 2 .2X  10 -11 6 . 4 8 × 1 0  -1°  1 .9X 10 27 

CpFe(N2) + < 1 0  -14 6 .36 )<10  - l o  9 X 1 0  -31 

(Cp)zFe + < 1 0  -14 6 .26 )<10  -10 9 X 1 0  -31 

BFe + 1 . 5 x  10 -11 6 . 4 1 ×  10 - a °  1 . 3 ×  10 -27 

(B)2Fe + < 1 0  -13 6 . 2 1 ×  10 -a0  < 9 X 1 0  -31 
B + < 1 0  13 6 . 9 0 × 1 0 - 1 o  < 9 X  10-31  

a All b imolecular  rate coefficients are in units  of  cm 3 m o l e c u l e -  1 
S - 1  " 

b Measured effective b imolecular  react ion-rate coefficient.  The 

absolute error may  be as high as +-30%, but the relative error  is 

lower  than 5%. 
c The collision rate coefficient  was  calcula ted accord ing  to the 

A D O  method described by  Su and Bowers  [31]. 

o Termolecular  rate coefficient,  in units o f  cm 6 molecule  -2  s - l ,  

calculated f rom kob s. 
The associat ion with C O  impurit ies could be excluded due to the 

reaction FeO + + C O  ~ Fe + + C O  2. 

reaction profile is shown in Fig. 1. We believe that 
the observed BFe(N2) + and CpFe(N2) ÷ cations were 
formed under our experimental conditions by ter- 
molecular association with He atoms stabilizing their 
body (the termolecular rate coefficients calculated 
from kob s a r e  shown in Table 1). Also radiative 
stabilization is able to play a certain role in the 
stabilization of observed complexes but the effective 
bimolecular rate coefficients, the reaction time and 
the small number of atoms in the intermediate com- 
plex rule out radiative stabilization as a significant 
alternative association mechanism [16,17]. The rate 
coefficients for CpFe + and BFe + reveal that the 
internal degrees of freedom of the cyclopentadienyl/ 
benzene-carbocycles are not significantly involved in 
the complexation energy dispersal. BFe(N2) + has 
more degrees of freedom (a longer lifetime if the 
binding energies are similar) as compared to 
CpFe(N2)+; the intrinsic reaction efficiency of N 2 

addition to BFe + is found to be lower than that for 
CpFe +. Since this difference cannot be attributed to 
an increase in degrees of freedom alone, the large 

rate coefficients in the case of CpFe(N2) + formation 
imply a bond stronger than that in BFe(N2) +. 

What is the nature of the bonding in CpFe(N 2) + 
and BFe(N2)+? The failure to observe significant 
reactions between N 2 and B +, B2Fe + and Cp2Fe + 
ions is strong evidence that iron is the reaction center 
in the reactions of BFe + and CpFe +. In order to 
form a 6"rr-electron complex with CsH~,  iron do- 
nates one electron and the formal oxidation number 
of Fe in CpFe + is equal to two. Benzene already has 
the aromatic 6-electron configuration and iron in 
BFe(N2 )+ has a lower local positive charge. Fe in 
CpFe + is 0.52 e -  more deficient than the Fe + 
centre in BFe + [14]. Our experimental observations 
are consistent with an explicit bond energy analysis 
[4] which shows that the charge/induced dipole and 
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Fig. 1. Exper imenta l  data for  the react ion of  CpFe + with N 2. The 
measurements  were  per formed at 2 9 4 + 3  K and at a helium 

buffer -gas  pressure o f  0.35 + 0 . 0 1  Torr.  CpFe ÷ was  formed ini- 

tially by  55 eV elect ron- impact  dissociative ionization o f  Cp2Fe  

vapour.  The solid lines represent  a fit to the experimental  data 

with the solution o f  the sys tem of  differential  equat ions appropri-  

ate for the observed reactions. Rate coefficients derived f rom this 

fit are g iven in Table 1. 
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charge/quadrupole interactions account for more 
than 75% of the total bond energy in the Cr+ /Co  +-  
N 2 complexes. Additional contributions are short- 
range electronic repulsion and charge transfer. This 
type of bonding in weakly bound organometallic 
systems greatly depends on the metal local charge 
and should be stronger in the CpFe(N2) + complex. 
We suggest that cyclopentadienyl and benzene have 
electronic properties as co-ligands which can con- 
tribute to the stability of the dinitrogen-metal com- 
plexes as a consequence of Fe ~ N 2 "rr acceptance 
[18,19] 1. Some compounds containing 'rr-electron 
donating ligands such as Cp(CO)2Mn(N 2) [20] and 
also mixed dinitrogen cyclopentadienyl-phosphine, 
THF, benzyl complexes of Zr, Li, Ir [21-25] are 
known. 

Iron in FeO + has a higher local positive charge 
[26] than iron in BFe + and CpFe +, and should 
exhibit the strongest bond with N 2 among all the 
complexes considered in this study. We observed a 
slow addition of two N 2 molecules to the FeO + 
cation which is more consistent with a higher contri- 
bution of charge-induced dipole, quadrupole/charge 
transfer bonding in comparison with CpFe + and 
BFe +. However, the experiment reveals that FeO + 
reacts with dinitrogen at least 100 times slower. This 
difference in reactivity can be rationalized in terms 
of a difference in the collision-complex life time 
which is influenced not only by the FeX+-N2 bond- 
ing energy but also by the number of active vibra- 
tional modes in the collision complex. The FeX+-N2 
complex has more than 5 active modes (assuming 
that dinitrogen rotational and translational modes 
were converted into active vibrational modes). In this 
case only 1-3 additional modes need to be active in 
CpFe + and BFe + in order to explain the more than 
two order of magnitude difference in the rate coeffi- 
cients. 

The reaction between dinitrogen and bare iron 
cation was also investigated in our laboratory. Strictly 
speaking this reaction cannot be directly compared 
with the addition of N 2 to FeX ÷ complexes. The 
Fe + ion in the 6D ground state (4s13d 6) has a large 

1For the influence of the presence of other ligands on the 
metal-ligand binding energy see Ref. [19]. 

4s orbital which contributes in repulsive interaction 
with dinitrogen. A similar interaction is absent in the 
electronic ground states for CpFe ÷ (SE 2) [14] and 
BFe ÷ (4A 2) [15]. The failure to observe addition of 
N 2 to Fe ÷ can be explained by a short lifetime of the 
intermediate Fe +-N 2 complex which may arise from 
weak bonding and/or  a small number of degrees of 
freedom effective in energy dispersal. 

It seems surprising, at first glance, that CpFe ÷ 
and BFe ÷ form only one adduct with dinitrogen. We 
were unable to observe addition of a second and 
third molecule of N 2 to CpFe(N2) + and BFe(N2) + 
ions even at high flow of dinitrogen (up to 1019 

molecule/s). In contrast, other experiments in our 
laboratory have shown that CpFe + rapidly adds up 
to three CO and up to two NO molecules under 
similar experimental conditions [27]. This allows us 
to rule out steric effects in the formation of the 
bis/multi(dinitrogen) complexes. It is interesting to 
note that the addition of more than one molecule of 
N 2 to mononuclear transition metal complexes is 
also very rare in condensed phase chemistry [21,22]. 
However, half-sandwich complexes containing d 6 

transition metal centers bonded to more than one N 2 

molecule such as CpRe(CO)(N2)2, CpRe(N2) 3 and 
(c-C4H4)Fe(COXN2) 2 have been synthesized under 
cryogenic conditions [9] and in supercritical fluids 
[11]. The latter experiments were conducted using 
supercritical Xe doped with N 2 at extremely high 
pressure. The pressure used in our gas-phase experi- 
ments is less by more than 6 orders of magnitude. 
Moreover, the bis/multi(dinitrogen) complexes ob- 
served in supercritical fluids were volatile and al- 
ways in low concentrations. Taken together, all of 
these results indicate that the first metal-dinitrogen 
bond in CpFe(N2 )+ and BFe(N2 )+ is especially 
strong compared with second- and higher-order 
bonds. 

Can we understand the structures of the adducts 
which we have observed? It is known that for 
mononuclear metals end-on .ql bonding is most com- 
mon [4,5], although .q2 side-on bonding (via dinitro- 
gen "rr bonds, as with alkenes) has also been reported 
[21-23,28-30]. Scheme 1 shows the two possible 
types of bonding to dinitrogen as a ligand in the 
CpFe(N2) + complex. Iron in CpFe + has three avail- 
able d orbitals for dinitrogen end-on bonding which 
theory says requires two d orbitals [21]. Side-on 
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coordination exists in the condensed phase for simi- 
lar systems only as an intermediate in end-to-end 
rotation [4,5,27]. The remaining one d orbital around 
ion in CpFe(N2) ÷ is not sufficient for the bonding of 
a second dinitrogen and so for the formation of 
CpFe(N2)~-. This is a possible explanation for the 
absence of CpFe(N2) ~- in our experiments as well as 
in the condensed phase. 

Although a strong (r interaction may force the 
dinitrogen initially into side-on bonding in the base 
of the iron oxide ion [21], end-on configuration is 
likely to prevail due to the dominant charge/induced 
dipole and charge/quadrupole interactions [4,5]. The 
high positive charge on the iron in FeO(N2) ÷, the 
absence of steric limitations and the tendency to fill 
the still incomplete valence shell allow FeO(N2) + to 
attach another dinitrogen, as was observed in our 
experiments. 

The gas-phase results obtained in this study open 
a new field of investigations of intrinsic kinetic and 
mechanistic aspects of dinitrogen addition. Further 
investigations in the gas-phase extended over a wider 
range of ligands and transition metals, and to ligand 
switching reactions, should significantly improve our 
understanding of fundamental aspects of dinitrogen 
addition and so have an impact on condensed-phase 
chemistry. For example, from what we have learned 
in this study, we expect that some organometallic 
salts of CpFe ÷ may reveal a dinitrogen addition 

reaction similar to that observed by us in the gas- 
phase. 
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