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Abstract

We study the problem of multiple hypothesis testing for correlated
clustered data. As the existing multiple comparison procedures based
on maximum likelihood estimation could be computationally inten-
sive, we propose to construct multiple comparison procedures based
on composite likelihood method. The new test statistics account for
the correlation structure within the clusters and are computationally
convenient to compute. Simulation studies show that the composite
likelihood based procedures maintain good control of the familywise
type I error rate in the presence of intra-cluster correlation, whereas
ignoring the correlation leads to erratic performance. Using data aris-
ing from a depression study, we show how our composite likelihood
approach makes an otherwise intractable analysis possible.

1 Introduction

The prevalence of depression in seniors estimated by the World Health Or-
ganization varies between 10% to 20% (Barua, 2011). Understanding the
relationship between depression and other health factors can help prevent
the disease and alleviate the symptoms. The health and retirement study
(HRS) conducted by the University of Michigan is a longitudinal study which
measured various aspects of health, retirement and aging, including the sub-
ject’s depression status. In this study, seniors were measured every two years
from 1994 to 2012. The objective of our analysis is to estimate the effect
of several health factors known to be associated with depression status and
compare the effect sizes of different factors. Multiple comparisons on the
effect sizes will clarify the relative importance of different factors to the
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disease. For example, the factor of being sleepless and the factor of smok-
ing both are shown to attribute to the occurrence rate of depression. One
might question whether or not they are equally important or one factor is
more important than the other for development of the disease. Therefore,
to fully understand the effects of the health factors, we perform all pairwise
comparisons on their effect sizes.

The repeated binary measurements of depression status observed in this
data set are correlated within individuals. These repeated measurements
can be viewed as clustered data since they are recorded from the same ex-
perimental unit multiple times. Clustered data examples arise in many other
situations, including measurements coming from siblings or same pedigrees,
or measurements taken in close proximity to each other in spatial data.
Ignoring existing correlations within clusters leads to invalid individual or
multiple inferences.

When performing multiple comparisons in clustered data, one should
therefore, take into account the correlation structure within the clusters.
However, full likelihood analyses on such data often encounter computa-
tional challenges. For a repeated binary measurement data, the distribution
can be described by multivariate probit or quadratic exponential. Evaluating
the full likelihood of a multivariate probit model involves multi-dimensional
integration, which quickly becomes computationally prohibitive. For the
quadratic exponential model, the normalizing constant has to be computed
through summation of all possible configurations of the clustered data, and
here again computational intensity increases with the cluster size. We can
avoid this computational burden by using a composite likelihood approach.

Composite likelihood methods are extensions of the likelihood method
that project high-dimensional likelihood functions to low-dimensional ones
(Cox and Reid, 2004, Lindsay, 1988). This dimension reduction is achieved
by compounding valid marginal or conditional densities. It has been shown
that, under regularity conditions, the composite likelihood estimator has de-
sirable properties, such as consistency and asymptotic normality (Cox and
Reid, 2004, Lindsay, 1988, Varin, 2008, Varin et al., 2011). This makes it
an appealing alternative in inferential procedures. Furthermore, composite
likelihood is more computationally convenient than full likelihood at a cost
of some loss of efficiency. The magnitude of this loss depends on the dimen-
sion of the multivariate vector and its dependency structure. Composite
likelihood methodology has been applied to numerous statistical problems
(Geys et al., 1997, Renard et al., 2004, Zhao and Joe, 2005), however, the
potential of composite likelihood in multiple testing has yet to be explored.
There is a great need to develop a procedure to integrate multiple hypothesis
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testing procedures with the composite likelihood methodology.
Multiple testing procedures have been developed to control the overall

type I error rate when the number of tests is greater than one (Bretz et al.,
2010, Hochberg and Tamhane, 1987). The classical Bonferroni method is
the simplest procedure to adjust the overall type I error rate, but it is well-
known to be very conservative. The Dunn-Sidák procedure (Sidak, 1968)
generalizes the Bonferroni procedure by using a slightly less conservative p-
value threshold for each comparison. Schéffe (1959) established a method for
testing all possible linear comparisons among a set of normally distributed
variables, which tends to be over-conservative for a finite family of multiple
comparisons. Several stage-wise procedures have also been proposed to im-
prove the power. Simes (1986) modified the Bonferroni procedure based on
ordered p-values. Holm (1979) proposed a multi-stage procedure that ad-
justs the family-wise error rate in each step using the number of remaining
null hypotheses. Hommel (1988) suggested a stagewise rejective multiple
test based on the principle of closed test procedures. All of these meth-
ods are less conservative and therefore more powerful than the Bonferroni
method. However, it is difficult to construct simultaneous confidence inter-
vals based on stage-wise procedures. As another alternative, Hothorn, Bretz
and Westfall (2008a) proposed to use quantiles of the multivariate normal
and multivariate t-distribution to perform multiple comparisons in paramet-
ric methods. This method takes into account the correlation structure of
the test statistics and offers sharper control of the family-wise type I error
rate. The approach has been employed in many parametric and nonparamet-
ric settings to provide both multiple inferences and simultaneous intervals
(Hothorn et al., 2008a, Konietschke et al., 2013, 2012). Recently, there has
been considerable interest devoted to the problems of large-scale multiple
testing applied on the analysis of high dimensional data (see, for exam-
ple, Benjamini and Hochberg (1995), Meijer (2015)). New decision-analytic
based multiple testing procedures (Lisovskaja, 2015) have also been pro-
posed to design multiple testing procedure to minimize a predefined utility
function.

In this paper, we propose a new procedure to handle multiple testing sce-
narios in computationally intensive or intractable likelihood scenarios. We
do this by combining multiple testing methods with the dimension-reduction
capabilities of inference based on composite likelihood. We explore in detail
different multivariate models for correlated clustered data including the mul-
tivariate normal, multivariate probit, and quadratic exponential models to
illustrate our multiple comparisons approach. Although the proposed com-
posite likelihood methodology can be combined with many multiple testing
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procedures, including the recent development in large scale multiple testing
or decision-analytic based procedures, in this paper, we focus on combin-
ing the Bonferroni, Scheffé, Dunn-Sidák, Holm, and the multivariate normal
quantile (MNQ) of Hothorn et al. (2008a) methods with both univariate and
conditional composite likelihood formulations. Among these methods, the
multivariate normal quantile threshold appears to have the best control of
the familywise type I error rate in most simulation settings.

The structure of this paper is as follows: In Section 2, we develop our
composite likelihood based test statistics for multiple inferences and estab-
lish their asymptotic properties. In Section 3, we provide details on how to
apply the general approach on a variety of multivariate models. In Section 4,
we conduct simulation studies to evaluate empirical performance of the pro-
posed method. Finally, we analyze the depression data set to demonstrate
the practical utility of the method. This is done in Section 5. We conclude
the paper with a brief discussion of the results.

2 Multiple Comparisons Procedures based on Com-
posite Likelihood

Let {f(Y ; θ), θ ∈ Θ}, where θ = (θ1, . . . , θp)
T , be a parametric statistical

model with parameter space Θ ⊂ Rp. Let Y = (yT1 , · · · , yTn ) denote the
response variables, where yi = (yi1, · · · , yimi)T is the vector of observations
from cluster i, i = 1, · · · , n from a study population. It is assumed that
observations from different clusters are independent, whereas observations
from the same cluster may be dependent. Note that each cluster is thus of
size mi, for an overall sample size of

∑n
i=1mi. In this work, it is assumed

that the cluster size, mi, is uniformly bounded.
Let

C = Cc×p = (C(1), C(2), · · · , C(c))T

denote the contrast matrix. A family of c linear combinations of the pa-
rameters can then be specified by Cθ. Let H0i denote the hypothesis that
C(i)θ = 0, for i = 1, . . . , c. We focus here on jointly testing the family of
hypotheses H0i, i = 1, . . . , c. In multiple testing, the family-wise type I error
(FWER) rate is the probability of falsely rejecting at least one individual
null hypothesis. It is said that one has weak control of FWER if the FWER
≤ α when all of the null hypotheses are true, whereas one has strong control
of FWER if the FWER ≤ α under any combinations of null hypotheses and
alternative hypotheses.
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Most existing multiple comparisons methods estimate the parameters
based on the full likelihood. However, for some multivariate distributions,
maximizing the full likelihood function can be computationally challeng-
ing. Composite likelihood is an alternative method that has attracted much
attention in recent years (Besag, 1974, Lindsay, 1988, Varin, 2008, Varin
et al., 2011). A composite likelihood is a compounded form of marginal
or conditional likelihoods, which is computationally easier to maximize.
The general formulation for composite likelihood may be written as fol-
lows: Let A1, . . . , AK be a suitably chosen collection of index sets, with
Ak ⊆ {(i, j), i = 1, . . . , n, j = 1, . . . ,mi}. For each Ak, a weight wAk is also
chosen/specified. The composite likelihood function is then defined as

CL(θ;Y ) =

K∏
k=1

f(yAk ; θ)wAk ,

where f(yAk ; θ) is the density for the subset vector yAk . For example, to ob-
tain the so-called univariate composite likelihood CL(θ;Y ) =

∏n
i=1

∏mj
j=1 f(yij),

one chooses Ak = {(i, j)} as the single index pairs and weights wAk ≡ 1.
(Note that the univariate composite likelihood is equivalent to the full like-
lihood if the yij are independent.) The so-called conditional composite like-
lihood is formulated as CL(θ;Y ) =

∏
i,j f(yij |yi(−j)) =

∏
i,j f(yi)/f(yi(−j)),

where yi(−j) denotes the sub-vector yi with its jth element removed. This
composite likelihood uses index sets {(i, 1), . . . , (i,mi)} with weight wAk = 1
and index sets {(i, 1), . . . , (i, j−1), (i, j+1) , . . . , (i,mi)} with weight wAk =
−1. As this example shows, the index sets Ak need not be disjoint.

The maximum composite likelihood estimate (MCLE) is defined as

θ̂cn = argmaxθ∈ΘCL(θ;Y ).

Xu and Reid (2011) give precise conditions under which θ̂cn is consistent for
θ. Under appropriate assumptions,

√
n(θ̂cn − θ) is asymptotically normally

distributed with mean zero and limiting variance given by the inverse of the
the Godambe information matrix (Lindsay, 1988, Varin and Vidoni, 2005),
where

G−1(θ) = H−1(θ)J(θ)H−1(θ), (2.1)

with H(θ) = limnE(−cl(2)(θ;Y ))/n and J(θ) = limn var(cl(1)(θ;Y ))/n.
Here, cl(1) is the vector of first derivatives and cl(2) is the matrix of second
order derivatives of cl(θ;Y ) = logCL(θ;Y ) with respect to θ. The H(θ)
can be estimated as the negative Hessian matrix evaluated at the maximum
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composite likelihood estimator, whereas the matrix J(θ) can be estimated
as the sample covariance matrix of the composite score vectors. Both esti-
mators Ĥn and Ĵn are consistent (Varin and Vidoni, 2005).

Consider the hypothesis test on a family of linear combinations of the
parameters: {H0 : Cθ = 0}. Denote by Γ = G−1(θ) the inverse Godambe
information matrix, and let Γ̂n denote a consistent estimator of Γ with
Γ̂n = Ĥ−1

n ĴnĤ
−1
n . We propose the following test statistics for our hypothesis

test

Ti,n =
C(i)T θ̂cn√(

C(i)T Γ̂nC(i)
)
/n

, i = 1, . . . , c. (2.2)

Theorem 2.1. Suppose that the following conditions hold

1.
√
n(θ̂cn − θ)⇒ N(0, G−1(θ)),

2. H0 is true, and

3. Γ̂n
p→ G−1(θ).

Then the limiting distribution of Tn = (T1,n, · · · , Tc,n)T is multivariate nor-
mal Nc(0, V ), where

V = diag(D)−1/2D diag(D)−1/2, D = CG−1(θ)CT . (2.3)

Furthermore, since Vi,i = 1, the marginal asymptotic distribution of each
individual Ti,n is standard normal.

Proof of Theorem 2.1. Asymptotic normality of Tn is shown as in Hothorn
et al. (2008a). Moreover, as the diagonal elements of the matrix V are equal
to one, the individual test statistics Ti,n, i = 1, . . . , c, are standard normal.

Therefore, the V matrix is the correlation matrix for Cθ̂cn.

In practice, we estimate V by plugging Γ̂n as a consistent estimator of
G−1(θ) into (2.3). This results in a consistent estimator of V . It is worthy to
point out that the test statistics we propose here are Wald-type of statistics
which are not invariant to reparametrization. Under reparametrization, the
new statistics follow the same type of limiting distributions, but the values
of the statistics are not the same. This is a standard limitation associated
with Wald-type statistics.

To apply various multiple testing procedures, we propose to apply the
corresponding rejection criterions based on the composite likelihood test
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statistics {Ti,n} derived above. In the numerical analysis, we examine the
performance of composite likelihood test statistics with four popular mul-
tiple testing methods: Bonferroni, Dunn-Sidák (Sidak, 1968), Holm (Holm,
1979), and the simultaneous multiple comparison test based on multivariate
normal quantiles (MNQ) of Hothorn et al. (2008a). The first three methods
are applied to the marginal distributions of Ti,n based on the asymptotic the-
ory in Theorem 2.1, whereas MNQ uses a cutoff based on the multivariate
quantile based on the full variance matrix V in (2.3).

3 Three multivariate models

To showcase our methodology, we consider three different multivariate distri-
butions: The multivariate normal, multivariate probit, and quadratic expo-
nential distributions. A further, fourth, distribution (the skewed multivari-
ate gamma) is considered within the supplementary material. For the first
two distributions, the composite likelihood is constructed as sum of univari-
ate likelihoods, whereas for the third distribution, the composite likelihood is
constructed as conditional likelihood. All details for the gamma example are
given in the supplementary files. Naturally, our methodology is not limited
to these distributions and can be applied to other distributions, given that
the composite likelihood is available and that the conditions of Theorem 2.1
hold.

In order to include covariates into our modelling scheme, let Xi denote
an mi×p matrix containing the values of p covariates for the mi individuals
in the ith cluster and β = (β1, . . . , βp)

T denote the vector of regression
coefficients. Let ~xij denote the jth row of the matrix Xi (this is the vector
of covariates for individual j in cluster i).

3.1 Multivariate Gaussian distribution

Let {(yi, Xi), i = 1, · · ·n}, denote the response and covariates arising from a
multivariate normal model, with yi = Xiβ+εi, i = 1, . . . , n, and mi = m. We
assume that εi ∼ Nm(0,Σ) where Σ = (σij), i, j = 1, . . . ,m, is an arbitrary
covariance matrix. The univariate composite likelihood is thus equal to

cl (β) =
∑n

i=1

∑m
j=1(−1

2 log(2πσjj)− 1
2σ2
jj

(yij − ~xijβ)2),

where the σjj ’s are nuisance parameters. The Hessian matrix and vari-
ability matrix are, respectively, H(β) = n−1

(∑n
i=1X

T
i WXi

)
and J(β) =

n−1
(∑n

i=1X
T
i W ΣWXi

)
, with W = diag(Σ)−1. To estimate the regression
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coefficients, we employ an iterative algorithm: Given the current estimate
for the nuisance parameters σjj ’s, we maximize the composite likelihood to

obtain an estimate of β̂cn = (
∑n

i=1X
T
i WXi)

−1
∑n

i=1X
T
i WYi, and given a

current estimate for β, we use the sample covariance matrix of residuals to
estimate Σ. Based on the estimates β̂cn and Σ̂, we obtain estimates for H(β)

and J(β) with W being replaced by its estimate Ŵ = diag(Σ̂).

3.2 Multivariate probit model

Let y∗i = Xiβ + εi with εi ∼ Nm(0,Σ) and Σ = σR, where R is an m ×
m correlation matrix. The variables y∗i are the latent response variables,
and their dichotomized version of the latent variable with yij = I(y∗ij >
0), j = 1, · · · ,m yield the multivariate probit model. We therefore have
that P (yij = 1|Xi) = Φ(~xijβ/σ) where Φ denotes the univariate standard
normal cumulative distribution function. It follows that the parameters β
and σ are not fully identifiable in the model, and we can only estimate
the ratio β/σ. To simplify notation, σ is set equal to 1 in what follows.
The univariate composite log-likelihood function of the probit model is then
formulated as

cl(β;Y ) =
∑n

i=1

∑m
j=1[yij log Φ (~xijβ) + (1− yij) log (1− Φ (~xijβ))].

Denoting µij = P (yij = 1|Xi), and µi = (µi1, . . . , µim)T , we have

cl(1)(β;Y ) =
∑n

i=1

(
∂µi
∂β

)T
Π−1
i (yi − µi),

where Πi = diag(var(yi1), · · · , var(yim)), and var(yij) = µij(1 − µij). This
yields

H(β) = n−1
∑n

i=1

(
∂µi
∂β

)T
Π−1
i

(
∂µi
∂β

)
and J(β) = n−1

∑n
i=1

(
∂µi
∂β

)T
Π−1
i cov(yi) Π−1

i

(
∂µi
∂β

)
.

To find the estimates β̂cn, we use the Newton-Raphson algorithm. Denote
µ̂in = {µ̂i1n, µ̂i2n, . . . , µ̂imn}T , where µ̂i = Φ(Xiβ̂

c
n). Let Π̂in denote the

estimator of Πi obtained by substituting µ̂ijn for µij . We estimate H(β) and
J(β) as

Ĥn = n−1
∑n

i=1( ∂µi∂β

∣∣∣
β̂cn

)T Π̂−1
in ( ∂µi∂β

∣∣∣
β̂cn

)

Ĵn = n−1
∑n

i=1( ∂µi∂β

∣∣∣
β̂cn

)T Π̂−1
in ĉovn(yi) Π̂−1

in ( ∂µi∂β

∣∣∣
β̂cn

),

calculating the empirical variance as ĉovn(yi) = (yi − µ̂in)(yi − µ̂in)T .
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3.3 Quadratic Exponential Model

The quadratic exponential model is a popular tool used to model clustered
binary data with intra-cluster interactions (Geys et al., 1997). In this model,
the binary observations take values yij ∈ {−1, 1} and the joint distribution
is given by

fY (yi) ∝ exp
{∑mi

j=1 µ
∗
ijyij +

∑
j<j′ w

∗
ijj′yijyij′

}
, (3.4)

where µ∗ij is a parameter which describes the main effect of the measure-
ments and w∗ijj′ describes the association between pairs of measurements
within the cluster yi. Independence corresponds to the case that w∗ijj′ = 0
and positive or negative correlation corresponds to w∗ijj′ > 0 or w∗ijj′ < 0, re-
spectively. For simplicity, we consider the case that µ∗ij = µ∗i and w∗ijj′ = w∗i ,
noting that our methodology can be readily applied to the general sce-
nario as well. Under this simplification, Molenberghs and Ryan (1999),
showed that the joint distribution can be equivalently written in terms
of zi =

∑mi
j=1 1(yij = 1) (the number of successes in the ith cluster) as

fY (yi) ∝ exp{µizi − wizi(mi − zi)}, where wi = 2w∗i and µi = 2µ∗i .
Specifying the normalizing constant in (3.4) is famously difficult, but

also necessary to compute the full likelihood function. It is therefore de-
sirable to use an alternative approach, one which does not involve such
an intensive calculation. Replacing the joint distribution with the con-
ditional distributions leads to a conditional composite likelihood function
cl(µ,w;Y ) =

∑n
i=1

∑mi
j=1 log f(yij |{yij′}, j′ 6= j), which does not require

computation of the normalizing constant.
We now define two conditional probabilities

pis = exp{µi−wi(mi−2zi+1)}
1+exp{µi−wi(mi−2zi+1)} , pif = exp{−µi+wi(mi−2zi−1)}

1+exp{−µi+wi(mi−2zi−1)} .

Heuristically, pis is the conditional probability of one more success, given
zi − 1 successes and mi − zi failures, while pif is the conditional probability
of one more failure, given zi successes and mi − zi − 1 failures. Note that
pif 6= 1 − pis, because of the term mi − 2zi ± 1. The composite likelihood
can now be expressed as cl(µ,w;Y ) =

∑n
i=1 (zi log pis + (mi − zi) log pif ) .

This special form of the composite likelihood means that a logistic re-
gression approach can be used to estimate the parameters. We model a
covariate effect by using the linear model µi = Xiβ, with wi = w inter-
preted as an additional parameter. That is, for the parameter w, the value
of the covariate is set to −(mi − 2zi + 1) when yij = 1 and −(mi − 2zi − 1)
when yij = −1. This allows us to obtain CMLE estimates of both β and
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w using iterative re-weighted least squares, commonly used to solve logistic
regression maximization problems. To estimate the covariance of β̂cn, we
computed Ĵn as the empirical variance of the score vector,

plugging in estimates of µ∗i , w
∗ throughout. The Hessian matrix Ĥn is

estimated using the result from fitting the logistic model in R, see Geys et al.
(1997).

4 Simulation Results

We evaluate the validity of our proposed approach on three different mul-
tivariate models from Section 3 using simulations. We test two differ-
ent global null hypotheses on the regression coefficients β1, · · · , βp: many-
to-one comparisons, H0 : ∩pi=2{β1 = βi}; and all pairwise comparisons
H0 : ∩1≤i,j≤p,i 6=j{βi = βj}. The results for many-to-one comparisons are
summarized here while the results for all pairwise comparisons are provided
in the supplementary material. We choose a collection of different types
of multiple testing methods including one-step methods (Bonferroni and
Dunn-Sidák), a stagewise (Holm), a projection method (Scheffé), and the
MNQ method based on the multivariate distribution of test statistics. For
the MNQ method, the critical values can be obtained using the R package
mvtnorm (Hothorn et al., 2008b).

Part of our goal is to show practitioners what happens if the correlation
structure in the clustered data is ignored. To this end, we also include a
“misspecified” scenario, where independence is erroneously assumed within
the clusters. Due to the specific composite likelihood methods we use (uni-

Table 1: Multiple comparison methods considered:

CASE
multiple comparison

Γ̂nmethod

(a) MNQ

Ĥ−1
n ĴnĤ

−1
n

(b) Bonferroni
(c) Dunn-Sidák
(d) Holm
(e) Scheffé

(f) MNQ “naive” Ĥ−1
n
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variate marginals and univariate conditionals), such a misspecification is
equivalent to H(θ) = J(β) in (2.1). This results in an estimate of Γ̂n = Ĥ−1

n

in Theorem 2.1. This misspecified scenario is included for comparison, and
we consider it only with the MNQ multiple comparison method (that is, the
MNQ cutoff is calculated based on V estimated by plugging in Γ̂n = Ĥ−1

n ).
Throughout, it is referred to as the “naive” approach. Overall, we therefore
consider six different approaches, and these are provided in Table 1.

In our simulations, we study the three models described in the previous
section. For each model, a different sample size is needed for our asymptotic
approximations to be valid. We determine this sample size with an initial
simulation, before we proceed with our more in-depth investigations. For
each simulation setting, 10 000 simulated data sets were generated and the
family-wise type I error rate was set to 0.05. The standard deviation for the
observed FWER is hence approximately 0.002. These preliminary simula-
tion results are given in Table 2. We observe that n = 200, 500 and 700 are
required for the multivariate normal, multivariate probit and quadratic ex-
ponential models to maintain FWER within two standard deviations away
from 0.05, respectively. These are the sample sizes used for the simulation
results which follow.

Table 2: FWER for different sample sizes

model

Sample size

200 500 700 1000 4000

multivariate normal 0.0509 0.0492 0.0483 0.0495 0.050

multivariate probit 0.0576 0.0501 0.0511 0.0506 0.0511

quadratic exponential 0.0580 0.0543 0.0519 0.0520 0.0504

To evaluate the power of each of the different methods, we consider two
different alternative scenarios: one alternative configuration a1 with only
one non-zero parameter with a large effect size, and a second alternative
configuration a2 with five true non-zero parameters but with small effect
sizes for all. We are interested in the ability of the test to reject the global
null hypothesis, but also in the ability of the test to reject the individual
null hypotheses. Under the alternative scenario a1, we calculate the power
to reject the global hypothesis (denoted as “a1” in the tables) and for the
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alternative configuration a2, we calculate both the power to reject the global
null hypothesis (denoted as “a2” in the tables) and the sum of the five powers
to rejected the five individual true alternatives (denoted as “ind a2” in the
tables). Note also that the true effects are purposefully chosen to be small
under a2, and therefore the typical empirical results are considerably smaller
than 5, as expected. This is done so that the observed global power is not
uniformly high, which allows us to detect more subtle differences among the
various methods.

4.1 Multivariate Normal Model

We consider the multivariate normal model with n = 200 clusters, cluster
size m = 4 or 10, and the number of covariates set to p = 10 or 20. Four
different Σ scenarios are considered: 1) three exchangeable structures with
σ2 = 0.8 and ρ = cov(yij , yik) = 0, 0.2 or 0.5; 2) one arbitrary structure,
where Σ = ((1.3, 0.9, 0.5, 0.3)T , (0.9, 1.9, 1.3, 0.3)T , (0.5, 1.3, 1.3, 0.1)T , (0.3, 0.9, 0.1, 0.7)T ).
In each simulation, the m× p covariate matrix Xi is obtained by randomly
sampling from normal distributions.

We consider here the many-to-one comparisons where the first parameter
is taken as the baseline. Under the global null hypothesis H0, the true value
of the regression parameters is set to βT = 0, and the power is calculated
under two different alternative configurations βTa1 = (0, 0, 0, 0.032, 0, . . . , 0)
and βTa2 = (0, 0.008, 0.01,−0.03, 0.005,−0.01, 0, . . . , 0). Under βa1 , there is
only one true alternative, and we evaluate the power to reject the global
null hypothesis. Under βa2 , there are five true alternatives and we evaluate
both the power to reject the global null and the sum of five powers to reject
the five true alternatives.

Table 3 (three exchangeable Σ scenarios) and Table 4 (general Σ) sum-
marize the results of our simulations. Overall, it is shown that the method
which utilizes MNQ and correctly accounts for the intra-cluster correlations,
has the best performance. A comparison of MNQ and naive MNQ clearly
shows the cost of ignoring these correlations: the FWER of MNQ is superior
to that of naive MNQ for ρ 6= 0 (when ρ = 0 the two methods are almost
identical). Notably, the power of the naive MNQ is occasionally higher than
that of MNQ, however, this is only due to the over-inflation of the naive
MNQ’s FWER. Overall, MNQ exhibits the best performance among all of
the multiple comparison procedures. The small effect sizes chosen under a2

allow us to detect more subtle differences in the performance of the methods.
Notice that for the rejection of the global null hypothesis, Holm’s method
has exactly the same power as that of the Bonferroni method. However, for
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the individual powers, Holm’s method has higher power to reject individual
hypothesis than the Bonferroni method.

We also evaluate the efficiency of the maximum composite likelihood
estimator versus maximum likelihood estimator. That is, we compute the
ratio of the standard error of the MLE versus that of the MCLE. For small
ρ, the ratio is close to one and as ρ increases, the ratio decreases. This
demonstrates that the efficiency of composite likelihood estimator decreases
with the increase of the intra-cluster correlation, as expected.
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Table 3: Simulations results for the multivariate normal model with ex-
changeable Σ

ρ m p MNQ naive Bonf S-D Holm Scheffé efficiency

FWER

0

4

10

0.0545 0.0553 0.0419 0.0427 0.0419 0.0007 0.9983
a1 0.8164 0.8166 0.7894 0.7918 0.7894 0.2801
a2 0.8057 0.8053 0.7617 0.7738 0.7617 0.2226

ind a2 0.9080 0.9079 0.8417 0.8503 0.8848 0.2242

FWER

20

0.0511 0.0502 0.0352 0.0363 0.0352 0.0000 0.9980
a1 0.7487 0.7476 0.7062 0.7086 0.7062 0.0259
a2 0.7150 0.7134 0.6687 0.6628 0.6687 0.0162

ind a2 0.7698 0.7674 0.7081 0.7007 0.7518 0.0162

FWER

10

10

0.0479 0.0471 0.0375 0.0378 0.0375 0.0001 0.9989
a1 0.9983 0.9983 0.9979 0.9980 0.9979 0.9284
a2 0.9993 0.9993 0.9986 0.9990 0.9986 0.8792

ind a2 1.4822 1.4816 1.4219 1.4284 1.4896 0.8933

FWER

20

0.0487 0.0485 0.0363 0.0373 0.0363 0.0000 0.9986
a1 0.9981 0.9980 0.9967 0.9969 0.9967 0.5428
a2 0.9978 0.9977 0.9963 0.9957 0.9963 0.4137

ind a2 1.3439 1.3406 1.2759 1.2776 1.3267 0.4139

FWER

0.2

4

10

0.0494 0.0670 0.0389 0.0397 0.0389 0.0001 0.9453
a1 0.7760 0.8113 0.7453 0.7476 0.7453 0.2481
a2 0.7630 0.8044 0.7224 0.7280 0.7224 0.1831

ind a2 0.8556 0.9268 0.7939 0.8032 0.8317 0.1845

FWER

20

0.0533 0.0734 0.0390 0.0397 0.0390 0.0000 0.9430
a1 0.7044 0.7490 0.6591 0.6617 0.6591 0.0191
a2 0.6713 0.7200 0.6187 0.6148 0.6187 0.0102

ind a2 0.7106 0.7777 0.6476 0.6438 0.6937 0.0102

FWER

10

10

0.0467 0.1019 0.0357 0.0365 0.0357 0.0003 0.8685
a1 0.9912 0.9974 0.9875 0.9880 0.9875 0.8098
a2 0.9925 0.9983 0.9877 0.9897 0.9877 0.7295

ind a2 1.3506 1.5795 1.2871 1.2968 1.3407 0.7374

FWER

20

0.0468 0.1057 0.0320 0.0331 0.0320 0.0000 0.8636
a1 0.9868 0.9970 0.9813 0.9819 0.9813 0.3114
a2 0.9820 0.9964 0.9758 0.9752 0.9758 0.2146

ind a2 1.2100 1.4205 1.1495 1.1545 1.1891 0.2146

FWER

0.5

4

10

0.0513 0.0977 0.0390 0.0398 0.0390 0.0007 0.7491
a1 0.7235 0.8129 0.6867 0.6904 0.6867 0.1947
a2 0.6922 0.8042 0.6615 0.6571 0.6615 0.1497

ind a2 0.7570 0.9391 0.7208 0.7074 0.7533 0.1502

FWER

20

0.0510 0.1029 0.0377 0.0385 0.0377 0.0000 0.7343
a1 0.6420 0.7526 0.5950 0.5985 0.5950 0.0140
a2 0.6031 0.7322 0.5437 0.5508 0.5437 0.0076

ind a2 0.6369 0.8035 0.5677 0.5750 0.6109 0.0076

FWER

10

10

0.0520 0.2079 0.0410 0.0417 0.0410 0.0000 0.6070
a1 0.9570 0.9936 0.9466 0.9469 0.9466 0.6125
a2 0.9555 0.9982 0.9438 0.9431 0.9438 0.5062

ind a2 1.1914 1.6903 1.1367 1.1372 1.1877 0.5096

FWER

20

0.0459 0.2271 0.0328 0.0337 0.0328 0.0000 0.5898
a1 0.9403 0.9938 0.9224 0.9243 0.9224 0.1408
a2 0.9222 0.9948 0.8932 0.8968 0.8932 0.0871

ind a2 1.0589 1.5362 0.9907 0.9983 1.0306 0.0871
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Table 4: Simulations results for the multivariate normal model with un-
structured Σ

m p MNQ naive Bonf S-D Holm Scheffé

FWER

4

10

0.0464 0.0729 0.0345 0.0358 0.0345 0.0004
a1 0.6348 0.7089 0.5962 0.5992 0.5962 0.1358
a2 0.5123 0.6045 0.4763 0.4714 0.4763 0.0614

ind a2 0.5499 0.6707 0.5094 0.5112 0.5357 0.0615

FWER

20

0.0390 0.0664 0.0285 0.0290 0.0285 0.0000
a1 0.5205 0.6081 0.4694 0.4736 0.4694 0.0046
a2 0.3913 0.4864 0.3378 0.3428 0.3378 0.0011

ind a2 0.4057 0.5090 0.3436 0.3508 0.3743 0.0011

FWER

10

10

0.0472 0.0407 0.0360 0.0367 0.0360 0.0004
a1 0.6310 0.6102 0.5906 0.5940 0.5906 0.1198
a2 0.5025 0.4779 0.4560 0.4599 0.4560 0.0537

ind a2 0.5442 0.5142 0.4870 0.4911 0.5158 0.0537

FWER

20

0.0361 0.0302 0.0262 0.0267 0.0262 0.0000
a1 0.5078 0.4865 0.4585 0.4615 0.4585 0.0025
a2 0.3668 0.3448 0.3148 0.3167 0.3148 0.0010

ind a2 0.3711 0.3490 0.3186 0.3204 0.3462 0.0010

4.2 Multivariate Probit Model

Here, we consider n = 500 clusters with a cluster size m = 4, or 10. The
binary variables are generated by dichotomizing latent multivariate normal
variables with a threshold of zero. For each cluster, an m×p covariate matrix
Xi, with p = 10 or 20, is obtained by randomly sampling from normal distri-
butions. The regression coefficients under the global null hypothesis is βT =
0 and the two alternative configurations are βTa1 = (0, 0, 0, 0.03, 0, . . . , 0) and
βTa2 = (0, 0.008, 0.01,−0.03, 0.005,−0.01, 0, . . . , 0). The latent multivariate
random vector has a mean Xiβ and a correlation matrix with ρ on the
off-diagonals and σ = 1. Here, we consider ρ = 0, or 0.5.

The empirical results are given in Table 5. The results show that the
MNQ method has overall the best performance. We note though that for the
two settings when ρ = 0.5 and p = 20, the MNQ method has FWER more
than 2 standard deviations away from 0.05. Similarly to the multivariate
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normal setting, the naive MNQ for the multivariate probit model has large
FWER when ρ = 0.5. For the global hypothesis, the Sidák method has
higher power than that of the Bonferroni and Holm method, whereas the
Holm method has higher power to reject individual null hypotheses than the
Bonferroni and Sidák method.

4.3 Quadratic Exponential Model

Here, we take a total of n = 700 clusters, and p = 10 or 20 predictors. The
number of observations within each clusters, mi, varies between clusters and
is uniformly sampled from {4, 5, 6, 7, 8}. The mi × p covariate matrix Xi is
sampled from a standard normal distribution. We also consider two different
values for the interaction parameter: w = 0 or 0.5. The null value of the
regression coefficients is βT ≡ 0 and the two alternative configurations are to
βTa1 = (0, 0, 0, 0.12, 0, . . . , 0) and βTa2 = (0, 0.08, 0.12,−0.03, 0.05,−0.08, 0, . . . , 0).
The empirical FWER and power are computed and summarized in Table 6.
Overall, MNQ has clearly the best performance.
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Table 5: Simulation results for the probit model

ρ m p MNQ naive Bonf S-D Holm Scheffé

FWER

0

4

10

0.0530 0.0506 0.0413 0.0424 0.0413 0.0001
a1 0.8700 0.8705 0.8477 0.8496 0.8477 0.3420
a2 0.9114 0.9109 0.8885 0.8907 0.8885 0.3572

ind a2 1.0828 1.0779 1.0193 1.0305 1.0682 0.3590

FWER

20

0.0528 0.0503 0.0389 0.0395 0.0389 0.0000
a1 0.8258 0.8232 0.7902 0.7924 0.7902 0.0460
a2 0.8547 0.8511 0.8149 0.8159 0.8149 0.0410

ind a2 0.9436 0.9389 0.8847 0.8825 0.9308 0.0410

FWER

10

10

0.0526 0.0515 0.0423 0.0428 0.0423 0.0005
a1 0.9996 0.9996 0.9995 0.9995 0.9995 0.9641
a2 1.0000 1.0000 1.0000 1.0000 1.0000 0.9695

ind a2 1.6649 1.6594 1.5839 1.5939 1.6658 1.0024

FWER

20

0.0527 0.0508 0.0364 0.0375 0.0364 0.0000
a1 0.9993 0.9995 0.9985 0.9985 0.9985 0.6596
a2 1.0000 0.9999 0.9997 0.9997 0.9997 0.6603

ind a2 1.4867 1.4780 1.4057 1.4062 1.4624 0.6607

FWER

0.5

4

10

0.0508 0.0793 0.0393 0.0404 0.0393 0.0003
a1 0.8102 0.8601 0.7808 0.7841 0.7808 0.2726
a2 0.8530 0.9038 0.8305 0.8258 0.8305 0.2689

ind a2 0.9852 1.1028 0.9321 0.9334 0.9768 0.2708

FWER

20

0.0585 0.0915 0.0406 0.0415 0.0406 0.0000
a1 0.7578 0.8196 0.7082 0.7106 0.7082 0.0264
a2 0.7891 0.8534 0.7365 0.7428 0.7365 0.0247

ind a2 0.8637 0.9712 0.7855 0.7963 0.8330 0.0247

FWER

10

10

0.0513 0.1437 0.0402 0.0412 0.0402 0.0005
a1 0.9900 0.9979 0.9871 0.9876 0.9871 0.8017
a2 0.9952 0.9997 0.9966 0.9939 0.9966 0.8038

ind a2 1.4075 1.7926 1.3520 1.3552 1.4154 0.8147

FWER

20

0.0543 0.1622 0.0382 0.0389 0.0382 0.0000
a1 0.9862 0.9974 0.9784 0.9787 0.9784 0.3081
a2 0.9935 0.9998 0.9894 0.9883 0.9894 0.3006

ind a2 1.2873 1.6251 1.2248 1.2218 1.2777 0.3006
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Table 6: Simulation results for the quadratic exponential model

w m p MNQ naive Bonf S-D Holm Scheffé

FWER

0

4

10

0.0514 0.0562 0.0400 0.0403 0.0400 0.0001
a1 0.5390 0.5534 0.5010 0.5046 0.5010 0.0777
a2 0.7067 0.7240 0.6573 0.6636 0.6573 0.0935

ind a2 0.9779 1.0283 0.8826 0.8888 0.9373 0.0986

FWER

20

0.0561 0.0767 0.0404 0.0412 0.0404 0.0000
a1 0.4551 0.4853 0.3990 0.4021 0.3990 0.0025
a2 0.6040 0.6365 0.5237 0.5403 0.5237 0.0027

ind a2 0.7731 0.8347 0.6514 0.6679 0.7029 0.0027

FWER

10

10

0.0491 0.0549 0.0381 0.0384 0.0381 0.0001
a1 0.5391 0.5535 0.5010 0.5046 0.5010 0.0779
a2 0.7066 0.7239 0.6573 0.6636 0.6573 0.0934

ind a2 0.9780 1.0284 0.8826 0.8890 0.9373 0.0985

FWER

20

0.0561 0.0767 0.0404 0.0412 0.0404 0.0000
a1 0.4548 0.4849 0.3989 0.4020 0.3989 0.0026
a2 0.5971 0.6309 0.5255 0.5361 0.5255 0.0013

ind a2 0.7681 0.8316 0.6527 0.6688 0.7043 0.0013

FWER

0.5

4

10

0.0521 0.0000 0.0417 0.0424 0.0417 0.0002
a1 0.7864 0.0307 0.7546 0.7582 0.7546 0.2329
a2 0.9050 0.0444 0.8800 0.8772 0.8800 0.2531

ind a2 1.5136 0.0452 1.4102 1.4089 1.4915 0.2753

FWER

20

0.0509 0.0000 0.0377 0.0383 0.0377 0.0000
a1 0.7214 0.0158 0.6739 0.6769 0.6739 0.0178
a2 0.8460 0.0148 0.7998 0.7976 0.7998 0.0132

ind a2 1.2902 0.0150 1.1532 1.1612 1.2141 0.0134

FWER

10

10

0.0521 0.0000 0.0417 0.0424 0.0417 0.0002
a1 0.7864 0.0307 0.7546 0.7582 0.7546 0.2329
a2 0.9141 0.0407 0.8800 0.8855 0.8800 0.2518

ind a2 1.5326 0.0416 1.4102 1.4261 1.4915 0.2746

FWER

20

0.0509 0.0000 0.0378 0.0384 0.0378 0.0000
a 0.7202 0.0161 0.6731 0.6760 0.6731 0.0178
a2 0.8460 0.0148 0.7998 0.7976 0.7998 0.0132

ind a2 1.2902 0.0150 1.1532 1.1612 1.2141 0.0134

18



5 Analysis of Depression Data

Table 7: Composite likelihood estimates of the health factors’ regression
coefficients

estimate SE p-value

sleeplessness 1.3330 0.0290 < 2e− 16

smoking 0.2826 0.0439 < 2e− 16

high blood pressure 0.0764 0.0219 2.07e− 11

diabetes 0.0710 0.0296 8.96e− 07

difficulty in walking 0.0695 0.0054 < 2e− 16

age 0.0007 0.00003 < 2e− 16

activity -0.0156 0.0064 2.35e− 05

w 0.2877 0.0094 < 2e− 16

We apply our proposed method to the health and retirement study (HRS)
dataset. Information about health, financial situation, family structure,
and health factors were collected by the RAND center at the University of
Michigan. We perform multiple comparisons on the effects of seven health
factors on depression status of seniors. Depression status is recorded as a
binary response variable, whereas the seven health factors include age (in
months), smoking, restless sleep, diabetes, high blood pressure, frequent
vigorous physical activity, and difficulty in walking. For each individual we
include only the years for which all of the factors were recorded. In total,
there are 33 636 people included in the analysis and the number of repeated
measurements vary across individuals. As the response variable is binary
and the cluster sizes vary, the quadratic exponential model is a natural
choice to model this data set.

The full likelihood approach is very computationally challenging for this
model, and hence we use the proposed composite likelihood based method
to perform inference. The w parameter in the quadratic exponential model
allows us to account for the interaction effect among the repeated measure-
ments for the same individuals. The MCLE estimates and the associated
standard errors are reported in Table 7.

To compare the effect sizes of all the seven health factors, we perform all
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pairwise comparisons on the seven parameters with H0,i,j = {βi = βj} for
a total of 21 null hypotheses. Of the six methods described in Table 1, we
choose the MNQ approach based on its superior performance in Section 4.
To show how different the results will be if the within-patient correlations
are ignored, we also compare the result of the MNQ with the naive MNQ
method. Both the MNQ and the naive MNQ reject the global null hypothesis
that all pairs of health factors have equal effect on the depression status.
The results for the individual hypotheses are given in Table 10.

The MNQ method rejects 15 hypotheses, whereas the naive MNQ method
rejects 18 out of the total 21 hypotheses. Based on the estimates of the effect
sizes (Table 7), we note that restless sleep and smoking are the two health
factors with the largest effect sizes. Both MNQ and naive MNQ reject the
pairwise comparisons between restless sleep with all other health factors and
smoking with all other factors. This shows that restless sleep and smoking
are the two leading health factors for the occurrence of depression. High
blood pressure, diabetes, and difficulty in walking have the third, fourth
and fifth largest estimated effect sizes. When we examine the three pairwise
comparisons among these three factors, both MNQ and naive MNQ accept
the three null hypotheses, indicating that these three health factors have
similar effects and importance to the disease. Furthermore, when we com-
pare high blood pressure with age and activity, both methods reject the two
comparisons, indicating that high blood pressure is more important than
age and activity with regard to the disease development.

MNQ and naive MNQ are in agreement in all the aforementioned com-
parisons. However, when we compare the effect sizes between age and di-
abetes, diabetes and activity, age and activity, the MNQ method accepts
these three null hypotheses while the naive method rejects all three. The
difference between the two methods is due to the correlation among the re-
peated measurements, which is estimated as ŵ = 0.285. By ignoring this
correlation, as in the naive method, the standard errors are underestimated
leading to more rejections.

6 Discussion

In many correlated multivariate models, it is often difficult to perform mul-
tiple comparisons based on the full likelihood. In this paper, we propose
to use the composite likelihood method to construct multiple comparison
procedures to overcome this computational difficulty. Theory is developed
based on the asymptotic properties of the composite likelihood test statistic

20



Table 8: Results of MNQ and naive MNQ in testing individual null hypothe-
ses in the depression study data set. A: fail to reject, R: reject H0

H0 MNQ naive H0 MNQ naive

βsleep = βsmoke R R βhbp = βdiabet A A

βsleep = βhbp R R βhbp = βdiff walk A A

βsleep = βdiabet R R βhbp = βage R R

βsleep = βdiff walk R R βhbp = βactivity R R

βsleep = βage R R βdiabet = βdiff walk A A

βsleep = βactivity R R βdiabet = βage A R

βsmoke = βhbp R R βdiabet = βactivity A R

βsmoke = βdiabet R R βdiff walk = βage R R

βsmoke = βdiff walk R R βdiff walk = βactivity R R

βsmoke = βage R R βage = βactivity A R

βsmoke = βactivity R R
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and illustrated for three different models: multivariate normal, multivari-
ate probit and quadratic exponential. The simultaneous quantile of multi-
variate normal is used as a threshold for test statistics compared to some
well-known traditional thresholds. This MNQ method, which is based on
composite likelihood test statistics and uses multivariate normal quantiles
to derive cut-off values for the test statistics, possesses a more acceptable
family-wise type I error rate in most simulation settings, compared to the
other test procedures.
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Appendix

7.1 Simulation result on all pairwise comparisons

In Section 4 of the main manuscript, we provide simulation results under
various settings for many-to-one comparisons. Here, we provide additional
simulations for all pairwise comparisons. We simulate multivariate normal,
multiviate probit and quadratic exponential models as described in Section
4 of the paper. The global null hypothesis, sample size and the two alterna-
tive configurations are the same as those used in many-to-one comparisons.
We perform all pairwise comparisons with m = 4 and p = 10. For the
multivariate normal, multivariate probit, and quadratic exponential mod-
els, we consider ρ = 0, or 0.5. For the quadratic exponential, we consider
w = 0, 0.5. The results are summarized in Table 1. We again observe that
the MNQ approach has the best performance. MNQ maintains good con-
trol of the FWER except for the case of quadratic exponential model with
ρ = 0.5, where it is slightly above 0.05. The naive MNQ either has either
very large FWER or very small FWER, indicating its poor control of the
error rate. Among all the methods which maintain good control of FWER,
the MNQ method achieves the highest power. In addition, we consider the
Tukey approach, as it is a commonly used testing procedure in all pairwise
comparisons.
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Table 9: Simulations results for the multivariate normal, probit, and
quadratic exponential models

model ρ MNQ naive Bonf S-D Scheffé Tukey

normal

FWER
0

0.0537 0.0562 0.0411 0.0420 0.0038 0.0536
a1 0.9274 0.9266 0.9096 0.9113 0.6115 0.9256
a2 0.9800 0.9807 0.9735 0.9740 0.8173 0.9792

FWER
0.5

0.0484 0.1101 0.0358 0.0365 0.0032 0.0489
a1 0.8611 0.9245 0.8325 0.8346 0.4769 0.8587
a2 0.9492 0.9775 0.9346 0.9361 0.6854 0.9482

probit

FWER
0

0.0534 0.0494 0.0409 0.0412 0.0026 0.0524
a1 0.9792 0.9790 0.9745 0.9747 0.7972 0.9791
a2 0.9961 0.9961 0.9946 0.9946 0.9321 0.9959

FWER
0.5

0.0523 0.0864 0.0394 0.0394 0.0023 0.0514
a1 0.9586 0.9754 0.9467 0.9484 0.6991 0.9577
a2 0.9885 0.9938 0.9842 0.9848 0.8707 0.9884

quad. exp.

FWER
0

0.0534 0.0631 0.0399 0.0407 0.0018 0.0530
a1 0.7710 0.7869 0.7270 0.7301 0.3224 0.7678
a2 0.9706 0.9741 0.9613 0.9621 0.7348 0.9701

FWER
0.5

0.0548 0.0000 0.0388 0.0393 0.0014 0.0535
a1 0.9360 0.0197 0.9199 0.9213 0.6417 0.9356
a2 0.9976 0.2855 0.9957 0.9958 0.9408 0.9974

7.2 A skewed distribution example

Here, we consider a multivariate gamma distribution which has marginal
univariate gamma distribution and a covariance structure. To generate a
multivariate gamma model, let g1 be m × 1 independent vectors from a
gamma distribution with shape parameters γ1, a positive vector of dimension
m. Define G = Kg1, where K is a full rank matrix with all entries equal to
either zero or one that follows some properties (Ronning, 1997). (K is called
the incidence matrix). Then G has a multivariate gamma distribution with
shape parameter α = Kγ1 and covariance matrix Σ = K Γ1K

T , where the
(diagonal) matrix Γ1 is the variance matrix of g1.

Given n independent multivariate gamma vectors Y = (y1, y2, . . . , yn)T ,
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with yi = (yi1, . . . , yim)T . The univariate composite log-likelihood function
for the multivariate gamma model can be formulated as

cl(β;Y ) =
n∑
i=1

m∑
j=1

(
−νyij
µij
− ν logµij + νlogν + (ν − 1) log yij − log Γ(ν)

)
,

where µij = E(yij), ν is the shape parameter, and µij/ν is the scale param-
eter. We used the log link to define the mean parameter: µij = exp{~xijβ}.
Denote µi = (µi1, . . . , µim)T . Under this set up, we have

cl(1)(β;Y ) =

n∑
i=1

(
∂µi
∂β

)T
V (µ)−1

i (yi − µi),

where Vi = diag(µ2
i1, · · · , µ2

im)/ν, and

H(β) = n−1
n∑
i=1

(
∂µi
∂β

)T
V −1
i

(
∂µi
∂β

)
,

J(β) = n−1
n∑
i=1

(
∂µi
∂β

)T
V −1
i cov(yi)V

−1
i

(
∂µi
∂β

)
.

The dispersion parameter is 1
ν = D(6(n−p)+nD)

6(n−p)+2nD , whereD = 2
nm−p

∑
i,j

(
yij−µij
µij

+ log
µij
yij

)
.

Let V̂in denote the estimator of Vi obtained by substituting µ̂ijn for µij . We
estimate H(β) and J(β) as

Ĥn = n−1
n∑
i=1

XT
i V
−1
in Xi,

Ĵn = n−1
n∑
i=1

XT
i V
−1
in ĉovn(yi) V −1

in Xi,

with empirical variance ĉovn(yi) = (yi − µ̂in)(yi − µ̂in)T , where where µ̂i is
the vector µ̂i = exp{Xiβ̂

c
n}.

In the simulation ν = 1, and under the global null hypothesis H0,
the true value of the regression parameters is set to β = 0.75, and the
power is calculated under two different alternative configurations βTa1 =
(0.75, 0.75, 0.68, 0.75, . . . , 0.75) and βTa2 = (0.75, 0.80, 0.68, 0.70, 0.79, 0.69, 0.75, . . . , 0.75).
We simulate 10 000 data sets with m = 3, and p = 10. We perform many-
to-one comparisons with the MNQ, naive MNQ, Bonferroni, Dunn-Sidák,
Holm and Scheffé method. We consider both independent and correlated

24



cases. We simulate with the sample size n = 3 000 as we found that it takes
at least n = 3 000 for the MNQ method to have the FWER fall within 2
standard deviations away from 0.05. This larger sample size is expected for
a skewed distribution such as the multivariate gamma. Among all the meth-
ods, the MNQ method continues to achieve the highest power and exhibits
the best performance. The results are presented in Table 2.

Table 10: FWER and power for multivariate gamma distribution

MNQ naive Bonf S-D Schéffe

FWER independent 0.0554 0.0507 0.0437 0.0444 0.0003
a1 0.8763 0.8777 0.8508 0.8531 0.3055
a2 0.9906 0.9899 0.9856 0.9862 0.4526

FWER correlated 0.0588 0.3427 0.0468 0.0479 0.0003
a1 0.8223 0.9883 0.7853 0.7877 0.2378
a2 0.9778 0.9999 0.9638 0.9653 0.3683

7.3 Some technical details

Xu and Reid (2011) provided a detailed proof of consistency under misspeci-
fication, along with a precise list of required conditions. One can obtain from
their work sufficient conditions for consistency even in the well-specified set-
ting. Here, for reference, we give a proof of some asymptotic properties of
the composite likelihood estimator provided that the model is correctly spec-
ified and data is formed by n independent clusters, each with fixed sample
size m.

Regularity conditions:

(A1). The marginal density function of yij , f(y; θ) is distinct for different
values of y, i.e. if θ1 6= θ2 then P (f(yij ; θ) 6= f(yij ; θ)) > 0, for all
j = 1, . . . ,m.

(A2). The marginal densities of yij have common support for all θ.

(A3). The true value θ0 is an interior point of Ω, the space of possible values
of the parameter θ.
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(A4). Let α and ∂α denote the index and partial derivative operator, re-
spectively, as in the standard multi-index notation from multivariable
calculus. The marginal density log f is three times continuously differ-
entiable in a closed ball around θ0. Moreover, there exists a constant
c and an integrable function M(y) such that∣∣∣(∂α∂θi log f)(y; θ)

∣∣∣ ≤M(y),

for all ||θ − θ0||2 < c, all |α| = 2, and any i = 1, . . . , p. Here, || · ||2
denotes the Euclidean norm.

(A5). J(θ0) is well-defined (i.e. exists and is finite) and invertible.

(A6). H(θ0) is well-defined (i.e. exists and is finite) and (strictly) positive-
definite.

Define the marginal composite log-likelihood function as

cl(θ) = logCL(θ;Y ) =

n∑
i=1

m∑
j=1

log f(yij ; θ),

and let clm(θ; yi) =
∑m

j=1 log f(yij ; θ)).

Theorem 7.1. Under the regularity conditions (A1)-(A6), there exists a
solution to the composite likelihood equation, θ̂cn, which satisfies

√
n(θ̂cn − θ0) ⇒ G−1/2(θ0)Z

where G(θ) = H(θ)J−1(θ)H(θ), and Z is a standard normal random vector.

Proof. The proof is divided into two main steps. We first show that there
exists a θ̂cn which is of order O(n−1/2), and then we derive its asymptotic
normality.

Let h(θ; y) = cl(θ; y). Note that for fixed y, h maps Rp into R. Then, by
a Taylor expansion, we have that

h(θ; y)− h(θ0; y) = (∇h)(θ0; y)T (θ − θ0) + (θ − θ0)T (Dh)(θ∗; y)(θ − θ0),

where θ∗ lies on a line joining θ and θ0. We use ∇, D to denote the gradient
and Hessian operators, respectively. Our goal will be to show that there
exists a θ in a n−1/2 ball of θ0, the left hand side of the above equation is
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negative. This in turn will imply that there exists a CMLE which satisfies√
n(θ̂cn − θ0) = Op(1).

To this end, let θ − θ0 = ξM/
√
n, with ||ξ||2 = 1. Assume also that

||θ − θ0||2 < c, that is, M < c
√
n. Then, by the above, we have

ξT

{
1√
n

n∑
i=1

(∇clm)(θ0, yi)

}
+ ξT

{
1

n

n∑
i=1

(Hclm)(θ∗, yi)

}
ξ

≡ ξT bnM + ξTBnξM
2, (7.5)

where bn is a random vector converging to a mean-zero Gaussian RV, and
Bn is the random matrix converging to the negative definite matrix −H(θ0).
The first of these follows by the central limit theorem, along with assumption
(A5). The second follows by applying the law of large numbers, along with
assumptions (A4) and (A6). Note that the second fact implies also that the
eigenvalues of Bn converge almost surely to the eigenvalues of −H(θ0).

Let λ
(p)
n denote the largest eigenvalue of−Bn, and let S = {ξ : ||ξ||2 = 1}.

Since bn converges as a random Gaussian vector (with mean zero), and ξT bn
is uniformly continuous on S, it follows that ξT bn converges to a mean-zero
Gaussian process in C(S), the space of continuous functions on S endowed
with the uniform metric. This implies that ξT bn is tight in C(S), and hence
for all ε > 0, there exists an Mε, such that

lim sup
n

P

(
sup
ξ∈S

ξT bn/λ
(p)
n < Mε

)
≥ 1− ε.

Then, by (7.5), if ξT bn/λ
(p)
n < M, then ξT bnM + ξTBnξM

2 < 0, which in
turn implies that

lim sup
n

P
(
ξT bnMε + ξTBnξM

2
ε < 0 ∀ξ ∈ S

)
≥ 1− ε.

Note that if ξT bnMε + ξTBnξM
2
ε < 0 ∀ξ ∈ S, then, by the above and

continuity of clm, this implies that for sufficiently large n, (with a prob-
ability of at least 1 − ε) there exists at least one local maximum on the
set BMε/

√
n(θ0) ∩ Bc(θ0). This implies that there exists a θ̂cn which satisfies

√
n(θ̂cn − θ0) = Op(1).

Let g(θ; y) = cl
(1)
m (θ; y) = ∇clm(θ; y) (this is the vector of first deriva-
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tives), then using a multivariate Taylor expansion, we have that

g(θ̂cn; y) = g(θ0; y) +
∑
|α|≤1

(∂αg)(θ0; y)(θ̂cn − θ0)α

+
∑
|α|=2

2

α!
(θ̂cn − θ0)α

∫ 1

0
(1− t)(∂αg)(θ0 + t(θ̂cn − θ0); y)dt,

again using the multi-index notation. We take θ̂cn to be the local maximizer
found above. This time, for fixed y, g maps Rp into Rp, so we have chosen
to bound the error term a little differently than above. We let Rn,i denote
the third term on the right hand side of this equation when y is replaced

with yi. Next, as by definition
∑n

i=1 cl
(1)
m (θ̂cn; yi) = 0, we have that

1√
n

n∑
i=1

(Dclm)(θ; yi)
T (θ̂cn − θ0) +

1√
n

n∑
i=1

Rn,i =
1√
n

n∑
i=1

f(θ0; yi). (7.6)

By condition (A4), we have that∣∣∣∣∣∣
∑
|α|=2

2

α!
(θ̂cn − θ0)α

∫ 1

0
(1− t)(Dαg)(θ0 + t(θ̂cn − θ0); y)dt

∣∣∣∣∣∣
≤

∑
|α|=2

1

α!
|θ̂cn − θ0|α|M(y)|,

from which it follows that,∣∣∣∣∣ 1√
n

n∑
i=1

Rn,i

∣∣∣∣∣ ≤ {√
n||θ̂cn − θ0||22

}{ 1

n

n∑
i=1

|M(yi)|

}
.

The first term is then op(1) by the first part of this proof, and by the law
of large numbers (since M is integrable), the second term is Op(1). Next,
consider

√
n

{
1

n

n∑
i=1

cl(2)
m (θ; yi)−H(θ0)

}
(θ̂cn − θ0).

By similar argument to that above, this is also op(1). This allows us to
re-write (7.6) as

√
nH(θ0)(θ̂cn − θ0) =

1√
n

n∑
i=1

f(θ0; yi) + op(1)
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A straightforward application of the central limit theorem shows that the
term on the right hand side has a Gaussian limiting distribution with mean
zero and variance J(θ0). The full result follows.

References

Barua, G. M. N. B. M., A. (2011). Prevalence of depressive disorders in
the elderly 31 620–624.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discov-
ery rate: a practical and powerful approach to multiple testing. J. Roy.
Statist. Soc. Ser. B 57 289–300.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice
systems. J. Roy. Statist. Soc. Ser. B 36 192–236. With discussion by D.
R. Cox, A. G. Hawkes, P. Clifford, P. Whittle, K. Ord, R. Mead, J. M.
Hammersley, and M. S. Bartlett and with a reply by the author.

Bretz, F., Hothorn, T. and Westfall, P. (2010). Multiple Compar-
isons Using R. Chapman and Hall/CRC Press, Boca Raton, Florida,
USA.

Cox, D. R. and Reid, N. (2004). A note on pseudolikelihood constructed
from marginal densities. Biometrika 91 729–737.

Geys, H., Molenberghs, G. and Ryan, L. M. (1997). Pseudo-likelihood
inference for clustered binary data. Comm. Statist. Theory Methods 26
2743–2767.

Hochberg, Y. and Tamhane, A. (1987). Multiple Comparison Procedures.
New York: Willy.

Holm, S. (1979). A simple sequentially rejective multiple test procedure.
Scand. J. Statist. 6 65–70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based
on a modified bonferroni test 383–386.

Hothorn, T., Bretz, F. and Westfall, P. (2008a). Simultaneous in-
ference in general parametric models. Biom. J. 50 346–363.

Hothorn, T., Bretz, F., Westfall, P. and Heiberger, R. M. (2008b).
multcomp: Simultaneous inference in general parametric models .

29



Konietschke, F., Bosiger, S., Brunner, E. and Hothorn, L. A.
(2013). Are multiple contrast tests superior to the anova? Int. J. Biostat.
9 11.

Konietschke, F., Hothorn, L. A. and Brunner, E. (2012). Rank-based
multiple test procedures and simultaneous confidence intervals. Electron.
J. Stat. 6 738–759.

Lindsay, B. G. (1988). Composite likelihood methods. In Statistical in-
ference from stochastic processes (Ithaca, NY, 1987), vol. 80 of Contemp.
Math. Amer. Math. Soc., Providence, RI, 221–239.

Lisovskaja, B. C. F., V. (2015). A decision theoretic approach to opti-
mization of multiple testing procedures 57 64–75.

Meijer, G. J. J., R. J. (2015). A multiple testing method for hypotheses
structured in a directed acyclic graph 57 123–143.

Molenberghs, G. and Ryan, L. M. (1999). An exponential family model
for clustered multivariate binary data 10 279–300.

Renard, D., Molenberghs, G. and Geys, H. (2004). A pairwise likeli-
hood approach to estimation in multilevel probit models. Comput. Statist.
Data Anal. 44 649–667.

Ronning, G. (1997). A simple scheme for generating multivariate gamma
distributions with non-negative covariance matrix 19 179–183.
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