We consider the classical proportional hazards model
h(t]z) = €% ho(t),

and assume that the baseline hazard h, satisfies a shape constraint: increasing,
decreasing, unimodal, or u—shaped. This approach was originally suggested in Cox
(1972, page 190), and later discussed in Mykytyn and Santner (1981). Our goal was
to implement this approach in a readily available R package (coming soon!) for contin-
uous and discrete data, while allowing for censoring. To date, we have completed the
algorithm for continuous data.

Suppose then that we observe t; (event time), z; (vector of covariates), and 9, (equals
0 if the observation was censored) for each of n subjects, and let H, denote the cumu-
lative baseline hazard The full likelihood is
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Maximising the likelihood is the same as minimising the function (—

o(B, ho) = Z eﬁTZZHo Z 0; log hy(t;

1=1

which is strictly convex in all parameters.

SET initial value for 3 = 3,
find hy = argmin,, cc (3, hy) = argminy, cc 015, hy)
set o = (03, ho)
WHILE 0 < ¢ REPEAT

set Spoid = Prew
find ﬁ = argmin g pr gp(ﬁ ho)
find hy = Argminy, e o (3, hy)
set oo = (3, ho)
set 0 = |Vuew — Lol

END WHILE LOOP

To find 3 = AgIMIN 5 (0, ho) we use the Newton-Raphson algorithm. The solution

to hy = argming, e gp(ﬁ hy) may be found explicitly using a graphical representation.
We describe it here under the “decreasing” assumption.

Assume WLOG that the observed times are ordered. Letz;,j = 1,...
indicies suchthato; = 1. For j = 1,...,m, define

i ( Z ¢’ Zl) tiv1 —tj).

J=0 \l=j+1

. m denote the

Then EO IS piecewise constant with jumps restricted to ¢;,, . . ., t; , and the height of the
hazard on (¢;,,1;,.,| is found as the inverse of the slope on (k, k + 1| of the greatest
convex minorant of {(0,0,), (1, s;,),-..,(m,s; )}.

To derive the graphical representation one would need to make the following notes:

1. First, reduce the infinite dimensional problem to a finite dimensional one by noting
that the hazard function must be piecewise constant with jumps possible only at the
uncensored event times. This is easily seen by examining the log-likelihood.

2. Calculate the score function evaluated at Iy ;(t). As T varies, these functions form

a basis for any decreasing function. Since the score must be equal to zero at fzo,
and be negative otherwise, this yields a set of inequalities often referred to as the
Fenchel conditions.

3. Lastly, the Fenchel conditions can be converted into the graphical solution.

A graphical representation of this type was first noted by Grenander (1956), who
showed that the MLE of a decreasing density can be found as the (left) derivative
of the least concave majorant of the empirical distribution function.

baseline hazard survival function
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Fig. 1: Examples of the estimator for the increasing assumption when sampling from the uniform dis-
tribution without censoring. The baseline hazard is shown on the right, and the survival function at the
average covariate is shown on the left. The blue line is the truth, and the estimator is shown in red. From
top to bottom the sample sizes are n = 25, 100, and 1000.

Hewlett (1974) describes an experiment in which the mortality of flour-beetles was
measured under varying levels of the insecticide DDT. Adult male and female bee-
tles were sprayed with four different concentration levels (0.20, 0.32, 0.50, and 0.80
mg/cm?) of the insecticide at time 0, and their mortality was observed over the next
13 days. We use 2, 25 to denote the sex and DDT level covariates. For each of the

eight treatments, the number of deaths in the intervals 0—-1, 1-2, 2-3, ... , 12-13 was
reported. Quoting Hewlett (1974), “What is required is some single process of compu-
tation for estimating simultaneously the parameters of distributions of tolerances and
times to death.” Previously, Pack and Morgan (1990) used a mixture model and Chen
(2007) used a logistic regression (with dose, sex, and inverse time as covariates) to
analyse this data.
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Fig. 2: Empirical hazard (left) and survival (right) functions for the data for females (red) and males
(blue). The wider the line the higher the dose level.

Given the empirical plots, it seems natural to analyse this data using the proportional
hazards model assuming that the baseline hazard h(t) is unimodal. As the data is
grouped, we need to modify our existing algorithms (for continuous data) to handle this
setting. Surprisingly, the discrete/grouped model is more difficult to handle, as exact
graphical solutions don’t necessarily exist.
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