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Abstract

We introduce the R package CPHshape, which computes the effect parameters and the
nonparametric maximum likelihood estimator of a shape constrained baseline hazard in
the Cox proportional hazards model. The functionality of the package is illustrated using
reproducible examples which are based on simulated data.
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1. Introduction

The proportional hazards model was introduced in Cox (1972) and has since become a staple
in the analysis of survival data. Under the Cox model, the hazard function takes the form

h(x|z) = exp(βT z)h0(x), (1)

where z denotes the covariates, β are the associated effect parameters, and h0(x) is the baseline
hazard function. The approach developed in Cox (1972) was to estimate the parameters β
using partial likelihood, thus allowing h0 to be arbitrary. However, as noted in Cox (1972,
page 190): “Alternatively we may restrict h0(x) qualitatively, for example by assuming it to
be monotonic or to be a step function (a suggestion of Professor J.W. Tukey).”

The nonparametric estimator of an increasing hazard was first developed in Grenander (1956).
The increasing, decreasing, and u-shaped cases with censoring were explored further in Myky-
tyn and Santner (1981), where the proportional hazards model is also briefly mentioned.
There, they suggest a method of computation based on the pool adjacent violators algorithm
(PAVA). An alternative isotonic estimator was also considered in Chung and Chang (1994).
Most recently, the asymptotics of the increasing/decreasing hazard in the Cox model were
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studied in Lopuhaä and Nane (2011), where it is shown that the maximum likelihood estima-
tor (MLE) is consistent and converges pointwise at rate n1/3. Precise limits are also derived
there.

An increasing hazard is a popular assumption to make in lifetime modelling, and the u-shaped
hazard also allows for a “burn-in” period in the system. As noted in Lopuhaä and Nane (2011,
page 2), “the survival time after a successful medical treatment is usually modelled using a
decreasing hazard function”. One example of this is given in Cook, Walter, Cook, Griffith,
Guyatt, Leasa, Jaeschke, and Brun-Buisson (1998), where the incidence rate and risk factors
of ventilator associated pneumonia are studied. There, the authors point out a decreasing
baseline hazard for acquiring pneumonia, suggesting that “long-term survivors are patients at
lower intrinsic risk” (Cook et al. 1998, page 437). However, a closer examination of the hazard
observed in Cook et al. (1998, Figure 2) reveals it to be unimodal, with a peak incidence rate
at about five days. Thus, the unimodal shape constraint would also be of interest in practice,
as it allows for the modelling of an initial incubation period.

The R package CPHshape implements maximum likelihood estimation of the effect parameters
β and h0(·) with the following options on the shape constraint on h0 : increasing, decreasing,
unimodal, and u–shaped. We assume that the observed times come from a continuous model,
and allow for right-censoring. Our consideration of this problem appears to be independent
of the work of Lopuhaä and Nane (2011). The algorithm, now available through the package
CPHshape, was first presented in June 2011 (Hui and Jankowski 2011).

1.1. About this document

This document is an introduction to the R package CPHshape which is available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/package=CPHshape. In
Section 2 we define the model, and Section 3 gives details on the algorithm used in the
estimation. Section 4 is dedicated to examples which explain the full functionality of the
package.

This document was created using Sweave (Leisch 2002) and LATEX (Lamport 1986) using R
(R Development Core Team 2011). This means that all of the code has been checked by R,
and can be reproduced exactly.

2. The likelihood

We assume that the data consist of IID samples of the triple (Ti,∆i, Zi) for i = 1, . . . , n. If
Xi denotes the actual lifetime variable and Ci the censoring time, then the observed data is
Ti = min(Xi, Ci) and ∆i = 1Xi≤Ci . Thus, if ∆i = 1 then we observe the actual lifetime and if
∆i = 0 we observe only the censored time. Also, Zi denotes the covariate vector Zi ∈ Rp. We
are interested only in the distribution of X, and we assume that the hazard function of X can
be modelled as in (1). We also assume that the survival random variable X, conditionally on
Z = z, is continuous with density f(x|z). The survival time X and the censoring time C are
assumed to be conditionally independent given Z = z.

The assumption that the distribution of X is continuous is an important one for the package
CPHshape, since ties for ∆i = 1 are not handled by the algorithm. The package does allow for
ties in the censored observations though, i.e. when ∆i = 0. We note that the consistency and
asymptotic results developed in Lopuhaä and Nane (2011) require additional assumptions.

http://CRAN.R-project.org/package=CPHshape
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Let (ti, δi, zi), i = 1, . . . , n denote the observations from this model. The full likelihood for
the effect parameters β and the baseline hazard h0 is

L(β, h0) =
n∏
i=1

h(ti|zi)δi(1− F (ti|zi))

=

{
n∏
i=1

eδiβ
T zi

}
× exp

{
−

n∑
i=1

eβ
T ziH0(ti)

}
×

{
n∏
i=1

h0(ti)
δi

}
,

where H0(t) =
∫ t
0 h0(s)ds. Maximising the likelihood is the same as minimising the following

criterion function

ϕ(β, h0) =
n∑
i=1

eβ
T ziH0(ti)−

n∑
i=1

δi log h0(ti)−
n∑
i=1

δiβ
T zi, (2)

which is convex in all parameters. Without loss of generality, in what follows we assume that
the observations t1, . . . , tn are ordered. That is, t1 < t2 < . . . < tn.

It is important to note that the likelihood provides information on the hazard function only
on the interval [0, tn] when δn = 1 and [0, tn) when δn = 0. Values of h0(t) for t > tn (or t ≥ tn
if δn = 0) are unknown, unless additional information on the shape of the hazard function is
available.

Suppose next that δn = 1 (that is, that the largest observation was uncensored), and also
suppose that we are interested in the case where h0 is an increasing function of t. Then,
we can see that the term h0(tn) in the likelihood function L(β, h0) can become arbitrarily
large. A similar situation arises if we wish to estimate the unimodal baseline hazard, where
the term h0(tm) in now unbounded (here tm denotes the location of the mode, and is always
an observation). To handle such situations, we simply remove the problematic term from the
likelihood, and instead consider minimising, for example,

ϕ(β, h0) =

n∑
i=1

eβ
T ziH0(ti)−

n−1∑
i=1

δi log h0(ti)−
n−1∑
i=1

δiβ
T zi,

for the increasing hazard setting. This is equivalent to the approach taken in Grenander
(1956), where first an upper bound of M is assumed on h0, and then M is allowed to grow
arbitrarily large. Thus, minimising the (modified) function ϕ(β, h0) given above yields an
estimate of h0, and we set h0(t) =∞ for t = tn, and therefore also for t > tn.

3. Algorithm

Our overall approach is similar to that proposed in Mykytyn and Santner (1981). However,
instead of PAVA, we use a graphical representation of the estimators, similar to that of
Grenander (1956). Define

ϕ1(β, h0) =
n∑
i=1

eβ
T ziH0(ti)−

n∑
i=1

δi log h0(ti),

ϕ2(β, h0) =
n∑
i=1

eβ
T ziH0(ti)−

n∑
i=1

δiβ
T zi.
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To minimise (2) we perform the following algorithm, where C denotes the class of functions
to which h0 belongs. That is, C denotes the class of positive functions on R+ which are either
increasing, decreasing, u-shaped, or unimodal.

SET initial value for β̂ = βini

find ĥ0 = argminh0∈C ϕ(β̂, h0) = argminh0∈C ϕ1(β̂, h0)

set ϕnew = ϕ(β̂, ĥ0)

WHILE δ < ε REPEAT

set ϕold = ϕnew

find β̂ = argminβ∈Rk ϕ(β, ĥ0) = argminh0∈C ϕ2(β̂, h0)

find ĥ0 = argminh0∈C ϕ(β̂, h0) = argminh0∈C ϕ1(β̂, h0)

set ϕnew = ϕ(β̂, ĥ0)

set δ = |ϕnew − ϕold|

END WHILE LOOP

The two inner minimisations are described below in detail. To minimize ϕ2 we use the Newton-
Raphson algorithm and the minimum of ϕ1 is found exactly via a graphical representation.

Stopping criteria

Both the outer loop and the inner (Newton-Raphson) loop require a stopping criterion. Let
ε denote the value used in the outer loop and let εNR denote the value used for stopping
in the Newton-Raphson step. These are coded in the function find.shapeCPH as eps and
eps.beta, respectively. Their default values are set to eps=eps.beta=1e-5. If, within the
function find.shapeCPH, the setting print=TRUE is used, then successive iterations with
values of δ (as defined above), as well as additional information, is printed to the screen. An
example of this is given in Section 4.

3.1. Newton-Raphson algorithm

To minimise ϕ2(β, h0) =
∑n

i=1 e
βT ziH0(ti) −

∑n
i=1 δiβ

T zi, we need to find the vector β̂ such
that

∂j

{
n∑
i=1

eβ̂
T ziH0(ti)−

n∑
i=1

δiβ̂
T zi

}
=

n∑
i=1

zij

(
eβ̂

T ziH0(ti)− δi
)

= 0.

To do this, we employ the multi-dimensional Newton–Raphson algorithm. Let ∇k denote the
vector where ∇ki = ∂jϕ2(βk, h0), and let Jk denote the Jacobian k × k matrix where

(Jk)j,l = ∂l∂jϕ2(βk, h0)
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=

n∑
i=1

zijzil e
β̂T zi .

Then, each iteration of the Newton-Raphson algorithm has βk+1 = βk−J−1k ∇k. The algorithm
is terminated when ||∂ϕ2(β, h0)||2 < εNR. Here, ∂ϕ2 denotes the gradient of ϕ2 in the direction
β, while h0 is held fixed.

3.2. Weighted MLE

We next need to find ĥ0 = argminh0∈C ϕ1(β, h0) for fixed β. Defining wi = eβ
T zi > 0, this is

equivalent to minimising the criterion function

ϕ1(β, h0) =
n∑
i=1

wiH0(ti)−
n∑
i=1

δi log h0(ti).

In what follows, we let i1, . . . , im enumerate the indices i ≤ n such that δi = 1.

Decreasing baseline hazard

To visualise the estimator, suppose first that yik = h0(tik) is known for all ik. Then to
minimize ϕ1, we need to minimise the sum

∑n
i=1wiH0(ti) by making the function h0(t) as

small as possible for t 6= yik , while satisfying the shape contraints. It is not difficult to see
that the function h0 must therefore have the form

h0(t) =



y1 t ∈ [0, ti1 ]
y2 t ∈ (ti1 , ti2 ]
y3 t ∈ (ti2 , ti3 ]
...
ym t ∈ (tim−1 , tim ].

(3)

If δn = 0, then the function h(t) = 0 for t > tim . Otherwise, h(t) is unknown for t > tim = tn.
We have thus argued that the MLE of a decreasing hazard is left-continuous and piecewise
constant.

Next, note that any positive decreasing hazard can be written as a (positive) mixture of the
basis functions eτ (t) = I[0,τ ](t). That is, h0(t) =

∫
eτ (t)dµ0(τ), for some positive measure µ0.

It is therefore sufficient to examine the directional derivative of ϕ1 in the directions given by
the basis functions, as τ > 0 varies. Furthermore, (3) tells us that ĥ0 = argminh0∈Cϕ1(β, h0)

will have the form ĥ0(t) =
∫
eτ (t)dµ̂0(τ), where µ̂0 gives positive mass only to a finite number

of τ, and each of these must be one of the uncensored observation points. For reasons which
will become obvious shortly, we call τ such that µ̂0({τ}) > 0 touch points.

The directional derivative is then

∇ϕ1(ĥ0)[eτ ] = lim
ε→0

ϕ1(ĥ0 + εeτ )− ϕ1(ĥ0)

ε

=
n∑
i=1

wi

∫ ti

0
I[0,τ ](t)dt−

n∑
i=1

δi
I[0,τ ](ti)
ĥ0(ti)

=
n∑
i=1

wi min(ti, τ)−
∑
i:ti≤τ

δi

ĥ0(ti)
.
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If ĥ0 minimises ϕ1, then this must always be greater than zero, with equality if τ is a touch
point. Let τk−1 and τk be two successive touch points. Recall that only uncensored ob-
servations may be touch points and the hazard is constant between two touch points. For
τk−1 < τ < τk, we therefore have

|{ij : tij ∈ (τk−1, τ ]}|
ŷk

<
n∑
i=1

wi min(ti, τ)−
n∑
i=1

wi min(ti, τk−1)

=
∑

i:ti>τk−1

wi (min(τ, ti)− τk−1)

=
∑

i:ti>τk−1

 n∑
j=i+1

wi

 (min(τ, ti+1)− ti)

Rearranging, this yields,

1

ŷk
<

∑
i:ti>τk−1

(∑n
j=i+1wi

)
(min(τ, ti+1)− ti)

|{ij : tij ∈ [τk, τ)}|
,

for τ ∈ (τk, τk+1) with equality for τ = τk+1. It follows that the values of ŝk = 1/ŷk can be
found as the slopes of the greatest convex minorant of the sequence of points

{(0, 0, ), (1, si1), . . . , (m, sim)} ,

where

sij =

ij−1∑
j=0

 n∑
i=j+1

wj

 (tj+1 − tj),

with the convention that t0 = 0. The function chull available from R computes the convex
hull of a specified set of points, and is easily modified to find the greatest convex minorant of a
function. The algorithm used in chull is based on that developed in Eddy (1977). Note that,
unlike for the Grenander estimator of a decreasing density, the MLE is not the derivative of
the greatest convex minorant (or least concave majorant in the increasing case), but rather
the values of 1/ŷi are found via the greatest convex minorant. The MLE is then given via the
formula (3), with the locations tik corresponding to the indices ik which are touch points in
the greatest convex minorant above. An alternative derivation of this fact is given in Lopuhaä
and Nane (2011) and is based on the work of Grenander (1956).

Other shape constraints

The remaining shape constraints (increasing, unimodal, u–shaped) are handled in a similar
fashion, and we omit the details. We note that the unimodal and u–shaped cases do involve
an additional level of difficulty, in that the mode or antimode (location of the minimum for
the u–shaped constraint) must be specified in advance to use the approach discussed above.
To find, for example, the unimodal estimator we then search over all possible locations of the
mode and select the one with the smallest value of ϕ1. We handle the u–shaped setting in a
similar fashion. This is the approach taken in Mykytyn and Santner (1981), but without the
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weights wi. Therefore, the algorithm in the u–shaped or unimodal case is considerably slower,
particularly so for larger sample sizes. A related issue comes up in the estimation of a convex
hazard, and we refer to Jankowski and Wellner (2009) for more details.

Functional form of the MLE

Each shape constraint results in a particular form of the estimator. Here, we summarise
the different forms obtained for the four different shape constraints available in CPHshape.
We note that these forms are valid under both the proportional hazards model and also the
nonparametric MLE of a shape constrained hazard without covariates.

Decreasing:

ĥ0(t) =



y1 t ∈ [0, ti1 ]
y2 t ∈ (ti1 , ti2 ]
y3 t ∈ (ti2 , ti3 ]
...
ym t ∈ (tim−1 , tim ].

If δn = 0, then the function ĥ0(t) = 0 for
t > tim . Otherwise, ĥ0(t) is unknown in
this region.

Increasing:

ĥ0(t) =



0 t ∈ [0, ti1)
y1 t ∈ [ti1 , ti2)
y2 t ∈ [ti2 , ti3)
...
ym−1 t ∈ [tim−1 , tim)

If δn = 1 then the function ĥ0(t) =∞ for
t ≥ tn. Otherwise, ĥ0(t) is unknown for
t ≥ tim .

Unimodal:

The mode, m0, must lie at one of
the uncensored observation points. Let
tik0 = m0 denote this observation point.

ĥ0(t) =



0 t ∈ [0, ti1)
y1 t ∈ [ti1 , ti2)
y2 t ∈ [ti2 , ti3)
...
yk0−1 t ∈ [tik0−1

,m0)

∞ t = m0

yk0+1 t ∈ (m0, tik0+1
]

yk0+2 t ∈ (tik0+1
, tik0+2

]
...
ym−1 t ∈ (tim−2 , tim−1 ]
ym t ∈ (tim−1 , tim ].

If δn = 0, then the function ĥ0(t) = 0 for
t > tim . Otherwise, ĥ0(t) is unknown in
this region.

U–shaped:

The antimode, a0, must lie in between two
observation points. Let tik0 < a0 < tik0+1

denote the two adjacent observation
points with δi = 1.

ĥ0(t) =



y1 t ∈ [0, ti1 ]
y2 t ∈ (ti1 , ti2 ]
...
yk0 t ∈ (tik0−1

, tik0 ]

0 t ∈ (tia0 , tik0+1
)

yk0+1 t ∈ [tik0+1
, tik0+2

)

yk0+2 t ∈ [tik0+2
, tik0+3

)
...
ym−1 t ∈ [tim−1, tim).

If δn = 1 then the function ĥ0(t) =∞ for
t ≥ tn. Otherwise, ĥ0(t) is unknown for
t ≥ tim .
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Functions for plotting the MLE are provided as part of the package CPHshape. The fitted
hazard functions are always piecewise continuous, and points of (either left or right) continuity
are marked as filled dots, while points of discontinuity are not marked. The location of the
mode for the unimodal hazard is also indicated with a dashed vertical line. Some examples
are given in the following section.

4. Examples

The main function in CPHshape is find.shapeCPH. This function finds the maximum like-
lihood estimator of β and h0 in the model described in Section 2. We begin, however, with
the function find.shapeMLE, which finds the maximum likelihood estimator of a shape con-
strained hazard function without the proportional assumption on the covariate input (equiv-
alently, assume that β = 0). This function illustrates nicely the graphical representation
algorithm described in Section 3.

4.1. MLE of a shape constrained hazard (no covariates)

Suppose first that we observe X1, . . . , Xn exponential random variables with mean 1. The
true hazard function in this case is h(x) = 1, which falls into the decreasing category (in fact,
it is also increasing, unimodal, and u-shaped). However, suppose that we wish to find the
nonparametric MLE of a decreasing hazard based on the observed data. To do this, we use
the function find.shapeMLE.

> library(CPHshape)

> set.seed(12345)

> x <- rexp(10)

> mle <- find.shapeMLE(x, type="decreasing")

The result of find.shapeMLE is an object of type "CPHshape". The MLE itself is specified
completely by

> mle$h.range

[1] 0.00000000 0.02393814 1.81800304 6.40218924

> mle$h.val

[1] 8.5509578 0.8863219 0.2181412

To read this properly we need to understand the functional form of the MLE given in (3).
Thus, the MLE is equal to 8.55 on [0, 0.024], 0.886 on (0.024, 1.82], and 0.022 on (1.82, 6.40].
The type of model fit, and the location of the mode/antimode (if necessary) is reported in

> mle$mode

[1] NA
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> mle$type

[1] "decreasing"

We note that for the u–shaped constraint, the antimode is not unique and the MLE is equal
to zero over a range of functions. In this case the algorithm returns the midpoint of this range
as the antimode. However, it is not necessary for the user to read the output of the MLE
directly. The functions find.hazard and find.cumulative can evaluate the value of the
fitted hazard and cumulative hazard (respectively) at a user specified point t, and plotting
functions are provided for objects of type "CPHshape". For this example, we also compare
the estimator with the true hazard function (shown in red).

> find.hazard(1, mle)

[1] 0.8863219

> find.cumulative(1, mle)

[1] 1.069799

> plot(mle)

> abline(h=1, col="red")
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As described in Section 3, the MLE is found by using a graphical representation. Setting
plot=TRUE in the function find.shapeMLE plots this graphical representation in R. The plot
below confirms that the MLE we found for the above sample is piecewise constant with three
“pieces”.

> mle <- find.shapeMLE(x, type="decreasing", plot=TRUE)

●
● ●

● ●

●

●

●

●

●

●●

0 2 4 6 8 10

0
2

4
6

8
10

decreasing

pts[,1]

pt
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]
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Suppose next that we observe X1, . . . , Xn uniform random variables. Then the true hazard
function is increasing and equal to h(x) = (1−x)−1. The true hazard function is again shown
in red.

> set.seed(12345)

> x <- runif(500)

> mle <- find.shapeMLE(x, type="increasing")

> plot(mle, ylim=c(0,25))

> htrue <- function(x) 1/(1-x)

> plot(htrue, col="red", add=TRUE)
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4.2. MLE in the proportional hazards model

The full functionality of the CPHshape is best demonstrated with the function find.shapeCPH.
We illustrate it here by first generating some data with two covariates from a uniform baseline
model with random right censoring.

> set.seed(12345)

> n <- 200

> beta1 <- 1

> beta2 <- 2

> z1 <- rbinom(n,1,0.5)

> z2 <- runif(n, -1,1)

> w <- exp(beta1*z1+beta2*z2)

> temp <- runif(n)

> x <- 1-temp^(1/w)

> u <- runif(n, 0, 1)

> delta <- 1*(x <=u)

> x <- pmin(x,u)

We now fit an increasing baseline hazard. By setting the option print=TRUE we can see the
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iterations of the main algorithm described above.

> z <- cbind(z1,z2)

> mle <- find.shapeCPH(x, z=z, delta=delta, type="increasing", print=TRUE)

iter=i phi[i] |phi[i]-phi[i-1]| beta(s)

0 -49.76003 NA 1 1

1 -67.4077 17.64767 0.9295706 1.899814

2 -68.48837 1.080672 0.9807406 2.053447

3 -68.92084 0.4324651 1.040361 2.106185

4 -69.14369 0.2228495 1.086093 2.137023

5 -69.26223 0.1185384 1.119647 2.158539

6 -69.32627 0.06403928 1.144271 2.174143

7 -69.36124 0.03497721 1.162431 2.185603

8 -69.3805 0.01925569 1.175881 2.194072

9 -69.39116 0.0106621 1.185877 2.200356

10 -69.39709 0.00592888 1.193324 2.205032

11 -69.4004 0.003307256 1.198881 2.20852

12 -69.40225 0.001849167 1.203034 2.211124

13 -69.40328 0.001035711 1.206142 2.213071

14 -69.40386 0.0005808498 1.208468 2.214529

15 -69.40419 0.0003260686 1.21021 2.21562

16 -69.40437 0.0001831759 1.211516 2.216438

17 -69.40448 0.0001029586 1.212495 2.217051

18 -69.40453 5.789395e-05 1.213229 2.217511

19 -69.40457 3.256384e-05 1.213779 2.217855

20 -69.40458 1.832048e-05 1.214192 2.218114

21 -69.40459 1.03089e-05 1.214502 2.218307

22 -69.4046 5.801542e-06 1.214734 2.218453

The log-likelihood is found to be 69.4046 (equal to -phi in the output) after 22 iterations.
The resulting MLE for β is

> mle$beta

[1] 1.214734 2.218453

and a plot of the fitted baseline hazard is as follows.

> plot(mle, ylim=c(0,25))

> htrue <- function(x) 1/(1-x)

> plot(htrue, col="red", add=TRUE)

> rug(x)
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We have added again the true hazard function in red to the plot.

Lastly, one may also be interested in viewing the fitted hazard function for a particular choice
of covariates. This can be easily accomplished as follows.

> z1 <- 1

> z2 <- 0.5

> w <- exp(mle$beta[1]*z1+mle$beta[2]*z2)

> mleZ <- mle

> mleZ$h.val <- w*mle$h.val

The new object mleZ is of class "CPHshape" and can be plotted or evaluated using find.hazard,
find.cumulative.
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