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ABSTRACT. The effective dose is the dose or amount of drug required to produce a thera-
peutic response in a fixed proportion of the subjects. When only one drug is considered, the
problem is a univariate one and has been well-studied. However, in the multidimensional
setting, i.e., in the presence of combinations of agents, estimation of the effective dose be-
comes more difficult. This article considers the case where the multidimensional effective
dose is estimated using a plug-in logistic regression. We discuss consistency of such esti-
mators, and focus on the problem of simultaneous confidence regions. Existing methodol-
ogy for 95% simultaneous confidence regions yields empirical coverage probabilities with
values often larger than 99%. We introduce an empirical set quantile algorithm which out-
performs existing methodology. Through simulation, we show that our algorithm gives
95% confidence regions which have better empirical coverage then the previous method
for moderate to large sample sizes. The new algorithm is illustrated on a cytotoxicity study
on the effect of two toxins in the leukaemia cell line HL-60 and a decompression sickness
study of the effects of the duration and depth of the dive.

1. INTRODUCTION

In the analysis of biological assays, one is often interested in the covariate, or combi-
nation of covariates, which yields a specific response. For example, consider the situation
when the efficacy of a drug is being investigated. The effective dose (ED) is then the dose
or amount of drug required to produce a therapeutic response in a desired proportion of the
population under study. When this response is binary, a logistic linear regression model is a
popular choice. That is, let p denote the probability of a positive response, and let x denote
the drug dosage. Then the model is

log(p/(1− p)) = β0 + β1x,

and the dosage associated with a 50% response rate (ED50) is the point −β0/β1. When a
combination of drugs and/or covariates is being studied, the model becomes

log(p/(1− p)) = β0 +
k∑
i=1

βixi.

If only a single xi, say x1, represents a drug and the remaining xi represent covariates such
as age or weight, then the median effective dose is ED50 = −(β1)

−1(β0 +
∑k

i=2 βixi) when
the patient-specific covariates are held fixed. Alternatively, multiple xi can represent drug
levels, and one is interested in the combinations of drugs or other agents required to yield a
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response. Such instances arise, for example, in Skarin et al. (1983) where lymphoma treat-
ments are considered or in Lang et al. (1980). Another example, considered extensively in
Li et al. (2008b,a, 2010); Li and Wong (2011), is that of analysing the risk of decompres-
sion sickness among deep sea divers based on both the duration and pressure of the dive.
In this setting, the median effective dose is the set

ED50 =
{

(x1, x2, . . . , xp) : β0 +
∑k

i=1 βixi = 0
}
.

Li et al. (2008b) refer to this as the multidimensional effective dose. In the single drug
setting (with or without covariates), the quantity of interest is real-valued, and therefore
much easier to handle. However, for combinations of drugs, the object under study is
considerably more complicated.

Many interesting statistical problems are associated with the study of the multidimen-
sional effective dose. Here, we focus on one specific aspect of the extensive problem at
hand. We assume that the effective dose is estimated using a plug-in estimator from a lo-
gisitic regression. We focus on this plug-in estimator as it is likely to be used in practice. We
provide conditions for consistency of the estimator and we study simultaneous confidence
regions, or supersets, for the true effective dose. In the univariate setting, the variability
of the estimator can be quantified by estimation of its standard deviation. However, when
combinations of agents are being considered, we note that a confidence region provides a
natural and visually appealing way of quantifying the variability of the estimator.

To our best knowledge, the first study of such confidence regions was done in Carter
et al. (1986). The proposed solution is to create large sample confidence regions by invert-
ing Scheffé’s bounds for simultaneous confidence intervals (Scheffé, 1953). As noted by
Carter et al. (1986), this method is quite conservative. Further study of this method was
carried out in Li et al. (2008b), who consider the estimation of both (1) a conditional single-
dimensional effective dose in the presence of covariates and (2) an unconditional multidi-
mensional effective dose in the linear logistic model. The conditional single-dimensional
effective dose was also used by Chen (2007) in the analysis of a dose-time response model.
The extensive simulations of Li et al. (2008b) show how conservative the Scheffé-inversion
method is: Empirical coverage probabilities of 95% confidence regions vary from 98% to
100% in the two-dimensional linear model.

In this work we consider several different existing approaches to the problem of finding
a confidence superset. We also introduce a novel empirical set quantile algorithm, and
use it to compute a confidence region for the effective dose. The various methods are
described in Section 4. We study the empirical coverage of the confidence regions through
extensive simulations (see Section 5 as well as the Appendix). Our choice of designs
for the simulations is similar to that of Li et al. (2008b), in particular to allow for direct
comparison. We go beyond the cases studied in Li et al. (2008b) in that we study more
than just the linear regression setting. Notably, the over coverage of the Carter method
is only increased for these settings, and therefore it is important to consider such cases.
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The methodology is illustrated on both theoretical (Section 4.6) and real-world examples
(Section 6).

2. NOTATION AND ASSUMPTIONS

Let D ⊂ Rd denote the possible domain of the covariates, which we assume to be
compact. We assume the a binary response Y is observed and let f(x) = E[Y |X = x]. We
are interested in sets of the form

ED+
100p = {x ∈ D : f(x) ≥ p} and ED100p = {x ∈ D : f(x) = p}

where x = {x1, . . . , xd} denotes the observed covariates. One may also be interested in
ED−100p = {x ∈ D : f(x) ≤ p} , but as this may be studied by considering g(x) = −f(x),
we consider only ED+

100p and ED100p in what follows. We assume that the data can be
modelled as a logistic regression with

log

(
f(x)

1− f(x)

)
= β0x

∗
0 + β1x

∗
1 + . . .+ βkx

∗
k = βTx∗. (2.1)

We use the notation x∗ = (x∗0, x
∗
1, . . . , x

∗
k) to denote the function of the covariates x∗(x) :

Rd 7→ Rk+1, where k + 1 ≥ d. For example, if d = 2 and the right-hand side of (2.1) is
β0 + β1x1 + β2x2 + β3x

2
2 then x∗(x) = (1, x1, x2, x

2
2). We require that the function x∗(x)

is continuous on the domain D.
Let X denote the design matrix of size κ × (k + 1). In our simulations, we will use a

balanced design with m replicates of each combination of covariates, for an overall sample
size of n = mκ. Under this notation, the estimator β̂n is asymptotically normal with mean
β and variance given by Σ/m where Σ =

(
XTdiag{pi(1− pi)}X

)−1
, and pi = E[Y |X =

xi] for i = 1, . . . , κ.
Next, let η(u) = log(u/(1 − u)), and note that this is an increasing function of u.

Therefore, we may re-write

ED+
100p =

{
x ∈ D : βTx∗ ≥ η(p)

}
and ED100p =

{
x ∈ D : βTx∗ = η(p)

}
.

We estimate these using the plug-in estimators

ÊD
+

100p =
{
x ∈ D : β̂Tn x

∗ ≥ η(p)
}

and ÊD100p =
{
x ∈ D : β̂Tn x

∗ = η(p)
}
,

where β̂n is the maximum likelihood estimator of β. As long as x∗(x) is a continuous
function of x, all of the sets considered above are closed. However, note also that it is not
necessarily the case that ∂ED+

p = EDp, where ∂A denotes the boundary of the set A.
We denote Euclidean distance for x, y ∈ Rd as |x−y|. Then, for a set A ⊂ Rd and ε > 0

we define the dilation of A as Aε = {x ∈ Rd : |x− y| ≤ ε, for some y ∈ A}. Finally, we
define the Hausdorff distance between two sets

ρ(A,B) = inf{ε > 0 : A ⊂ Bε, B ⊂ Aε}.
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3. CONSISTENCY

To our best knowledge, the works studying multidimensional effective dose estimation
focus on confidence regions and do not discuss consistency (Carter et al., 1986; Li et al.,
2008b,a; Li and Wong, 2011). Here, we fill this gap, by extending the work of Molchanov
(1998) and Cuevas et al. (2006) on level sets to this setting. A very similar problem was re-
cently studied in Jankowski and Stanberry (2011), and the following result follows directly
from the proof of Jankowski and Stanberry (2011, Theorem 3.1) as well as consistency of
the maximum likelihood estimator β̂n.

Theorem 3.1. Let β denote the value of the parameters in model (2.1), and assume that
x∗(x) is continuous. If β̂n → β almost surely, then, for all compact K, ρ(ÊD

+

100p ∩
K,ED+

100p ∩K)→ 0 almost surely if

{x ∈ D : βTx∗ > η(p)} = ED+
100p (3.2)

holds. Furthermore, ρ(ÊD100p,ED100p)→ 0 almost surely if both (3.2) and

{x ∈ D : βTx∗ < η(p)} = {x ∈ D : βTx∗ ≤ η(p)} (3.3)

hold.

The two conditions (3.2) and (3.3) can be re-stated mathematically in different ways;
for example, (3.2) is equivalent to ED+

100p being regularly closed. In terms of the response
surface, condition (3.2) requires that f(x) = βTx∗ have no local maxima on ED100p while
condition (3.3) requires that f(x) = βTx∗ have no local minima on ED100p. Thus, in the
linear model, we are guaranteed to have consistency if at least one βi, i = 2, . . . , k is non-
zero. For other models, one could perform a heuristic check of critical points of f(x), if x∗

is differentiable as a function of x. As an example, consider the model f(x) = β0 +β1x1 +
β2x2 +β3x1x2. The determinant of the Hessian matrix is −β2

3 < 0. Thus, if β3 is non-zero,
any critical points of f(x) are saddle points and therefore no local minima/maxima exist
on ED100p.

4. CONFIDENCE REGIONS: DESCRIPTION OF METHODS

We now turn to the problem of calculating confidence regions for ED100p and ED+
100p,

and begin by describing various approaches. A discussion and initial comparison of the
methods follows the definitions.

For each method, we describe how to calculate a 100(1 − α)% confidence region for
ED+

100p. Confidence regions for ED−100p are formed in an analogous fashion. A 100(1−α)%
confidence region for ED100p is taken as the intersection of the 100(1− α/2)% confidence
region for ED+

100p and the 100(1 − α/2)% confidence region for ED−100p. In what follows,
we assume that the domain D is compact. If it is not compact, then the methods can be
modified to consider the domain D ∩K, for any compact set K.
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4.1. Supremum inversion. By definition, ÊD100p is the level set of the random function
f̂n(x) = β̂Tn x

∗. The variability of f̂n(x) away from its expectation is described by the
fluctation field Zn(x) =

√
n(f̂n(x) − E[f̂n(x)]) =

√
n(β̂n − β)Tx∗, or its Gaussian limit

Z = limn Zn. Uniform bounds on the fluctuation field can be inverted to find uniform
bounds on level sets of E[f̂n(x)], in an approach we call “supremum inversion.” Although
conservative by definition, it is quite natural for plug-in estimators.

The existing methodology for simultaneous confidence regions is based on Scheffé’s
uniform contrast bounds. As shown in Carter et al. (1986), supx Z2

n(x)/x∗TΣx∗ ≤ Yn ⇒
Y, where Y is a χ2(k + 1) random variable. Let qα denote the upper quantile of Y, a value
such that P (Y > qα) = 2α. The confidence region for ED+

100p is then defined as

CR+
SCH,1−α =

{
x : f̂n(x) ≥ η(p)−

√
qα x∗TΣx∗/m

}
.

In practice, the covariance matrix Σ is estimated using standard methods. It is possible that
the confidence region as defined above is empty, but this occurs rarely for larger sample
sizes. As shown in Carter et al. (1986), the probability that CR+

SCH,1−α covers ED+
p is at

least 100(1− α)%.

4.2. Central limit theorem for level sets. Another possible approach is to consider a
central limit theorem for the sets ÊD100p themselves. Such a result, for general level sets,
was given in Molchanov (1998). We note that the result is valid for more general settings
with an appropriately modified definition for L(x) (Molchanov, 1998).

Theorem 4.1. (Molchanov (1998)) LetK denote a compact subset of Rd withC1 boundary,
and let n(x) denote the unit outer normal vector to K at x ∈ ∂K. Then, for f̂n(x) = β̂Tn x

∗,
√
n ρ
(

ÊD
+

100p ∩K,ED+
100p ∩K

)
⇒ sup

x∈ED100p∩K
|Z(x)/L(x)| ,

where L(x) is given by

|L(x)| =
|βT∇x∗| x ∈ K0

|βT∇x∗| x ∈ ∂K and θ(x) ≥ π/2
|βT∇x∗| sin(θ) x ∈ ∂K and 0 ≤ θ(x) < π/2,

for θ(x) equal to the angle between βT∇x∗ and n(x). Here, ∇x∗ denotes the gradient of
x∗(x).

If f(x) = β0 + β1x, the result becomes

√
n

(
− β̂n,0
β̂n,1

+
β0
β1

)
⇒ Z

β0
,

where Z is a Gaussian random variable, at p = 0.50, as expected. The more general result
is still not surprising. The term L(x) in the denominator tell us that the less steep the slope
of the function βTx∗ at the boundary, the more variable ÊD100p will be.



6 HANNA K. JANKOWSKI, XIANG JI AND LARISSA I. STANBERRY

Let qα denote the α–level upper quantile of the random variable supx∈ED100p
|Z(x)/L(x)| .

Then a natural definition for the the 100(1− α)% confidence region for ED+
100p is

CR+
CLT,1−α =

(
ÊD

+

100p

)qα
,

noting that ÊD
+

100p is closed.

4.3. Quantiles of random sets. An appealing method of forming confidence intervals in
the real-valued setting is to use the quantiles of a statistic or pivotal quantity, and it seems
natural to develop this notion for the effective dose, whose estimator is a random closed
set. The space of closed sets is non-linear, and therefore there is no single natural way to
define expectation or quantile. The following definition for the quantile of a random set
was introduced in Molchanov (1990).

The distribution of a random closed set (RCS), A, is determined by the functional
T (K) = P (A ∩ K 6= ∅) for every compact set K ⊂ Rd (see, for example, Molchanov
(2005)). LetK denote the class of all compact sets on Rd, and letM⊂ K be a subcollection
of sets which is closed in the Hausdorff metric. In Molchanov (1990), the q–quantile of the
RCS A is defined as the setMq = ∪{K ∈M : T (K) < q}.As a concrete example let Θ be
a real-valued random variable with distribution function F , and let A = [Θ,∞). Then, tak-
ing the classM = {{x}, x ∈ R} yields Mq = (−∞, θq), where θq = sup{x : F (x) < q}.
Therefore, in some sense, the RCS quantile definition coincides with the quantile definition
of a real-valued random variable. We consider two different choices of the classM. Our
selection is motivated, in large part, by ease of computability.

(1) M1 =
{
{x};x ∈ Rd

}
.

(2) M2 =
{
{bTx = a}; a ∈ R, b, x ∈ Rd

}
Some care needs to be taken before applying this definition to create confidence regions, as
the above example illustrates that the choice of covering setM c

1−q may be more appropriate
for our purposes (essentially, we seek a lower confidence bound).

Let us first consider the quantile M c
α(M1) of the set ÊD

+

100p. We can calculate this ex-
actly, assuming that β̂n behaves according to its asymptotic normal distribution. Let zα
denote a value such that P (Z > zα) = α, where Z denotes a standard normal random
variable. Then

M c
α(M1) =

{
x ∈ D : p

(
ÊD

+

100p ∩ {x} 6= ∅
)
< α

}c
=

{
x ∈ D : p

(
β̂Tn x

∗ ≤ η(p)
)
≤ 1− α

}
=

{
x ∈ D : βTx∗ ≥ η(p)− zα

√
x∗TΣx∗/m

}
.

This quantile depends on β, which is not surprising as β̂n is centred around β. To define the
confidence region, we therefore, “re-centre” the distribution around β̂n. That is, we define
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the confidence region based on the classM1 to be

CR+
Q1,1−α =

{
x ∈ D : β̂Tn x

∗ ≥ η(p)− zα
√
x∗TΣx∗/m

}
. (4.4)

The difference between this definition and CR+
SCH,1−α lies entirely in the quantile zα vs√

qα. Clearly, CR+
Q1,1−α is a local (i.e. pointwise) confidence region and not a global one.

We therefore expect that simultaneous coverage rates for these quantiles will be smaller
than 1− α. We also note that these regions bear much resemblance to the conditional con-
fidence regions considered in Li et al. (2008b). By definition, this region is the collection
of all points such that each point is in ÊD

+

100p with at least a probability of α, and as such,
it coincides with the definition of an α excursion set used in the definition of the Vorob’ev
quantile (Molchanov, 1990, Section 2.2).

It seems natural to next consider a different class forM, and the class of all lines is one
simple alternative. Write `a,b = {x ∈ D : bTx = a} for some a ∈ R, b ∈ Rd, so that
M1 = {`a,b}. Then

M c
α(M2) =

{
∪
{
`a,b : p

(
ÊD

+

100p ∩ `a,b 6= ∅
)
< α

}}c
=

{
∪
{
`a,b : p

(
β̂Tn x

∗(x) ≥ η(p) ∃x ∈ `a,b
)
< α

}}c
.

In a manner similar to that for the classM1, we define the confidence region as

CR+
Q2,1−α =

{
∪
{
`a,b : p

(
β̂Tn x

∗ + ZTx∗ ≤ η(p) ∃x ∈ `a,b
)
< α

}}c
,

where Z is a multivariate normal random variable mean zero and variance Σ/m, and β̂n is
held fixed at its observed value.

4.4. New method. Suppose that we observeA1, . . . , AB sample sets. Then a sample quan-
tile for these sets can be calculated as follows.

Empirical set quantile algorithm

Suppose that we observe A1, . . . , AB closed sets.
(1) Let KB = ∩Bi=1Ai.
(2) Let ξi,B = ρ(Ai, KB), and let γα,B denote the empirical α quantile of the ξi,B

values. That is, let ξ(i),B denote the ordered values of ξi,B. Then γα,B is the value
such that

γα,B = max{ξ(i),B : #{j : ξ(j),B ≤ ξ(i),B} < αB}.

(3) Calculate the quantile of the collection {A1, . . . , AB} to be ∪{Ai, i = 1, . . . , B :
ρ(Ai, KB) ≤ γα,B}.
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As an example, consider the simple setting with Ai = [θi,∞), i = 1, . . . , B. Let θ(B) =
max(θ1, . . . , θb). Then KB = [θ(B),∞), ξi,B = θ(B) − θi, and γα,B = θ(B) − γ̃α,B, where
γ̃α,B denotes the empirical α quantile of θi, i.e., |{i : θi < γ̃α,B}|/B ≈ α. Finally, the em-
pirical quantile becomes∪{Ai : θ(B)−θi < θ(B)−γ̃α,B} = ∪{Ai : θi > γ̃α,B} = [γ̃α,B,∞).
For ease of presentation, we have assumed here that γ̃α,B is one of the observed values of
θ1, . . . , θB. Therefore, choosing α=95% would yield an approximate 95% covering set for
the sets Ai = [θi,∞). Clearly, the quantiles depend on the centre of the observed data,
KB = ∩Bi=1Ai, and the relative location of KB greatly influences the resulting quantile
superset.

Remark 4.2. In the algorithm, if KB = ∅, then the resulting quantile is the empty set,
and therefore uninformative. For the effective dose application, this becomes an issue for
smaller sample sizes. In most cases, this happens because one of the sampled sets Ai is
empty. We considered several solutions, and the optimal of these was to simply remove all
empty Ai from the algorithm apriori.

Proposition 4.3. Let A1, . . . , AB be a collection of nonempty subsets of Rd.
(1) The proportion of sets A1, . . . , AB which is contained in ∪{Ai, i = 1, . . . , B :

ρ(Ai, KB) < γα} is at least (bαBc)/B.
(2) Consider γ1 ≤ γ2. Then ∪{Ai, i = 1, . . . , B : ρ(Ai, KB) < γ1} ⊆ ∪{Ai, i =

1, . . . , B : ρ(Ai, KB) < γ2}.
(3) Fix a rigid motion g ∈ E+(d) and let Ci = g(Ai). Then

g (∪{Ai, i = 1, . . . , B : ρ(Ai, Kn) < γ})
= ∪{Ci, i = 1, . . . , B : ρ(Ci, g(KB)) < γ}.

(4) Fix α > 0 and let Ci = αAi. Then ∪{Ci, i = 1, . . . , B : ρ(Ci, αKB) < αγ} =
α {∪{Ai, i = 1, . . . , B : ρ(Ai, KB) < γ}} .

It follows therefore that the new definition has some desirable properties. It is invariant
under rotations, and satisfies a natural scaling property. Most importantly, the quantiles
create a covering set which contains a desirable proportion of the observed data. The proof
of Proposition 4.3 appears in the Appendix.

Using the new method, we estimate a confidence region for ED+
100p by using a parametric

bootstrap approach. That is, let (ÊD
+

100p)
∗
i , i = 1, . . . , n denote observed values of

(ÊD
+

100p)
∗ = {x ∈ D : β̂Tn x

∗ + ZTx∗ ≥ η(p)},

where (as in the definition for CR+
Q2,1−α) β̂n is held fixed while Z is a normal random

variable with mean zero and variance Σ/m. In practice, if there is much variability in the
response surface β̂Tn x

∗, then some of the observed sets ÊD
+

100p,i may be empty. In this case,
we modify the algorithm by considering only those sets which are nonempty (cf. Remark
4.2). The 1 − α quantile of the observed (nonempty) sets is then the estimated confidence
region CR+

1−α.
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4.5. Computation. The regions CRSCH,1−α and CRQ1,1−α can be computed exactly if Σ
is known. Similarly, if Σ is known, then the region CR1−α can be calculated using the
algorithm described above. In practice, however, only its estimate, denoted here as Σ̂n, is
available and is provided in all standard statistical packages. The three regions can then be
approximated by replacing Σ with its consistent estimate Σ̂n throughout.

To calculate the confidence region CRB,1−α,we would need to know the functionL(x) =
βT∇x∗ and the set ED100p, both of which we would then use to obtain the quantile of
supx∈ED100p

|Z(x)/L(x)|. Only the distribution of Z(x) is known, it is equivalent to the
distribution of ZTx∗ where Z is multivariate normal with mean zero and variance Σ/κ.

In some simulations which follow, we estimated β and Σ with β̂n and Σ̂n, ED100p with
ÊD100p, and based on these values, we estimate quantiles of supx∈ED100p

|Z(x)/L(x)| via
re-sampling.

FIGURE 1. A sample of five planar sets. The darker a region the more sets
intersect with this region.

In general, the distribution of a random set is difficult to obtain explicitly, and in practice,
Molchanov’s quantiles may also be estimated from observed data. Let A denote a random
closed set and letA1, . . . , An denote n IID observations of A. Then, the capacity functional
of A, T (K), may be estimated by the empirical functional Tn(K) =

∑n
i=1 1Ai∩K 6=∅/n,

which in turn gives the empirical quantile M̂q,n(M) = ∪{K ∈ M : Tn(K) < q}. As-
ymptotic properties of this procedure were studied in Molchanov (1990), who provides
necessary and sufficient conditions for consistency, among other things. (We note that the
condition Mp+ ⊂ Mp in Molchanov (1990, Theorem 1, English version) should actually
read Mp+ ⊂ Mp, which can be confirmed by reading the proof or the original Russian
text.) In Molchanov (1990, Corollary 2), the result is given for the case M1. It follows
that, when A = ÊD

+

100p, the empirical quantiles withM1 are consistent for the true quan-
tiles if the distribution of β̂n is continuous. As we have an explicit formula for CRQ1,1−α,
it is not necessary to estimate it by re-sampling. On the other hand, an explicit formula
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for CRQ2,1−α is not as immediate. Therefore, to estimate the region CR+
Q2,1−α, we have

devised the following method.
First, we estimate CR+

Q1,1−α by some re-sampling method. Then
CR+

Q2,1−α = chull
(
CR+

Q1,1−α
)
, where chull(A) denotes convex hull of the set A. To see

why this should hold consider a simple setting with n = 5 and suppose that we wish to
calculate CR+

Q2,0.60 for these five sets. By definition, we are interested in the region so that
any line contained in this region intersects no more than one of these five observed sets.
Finally, the collection of lines which intersect two or more of these sets is the convex hull
of CR+

Q1,1−α.
It was noted in Li et al. (2008b, page 113) that their conditional univariate approach is

simpler to implement than a multivariate approach (CRSCH,1−α in this paper). However,
we do not find this to be the case, and CRSCH,1−α is quite easy to calculate in, for example
R. All computations and plots shown in this paper were done using R and/or Matlab.
Matlab’s imaging toolbox contains the function bwdist, which allows for easy computation
of the Hausdorff distance, required for calculation of CR1−α. This function is available
both for d = 2 and d = 3, but not for higher dimensions. Sample programs are available
from www.math.yorku.ca/∼hkj/Software/. In all computations, including the
simulations which follow, it was necessary to discretize the underlying domain. For d = 2,
we used 4012 pixels, and when d = 3, we used 1013 voxels.

4.6. Comparison of Methods. To compare the various methods, we first consider the
linear parametric model f̂n(x) = β̂Tn x

∗ as given in Table 1. We assume that data is collected
according to a design with κ = 36 points uniformly spaced over the domain in a grid-like
pattern (this is design one in Figure 9).

TABLE 1. True model parameters for x = (x1, x2) ∈ R2

true model domain

linear −6 + 6x1 + 6x2 [0, 1]2

interaction −6 + 6x1 + 6x2 − 3x1x2 [0, 1]2

quadratic −6 + 6x1 + 6x2 + 10x21 + 3x1x2 + x22 [0, 1]2

log term −10 + 6 log x1 + 6x2 [1, 2]2

For our linear model, the median effective dose is the straight line ED50 = {(x1, x2) ∈
D : 6 + 6x1 + 6x2 = 0}. We first assume that the estimator β̂n behaves according to its
asymptotic distribution with κ = 36 and m = 10. Under this assumption, B = 25 samples
of ÊD50 are shown in Figure 2 (top left). We then drew one sample of ÊD50 and calculated
the various 95% confidence regions, as described in Section 4.5. The results are also shown
in Figure 2. In each case, the confidence region is shown in grey, with ED50 shown as the
bold line and the sample ÊD50 shown as the thin line. The different regions are

(1) CRSCH,0.95 based on inverting Scheffé’s bounds
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(A) (1) (2)

(3) (4) (5)

FIGURE 2. (1)− (5): 95% confidence regions in gray for ED0.5 (bold
line) in the linear model with n = 360 as indicated in the text; ÊD50 is
shown as the thin line. Plot (A) shows 25 random samples of ÊD50.

(2) CRCLT,0.95 based on the central limit theorem for level sets
(3) CRQ1,0.95 based on random set quantiles withM1

(4) CRQ2,0.95 based on random set quantiles withM2

(5) CR0.95 based on the new empirical quantile algorithm

A comparison of the sampled ÊD50 values and the various confidence regions in Fig-
ure 2 reveals that CRCLT,0.95 and CRQ2,0.95 do not capture the local variability of ÊD50.
On the other hand, CRSCH,0.95,CRQ1,0.95 and CR0.95 have shapes which describe well the
behaviour of ÊD50. For this reason, we now focus only on these three methods.

We next consider the other three models of Table 1 in Figure 4, again with κ = 36,m =
10 and under design one. Contour plots of the true models are shown in Figure 3. Note
that the domain for the model with a logarithmic term is different than the others. This is
because the function x∗(x) is not a continuous function on the domain D = [0, 1]2. Again,
we now study only the three confidence regions: CRSCH,0.95,CRQ1,0.95 and CR0.95. Table 2
gives the proportions of the domain D covered by each confidence region. Figure 4 along
with Table 2 reveal that CRQ1,0.95 is smaller than the other two regions, while CR0.95 and
CRSCH,0.95 are similar in size, except for the quadratic model. That CRQ1,0.95 is smaller
than the other two regions is not surprising. The Vorob’ev quantile takes a pointwise ap-
proach instead of a global one, and we expect it to be the smallest region. The fact that
CR0.95 is smaller than CRSCH,0.95 for the quadratic model is probably caused by the fact
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FIGURE 3. Contour plots for the true function f in the parametric setting.
From left the right the models from Table 1 are linear, interaction,

quadratic, and log-term.

that Scheffé’s bounds are conservative, and this is particularly emphasized with an increase
in the difference between k+ 1 (the number of parameters in the model) and d (the dimen-
sion of the covariates). Indeed, the region CR0.95 is nearly 11% smaller than the region
CRSCH,0.95.

All three confidence regions show that there is considerable variability in the quadratic
model, in that the function β̂Tn x

∗ dips down with some frequency in the upper right corner
of the domain. Although not shown, this is consistent with samples of ÊD50. Note how
much additional information is revealed about the variability of ÊD50 through viewing
the confidence region in this case. In particular the true function f(x) = βTx∗ does not
exhibit such dips on D (Figure 3, second from left), and neither does the function β̂Tn x

∗

(not shown).

TABLE 2. Proportion of the domain covered by the confidence regions
shown in Figures 2 and 4.

linear interaction quadratic log-term

CRSCH,0.95 0.161 0.230 0.803 0.159
CR0.95 0.168 0.245 0.718 0.172

CRQ1,0.95 0.116 0.147 0.474 0.109

5. SIMULATION RESULTS

We next study the behaviour of the three confidence regions, CRSCH,0.95,CRQ1,0.95 and
CR0.95, through simulations. Each simulation is the result of 1000 samples, and we also
used B = 1000 in the quantile set algorithm throughout. Whenever possible, the data in
each simulation was the same for the different confidence regions.
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FIGURE 4. Confidence regions (gray) for ED50 (bold); ÊD50 is shown as
the thin line. From top to bottom, the regions are CRSCH,0.95, CRQ1,0.95,
and CR0.95. From left to right, the models are interaction, quadratic, and

log term for m = 10.

We first look at the behaviour of the confidence regions when sampling from the as-
ymptotic distribution. The results for design one are shown in Table 3, where κ = 36 and
m = 1, 10, 100 for all four models given in Table 1. The region CRQ1,0.95 undercovers
consistently, as expected. For the linear, interaction and log term models, the coverage of
CR0.95 is either better or similar to that of CRSCH,0.95, while the sizes of the confidence
regions are similar. For the quadratic model, the coverage of CR0.95 is smaller than that
of CRSCH,0.95, as is the mean size of the region. CR0.95 is the only region which achieves
its nominal coverage, if only in a few instances. Since we are sampling from the asymptotic
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TABLE 3. Empirical coverage probabilities of 95% confidence regions for ED100p for the parametric
models in Table 1 for design 1 (see Figure 9) for simulations from the asymptotic normal distribution.

Results not statistically different from 0.95 are shown in bold. The corresponding sizes of the confidence
regions, measured as the mean proportion of the domain covered by the region, are given in brackets.

linear interaction quadratic log term

n p SCH Q1 CR SCH Q1 CR SCH Q1 CR SCH Q1 CR

36 .1 .993 .897 .976 .995 .889 .972 1.00 .865 .985 .994 .928 .983
(.46) (.34) (.50) (.59) (.42) (.60) (.95) (.66) (.91) (.26) (.18) (.32)

.5 .984 .874 .969 .995 .808 .980 .997 .792 .980 .985 .884 .974
(.75) (.51) (.80) (.90) (.63) (.90) (.99) (.81) (.98) (.72) (.49) (.79)

.9 .990 .898 .996 1.00 .921 1.00 .998 .796 .987 .982 .872 .992
(.47) (.35) (.51) (.42) (.24) (.45) (.96) (.74) (.93) (.64) (.50) .(70)

360 .1 .993 .900 .973 .995 .891 .968 1.00 .880 .989 .994 .930 .981
(.18) (.12) ( .17) (.26) (.16) (.21) (.37) (.15) (.32) (.10) ( .07) (.10)

.5 .984 .874 .947 .995 .810 .942 .998 .805 .982 .985 .886 .963
(.19) (.13) (.20) (.27) (.18) (.27) (.57) (.18) (.47) (.18) (.13) (.19)

.9 .991 .903 .990 1.00 .922 .997 .998 .801 .972 .982 .873 .962
(.18) (.12) (.19) (.12) (.08) (.10) (.64) (.33) (.59) (.26) (.18) (.28)

3600 .1 .993 .911 .975 .995 .893 .968 1.00 .880 .987 .994 .931 .981
(.06) (.04) ( .05) (.08) (.05) (.07) (.06) (.03) (.05) (.03) ( .02) (.03)

.5 .984 .874 .948 .996 .814 .942 .998 .814 .970 .985 .887 .970
(.06) (.04) (.06) (.09) (.06) (.09) (.06) (.03) (.05) (.06) (.04) (.06)

.9 .993 .917 .985 1.00 .923 .976 .998 .805 .959 .982 .876 .967
(.06) (.04) (.06) (.05) (.03) (.05) (.09) (.04) (.08) (.08) (.06) (.09)
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TABLE 4. Empirical coverage probabilities of 95% confidence regions for ED100p for the parametric
models in Table 1 for design one (see Figure 9) using the maximum likelihood estimate of Σ. Results not

statistically different from 0.95 are shown in bold. The corresponding sizes of the confidence regions,
measured as the mean proportion of the domain covered by the region, are given in brackets.

linear interaction quadratic log term

n p SCH Q1 CR SCH Q1 CR SCH Q1 CR SCH Q1 CR

36 .1 .989 .948 .995 .995 .948 .992 * * * .990 .956 .997
(.47) (.39) (.54) (.61) (.48) (.64) * * * (.28) (.20) (.36)

.5 1.00 .943 .998 1.00 .942 1.00 * * * 1.00 .930 .993
(.93) (.44) (.95) (1.0) (.58) (1.0) * * * (.85) (.43) (.96)

.9 .991 .936 .993 .997 .957 .997 * * * .994 .922 .996
(.47) (.39) (.53) (.43) (.27) (.49) * * * (.67) (.57) .(72)

360 .1 .988 .908 .977 .992 .899 .966 1.00 .884 .994 .988 .932 .980
(.18) (.12) (.17) (.26) (.16) (.21) (.34) (.14) (.29) (.10) (.07) (.10)

.5 .988 .861 .946 .994 .802 .945 1.00 .844 .995 .983 .867 .965
(.19) (.13) (.20) (.27) (.17) (.27) (.51) (.12) (.40) (.18) (.12) (.19)

.9 .990 .896 .985 .997 .928 .989 .996 .864 .973 .980 .891 .971
(.18) (.12) (.19) (.12) (.09) (.11) (.69) (.26) (.66) (.26) (.18) (.28)

3600 .1 .995 .917 .980 .999 .902 .980 1.00 .880 .971 .988 .921 .970
(.06) (.04) (.05) (.08) (.05) (.07) (.06) (.03) (.05) (.03) (.02) (.03)

.5 .986 .867 .944 .989 .820 .937 .999 .828 .982 .991 .865 .968
(.06) (.04) (.07) (.09) (.06) (.09) (.06) (.03) (.05) (.06) (.04) (.06)

.9 .991 .905 .973 .996 .920 .969 .999 .836 .975 .989 .898 .973
(.06) (.04) (.06) (.05) (.03) (.05) (.08) (.04) (.07) (.08) (.06) (.09)
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distribution, the behaviour of the confidence regions is relatively similar as the sample size
varies. The mean sizes of the regions do decrease with the sample size, which is again
expected.

Next, we repeated the experiment, but in the more realistic situation where the true Σ is
unknown. In this case, we use its estimate Σ̂n either directly (in CRSCH,0.95 and CRQ1,0.95)
or in the parametric bootstrap (in CR0.95). The results are shown in Table 4. Note that
we did not report the results for the quadratic model when n = 36. This is because there
was too large a proportion of observations in “complete separation” (Albert and Anderson,
1984) in this case. When the sample size is n = 360 and n = 3600, the results in Table 4
and Table 3 are similar. When n = 36, however, CRSCH,0.95 and CR0.95 behave comparably.
Surprisingly, the additional variability of the problem due to the estimation of the variance
matrix also increases the empirical coverage of CRQ1,0.95. For the linear, interaction, and
log term models, CRQ1,0.95 reaches nominal levels more often than not in the simulations.
Notably, we also tried estimating the zα quantile in CRQ1,0.95 through both a parametric
and non-parametric bootstrap approach for n = 36. In the parametric bootstrap the results
are similar to those in Table 4, while for the nonparametric bootstrap the results again
undercover in a manner similar to that in Table 3. Additional simulations for d = 2 are
provided in the Appendix.

We also considered two simple models for the higher dimensional d = 3 case: the
true linear model was η(p) = −6 + 3x1 + 3x2 + 3x3 and the true quadratic model was
η(p) = −6 + 3x1 + 3x2 + 3x3 + x21 + x22 + x23. The design was similar to design one, in
that data were observed on a uniform grid inside D = [0, 1]3 with κ = 63 and m = 10.
The domain was the same for both models, and we simulated only from the asymptotic
distribution. The results are shown in Table 5.

TABLE 5. d = 3

linear quadratic

n p S Q1 CR S Q1 CR

2160 .1 .991 .811 .977 .997 .664 .937
(.17) (.11) (.16) (.16) (.08) (.13)

.5 .983 .769 .921 .999 .569 .938
(.10) (.06) (.09) (.17) (.09) (.14)

.9 .997 .932 .988 1.00 .692 .961
(.01) (.01) (.01) (.10) (.05) (.08)

6. EXAMPLES

6.1. A decompression sickness study. Our first example comes from a decompression
sickness (DCS) study from the University of Wisconsin, Madison. DCS is most often asso-
ciated with diving, but can be experienced in other depressurisation events such as caisson
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FIGURE 5. Estimates of ED100p for different values of p for the
cytotoxicity data. Data points with response equal to 0/1 are shown as

closed/open circles.

working (i.e. during the building of dams or tunnels) or unpressurized flight. In this study,
sheep were exposed to a variety of exposure pressures and durations in a pressure chamber.
Sheep have a similar body mass to humans, and were therefore used as an approximate
model for human response. DCS is caused by dissolved gasses vaporising on depressur-
ization forming dangerous bubbles of gas throughout the body. The bubbles can form in
different locations in the body, and therefore lead to a variety of symptoms as well as sever-
ities. In the study, central nervous system and respiratory DCS as well as limb bends and
mortality were included in the recorded outcomes. The sample size is n = 1108. The data
set has been considered extensively in Li et al. (2008b,a, 2010); Li and Wong (2011) and
we refer to these papers for further details on data collection and analysis. Here, we com-
pare our methods to those of Li et al. (2008b) where a linear model was fit for the mortality
response. The data has been updated several times in the past few years, and therefore our
results differ slightly from those found in Li et al. (2008b).
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FIGURE 6. 95% confidence regions for ED50 based on Scheffé’s upper
bound (left) and the new CRS quantiles (centre). The difference between

the sets is shown on the left (CRSCH,0.95/CR0.95 in light and
CR0.95/CRSCH,0.95 in dark gray). ÊD1 is superimposed throughout for

reference.

When the survival response is considered, a simple linear model gives an adequate fit to
the data. The effective dose (with death denoted as “success”) is thus estimated as

ÊD100p = {−27.64 + 3.78x1 + 10.28x2 = η(p)},

where we take D = [1.3, 3.6]× [1.2, 1.8] with x1 and x2 denoting the base 10 logarithm of
duration and pressure of the dive. The data and results for ÊD100p are shown in Figure 5. Fix
p = 0.01. From Theorem 3.1 we know that the plug-in estimator ÊD1 is consistent for ED1,

assuming a linear model. We are also interested in the variability of ÊD1, and therefore we
calculate simultaneous confidence regions for ED1. Results for CRSCH,0.95 and CR0.95 are
shown in Figure 6. The regions are similar in size, covering 30% and 29% of the domain
respectively. However, CR0.95 appears more centred around ÊD1, particularly for large
values of x1.

6.2. Cytotoxicity in the leukemia cell line HL-60. Carter et al. (1986) consider a cytotox-
icity data set where the effect of two toxins, methylmethanesulfonate (MMS) and phorbol
12-myristate 13-acetate (PMA), on the human promyeloctic leukemia cell line HL-60 was
evaluated. Both MMS and PMA have demonstrated carcinogenic properties, and it was of
interest to understand their interactive properties. In the study, 16 treatments were consid-
ered with 83 to 98 observations per treatment, for a total sample size of 1436. The data and
a detailed analysis is available in Carter et al. (1986). There, a logistic regression model
was fit resulting in the plug-in estimate

ÊD100p = {−1.330− 0.084x1 + 0.159x2 + 0.003883x21 − 0.001308x22 = η(p)},
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FIGURE 7. Estimates of ED100p for different values of p for the DCS data
(left). Locations where data was observed are marked with an “x” (the

treatments had 83 to 98 observations each).

with x1, x2 corresponding to MMS/10 and PMA, respectively. Several estimates for differ-
ent values of p are shown in Figure 7 (left). The appropriateness of the quadratic model is
at first counterintuitive, however, due to lysis, certain treatments can become so toxic that
cells become uncountable (Carter et al., 1986). Thus, an increase in perceived survival at
higher toxicities is an appropriate result in this experiment.

The fitted model is non-linear, however, we can preform a simple check for consistency
as follows. The determinant of the Hessian matrix for the model f(x) = β0+β1x1+β2x2+
β3x

2
1 + β4x

2
2 is equal to 4β3β4. If this quantity is negative, then all critical points of f(x)

are saddle points, and we would therefore have consistency. Now, if β3 > 0 and β4 < 0,
then 4β3β4 < 0. From Carter et al. (1986), the p-values for each of these tests are smaller
than 0.0002 and 0.0001 respectively. Therefore, as long as the underlying model is correct,
we can be fairly confident that the estimators ÊDp are consistent.

With such a large sample size, we would expect little variability in the values of β̂n.
However, it is not immediately clear how this translates to the variability of ÊD100p. In
Figure 7 (right), we show several (parametric) bootstrap re-samples of ÊD50. Next, we cal-
culated 95% confidence regions for ED50 using Scheffé’s upper bound (Figure 8, left) and
the new CRS quantiles (Figure 8, centre). The new method yields a tighter confidence band.
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Indeed, here, the percentage of the domain covered is 14.92%, whereas using Scheffé’s up-
per bound 18.31% of the domain was covered. Figure 8 (right) shows that CR0.95 is almost
entirely contained in CRSCH,0.95.
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FIGURE 8. 95% confidence regions for ED50 based on Scheffé’s upper
bound (left) and the new CRS quantiles (centre). The difference between

the sets is shown on the left (CRSCH,0.95/CR0.95 in light and
CR0.95/CRSCH,0.95 in dark gray). ÊD50 is superimposed throughout for

reference.

Carter et al. (1986) also calculate confidence regions using Scheffé’s method for p =
0.4, 0.5, and 0.6. These regions overlap, and hence Carter et al. (1986) conclude that we
“cannot confidently distinguish among the respective ED100p sets.” Although not shown,
the regions in this case using the new quantile method would also overlap. However, the
estimates ÊD100p1 and ÊD100p2 are highly positively correlated, and therefore such an ad-
hoc comparison is probably overly conservative. The question of how to correctly account
for this correlation is also interesting and important, but is beyond the scope of this work.

7. DISCUSSION

When studying confidence intervals in the univariate setting, one is typically looking
for two properties: the confidence interval should be (1) as small as possible while (2)
reaching the nominal level, but without under-coverage. In our context, the observed data
comes from a non-Euclidean space, so some additional properties are desirable. Confidence
regions provide visual information about the variability of our estimates, and therefore the
shape of the confidence regions should reflect the behaviour of the estimates and have
the ability to detect local variability. For practitioners, it would also be desirable that the
confidence region be relatively easy to calculate.

In this work we have studied various methods of calculating a confidence region for a
multi-dimensional effective dose. The confidence regions CRSCH,0.95,CRQ1,0.95 and CR0.95

all nicely show the local variability of the effective dose estimators. However, for moderate
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and large sample sizes, CRSCH,0.95 systematically exhibits over-coverage while CRQ1,0.95

systematically under covers in simulation studies. The new set quantile algorithm intro-
duced here yields the region CR0.95 which outperforms the others in terms of empirical
coverage and size of region for moderate and large samples sizes. For smaller sample sizes
the behaviour of CR0.95 and CRSCH,0.95 is, however, equally disappointing.

The confidence regions CRSCH,0.95 and CRQ1,0.95 are the asymptotic confidence regions
in that they use the asymptotic distribution quantiles. For smaller sample sizes, one could
potentially either bootstrap these quantiles or replace them with their non-asymptotic coun-
terparts. Thus, in CRSCH,0.95 one could replace the asymptotic χ2 quantile with it’s appro-
priate F distribution version (Scheffé, 1953). However, these quantiles would be larger,
and CRSCH,0.95 already exhibits over-coverage. Another potential avenue here would be to
consider the method of Piegorsch and Casella (1988) (see also Casella and Strawderman
(1980)), but we do not explore this here. Notably, this modification would greatly increase
the computational complexity of the regions CRSCH,0.95. Recall that when the sample size
is small, the region CRQ1,0.95 occasionally achieves nominal levels, however, this not a
systematic property. We believe that this behaviour is coincidental only, and not indicative
of any theoretical properties. Additional simulations not shown here revealed that when
the asymptotic quantiles in CRQ1,0.95 were replaced with empirically estimated ones the
empirical coverage probabilities for n = 36 resembled those of n = 360, and systematic
under-coverage was again observed.

The new algorithm introduced here is essentially a bootstrapping procedure. Our original
motivation for this approach came from the setting d = 1, where we found that a simple
bootstrap approach had the best small sample size performance. Indeed, when d = 1, our
method is equivalent to univariate bootstrap methods. This new bootstrapped quantile does
have some appealing properties, and these are summarized in Proposition 4.3. In particular,
the empirical quantile is invariant under rotations and equivariant under re-scaling.

Of the confidence regions consider here, the new confidence region CR1−α is also the
most computationally intensive and requires some simulations. On the other hand, the
regions CRSCH,1−α, and CRQ1,1−α may be calculated directly. However, in all of the two-
dimensional examples considered here, CR1−α took less then one minute to compute on
a 2.4 GHz dual core Macintosh laptop. This could probably be reduced even further by
studying more efficient programming techniques. Thus, the time requirements to calculate
these regions do not carry great practical constraints. Matlab script calculating all three
regions for the example of Section 6.2 is available online at www.math.yorku.ca/
∼hkj/Software/.

Previous work on the problem of confidence regions for the effective dose is, to our best
knowledge, not extensive. The region CRSCH,1−α was introduced in Carter et al. (1986)
and studied extensively in Li et al. (2008b) for the parametric model. Li et al. (2008b) also
consider the problem of the conditional effective dose (i.e. the effective dose obtained after
holding certain covariates fixed). Although our simulations do not explore this, the new
method presented here can also be applied in this setting. We conjecture that empirical
coverage will be similar, particularly for models without interactions, as fixing a covariate
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essentially changes the behaviour of the intercept in such cases. This conditional approach
would be most appealing in higher dimensions, since relationships are more difficult to
visualize when d > 2.

Li et al. (2010) also study an extension of this approach to the case where f̂n is estimated
using a semi-parametric model. They consider two methods: one is based on a theoret-
ical bound of supZ2

n similar to the parametric case, and the second is based on empiri-
cal estimation of the theoretical quantiles of supZ2

n via a parametric bootstrap procedure.
Unfortunately, their theoretical bounds in this setting are incorrect (this is the reason for
the discrepancy between the bootstrap and theoretical procedure noted in Li et al. (2010,
Section 4.1 and Figure 1)). The bootstrap approach, although quite conservative, is more
promising. However, although the semi-parametric estimates are insensitive to the choice
of bandwidth, the parametric bootstrap confidence regions increase in size and coverage as
h decreases. This is not surprising as the covariance depends on

√
nh in the denominator.

The question of optimal choice of h was not considered in Li et al. (2008b). One could also
try the region CR1−α in the semi-parametric setting, and we intend to study this problem
thoroughly in a future work.
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9. APPENDIX

9.1. Additional simulations. Following Li et al. (2008b) we consider several different
experimental designs in our simulations. The various designs are given in Figure 9, and
recall that contours of the true models are given in Figure 3. In these simulations we
consider only the case where Σ must be estimated from the data. The results for n = 36
are given in Table 6 and those for n = 360 in Table 7. We note that for n = 36 and the
linear and interaction models, under designs 1,3, and 5 one expects at least 10 failures and
10 successes, but not so for designs 2,4, and 6. This is also holds for n = 36 and n = 360
for all designs in the log term model. As in Section 5, we do not report the simulations
which had a large proportion (more than ∼ 20%) of data in complete separation.

9.2. Technical work.

Proof of Proposition 4.3. (1) By definition, γα is such that bαBc of the observed sets
satisfy ρ(Ai, KB) ≤ γα.

(2) This again follows from the definition.
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TABLE 6. Empirical coverage probabilities of 95% confidence regions for
ED100p for the parametric models give in Table 1 using Σ̂n throughout. The
designs are shown in Figure 9. Results not statistically different from 0.95

are shown in bold. The mean proportion of the domain covered by the
region is given in brackets.

linear interaction log term

n design p SCH Q1 CR SCH Q1 CR SCH Q1 CR

36 2 .1 .989 .956 .993 .992 .917 .992 .984 .930 .993
(.70) (.47) (.83) (.98) (.74) (.98) (.23) (.16) (.32)

.5 1.00 .938 1.00 1.00 .943 1.00 1.00 .888 .997
(.93) (.57) (.98) (.99) (.67) (.98) (.92) (.46) (.97)

.9 1.00 .957 1.00 1.00 .987 1.00 .993 .937 .997
(.51) (.43) (.57) (.59) (.44) (.62) (.65) (.55) (.68)

3 .1 .989 .921 .993 .996 .925 .995 .992 .911 .998
(.74) (.61) (.81) (.85) (.68) (.87) (.59) (.42) (.68)

.5 1.00 .968 1.00 1.00 .916 1.00 1.00 .930 .999
(.98) (.68) (1.0) (1.0) (.82) (1.0) (.95) (.65) (.98)

.9 .979 .912 .986 .995 .908 .992 .981 .905 .989
(.74) (.61) (.81) (.80) (.53) (.82) (.84) (.73) (.88)

4 .1 .985 .915 .932 * * * .989 .906 .993
(.85) (.62) (.93) * * * (.49) (.33) (.61)

.5 1.00 .963 1.00 * * * .998 .902 .997
(.97) (.73) (.99) * * * (.93) (.59) (.98)

.9 1.00 .955 1.00 * * * .994 .905 .997
(.71) (.58) (.77) * * * (.78) (.66) (.81)

5 .1 .993 .930 .995 .999 .931 .997 .989 .933 .994
(.65) (.51) (.74) (.81) (.68) (.83) (.51) (.34) (.62)

.5 1.00 .910 .998 1.00 .899 1.00 1.00 .912 .999
(.99) (.63) (1.0) (1.0) (.79) (1.0) (.98) (.63) (.99)

.9 .987 .916 .989 .994 .920 .994 .986 .911 .992
(.65) (.51) (.74) (.73) (.53) (.76) (.78) (.65) (.84)

6 .1 .989 .919 .996 .993 .908 .993 .990 .945 .996
(.85) (.61) (.93) (1.0) (.98) (.1.0) (.59) (.33) (.75)

.5 1.00 .957 1.00 1.00 .957 1.00 .998 .894 .998
(.97) (.70) (.99) (1.0) (.97) (1.0) (1.0) (.70) (1.0)

.9 .999 .979 1.00 1.00 .987 1.00 .993 .931 .997
(.65) (.54) (.72) (.96) (.94) (.97) (.74) (.65) (.78)
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TABLE 7. Empirical coverage probabilities of 95% confidence regions for
ED100p for the parametric models give in Table 1 using Σ̂n throughout. The
designs are shown in Figure 9. Results not statistically different from 0.95

are shown in bold. The mean proportion of the domain covered by the
region is given in brackets.

linear interaction quadratic log term

n design p SCH CR SCH CR SCH CR SCH CR

360 2 .1 .983 .972 .987 .970 .998 .995 .991 .980
(.16) ( .15) (.30) (.29) (.33) (.29) (.08) (.08)

.5 .983 .947 .993 .979 1.00 .987 .986 .965
(.23) (.26) (.53) (.54) (.46) (.38) (.16) (.17)

.9 .994 .983 1.00 .999 .997 .968 .990 .971
(.27) (.28) (.27) (.24) (.63) (.57) (.30) (.32)

3 .1 .985 .969 .992 .986 * * .987 .984
(.34) (.36) (.49) (.45) * * (.18) (.21)

.5 .986 .944 .992 .947 * * .985 .970
(.39) (.40) (.47) (.46) * * (.37) (.40)

.9 .987 .991 .995 .993 * * .982 .968
(.34) (.33) (.30) (.31) * * (.42) (.43)

4 .1 .985 .961 .986 .988 .996 .981 .993 .978
(.29) (.31) (.77) (.78) (.69) (.64) (.12) (.14)

.5 .987 .956 .992 .963 1.00 .985 .973 .960
(.37) (.40) (.71) (.72) (.74) (.69) (.30) (.32)

.9 .991 .995 .995 .992 .998 .982 .988 .970
(.36) (.37) (.51) (.52) (.78) (.74) (.38) (.40)

5 .1 .985 .970 .991 .989 * * .993 .975
(.27) (.27) (.48) (.48) * * (.14) (.16)

.5 .987 .971 .992 .963 * * .977 .968
(.31) (.31) (.49) (.46) * * (.30) (.31)

.9 .990 .972 .995 .992 * * .983 .963
(.27) (.26) (.35) (.35) * * (.37) (.38)

6 .1 .994 .977 .991 .992 .999 .997 .991 .976
(.16) (.26) (.85) (.85) (.91) (.90) (.11) (.12)

.5 .994 .976 .994 .983 1.00 .996 .982 .966
(.36) (.38) (.83) (.84) (.94) (.92) (.28) (.31)

.9 .996 .994 .998 .998 .997 .990 .988 .967
(.35) (.34) (.69) (.70) (.96) (.95) (.43) (.44)
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FIGURE 9. Different design matrices considered for the parametric model.
The designs are shown from left to right: 1–3 in the top row and 4–6 in the

bottow row.

(3) Recall that ρH(A,B) = supx∈D |dA(x)− dB(x)|, where dA(·) denotes the distance
transform of A (Delfour and Zolésio, 1994), and also that dg(A)(x) = dA(g−1(x))
(Jankowski and Stanberry, 2010, see e.g.). It follows that

ρH(g(Ai), g(KB)) = ρH(Ai, KB),

which implies the result.
(4) The same argument as for rigid motions works for dilations by α > 0.

�
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