A Nonparametric Approach for Estimating Aggregate Loss

Gabriela González

York University

May 25, 2013

joint work with Hanna Jankowski

The Problem Setup:

$$S = \sum_{i=1}^{N} X_i$$

$$X_i := \Omega_X \to (0, \infty)$$
 Severity distribution $N := \Omega_N \to 0, 1, 2, ... \perp X_i \forall i \quad in(1, ..., N)$ $X_i \quad IID$

Proposition

- Assume a Zero Modified Discrete Log-Concave Distribution for the number of claims
- While gaining robustness, the proposed model will preserve efficiency
- Compare our approach with Panjer's Recursion method

The Problem Setup:

$$S = \sum_{i=1}^{N} X_i$$

$$X_i := \Omega_X \to (0, \infty)$$
 Severity distribution $N := \Omega_N \to 0, 1, 2, ... \perp X_i \forall i \quad in(1, ..., N)$ $X_i \quad IID$

Proposition

- Assume a Zero Modified Discrete Log-Concave Distribution for the number of claims
- While gaining robustness, the proposed model will preserve efficiency
- Compare our approach with Panjer's Recursion method

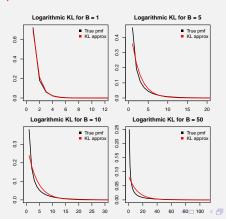
Popular Distributions for the number of claims N:

• Poisson(λ)

 \rightarrow belong to LC class

- geometric(p)
- negative binomial(r,p)
- binomial(n,p)
- logarithmic(B)

→ not member of LC class



Panjer's Method:

Definition

$$k \frac{p_N(k)}{p_N(k-1)} = ak + b$$
, for $k = 1, 2, 3, ...$

Model Advantages

- The distribution of the Aggregate Loss is recursively computed
- Simple first approach for model identification

For a sample size of 10,000 with an std = 0.01581139

True Distribution	Unidentified	Poisson	Geometric	Binomial	Logarithmic	Negative Binomial
Negative Binomial	0.003	0.002	0.842	0.000	0.000	0.153
Binomial	0.032	0.689	0.000	0.279	0.000	0.000
Geometric	0.392	0.001	0.607	0.000	0.000	0.000
Poisson	0.119	0.845	0.001	0.022	0.000	0.013

The proposed model for N:

$$p_N(k) = \alpha \delta_0^k + (1 - \alpha)\rho(k)$$

The proposed model for N:

$$p_N(k) = \alpha \delta_0^k + (1 - \alpha)\rho(k)$$

where...

$$\delta_0^k = \begin{cases} 1 & k = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\rho(k) = e^{\varphi(k)} \text{ for } k = 1, 2, 3, \dots$$

$$\alpha \in (0,1)$$

The proposed model for N:

$$p_N(k) = \alpha \delta_0^k + (1 - \alpha)\rho(k)$$

where...

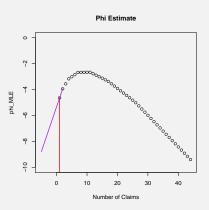
$$\delta_0^k = \begin{cases} 1 & k = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\rho(k) = e^{\varphi(k)} \text{ for } k = 1, 2, 3, \dots$$

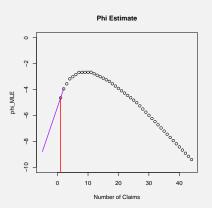
$$\alpha$$
 ∈ (0, 1)

Identifiable?

Identifiability

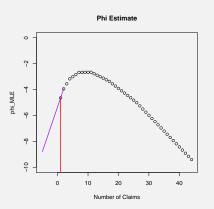


Identifiability



Restriction

Identifiability



Restriction

$$\rho(k) \ = \ \left\{ \begin{array}{ll} \mathrm{e}^{\varphi(k)} & \mathrm{for} & k=1,2,3,\dots \\ 0 & \mathrm{otherwise} \end{array} \right.$$

MLE Estimates:

$$\widehat{
ho_N}(k) = \widehat{lpha} \delta_0^k + (1 - \widehat{lpha}) \widehat{
ho}(k)$$
 $\widehat{lpha} = rac{\mathbb{I}(N_i(0))}{n} \quad \text{for} \qquad i = 1, \dots, n$ $\widehat{
ho} = \left\{ egin{array}{ll} e^{\widehat{arphi}(k)_{MLE}} & \text{for} \qquad k = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{array}
ight.$

MLE Estimates:

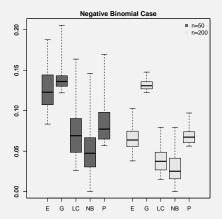
$$\widehat{\rho}_N(k) = \widehat{\alpha} \delta_0^k + (1-\widehat{\alpha})\widehat{\rho}(k)$$

$$\widehat{\alpha} = \frac{\mathbb{I}(N_i(0))}{n} \quad \text{for} \qquad i = 1, \dots, n$$

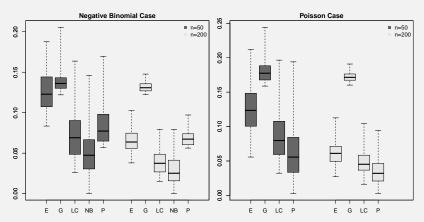
$$\widehat{\rho} = \begin{cases} e^{\widehat{\varphi(k)}MLE} \quad \text{for} \qquad k = 1, 2, 3, \dots \\ 0 \qquad \text{otherwise} \end{cases}$$
 otherwise

*l*₂ Distances from the true PMF:

l₂ Distances from the true PMF:

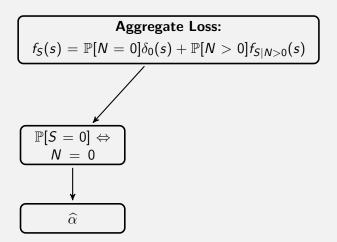


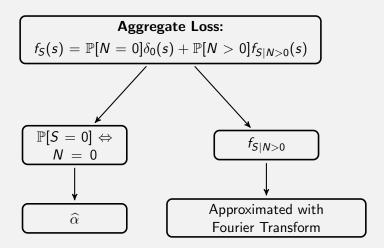
*l*₂ Distances from the true PMF:



Aggregate Loss:

$$f_{\mathcal{S}}(s) = \mathbb{P}[N=0]\delta_0(s) + \mathbb{P}[N>0]f_{\mathcal{S}|N>0}(s)$$



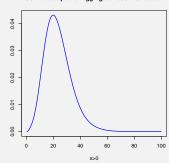


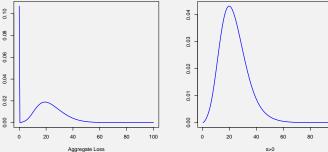
Estimate of Aggregate Loss

010 880 900 900 200 40 60 80 100

Aggregate Loss

Continuous part of Aggregate Loss Distribution





Future work

- Prove consistency of the proposed model
- Generalize the assumptions on the claim severity
- Provide a goodness of fit statistic under a discrete log-concave distribution

100

THANK YOU

$$f_{S|N>0}(s) = \int_{-\infty}^{\infty} \phi_S(-2\pi i t) e^{2\pi i t s} dt$$