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Abstract

The concept of implied volatility is one of the great successes of the Black-Scholes model.
However, Black-Scholes relies on a normal distribution, which historical data shows is not
adequate to describe real markets. This is often seen in implied volatility surfaces which
“smile” and “smirk”, taking on different values for different strike prices. In this paper we
discuss a more empirically founded type of implied volatility based on Lévy distributions,
first introduced by Corcuera, Guillaume, Leoni and Schoutens in 2009. We use implied Lévy
volatility with real market prices to reduce the presence of smiles and smirks. We perform
several delta and gamma hedging experiments to test the performance of the Black-Scholes
model against Lévy models. Finally, we price barrier options using implied Black-Scholes and
implied Lévy volatility and discuss how the change in volatility affects the prices.
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1 Introduction

The Black-Scholes model has seen paramount success partially due to the concept of implied
volatility which it introduced. Implied volatility allows traders to match market prices with
theoretical model prices in a consistent way. It is often convenient to quote vanilla options
by their implied Black-Scholes volatility as it does not require units of currency, and traders
have gained an intuition for this quantity over the years. Implied volatility depends on strike
price and time to maturity, and so it is usually reported as a curve or surface.

The drawback of implementing implied volatility using the Black-Scholes pricing model
is that it is based on a normal distribution. Historical data indicates that return distribu-
tions on stocks are often skewed and heavier-tailed than can be described by the normal
distribution. As a result of this, when implied Black-Scholes volatility is calculated for real
option prices, the surfaces often “smile” or “smirk” with respect to strike price. The fact
that different strikes yield different values for implied volatility indicates that the model
does not accurately describe the behaviour of the stock. This creates a problem when pric-
ing barrier options concerning which volatility to use as input; the volatility corresponding
to the strike price, the barrier level, or perhaps some average of these two values.

In this paper we discuss Lévy distributions and the additional freedom they provide
in calibrating skewness and kurtosis. We discuss a more generalized version of implied
volatility which works for Lévy processes. Since Brownian motion is itself a Lévy process,
the models discussed here reduce to the Black-Scholes model if a Brownian motion is used.
The concept of implied Lévy volatility was first introduced in 2009 by Corcuera, Guillaume,
Leoni and Schoutens in [6]. They discussed implied Lévy space and time volatility models,
both of which will be covered here in great detail.

In addition, we discuss the Carr-Madan approach to option pricing using the fast Fourier
transform (FFT). This method can be implemented for any Lévy process whose charac-
teristic function is computable. This formulation will be used for implied Lévy volatility
calculations. We also use the Carr-Madan formula to derive the delta and gamma of a call
option under the Lévy framework. This will allow us to perform hedging experiments using
Lévy models.

One of the benefits of using implied Lévy volatility is that the additional degrees of
freedom provided by the model can be used to reduce the presence of smiling in the implied
volatility surface. In Section 4 we examine options on AAPL stock that exhibit both smiling
and smirking implied Black-Scholes volatility. We calibrate the corresponding implied Lévy
space and time volatility models to yield flatter curves, suggesting that Lévy models are
capable of more accurately describe the stock price.

In Section 5 we compare the performance of delta and gamma hedges when Black-
Scholes and Lévy parameters are used. Using data which covers the 2007 financial crisis,
we hedge a rolling at-the-money option on the S&P 500 and investigate the performance
of the hedges under various models. Evaluating the hedging performance during the crisis
works as a stress test for the models. We determine the optimal parameter settings which
lead to the smallest hedging error for each model.

In Section 6 we price barrier options using Monte Carlo simulation and the implied
Black-Scholes and Lévy volatility data from Section 4. We investigate how the flatter
volatility curve affects the range of barrier option prices using both geometric Brownian
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motion and a normal inverse Gaussian process to drive the simulations. We discuss several
ways that volatility can directly or indirectly affect the price of barrier options. Finally
we formulate our conclusions in Section 7 and discuss some areas where this work can be
expanded upon in the future in Section 8.

2 Fundamental concepts

2.1 The Black-Scholes model

The Black-Scholes model assumes that the risk-neutral price process for the underlying
stock follows a geometric Brownian motion:

St = S0 e
(r−q−σ2/2)t+σWt

where t ≥ 0, is the time remaining until maturity, r ≥ 0 is the risk-free interest rate, q ≥ 0
is the dividend yield, σ > 0 is the volatility parameter and Wt is a standard Brownian
motion. To verify that this is a risk-neutral process, we must show that

E[St|Fτ ] = St e
(r−q)(t−τ)

for any t > τ . We do this by showing that Xt = S0 e
σWt−σ2t/2 is a martingale:

dXt =
∂X

∂t
Xt dt+

∂X

∂w
Xt dWt +

1

2

∂2X

∂w2
Xt (dWt)

2

= −1

2
σ2Xt dt+ σXt dWt +

1

2
σ2Xt(dt)

= σXt dWt.

This shows that the drift of the process St = Xt e
(r−q)t is equal to (r − q) dt which implies

that the expected continuous log-return of the stock is the risk-free rate (minus the dividend
yield). Equipped with this model, one can calculate the price of a vanilla European call
option to be the famous Black-Scholes formula:

C(S0,K, T, r, σ, q) = S0 e
−qTN(d1)−K e−rTN(d2) (1)

where

d1 =
log(S0/K) + (r − q + σ2/2)T

σ
√
T

,

d2 = d1 − σ
√
T ,

and N(·) is the standard normal cumulative distribution function. At any given time, the
parameters S0, r, σ and q are the same for every derivative written on the asset, so when
pricing options it is convenient to abbreviate the call price function as C(K,T ) which we
will do whenever possible.
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2.2 Implied volatility

After the introduction of the Black-Scholes model during the 1970’s, traders began using
it to calibrate their models. Rather than calculating volatility by tracking the stock price,
calculating daily returns and computing the standard deviation of the return distribution,
they would find the value for volatility σ(K,T ) such that when plugged into the Black-
Scholes formula, the resulting price equalled the current market price. This value is called
the implied Black-Scholes volatility, or simply the implied volatility of the option, and it
represents what volatility the market deems appropriate for the stock.
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Figure 1: Implied Black-Scholes volatility for sev-
eral AAPL calls; S0 = 264.08. Data Source: Yahoo!
Finance, July 27, 2010.

When the Black-Scholes model is used
to calculate implied volatility one often ob-
tains different numbers for different values
of K and T . In particular, a “smile” or
“smirk” shape is often observed in the plot
of implied volatility versus strike price. Im-
plied volatility tends to increase with ma-
turity time, but is often larger for options
with very short maturities. This is due to
the increase in price that sometimes occurs
when options are close to maturity as the
price and the payoff converge.

2.3 Hedging with the Greeks

The Greeks of an option measure the sen-
sitivity of its price with respect to its in-
put parameters S0,K, T, r and σ. Knowing
these sensitivities helps traders to hedge more effectively. The most common way to hedge
a portfolio is to make it insensitive to changes in the underlying stock. The relevant Greeks
for this are the first and second derivatives of the option price with respect to spot price;
delta (∆) and gamma (Γ) respectively. By differentiating the Black-Scholes formula with
respect to S0 we obtain the Black-Scholes delta:

∆ =
∂C

∂S0

=
∂

∂S0

[
S0 e

−qTN(d1)−K e−rTN(d2)
]

= e−qTN(d1) + S0 e
−qT ∂N(d1)

∂S0
−K e−rT

∂N(d2)

∂S0

= e−qTN(d1) + S0 e
−qT 1

S0 σ
√
T
n(d1)−K e−rT

1

S0 σ
√
T
n(d2)

= e−qTN(d1) +
1

S0 σ
√
T

[
S0 e

−qT n(d1)−K e−rT n(d2)
]

= e−qTN(d1)
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where n(·) is the standard normal probability density function. We have used the identity
S0 e

−qT n(d1) = K e−rT n(d2) in the last line. We differentiate delta with respect to S0 to
obtain gamma:

Γ = e−qT
∂

∂S0
N(d!)

= e−qT n(d1)
∂d1
∂S0

= e−qT
n(d1)

S0 σ
√
T
.

The ability to create a perfect continuous delta hedge is the basis for the arbitrage
argument which gives rise to the Black-Scholes formula. A perfectly hedged portfolio can
be created by holding a long call option and −∆ shares of the underlying asset or the reverse
position; a short call option and ∆ shares of the underlying. The purpose of holding the
underlying is to neutralize the instantaneous sensitivity of the portfolio with respect to
the spot price; the delta of the portfolio is simply the sum of the deltas of the option and
underlying:

∆portfolio = ±∆call ∓∆call
∂S0
∂S0

= 0, (2)

and so we call such a portfolio delta neutral. To maintain a perfect hedge, the portfolio must
be rebalanced continuously, as the delta of the option changes due to movements in the
stock price and and the passage of time. Therefore it is practically impossible to implement
this strategy, as there will always be a measurable period of time between trades. The risk
that arises by trading in discrete time is a form of gap risk ; which is the risk associated
with the value of the underlying changing in between trades.

An obvious way to manage gap risk is to rebalance more often. However, in practice this
can get expensive due to the transaction costs associated with trading. A better approach
is to further reduce the sensitivity of the portfolio in order to marginalize the change in
value that could occur between trades. This can be achieved through gamma hedging. A
portfolio is gamma neutral if the second derivative of its value with respect to the spot
price equals zero. If the delta of the portfolio truly did not change over an interval of time,
there would be no need to rebalance continuously, and this gamma hedge would have zero
hedging error. However this is not always the case and thus one can not guarantee that
a discretely rebalanced delta/gamma hedge will always outperform a discretely rebalanced
delta hedge.

Purchasing the underlying asset has no effect on the gamma of the portfolio, as it has
a gamma value of zero. So in order to neutralize the gamma of an option, one must use
another derivative security written on the same underlying asset. Usually another option
with a different strike price is used. Since this option will be sold and repurchased on
occasion, one would in practice want to use a liquid option for this purpose, such as an
option which is close to being at-the-money.

Let ∆ and Γ denote the delta and gamma of the option we want to hedge, and ∆′

and Γ′ denote the delta and gamma of the option we are using to create the hedge. Let
a denote the amount of underlying necessary to neutralize the delta of the options in the
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portfolio, and b denote the amount of the second option we need to purchase to neutralize
the gamma. To obtain a zero portfolio delta we then need

∆ + a+ b∆′ = 0. (3)

To obtain a zero portfolio gamma we need

Γ + bΓ′ = 0. (4)

Equation (4) shows that we must hold the opposite position

b = − Γ

Γ′

in the second option to neutralize the gamma of the first option. Therefore in order to
delta-hedge the portfolio we must hold

a = −∆ +
Γ

Γ′
∆′

units of the underlying stock.
In addition to hedging away the delta and gamma of the portfolio, it will be convenient

for us to also maintain a portfolio with zero value. This can be achieved by taking a position
in the money market (either borrowing or lending) equal to minus the value of the stocks
and options in the portfolio. The benefit of constructing the portfolio this way is that the
hedging error is simply equal to the portfolio value, with a perfect hedge having a portfolio
value of zero. This makes is straight forward to calculate a hedging error distribution to
evaluate the performance of the hedge.

As an example of how hedging error is calculated, consider the following delta hedge
calculation. Beginning with a brand new call with price C(K,T ) and delta ∆ we delta-hedge
this option by purchasing −∆ shares of the underlying asset. The value of the portfolio is
now

V0 = C(K,T )−∆S0.

In addition to this, we invest
−(C(K,T )−∆S0)

in the money market which makes the value of the portfolio equal to zero. The next day
(after δt time has passed) the value of the portfolio is:

Vδt = C(K,T − δt)−∆Sδt − (C(K,T )−∆S0)e
rδt.

If our hedge was perfect, we would have Vδt = 0. Hence the hedging error (any deviation
from zero) can be measured by the value of Vδt.

2.4 Barrier options

A barrier option is an exotic option which pays depending on whether or not the underlying
stock price reaches a predetermined price called the barrier level, denoted by B, at some
time before maturity. We will look at four varieties of barrier options:
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Name Barrier relative to spot price and call payoff

“Up and Out” S0 < B
payoffcall = (ST −K)+I0≤t≤T (maxSt < B)

“Down and Out” S0 > B
payoffcall = (ST −K)+I0≤t≤T (minSt > B)

“Up and In” S0 < B
payoffcall = (ST −K)+I0≤t≤T (maxSt > B)

“Down and In” S0 > B
payoffcall = (ST −K)+I0≤t≤T (minSt < B)

The “up” and “down” in the option name indicates that the barrier level is above below
the spot price, respectively. The underlying must cross the barrier in order for “in” barrier
options become activated (they must be knocked in). Conversely, “out” options are initially
active and are knocked out, becoming void, if the underlying crosses the barrier.

Barrier options are always cheaper than a similar European option without a barrier,
and so they can be used to make more specific bets than vanilla options. For example, if
you are willing to bet that a stock price worth $90 will increase, but not above $100 you
could purchase an up-and-out call and pay a smaller premium than a European call.

Since “in” barriers pay exactly when “out” barriers do not, it is possible to replicate a
European option by purchasing an in-out pair with the same barrier level (i.e. a “down-
in/down-out” pair or an “up-in/up-out” pair). Therefore it must be true that the sum of
the prices of any in-out pair equals the price of a European call in order for there to be no
arbitrage opportunities.

3 Lévy framework

3.1 Shortcomings of the Black-Scholes model

Although the Black-Scholes model has been widely adopted due to its simplicity, it is based
on several unreasonable assumptions. Empirical evidence suggests that the Black-Scholes
model does not adequately describe the statistical properties of the markets. In particular,
historical data indicates that that log-returns typically do not follow a normal distribution.
Table 1 shows the cumulants of the normal(µ, σ2) distribution for reference.

Table 1: Cumulants of the Normal(µ, σ2) distribution.

Mean SD Skewness Kurtosis

N(µ, σ2) µ σ 0 3

Table 2 shows the historical cumulants for several major indices and stocks from different
industries. These datasets use daily market data from 1 January 2007 to 28 July 2010.
Recall that skewness measures the asymmetry of a distribution and is defined as

E[(X − µX)3]

var[X]3/2
.

8



Table 2: Empirical mean, standard deviation, skewness and kurtosis of major indices and stocks (Apple
Inc., Ford Motor Co., Potash Corp. of Saskatchewan Inc., Exxon Mobil Corp.).

Index Mean SD Skewness Kurtosis

Dow Jones -0.00018 0.01644 0.05481 6.67717
Nasdaq -0.00006 0.01854 -0.12699 4.83206
S&P 500 -0.00027 0.01807 -0.18269 6.31336
TSX -0.00011 0.01689 -0.56274 6.04778
DAX -0.00008 0.01736 0.21633 6.35851
FTSE 100 -0.00018 0.01658 -0.04907 5.57404
AAPL 0.00126 0.02711 -0.46031 4.79007
F 0.00060 0.04287 -0.04700 9.02968
POT 0.00081 0.03826 -1.12956 8.08810
XOM -0.00014 0.02131 0.15629 11.32333

The empirical data is skewed in every case, suggesting that an asymmetrical distribution
would be a better fit. Recall that kurtosis is defined as

E[(X − µX)4]

var[X]2
.

If the kurtosis is lower than 3, the distribution has a flatter top (platykurtic), and if the
kurtosis is greater than 3, the distribution has a high peak and heavier tails (leptokurtic).
We clearly see that the datasets give rise to return distributions which are more leptokurtic
than the normal distribution, suggesting that we should use a distribution with a flexible
kurtosis to create a better fit.

3.2 Lévy processes

Let X be a random variable with characteristic function φ(u) = E
[
eiuX

]
. If, for every

positive integer n, there exist i.i.d. random variables X1, X2, . . . Xn, such that X = X1 +
X2 + . . .+Xn in distribution, we call X infinitely divisible.

For every infinitely divisible distribution, we can define a stochastic process {Xt : t ≥ 0}
called a Lévy process with the following properties:

1. X0 = 0,

2. stationary and independent increments,

3. Xt −Xs has (φ(u))t−s as a characteristic function (for any 0 ≤ s ≤ t).

It is not difficult to show that geometric Brownian motion is a Lévy process, and hence
the framework we build here has the Black-Scholes model as a special case. The Lévy
process we will focus on in this paper is the normal inverse Gaussian (NIG) process. It is
relatively straightforward to apply and can be simulated directly (as opposed to some Lévy
processes which must be approximated), which will be useful when pricing barrier options.
The NIG process {Xt : t ≥ 0} is a Lévy process such that Xt follows the NIG(α, β, δt, µt)
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Figure 2: Density functions of standard normal and several NIG distributions with mean zero and variance
one.

Table 3: Characteristics of the general (left) and symmetric (right) normal inverse Gaussian distributions

NIG(α, β, δ, µ) NIG(α, 0, δ, µ)

mean µ+ (δβ/
√
α2 − β2) µ

variance α2δ(α2 − β2)−3/2 δ/α

skewness 3βα−1δ−1/2(α2 − β2)−1/4 0

kurtosis 3

(
1 + α2+4β2

δα2
√
α2−β2

)
3[1 + (1/αδ)]

distribution, with tail-heaviness α > 0, asymmetry parameter β ∈ (−α, α), scale parameter
δ > 0, and location parameter µ ∈ R, for all t. The distribution scales as follows: if
X ∼ NIG(α, β, δ, µ) then cX ∼ NIG(α/c, β/c, cδ, cµ). Figure 2 shows the density function
for several NIG distributions with mean zero and variance one. The symmetric distribution
has a kurtosis of 6. The asymmetric distributions have a kurtosis of 13.6667, and skewness
values of −2 and 2.

The characteristic function of the NIG distribution is given by

φNIG(u;α, β, δ, µ) = exp
(
iuµ− δ

(√
α2 − (β + iu)2 −

√
α2 − β2

))
for u ∈ R. We will replace β with κα for κ ∈ (−1, 1) in our numerical analysis. It will
be necessary when modelling stock prices to choose a normal inverse Gaussian distribution
such that E[X1] = 0 and Var[X1] = 1. This can be achieved by setting

δ = α
(
1− k2

)3/2
and

µ = −ακ
(
1− κ2

)
.
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3.3 Calculating option prices and Greeks under Lévy models

When we remove the assumption that the stock price follows a geometric Brownian motion
in favour of a more general semi-martingale (of which Lévy processes are a subset), the
fundamental theorem of asset pricing no longer holds. In particular, we lose market com-
pleteness as there is no longer a unique risk-neutral measure. This means we also lose the
ability to perfectly hedge an option through continuous-time delta hedging. However, since
trading is always performed discretely in practice, the non-existence of a perfect continuous
hedge will not affect our ability to hedge under Lévy models. Most practitioners believe
that the market is incomplete, so a pricing model which supports market incompleteness is
desirable.

3.3.1 Call option pricing using characteristic functions

Following [4], we price options as follows. Let Q denote a measure such that the discounted
stock price is a martingale. The price C(K,T ) of a European call option with strike K and
maturity T can be defined as the expected price (under Q) at maturity, discounted by the
risk-free rate:

C(K,T ) = e−rTEQ[(ST −K)+]. (5)

Under the Black-Scholes model, this is the unique arbitrage-free price. Under the general
Lévy framework, this price lies in an interval of arbitrage-free prices corresponding to a
range of martingale measures.

Whenever the risk-neutral density function is available, (5) can be evaluated analytically.
However, it is usually a lengthy process. A faster approach is to use the fast Fourier
transform (FFT) method developed by Carr and Madan in [4]. Their formula for the price
of the European call option is

C(K,T ) =
e−λ log(K)

π

∫ ∞
0

e−iv log(K)ψT (v) dv (6)

where

ψT (v) =
e−rTϕT (v − (λ+ 1)i)

(λ+ iv)(λ+ 1 + iv)
,

and λ > 0 is a parameter which ensures the result ψT (v) is finite. The only part of this
formulation which depends on the model is the function ϕT (u) which is (under Q) the
characteristic function of the log-price process at maturity T ,

ϕT (u) = EQ[eiu log(ST )].

The benefit of this approach to option pricing is that it can be implemented for any
Lévy distribution whose characteristic function is available analytically. This gives us the
freedom to use distributions with skewness and kurtosis which better match empirical values
from the market. (6) can be evaluated numerically very quickly with the help of the inverse
fast Fourier transform. The formulation can be used to price put options as well, through
put-call parity.
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3.3.2 Calculation of delta

The delta of an option is defined analogously in the Lévy case; it measures the sensitivity
of the option with respect to changes in the underlying stock price. To calculate delta, we
differentiate (6):

∆ =
∂

∂S0

[
e−λ log(K)

π

∫ ∞
0

e−iv log(K) e−rTϕT (v − (λ+ 1)i)

λ2 + λ− v2 + i(2λ+ 1)v
dv

]

=
e−λ log(K)

π

∫ ∞
0

e−iv log(K)e−rT

λ2 + λ− v2 + i(2λ+ 1)v

∂ [ϕT (v − (λ+ 1)i)]

∂S0
dv. (7)

In order to formulate this explicitly, we evaluate

∂ [ϕT (v − (λ+ 1)i)]

∂S0
=

∂

∂S0
EQ[ei(v−(λ+1)i) log(ST )]

=
∂

∂S0
EQ[ei(v−(λ+1)i)[log(S0)+log(e(r−q+ω)T+σXT )]]

= i(v − (λ+ 1)i)
1

S0
EQ[ei(v−(λ+1)i)[log(S0)+log(e(r−q+ω)T+σXT )]]

=
λ+ 1 + vi

S0
ϕT (v − (λ+ 1)i). (8)

Combining this result with equation (7), and using the fact that λ2+λ−v2+i(2λ+1)v =
(λ+ vi)(λ+ 1 + vi) we obtain

∆ =
e−λ log(K)

π

∫ ∞
0

e−iv log(K)e−rT

(λ+ vi)(λ+ 1 + vi)

λ+ 1 + vi

S0
ϕT (v − (λ+ 1)i) dv

=
e−λ log(K)

π

∫ ∞
0

e−iv log(K)e−rT

S0(λ+ vi)
ϕT (v − (λ+ 1)i) dv. (9)

3.3.3 Calculation of gamma

The gamma of an option measures the second order sensitivity of the option with respect
to the underlying stock price.

Γ =
∂2C(K,T )

∂S2
0

=
∂∆

∂S0
.

We calculate gamma using the results of (8) and (9):
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Γ =
∂

∂S0

[
e−λ log(K)

π

∫ ∞
0

e−iv log(K)e−rT

S0(λ+ vi)
ϕT (v − (λ+ 1)i) dv

]

=
e−λ log(K)

π

∫ ∞
0

e−iv log(K)e−rT

(λ+ vi)

∂

∂S0

[
ϕT (v − (λ+ 1)i)

S0

]
dv

=
e−λ log(K)

π

∫ ∞
0

e−iv log(K)e−rT

(λ+ vi)

[
λ+1+vi
S0

ϕT (v − (λ+ 1)i)(S0)− (1)ϕT (v − (λ+ 1)i)

S2
0

]
dv

=
e−λ log(K)

π

∫ ∞
0

e−iv log(K)e−rT

(λ+ vi)

[
ϕT (v − (λ+ 1)i)(λ+ 1 + vi− 1)

S2
0

]
dv

=
e−λ log(K)

π

∫ ∞
0

e−iv log(K)e−rT

S2
0

ϕT (v − (λ+ 1)i) dv. (10)

3.4 Simulating Lévy processes

If one wants to perform Monte Carlo calculations using Lévy processes, it is necessary to
simulate from Lévy distributions. It is possible to simulate any Lévy process using an
approximation of a compound Poisson process, but for specific Lévy processes, there are
more sophisticated methods available. In particular, we focus on the NIG model, which can
be simulated explicitly as a time-changed Brownian motion, with random time step sizes
following an inverse Gaussian (IG) process. When used for option pricing, the location
parameter µ of the NIG process has no effect on the price of the option, so for convenience
we take µ = 0.

The following algorithm can be used to simulate a sample path from a NIG(α, β, δ, 0)
distribution. In order to properly simulate the stock price, the NIG process must have a
mean of zero and a variance of 1. Let T denote the time to maturity and Nt denote the
number of time steps:

i. Set dt = T/Nt

ii. Set a = dt

iii. Set b = δ
√
α2 − β2

iv. Generate Nt standard normal random variables v1, . . . , vNt

v. Set yi = v2i for i = 1, . . . , Nt

vi. Set xi =
a

b
+

yi
2b2
−

√
4abyi + y2i

2b2
for i = 1, . . . , Nt

vii. Generate Nt standard uniform random variables u1, . . . , uNt

viii. If ui ≤
a

a+ bxi
, set ∆IGi = xi; Otherwise, set ∆IGi =

a2

xib2
for i = 1, . . . , Nt

ix. Generate Nt standard normal random variables n1, . . . , nNt

13



x. Set Xi =

i∑
j=1

βδ2∆IGj + δnj
√

∆IGj for i = 1, . . . , Nt

The Xi values follow the desired NIG process.

4 Implied Lévy volatility

We now discuss two Lévy models for a stock price process which, coupled with our option
pricing model for Lévy processes, gives us the necessary tools to formulate the concept of
implied Lévy volatility as introduced in [6]. We discuss Lévy space and time models, both
of which can better match the heavy tails and skewness of log returns observed in Table 2.

4.1 Implied Lévy space volatility

Let {Xt : t ≥ 0} be a Lévy process. We denote the characteristic function of X1 by

φ1(u) = E[exp(iuX1)] .

We additionally require that E[Xt] = 0 and Var[Xt] = t, which ensures that Var[σXt] = σ2t.
Under the Lévy space model, the stock price process is modelled as

St = S0 e
(r−q+ω)t+σXt , t ≥ 0,

where
ω = − log(φ1(−σi))

is the mean correcting term necessary to make the model risk-neutral, by making the
discounted stock price a martingale. We now verify this fact.

Proposition 1. eσXt−log(φ1(−σi))t is a martingale.

Proof. Let 0 ≤ s ≤ t.

E
[
eσXt−log(φ1(−σi))t | Fs

]
= eσXs−log(φ1(−σi))tE

[
eσ(Xt−Xs) | Fs

]
↓ (independent increments)

= eσXse− log(φ1(−σi))tE
[
eσ(Xt−Xs)

]
↓ (stationary increments)

= eσXs−log(φ1(−σi))tE
[
eσ(tX1−sX1)

]
= eσXs−log(φ1(−σi))tE

[
e− log eσX1 (s−t)

]
= eσXs−log(φ1(−σi))tE

[
e− log ei(−σi)X1 (s−t)

]
= eσXs−log(φ1(−σi))tE

[
e− logE[ei(−σi)X1 ](s−t)

]
= eσXs−log(φ1(−σi))tE

[
e− log φ1(−σi)(s−t)

]
= eσXs−log(φ1(−σi))s.
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In order to price options using the Carr-Madan formulation, we need to compute the
characteristic function of log(ST ):

ϕT (u) = E
[
eiu logST

]
= E

[
eiu(logS0+(r−q+ω)t+σXT )

]
= eiu(logS0+(r−q+ω)t)E

[
eiuσXT

]
= eiu(logS0+(r−q+ω)t)φT (σu).

The volatility parameter σ necessary to match the model price with a given market
price is called the implied Lévy space volatility of the option.

4.2 Implied Lévy time volatility

We again begin with a Lévy process {Xt : t ≥ 0} such that E[Xt] = 0 and Var[Xt] = t,
and hence Var[Xσ2t] = σ2t. We denote the characteristic function of X1 by φ1(u) =
E[exp(iuX1)].

St = S0 e
(r−q+ω̃σ2)t+Xσ2t , t ≥ 0,

where
ω̃ = − log(φ1(−i))

is the mean correcting term necessary to make this new model risk-neutral. We now verify
this fact with an expectation calculation similar to the previous section.

Proposition 2. eXσ2t−log(φ1(−i))σ
2t is a martingale.

Proof. Let 0 ≤ s ≤ t.

E
[
eXσ2t−log(φ1(−i))σ

2t | Fs
]

= eXσ2s−log(φ1(−i))σ
2tE
[
e(Xσ2t−Xσ2s) | Fs

]
↓ (independent increments)

= eXσ2s− log(φ1(−i))σ2tE
[
e(Xσ2t−Xσ2s)

]
↓ (stationary increments)

= eXσ2s− log(φ1(−i))σ2tE
[
e(σ

2tX1−σ2sX1)
]

= eXσ2s− log(φ1(−i))σ2tE
[
e− log eX1 (σ2s−σ2t)

]
= eXσ2s− log(φ1(−i))σ2tE

[
e− log ei(−iX1)(σ2s−σ2t)

]
= eXσ2s− log(φ1(−i))σ2tE

[
e− logE[ei(−iX1)](σ2s−σ2t)

]
= eXσ2s− log(φ1(−i))σ2tE

[
e− log φ1(−i)(σ2s−σ2t)

]
= eXσ2s−log(φ1(−i))σ

2s.
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In order to price options using the Carr-Madan formulation, we need to compute the
characteristic function of log(ST ) under this model as well:

ϕT (u) = E
[
eiu logST

]
= E

[
eiu(logS0+(r−q+ω̃σ2)t+Xσ2T )

]
= eiu(logS0+(r−q+ω̃σ2)t)E

[
eiuXσ2T

]
= eiu(logS0+(r−q+ω̃σ2)t)φσ2T (u).

Similar to the Black-Scholes model, we call the volatility parameter σ necessary to
match the model price with a given market price the implied Lévy time volatility of the
option.

Notice that if we use a Brownian motion as our Lévy process, then σWt and Wσ2t follow
the same N(0, σ2t) distribution. Thus the space and time models coincide in the Black-
Scholes setting and will yield the same option prices and implied volatilities. However this
is not always the case for more general Lévy processes. Examples where the two models
differ will be seen in the sections which follow.

4.3 Black-Scholes smiles and Lévy waves

In this section we calculate implied Lévy volatility curves for some options whose implied
Black-Scholes volatility curve has a smile shape. We will consider how both symmetric and
asymmetric NIG models perform at reducing the smile. For the data exhibiting the smile
shape, we used the 27 July 2010 closing market prices of several AAPL (Apple Inc.) AUG
10 calls (maturing on 20 August 2010) with the following parameter settings:

S0 = 264.08, r = 2%, q = 0, T = 24/365, K = 230, 240, . . . , 360, 370.
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Figure 3: Implied volatility for the symmetric NIG space (left) and time (right) models.

Figure 3 shows the symmetric NIG implied Lévy space and time volatility curves for the
range of values of α which performed the best. As we increase α, the shape of the implied
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Figure 4: Implied volatility for asymmetric NIG space (κ = −0.2) (left) and time (κ = −0.25) (right)
models.

Lévy volatility curves tend once again towards a smile shape. In order to obtain similar
performance under the NIG space and time models, a much larger α is needed for the time
model. Under the symmetric model, we see that the flattening of the smile is present but
not remarkable; we attempt to improve this flattening by using an asymmetric model with
carefully chosen parameters {κ, α}.

Figure 4 shows asymmetric NIG implied Lévy space and time volatility curves for a
range of α values which again were the best performing. By choosing NIG distributions
with negative skewness, we were able to improve the flattening of the smile even further.
We again see that in order to obtain similar performance in the space and time models,
we must use a much larger α value for the time model. The NIG space model performed
slightly better overall, although this is likely a result of our data set; given a different set
of data or a different implied Lévy volatlilty shape, the time model could perform better.

Similar to the artifical market situation examined in [6], we see that in both the sym-
metric and asymmetric cases there appear to be two strike prices for which the implied
Lévy volatility is invariant with respect to α. It may be possible to further improve the
performance by using a different distribution, such as variance gamma, Meixner, CGMY,
or any other infinitely divisible distribution for which the characteristic function can be
computed.

4.4 Black-Scholes smirks and Lévy waves

We now calculate implied Lévy volatlilty curves for a different set of AAPL calls whose
implied Black-Scholes volatility curve has a smirk shape. We again test both the symmetric
and asymmetric model for their performance in flattening the smirk.

The options which form our data set are the 27 July 2010 closing prices of JAN 11 calls
(maturing on 21 January 2011) with the following parameter settings:

S0 = 264.08, r = 2%, q = 0, T = 178/365, K = 230, 240, . . . , 360, 370.
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Figure 5: Implied volatility for symmetric NIG space (left) and time (right) models.

The implied volatility smirk directly captures the asymmetry of the true underlying dis-
tribution of the stock, so we expect to see the symmetric NIG distribution behave similarly
to the normal distribution. This is exactly what was observed, as seen in Figure 5. Both
the space and time models perform more or less the same although we required a larger α
in the time case to achieve the same performance as the space model.

By moving to an asymmetric model, we attempt to obtain some form of flattening. Fig-
ure 6 shows implied volatility curves for some asymmetric NIG space and time models with
κ = −0.5 for the range of values of α which were able to effectively flatten the smirk. For the
ranges of α chosen, an increase in the value of α corresponded to a downward translation of
the implied volatility curve. If α was increased further, the implied Lévy volatility curves
tended towards the implied Black-Scholes volatility curve. If α was decreased further, the
curves began to “frown” in slightly skewed manner. This behaviour is due to the inverse
relationship between α and the skewness of the NIG distribution. This relationship was
important when choosing our parameters as we were forced to strike a balance between tail
heaviness and skewness.

We see that by moving away from a normal distribution and using a Lévy model with
more parameters, we have the additional degrees of freedom necessary to calibrate our
model in a way that better fits historical data.

5 Hedging performance

In order to further study how Lévy models perform when used with real market data, we
compare their hedging performance with that of the Black-Scholes model. In each hedging
strategy, we create a portfolio with an initial value of zero, so that the hedging error at a
later date, HE(∆t) is simply the value of the portfolio, with a value of zero corresponding
to a perfect hedge.

For each model used, a different hedging error distribution will arise; as a measure of
error we will calculate the absolute value of the mean plus the standard deviation and
the variance of each distribution in order to compare performance. The data used in our
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Figure 6: Implied volatility for asymmetric NIG space (κ = −0.5) (left) and time (κ = −0.5) (right)
models.

analysis is composed of the VIX implied (Black-Scholes) volatility index of options on the
S&P 500, as well S&P 500 price data ranging from 1 January 2007 to 27 July 2010. This
data covers the financial crisis and the abnormal market dynamics that it caused. These
dynamics may prove challenging for our hedges. Using this data, we first calculated the
implied Lévy space and time volatilities for each day (Figure 7).
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Figure 7: Evolution of implied volatility in the Black-
Scholes (VIX), NIG space and NIG time models for
some specific values of α.

We observed that the implied Lévy
models yielded consistently higher volatil-
ity values than the Black-Scholes model.
During the large spike in volatility starting
around day 400, the time volatility did not
increase as sharply as the space volatility,
suggesting that the space and time models
behave similarly during a financial crisis.

Under the Black-Scholes model, the
Black-Scholes formulas for the Greeks were
used, with the VIX data as the input
volatility. In the Lévy case, we used the for-
mulas for the Greeks that were calculated
in Section 3, coupled with the implied Lévy
volatility values corresponding to the VIX
data points (Figure 7).

5.1 Delta hedging

We consider a theoretical rolling at-the-money call option with one month to maturity. We
delta-hedge this option for one day, and observe the hedging error. The next day we start
with a fresh at-the-money call with one month to maturity and repeat this one-day hedge,
producing many samples from the hedging error distribution. We use the symmetric NIG
space and time models and asymmetric space and time models with κ values of 0.5 and
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−0.5. for the hedging experiment. We begin by calculating the Black-Scholes, and Lévy
delta values of an at-the-money option for each day.
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Figure 8: Evolution of Black-Scholes, and NIG space
and time delta of at-the-money options on the S&P
500 for specific α vaules.

Figure 8 looks at the evolution of delta
for the Black-Scholes, and NIG space and
time models. It shows that the NIG time
delta is hardly affected by the large spike in
volatility seen around days 400-500 while
the NIG space delta drops sharply. This
could have a significant effect on the rel-
ative performance of the space and time
hedges, as the delta dictates how much
stock a trader should purchase to create a
delta-neutral portfolio. It also suggests that
the NIG space and time hedges are gener-
ally more conservative than Black-Scholes
in the sense that they often dictate holding
a smaller position in the underlying asset in
order to neutralize the delta of the portfolio.

Figure 9 compares the delta hedging er-
rors of the NIG space and time models with

the Black-Scholes model. We see an improvement in hedging performance in the symmetric
space and time models and the positively skewed space and time models, and decreased
performance in the negatively skewed models, which is surprising given that the actual
skewness of the S&P data was −0.1811.
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Figure 9: Variance (left) and error measurement (right) of the delta hedging error distribution of NIG
space and time models.

The results are an indication of the improvement in hedging performance that can
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be gained from Lévy models, when given the correct parameter settings. Comparing the
variance plot with the plot of the error measurement it is clear that the standard deviation
dominates the value of the error measurement.

5.2 Gamma hedging

0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

Trading Day

Γ

Evolution of Γ

 

 
BS
NIG Space (α = 1)
NIG Time (α = 1.2)

Figure 10: Evolution of Black-Scholes, and NIG
space and time gamma of at-the-money options on
the S&P 500 for specific α vaules.

The primary benefit of gamma-hedged
portfolio is that it can be rebalanced less
frequently than a delta-hedged portfolio
without decreasing the performance of the
hedge. This is beneficial to traders who
wish to reduce transaction costs.

We consider the same rolling at-the-
money call options on the S&P 500 for this
analysis. Figure 10 shows the evolution of
gamma under the three models over the
time period of our experiment. During the
large spike in volatility around days 400-500
the NIG space and time gamma values drop
sharply down to similar levels to the Black-
Scholes values. This means that during the
peak of the financial crisis, all three gamma hedges would perform similarly. We performed
three gamma hedging tests using 1 day, 2 weeks and 4 weeks between each trade in order to
compare the performance. The option we used to hedge with was 0.5% out-of-the-money.
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Figure 11: Variance (left) and error measurement (right) of the gamma hedging error distribution of NIG
space and time models.

Figure 11 and Figure 12 show the hedging errors for the three trading frequencies
examined. We see an improvement in gamma hedging performance in the NIG space
and time models over Black-Scholes when certain α values are used. As expected, the
more frequently rebalanced (daily) portfolio performed the best, though the shapes of the
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hedging error curves are similar for all rebalancing frequencies. The optimal hedging error
distributions corresponded to an α value of around 1.6 in both the space and time models.
We again observe that the value of the error measurement is dominated by the standard
deviation.
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Figure 12: Variance (left) and error measurement (right) of the gamma hedging error distribution of NIG
space and time models using daily hedging.

5.3 Delta and gamma hedging

When a portfolio is gamma-hedged in practice, it is typically delta-hedged as well. This
type of hedge can theoretically outperform a portfolio that is either delta or gamma-hedged
exclusively, for a carefully chosen rebalancing frequency. The option we used to gamma
hedge with was again 0.5% out-of-the-money.

We include the results of delta/gamma hedging for 1 and 2 weeks between trades in
Figure 13, and with daily trading in Figure 14. If we moved to 3 weeks or longer between
trades, the Lévy models began failing to outperform the Black-Scholes model. Leaving
such a large gap between trades allows the delta of the portfolio to depart considerably far
from neutrality, and it seems the Lévy models are more sensitive to this change in trading
frequency than the Black-Scholes model. This makes sense since Lévy deltas are generally
smaller than the Black-Scholes delta values (Figure 8), suggesting that the smaller positions
(in the underlying) would change by a larger percentage between trades.

Overall, we again see a performance improvement in the size of the hedging error of the
Lévy models, but for a reduced range of α values; indicating that for a carefully chosen α,
we can reduce the error measurement of the hedging error distribution. The improvement
in the value of the error measurement was not as dramatic in this case though, possibly
due to the poor performance of the delta hedge with such a large time gap between trades.
However, the variance of the hedging error was reduced by almost 50% for some values of
α which is a more promising result.
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Figure 13: Variance (left) and error measurement (right) of the delta/gamma hedging error distribution
of NIG space and time models.
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Figure 14: Variance (left) and error measurement (right) of the delta/gamma hedging error distribution
of NIG space and time models using daily rebalancing.
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6 Barrier pricing performance

As a test of how the prices of barrier options are affected by which pricing model and
which implied volatility is used, we calculate the prices of theoretical barrier call options
on AAPL stock using the implied volatility values from the asymmetric “smirk” NIG space
case (Figure 6). We perform four sets of Monte Carlo simulations using vanilla call option
prices as a control variate to reduce the variance of the sample payoffs. The four sets of
simulations performed were configured as follows:

1. Geometric Brownian motion price process using σBS(K)

2. Geometric Brownian motion price process using σNIG(K)

3. NIG space price process using σBS(K)

4. NIG space price process using σNIG(K)

The parameter settings for the simulations were:

S0 = 264.08, r = 2%, q = 0, T = 178/365,
K = 230, 240, . . . , 360, 370, Bup = 350, Bdown = 250.

The barrier levels Bup and Bdown were chosen to ensure that the barrier option prices
were not particularly one-sided. Recall the no-arbitrage condition that the sum of the prices
of an “in” and ”out” pair of options should equal the price of a vanilla option. This means
that a decrease in the price of one member of the pair results in an increase in the price of
the other member.

Our primary interest is in examining how moving from implied Black-Scholes volatility
to implied Lévy volatility affects the barrier prices. Pricing the options in the four ways
described will allow us to isolate the effects of the model (kurtosis, skewness, etc. . . ) from
the effects of the volatility. We create four separate pricing graphs for up-and-in, up-and-
out, down-and-in, and down-and-out barrier call options. Figure 15 looks at the barrier
prices obtained by using both a geometric Brownian motion price process and a Lévy price
process, with both the Black-Scholes and Lévy implied volatilities. Table 4 contains the
percentage values of barrier crossings that were observed in the simulations.

6.1 Geometric Brownian motion price process

We first discuss the prices obtained using the geometric Brownian motion price process.
We see in Figure 15 that in the case of “up” barrier options, the increase in volatility from
switching to implied Lévy volatility caused an increase in the price of up-and-in options
and a slight decrease in the price of up-and-out options. This makes intuitive sense because
a higher volatility makes the stock price more likely to cross the barrier, thus making “in”
options more valuable and “out” options less valuable. The first two rows of Table 4 show
an increase of approximately a 7–8% in the percentage of “up” barrier crossings observed
after switching from Black-Scholes to Lévy volatility.

The results are slightly different in the case of the “down” options. The Lévy volatility
prices were higher for both the down-and-in and the down-and-out calls. In this case the
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Figure 15: Barrier option prices for Black-Scholes and Lévy models, at implied Black-Scholes and Lévy
volatilities.

results in Table 4 show that the number of “down” barrier crossings grew by 3 to 4 percent,
which on its own would cause a decrease in the price of down-and-out options. The fact
that we observed an increase in price must therefore be due to the option having matured
deeper and more frequently in-the-money, causing higher observed payoffs and thus driving
up the price.

6.2 Lévy price process

The NIG space model which yielded the flattest implied Lévy volatility curve in Figure 6
was chosen as the barrier pricing model. In this model, α was set to 3.5 and κ was set to
−0.5. The skewness of this distribution is −0.5714; a relatively large negative skewness,
which made upward movements in the stock price more likely than downward movements.

Figure 15 shows results similar to the previous section for barrier prices when a Lévy
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Table 4: Percentage of Monte Carlo simulations where barrier was crossed for each type of barrier option
and pricing configuration.

Up-and-in Up-and-out Down-and-in Down-and-out

GBM @ BS vol 17.07 16.97 79.58 79.70
GBM @ Levy vol 24.13 24.39 83.77 83.29

NIG @ BS vol 8.91 9.04 62.01 62.10
NIG @ Levy vol 14.98 14.79 66.51 66.27

price process is used. We see in the case of “up” options that the higher (implied Lévy )
volatility increased the value of the up-and-in options and decreased slightly the value of
the up-and-out options. This was coupled with a 5–6% increase in the number of barrier
crossings. In the case of “down” options we observe that the negative skewness caused the
number of barrier crossing events that occurred to increase by only 3–4%. So the increase
in price when using Lévy volatility must again be caused by the options finishing deeper
in-the-money on average. This was helped by the large negative skewness our distribution
was calibrated with.

The effect on the prices by switching to a Lévy process was much more significant than
the effect of the volatility. In Figure 15 we see in both the “up” and ”down” cases that the
switch to a Lévy process caused a decrease in the price of “in” options and an increase of
equal value in the price of ”out” options. This suggests a decrease in the number of barrier
crossings upon switching to the Lévy process. Table 4 shows that in all 8 cases (4 types of
barrier option, 2 types of volatility), the move to a Lévy process did dramatically decrease
the number of observed barrier crossings.

The decrease in barrier crossings is surprising given that our Lévy process has a skewness
of −0.5714 and a kurtosis of 3.807; slightly higher than the normal distribution. We would
expect the move to a heavier tailed distribution to cause more barrier crossings. The fact
that we observed less crossings implies that the NIG process we used tends to remain closer
to S0 over the course of the simulations compared to a geometric Brownian motion.

7 Conclusion

By using the concept of implied Lévy volatility first introduced by Corcuera et. al. in [6],
we have shown that switching to a more flexible Lévy distribution allows us to perform
several market functions more accurately than under the Black-Scholes model.

We first tested the performance of implied Lévy volatility with real market data. It
was demonstrated that the curvature of an implied volatility plot could be minimized with
a properly calibrated Lévy model. The additional degrees of freedom allowed us to use
asymmetric distributions with heavier tails, which better fit the return distributions ob-
served historically. This gave improvements over implied Black-Scholes volatility smiles
and smirks, with the smirk case showing the greatest improvement by flattening the curve
almost completely.

It was shown that one can calibrate a Lévy model such that the absolute mean and
variance of the hedging error are lower than those values obtained by the Black-Scholes
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model for delta, gamma and delta/gamma hedging. Even using data covering the 2007
financial crisis, we saw a reduction in the hedging error of as much as 50% in certain delta
and gamma hedging models. The ability to reduce hedging error is desirable to any option
trader as it can effectively minimize losses due to the errors that can arise from hedging
discretely. This can in turn lead to lower economic capital requirements and thus higher
margins for profits.

Lastly we used the flattened volatility curve obtained earlier to analyze the effect of
volatility on the price of barrier options. A flatter volatility curve is desirable because
it eliminates the problem of which implied volatility one should input into the pricing
function; the volatility corresponding to the strike price, the barrier level or perhaps some
average of the two. We saw changes in our Monte Carlo barrier prices caused by changes
in the percentage of barrier crossings, and also how deep and how frequently the options
finished in-the-money. If barrier options are priced using a model which is more accurately
calibrated to the market, these changes in barrier crossings and moneyness should reflect
more closely the type of behaviour that is observed historically.

8 Future Work

The results we have discussed here were for a normal inverse Gaussian process, but the
procedures we used can be applied using any Lévy process for which the characteristic
function is computable. This includes, for instance the Meixner, variance gamma, CGMY,
and generalized tempered stable processes. We could possibly improve performance further
by seeing how each of these models compare at flattening the implied volatility surface,
especially in the case of a “smile”, where the results we saw showed room for improvement.

There are other forms of hedging which can be expanded to Lévy models. These most
notably include theta; sensitivity of the option value with respect to time, and vega; the
sensitivity with respect to volatility. By formulating the theta and vega of an option under
the Carr-Madan framework, we can compare the performance of a broader range of hedging
strategies.

Lastly, the techniques we have for pricing barrier options using implied Lévy volatility
can be applied to any other exotic option where there is some uncertainty in which volatility
to use for pricing. The change in performance upon switching to implied Lévy volatility
could be compared with what was seen in barrier options which could provide deeper
understanding of how the volatility affects the value of exotic options.
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