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We seek a better understanding of this evolution over influenza seasons. In a
previous work, we studied the evolution (antigenic drift) of the highly variable

influenza A H3N2 by focusing on the hemagglutinin (HA) viral glycoprotein. In
this update, we include also the neuraminidase (NA) glycoprotein, another protein
that contributes to the antigenic drift of influenza. Our method is based on a
dimension reduction technique combined with a fully automatic Hamming distance

statistical clustering method for categorical data (Zhang et al. JASA, 2006). The
new NA results are compared with the previous HA results to provide a more
complete picture of flu virus evolution.

1. Introduction

In the northern and southern parts of the world, influenza outbreaks occur

mainly in the winter months while in areas around the equator outbreaks

may occur at any time of the year1. The seasonal pattern of infection in the

hemispheres has coined the name ‘seasonal influenza’. Seasonal influenza

is associated with significant human mortality and morbidity worldwide1,3.

Much of the seasonal influenza burden is caused by influenza A1.

Influenza A viruses are classified into subtypes based on antibody re-

sponses to their two surface glycoproteins, hemagglutinin (HA) and neu-

raminidase (NA). There are 16 HA and 9 NA subtypes known, but only

HA 1, 2, and 3, and NA 1 and 2 are commonly found in humans2,3. Among
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the many subtypes of influenza A viruses, the influenza A H1N1 and H3N2

subtypes currently cause seasonal influenza epidemics, with H3N2 causing

the vast majority of infections3.

Influenza A viruses continuously undergo mutation in the HA and NA

surface antigens. This is called antigenic drift. Through antigenic drift, an

increasing variety of strains are created. The new strains can then cause

seasonal epidemics, since the population can only gain partial immunity

from previous infection(s). The HA protein has been identified to the be

the major contributor to the antigenic drift seen in influenza A3. Changes

in the NA protein, however, have also been shown to contribute3.

Vaccination against influenza is recommended every year1,4,5. The con-

tinuous change in the circulating influenza strains requires the seasonal in-

fluenza vaccine formulation to be considered yearly. The vaccine, however,

takes approximately six months to formulate and produce. Throughout

this manufacturing period the influenza virus continues to evolve. This,

in turn, affects the efficacy of the vaccine in the population. Between the

years 1997 to 2007, vaccine efficacy ranged from 18%–90%6. Clearly, the

methods employed to predict the circulating influenza strains from year to

year are not optimal.

A second control strategy against influenza includes the use of antiviral

drugs, which can reduce the severity of symptoms and pathogen transmis-

sion during influenza infection7. There are two classes of antiviral drugs cur-

rently in use, neuraminidase inhibitors (oseltamivir and zanamivir) and M2

protein inhibitors (adamantine derivatives). Currently, adamantine is not

recommended for treatment of influenza7. When influenza is circulating in

a community, either oseltamivir or zanamivir are recommended in the treat-

ment of patients that have risk of severe complications from infection, but

only if treatment can be initiated within 48 hours of the onset of symptoms7.

NA mutations that confer resistance to oseltamivir and zanamivir have

been identified in seasonal influenza epidemics7. Neuraminidase inhibitor

efficacy, thus, is affected by changes in the NA glycoprotein8.

We are interested in quantifying the evolution of the HA and NA gly-

coproteins. We have developed a formal cluster-based technique that can

be used to study the evolution of influenza over time9. Previously, we

employed our technique to determine families (or clusters) of the H3N2

HA glycoprotein genetic sequence9. Our results uncovered important new

trends in HA evolution9. We now continue our study of seasonal influenza

A H3N2 mutation focusing on the NA glycoprotein.
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Table 1. Vaccine sequences in the dataset.

Stain Name Number of sequences Accession Number

A/Moscow/10/99 2 AY531035, DQ487341
A/Fujian/411/2002 2 CY088483, CY112933
A/California/7/2004 1 CY114373

A/Wisconsin/67/2005 4 CY033646, CY163936
CY114381, EU103823

A/Brisbane/10/2007 3 CY035022, CY039087
EU199366

A/Perth/16/2009 1 GQ293081
A/Victoria/361/2011 1 KC306165
A/Texas/50/2012 2 KC892248, KC892952

2. Data Description and Methodology

2.1. Data acquisition

The NA sequences considered in the study were obtained from the publicly

available online repository known as the Influenza Research Database10

(IRD), www.fludb.org. The specific sequences used were chosen based

on the criteria given in Table 2. The calendar year, country and city of

isolation for each sequence is provided in the IRD. We also wanted to make

sure that strains used for vaccines (Table 1) were included in the data.

Vaccine sequences containing the complete date (year, month, and day) are

naturally selected by our search criteria. Some vaccine sequences did not

have a complete date, and were added to the data set manually. The criteria

yield a total of 2049 sequences with 550 amino acids each, and among these

are 12 vaccine sequences.

Table 2. IRD criteria: All other settings kept default or blank.

Option Criteria

“Data to return”: protein
“Virus type”: A
“Sub type”: H3N2

“Select segments”: NA
“Complete sequences”: Complete Segments Only
“Date range”: 1998 to 2012
“Host”: Human

“Geographic grouping”: All

Advanced options

“Month Range”: Sep 1998 to July 2012
“Remove Duplicate Sequences”: Yes
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Figure 1. Dendrograms of clusters by mean Hamming distance. This plot is drawn

using hierarchical cluster analysis with complete linkage. The left plot is based only on
the 75 highest entropy sites, whereas the right plot uses all 550 sites to calculate the
Hamming distance.

MEGA 5.2 software11 was then used to translate the RNA sequences

into protein sequences, while the software MUSCLE12 was used to align the

sequences. Perl script was written to order and combine the sequences for

processing in Matlab. This procedure resulted in 2049 observations with

550 categorical variables, each containing 21 categorical states (20 for each

kind of amino acid and one to represent a gap). The occurrence of gaps

may be due to some deletion or transition of a nucleotide, which is highly

related to random genetic drift and evolution. Another reason for gaps is

the inappropriate alignment of the sequences. Since NA protein sequences

are highly conservative and the alignment uses pairwise comparison, the

probability of improper alignment should be quite small.

Files containing both the pre- and post-processed data are pro-

vided as supplementary material, and are also available online at

www.math.yorku.ca/~hkj/Research.
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Figure 2. From left to right: mean Hamming distance matrix of 75 selected most varied
sites by cluster, mean Hamming distance matrix of the whole sequence with 566 sites by

cluster, absolute differences of the two matrices. Both matrices (left and centre) have
been standardized by dividing by their corresponding maximum values.

2.2. Clustering the sequences

Our goal was to analyze the vaccine and observed strain sequences via

clustering. Our methodology is the same as previously employed in Li et

al. 9 and comprises two main steps: a dimension reduction step and a

clustering step based on Hamming distance.

(1) Dimension reduction step: As the original data lives inside a

space of dimension 21550, a dimension reduction step is necessary.

To do this, the entropy of the empirical distribution on proteins was

calculated at each site for the 2049 observed sequences. The sites

with no variability or only one varying location were removed from

the data (these correspond to very small entropy or zero entropy).

The remaining entropies were clustered using a Gaussian mixture

model14,16 implemented in the R software package15. The cluster

with the highest entropy was then selected for further analysis. This

allows us to consider only 75 sites with highest variability for the

next step.

(2) Clustering step: In the second step we cluster the data, which

now lives in a space of maximal size 2175. The clustering method was

that of Zhang et al. (JASA, 2006)13, see also Li et al. (2015) 9 for

additional details. We remark that the method is fully automatic,

intuitive, and based on the Hamming distance between sequences.
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Figure 3. (a) Cluster sizes and vaccine locations. For convenience, the clusters have
been re-ordered by earliest year of isolation. Clusters containing a vaccine strain are

denoted in black. (b) The number of HA protein sequences within each cluster plotted
versus calendar year of isolation.



July 6, 2015 22:15 Proceedings Trim Size: 9in x 6in NAproceeding˙July6˙2015

7

3. Results

We first analyzed the sequence data as described above. The initial dimen-

sion reduction (step (1)) yielded 75 sites of “high variability.” The clustering

step (step (2)) yielded six clusters. Figure 1 shows the dendrograms of the

resulting clusters where the distance is based on the mean Hamming dis-

tance for (left panel) just the 75 sites of highest entropy/variability, and

(right panel) all 550 sites. We can see that there is little difference between

these two dendrograms, providing evidence that our dimension reduction

step does not lose much (if any) important information. This is confirmed

also in Figure 2, where the mean Hamming distances of the six clusters are

compared when calculated for the 75 selected sites, and for all 550 sites.

Figure 3 (a) shows histograms of the cluster size, where clusters con-

taining vaccines are identified in black. Figure 3 (b) shows the number of

protein sequences within each cluster plotted against the calendar year of

virus isolation. The dominant cluster, cluster five, overwhelms these re-

sults. For this reason, we added an additional analysis, whereby cluster

five was again clustered (or sub-clustered) using the previously described

two-step procedure. Details are given in the following section.

3.1. Sub-clusters of cluster five
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Figure 4. Mean hamming distance is shown for the (a) selected sites, (b) all sites, and
(c) the difference between all and the selected sites.

To find sub-clusters of cluster five, we repeated steps (1) and (2) as

above. Namely, selecting only the sequences of cluster five, we first per-

formed the dimension reduction step on the entire length of the sequence.

This yielded a reduction from 550 to 38 sites. Secondly, we performed the

clustering step. This yielded 40 sub-clusters, which we denote as 5.1–5.40.
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Figure 5. Dendrograms of clusters by mean Hamming distance. This plot is drawn
using hierarchical cluster analysis with complete linkage. The left plot is based only on

the 38 highest entropy sites, whereas the right plot uses all 550 sites to calculate the
Hamming distance. (a) All sub-cluster are shown. (b) Only sub-clusters with at least 50
sequences are shown.
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Figure 6. (a) Sub-cluster sizes and vaccine locations for the sub-clusters of the dominant
cluster five. The subclusters have been re-ordered by earliest year of isolation. Clusters

containing a vaccine strain are denoted in black. (b) The number of HA protein sequences
within each sub-cluster of cluster five plotted versus calendar year of isolation.
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Heatmaps confirming the validity of the dimension reduction step are given

in Figure 4. Dendrograms of the clusters drawn by using the 38 sites and

all 550 sites are given in Figure 5. Figure 5 (a) shows all of the sub-clusters,

which is difficult to read due to the large number of small sub-clusters. Fig-

ure 5 (b) shows only those sub-clusters which contain at least 50 sequences.

Here, the dendrograms are quite similar, again justifying the dimension

reduction step.

Figure 6 (a) shows histograms of the sub-cluster sizes, where sub-clusters

containing vaccines are identified as black. Here, we identify five large (with

at least 50 sequences) sub-clusters: 5.1, 5.2, 5.12, 5.19, and 5.38. We see

a lot of “variability” here as well though - of the 40 sub-clusters, we only

identify several dominant ones. Figure 6 (b) shows the number of protein

sequences within each cluster plotted against the calendar year of virus

isolation. Here, we again clearly see the dominant sub-clusters. Notice

that the largest of these sub-clusters, sub-cluster 5.1, does not include a

vaccine strain.

4. Discussion

In this paper we have studied antigenic drift within the NA component

of the influenza A H3N2 strain that causes seasonal influenza infections

every year. We employed our previously reported method for clustering

protein sequences to identify related NA glycoproteins across influenza A

H3N2 strains. Analysis of the clusters found that the NA component of

influenza A H3N2 is related by year (or ‘flu season’), and that clusters

appear to replace older clusters over time (Figure 3). In our results, cluster

five contains almost half of the NA protein sequences in our data set. We

therefore preformed further analysis of cluster five, which resulted in 40 sub-

clusters. It is interesting to note that of the sub-clusters, the vaccine strains

are mainly located in the “dominant” sub-clusters (largest sub-clusters).

These dominant sub-clusters again appear to replace one another every few

years. These results may point to a similar trend of genetic drift in the NA

glycoprotein to that of the HA glycoprotein: cluster replacement every 2-5

years and evolution of the dominant seasonal strain9.

The results reported above were observed from two subsequent imple-

mentations of our clustering method: once to identify clusters of the NA

glycoprotein, and then again to identify sub-clusters of cluster five. Such

recursive implementations of our methodology should be seen as an avenue

for exploratory data analysis, but the methodology is not statistically rig-



July 6, 2015 22:15 Proceedings Trim Size: 9in x 6in NAproceeding˙July6˙2015

11

orous. Additional work is required to develop of a formal statistical method

that can extract both large scale (cluster-level) and small scale (sub-cluster

level) evolutionary trends.

In both our previous and current studies of influenza A antigenic drift,

we have observed that dominant clusters of the HA and NA glycopro-

teins do not always include vaccine strains. For example, sub-cluster 5.1

in the current study does not house a vaccine strain, but sub-cluster 5.2,

which is smaller in size, does. Similar observations were made for the HA

glycoprotein9. These results point to complications in the identification of

the dominant strain from year to year.

Our methodology can be improved in several ways. First, as mentioned

previously, future work is needed to address both large-scale and small-scale

evolution. In addition, it is known that, in viruses, mutations related to

immune-escape may occur in combination. The prevalence of epistasis in

the evolution of Influenza A surface proteins has been previously studied17.

We will expand our method to take epistatic mutations into account so that

‘hot-spot’ combinations of mutations can be identified.
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