
The Little Man Computer

The Little Man Computer - an instructional model of
 von Neuman computer architecture

John von Neuman (1903-1957) and Alan Turing (1912-1954)
each independently laid foundation for today’s computers -
the stored program computer

von Neuman Turing

Tuesday, October 27, 2009

http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/John_von_Neumann
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Alan_Turing

Components of Little Man

• 100 storage locations indexed 0 thru 99 - each can store a 3 digit integer
• a unique 3 digit storage location called calculator or accumulator
• a 2 digit instruction location counter
• an inbox that can contain a 3 digit number
• an outbox that can contain a 3 digit number

901

Memory/Storage locations Inbox Outbox

accumulator instruction counter

00 09

90 99

Tuesday, October 27, 2009

A Little Man Program

Consists of instructions placed in memory starting at position 00.

Instructions are of various sorts :
• some take information from inbox and place in the accumulator -
 such information called input

• some take information in the accumulator and place in outbox -
 such information called output

• some interact with information in accumulator

An instruction is a 3 digit integer
• left digit an operation code 0 to 9 - telling what type of action to take
• right 2 digits 0 to 99 indicate memory position

Tuesday, October 27, 2009

Little Man Operations

Input INP 901 info in inbox accumulator
Output OUT 902 info in accumulator outbox
Store STA 3xx info in accumulator location xx
Load LDA 5xx info in location xx accumulator
Add ADD 1xx info in location xx added to info in accumulator
Subtract SUB 2xx info in location xx subtracted from info in accumulator
Branch BRA 6xx reset program location indicator to location xx
Branch if 0 BRZ 7xx if info in accumulator = 000, reset program location to xx
Branch if ≥ 0 BRP 8xx if info in accumulator ≥ 0, reset program location to xx
Halt END 0 stop program execution
Data definition DAT used to define memory locations for storing data

operation mnemonic descriptioncode

Tuesday, October 27, 2009

Construction of Little Man Program

• The source code of a little man program is a list of mnemonic instructions.

• The collection of mnemonic instructions constitute the assembly language
 for Little Man programs

• The source code is compiled by a background program called the
 compiler

• The compiler places equivalent numeric 3 digit instruction codes
 sequentially in memory -

 could be done manually and must be done manually without
 computer implementation of the Little Man

Tuesday, October 27, 2009

• Once compiled (an operation external to the program), the program
 is started by another operation external to the program called run

• Once started the first instruction in location 00 is executed
 and the instruction location counter is incremented from 0 to 1

• The first Little Man instruction is often (but not always) an
 Input instruction -
 an outside agent puts information in the inbox for the
 input instruction to execute

Running a Little Man program

Tuesday, October 27, 2009

Input operation (INP)

901 0 4 5

0 4 5

1

Memory/Storage locations Inbox Outbox

accumulator instruction counter

00 09

90 99

The Input operation here - with 901 in location 00
• takes 045 in the Inbox and places it in the accumulator
• increments the instruction counter from 0 to 1

Tuesday, October 27, 2009

Store operation (STA)

901 310
45 0 4 5

0 4 5

2

Memory/Storage locations Inbox Outbox

accumulator instruction counter

00 09

90 99

The Store operation here - with 310 in location 01
• takes 45 in the accumulator and places it in memory location 10
• increments the instruction counter from 1 to 2
• the accumulator retains its value

Tuesday, October 27, 2009

A second Input operation

901 310 901
45

1 5 5

1 5 5

3

Memory/Storage locations Inbox Outbox

accumulator instruction counter

00 09

90 99

A second input operation here - with 901 in location 02
• waits for input
• takes new input 155 and put it in the accumulator
• increments the instruction counter from 2 to 3

Tuesday, October 27, 2009

Add operation (ADD)

901 310 901 110
45

2 0 0

1 5 5

4

Memory/Storage locations Inbox Outbox

accumulator instruction counter

00 09

90 99

An add operation is performed with a 110 in memory location 03
• the right 2 digits signify that the contents of location 10 are added
 to the accumulator giving value 200
• the instruction counter from 3 to 4

Tuesday, October 27, 2009

Out operation (OUT)

901 310 901 110 902

45
2 0 0

1 5 5 2 0 0

5

Memory/Storage locations Inbox Outbox

accumulator instruction counter

00 09

90 99

The Out operation is accomplished here with a 902 in location 05
• the contents accumulator is put in the outbox - contents
 of accumulator not changed
• the instruction counter is incremented from 4 to 5

Tuesday, October 27, 2009

HALT operation

901 310 901 110 902 OOO
45

2 0 0

1 5 5 2 0 0

5

Memory/Storage locations Inbox Outbox

accumulator instruction counter

00 09

90 99

The Halt operation is accomplished here with a 000 in location 06.
It signifies the end of the program

Tuesday, October 27, 2009

The sequence of instructions constructed was:

901 310 910 110 902 OOO

We call above the machine code of the Little Man program.
constitutes a Little Man program whose function adds two numbers

Corresponding assembly code

INP

STA FIRST

INP

ADD FIRST

OUT

END

FIRST DAT

Identifies FIRST as data - the compiler
then allocates a memory position called
FIRST. Our program has FIRST = 10.
The “label” FIRST identifies a position in
memory. It happens to be the 10th postion.

Tuesday, October 27, 2009

Branching and Labels

Branching instructions allow program to execute some instructions
under one condition and other instructions under other conditions

Example: diagram of decision process to determine greater of 2 numbers

SECOND >

FIRST ?

input FIRST

START

STOP

Output SECOND

Output FIRST

input SECOND

Tuesday, October 27, 2009

To implement example in source code using Little Man mnemonics -
 there is notion of the label of an instruction to be branched to or the label of a
data storage position
The assembly code with explanation for the example is:

LABEL CODE ARGUMENT DESCRIPTION

INP input data = x to accumulator
STA FIRST place accumulator data x in memory location defined by FIRST
INP input data = y to accumulator
STA SECOND place accumulator data y in location defined by SECOND
SUB FIRST subtract data in First from data in accumulator i.e. y - x
BRP SEC_BIG if accumulator data (y-x) ≥ 0, branch to SEC_BIG instruction
LDA FIRST otherwise x < y, so load the value x in FIRST to accumulator
OUT output the value x
BRA END_PROG go to the end instruction

SEC_BIG LDA SECOND here y ≥ x - so load value y in SECOND to accumulator
OUT output the value y

END_PROG HLT end the program
FIRST DAT declare the data region labeled FIRST

SECOND DAT declare the data region labeled SECOND

Tuesday, October 27, 2009

The assembly code with corresponding machine code in
right column

INST # LABEL CODE ARGUMENT MACHINE CODE

0 INP 901

1 STA FIRST 312

2 INP 901

3 STA SECOND 313

4 SUB FIRST 212

5 BRP SEC_BIG 809

6 LDA FIRST 512
7 OUT 902

8 BRA END_PROG 611

9 SEC_BIG LDA SECOND 513

10 OUT 902

11 END_PROG HLT OOO

12 FIRST DAT
13 SECOND DAT

Tuesday, October 27, 2009

Looping

A loop is a fixed group of instructions which must be executed more than
once dependent on a changing condition

Condition
Met ?

Instructions in
loop & increment

condition

Following

Instructions

Yes

NO

Tuesday, October 27, 2009

Looping Example - Little Man program that has output every
 odd number ≤ 99

INST
LABEL CODE ARG MACHINE

 CODE

0 INP 901 input first odd number = 1

1 LOOP SUB NUM 210 subtract 99 from value in accumulator

2 BRP END 807 if (value of accumulator - 99) ≥ 0, finished so go to END

3 LDA ODD 508 restore value of ODD to accumulator - was destroyed in #1

4 OUT 902 output value of accumulator = value of ODD

5 ADD TWO 109 add 2 to value of accumulator getting ODD + 2

6 BRA LOOP 601 Branch to instruction #1 - accumulator already set for next

7 END HALT OOO

8 TWO DAT 2

9 ODD DAT 1 Note that these 3 data declarations also declare values

10 NUM DAT 99

Tuesday, October 27, 2009

INST
LABEL CODE ARG MACHINE

 CODE

0 INP 901 input first odd number = 1

1 LOOP STA ODD 311 put value of accumulator in ODD

2 LDA NUM 512 put 99 in accumulator

3 SUB ODD 211 subtract ODD from 99

4 BRP MORE 806 if value of accumulator ≥ 0 branch to MORE

5 END HLT otherwise stop

6 MORE LDA ODD 511 put value of ODD in accumulator

7 OUT 902 output value of ODD

8 ADD TWO 110 add 2 to value of accumulator - so it contains now ODD + 2

9 BRA LOOP 601 Branch to LOOP

10 TWO DAT 2

11 ODD DAT 1 Note that these 3 data declarations also declare values

12 NUM DAT 99

A second version of previous example -
 at instruction #3 subtraction gives positive numbers
 except when ODD = 101

Tuesday, October 27, 2009

Playing with the Chen Little Man compiler
 My colleague Stephen Chen and his associate W.C.Cudmore
have constructed a simulation of a Little Man compiler.

Given Little Man assembly source code written with Little Man
mnemonics, machine code is produced which can be executed

Little Man Computer simulation

INP
LOOP SUB NUM
BRP END
LDA ODD
OUT
ADD TWO
BRA LOOP
END HLT
TWO DAT 2
ODD DAT 1
NUM DAT 99

INP
LOOP STA ODD
LDA NUM
SUB ODD
BRP MORE
END HLT
MORE LDA ODD
OUT
ADD TWO
BRA LOOP
TWO DAT 2
ODD DAT 1
NUM DAT 99

Version 1
Version 2

Below are the two versions from the previous two slides - paste them
into the simulation and run them. What is wrong with the first?

Tuesday, October 27, 2009

http://www.atkinson.yorku.ca/~sychen/research/LMC/LMCHome.html
http://www.atkinson.yorku.ca/~sychen/research/LMC/LMCHome.html

