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Abstract Goal models have long been considered to be useful tools for representing
and analyzing complex decision problems in various stages of the software develop-
ment lifecycle. Through compactly representing large numbers of alternative solu-
tions to requirements problems and capturing the impact of each solution to desired
high-level qualities, they allow identification of optimal choices with respect to speci-
fied quality priorities. To allow expression of how solutions affect qualities of interest,
a special diagrammatic modeling construct, contribution links, is utilized. A variety
of ways have been introduced both to visualize the construct and to assign to it for-
mal semantics in the form of rules for performing diagrammatic inferences. However,
there is little evidence that, during actual use, proposed visualizations evoke a way of
performing diagrammatic inferences that is consistent with the corresponding formal
semantics. We conduct an experimental study aimed at comparing two visualization
choices for contribution links, symbolic versus numeric, with respect to their abil-
ity to evoke inferences that are consistent with formal semantics proposed for such
visualizations. The experiment also explores if individual psychological differences
including trait cognitive style, mathematics anxiety, and mental math ability, affect
this evocation. Participants are asked to make a series of diagrammatic inferences
over two sets of goal models each adopting one of the two competing visualization
formats and semantics, symbolic vs. numeric. We measure accuracy, that is, the level
to which participant decisions are consistent with the formal semantics proposed for
each visualization, and investigate the effect to accuracy of the relevant factors – vi-
sualization choice, individual differences, and reasoning method adopted. Findings
include that most participants adopt specific inference rules instead of working in-
tuitively, that such rules are more consistent with the formal semantics in numeric
models, that the utilization of negative contributions and notions of goal denial may
hinter accuracy, and that the individual differences considered do not play an impor-
tant role in either accuracy or choice of inference method.
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1 Introduction

Goal models have been known to be effective tools for supporting decisions in vari-
ous stages of the software engineering life-cycle and particularly during requirements
analysis [6,20,25,100]. During that process, analysts need to make decisions with
regards to which of the possible system functionalities are consistent with higher-
level long term organizational and stakeholder objectives. Goal models can support
such decisions through representing several possible sets of functionalities of envi-
sioned systems as alternative solutions of AND/OR goal hierarchies and describing
the impact of each such alternative solution to the fulfillment of high-level strategic
objectives. In this way, concise (include only what is necessary) and complete (do not
omit necessary parts) solutions can be identified among a large set of possible such,
and evaluated subject to multiple and often conflicting strategic criteria. This feature
of goal models makes them a very promising tool for supporting and documenting
decisions not only in early requirements [74] but also in low-level software design,
configuration and adaptation [55,58,59].

A goal modeling language construct that is central for allowing such analyses is
known as the contribution link. Contribution links show how satisfaction of one goal,
which may represent an option or alternative, affects the satisfaction of another goal,
which may model a high-level decision criterion. Complex decision problems can,
thus, be modeled as networks of such links, whereby goals representing low level
decisions contribute in various ways to the satisfaction of goals representing high-
level criteria. Moreover, contribution links drawn between the latter express mutual
satisfaction dependencies among criteria, adding detail to the model.

A variety of visual representations and semantics have been proposed for contri-
bution links. Symbols, such as “+” and “−” [30,40,100] and words such as “help”
and “break” [19] are often used as contribution link annotations to describe both the
quality of the contribution, i.e., if it is positive or negative, and its size, i.e., if it is a
strong or weak contribution. Numeric annotations, such as “75” or “−0.3” have also
been proposed [5,54,67]. Depending on the representation choice, such annotations
can be useful for a visual exploration of the decision space, aimed at identification, by
human readers of the diagram, of the set of decision options, how well each such op-
tion satisfies qualities of interest, and which option is better with respect one or more
such qualities. To allow for such visual reasoning to take place consistently between
people and across time and situations, explicit formal semantics are required that ex-
actly describe how inferences about contributions and their effects can be made. Thus,
many attempts to define contribution link semantics for different kinds of representa-
tions have been made [5,30,57,60] – [39] for a related survey – often geared towards
enabling automated reasoning about decisions. Nevertheless, despite this wealth of
options, choosing the right visualization for contribution links (e.g., symbols, words,
or numbers) to accurately describe their semantics is rarely a primary concern. Of par-
ticular interest is whether visualization and semantics align with each other in terms
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of whether users of the notation can naturally infer the latter (semantics) from the
former (visualizations). Such alignment allows model readers and model developers
to make consistent diagrammatic inferences, supporting successful communication
between the two. In addition, it allows model readers to perform diagrammatic infer-
ences that are consistent with those of automated reasoners, making the output of the
latter more visually explainable.

In this paper, we present an experimental study on the intuitiveness of visual rep-
resentations of contribution links vis-à-vis their semantics. We define intuitiveness
of conceptual modeling notation constructs to be the ability of notation users to un-
derstand the supposed semantics of construct representations without prior explicit
training, and through appeal to established meanings and uses for such representa-
tions. For example, the use of symbol “+” to represent that a contribution is positive
is more intuitive than the symbol “@", in that users know from daily experience and
without the need for additional instruction that “+”, as opposed to “@", is associated
with addition (e.g. added influence, added value).

In our study, we firstly compare the intuitiveness of two distinct representations
of contribution links, namely symbolic, i.e., ones that use symbols, such as “+" and
“−", versus numeric, i.e., ones that use numbers such as 0.6 and 0.25. To perform the
intuitiveness measurement, we construct a number of goal models, each consisting
of an OR goal decomposition representing a decision with 2 or 3 options and a small
network of high-level decision criteria connected through contribution links of either
representation format (symbolic or numeric). The semantics of each representation
format, which come in the form of satisfaction propagation rules, prescribes which
of the 2 or 3 options is optimal. We then invite experimental participants to simply
look at the models and identify the optimal without complete prior training to the se-
mantics of contribution links. The participants are split in two groups: one is exposed
to models with symbolic and the other to models with numeric contribution links.
We measure the accuracy, i.e., the number of times that participants of either group
identify the correct optimal, according to semantics.

In a second follow-up exercise, participants asked to perform a slightly different
kind of diagrammatic reasoning. We expose them to a series of diagrams displaying a
single contribution link connecting two goals, disclosing to the participants the level
of satisfaction of the goal that is origin to the contribution link and asking them to
identify the satisfaction level of the destination of the link. The representation style of
contribution labels and satisfaction levels is again different in each group (symbolic
vs. numeric), and the correct answer is defined by the corresponding semantics. We
measure how often participants – who are, again, not made aware of the semantics –
guess the answer correctly, and compare the two groups in that measure.

In addition to those two main tasks, participants are also asked to describe the
method they adopted for solving the decision exercises, and answer questionnaires
that elicit their individual differences in terms of their trait cognitive style [2], math-
ematics anxiety, [37] and ability with mental arithmetic.

With the experiment we aim at answering four main research questions. The first
is asking if the two representations (numeric and symbolic) are different with re-
spect to their ability to lead participants to diagrammatic reasoning that is compliant
to the associated semantics. We answer this through comparing the accuracy of re-
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sponses between groups. The second question is what process participants are adopt-
ing to perform diagrammatic reasoning and how compliant or similar this process is
with the authoritative one. We explore this through analyzing participant descriptions.
The third question asks if individual differences (cognitive style, math anxiety, men-
tal math ability) affect the accuracy of responses in each group – answered through
studying the corresponding correlations, and the fourth research question asks if the
measured cognitive style affects the choice of diagrammatic inference method.

A key finding is that participants spontaneously adopt a concrete method for per-
forming inferences, which, further, appears to favor numeric representations and se-
mantics. Nevertheless, despite the fact that participants offer solutions compliant to
semantics in such models, the rules adopted for arriving at those compliant solutions
may be quite different from (yet partially consistent with) the ones prescribed by the
semantics. In addition, models involving negative contributions and negative satis-
faction (goal denial) were consistently found to evoke inferences that do not comply
with semantics. Finally, individual differences are not found to affect accuracy or
inference choices in any significant way. Apart from informing future research and
goal modeling language design efforts, our results have some immediate practical
implications which we present as examples of concrete modeling guidelines.

Our report combines and extends our earlier conference publications of these
studies [62,63] with previously unreported work and details including: (a) inclusion
of additional data that have been collected since the publication of the above pa-
pers that allow for more useful and confident statistical inferences (particularly on
negative results pertaining to individual differences), (b) results from experimental
tasks previously not presented including a comparison between numeric and sym-
bolic representations in single-link tasks, and analysis of free-form qualitative data,
(c) comprehensive presentation of the theoretical baseline, (d) complete details on
experimental design, administration, and acquired data with additional visualizations
and statistics, and (e) a discussion on design implications.

The paper is organized as follows. Section 2 offers background on goal models,
contribution links, and dominant representation and semantics proposals for such.
Then, Section 3 describes the notion of intuitiveness, its measurement, and factors
that may influence it in detail. Section 4 describes our experimental design, Sections
5 and 6 present the results, and Section 7 discusses general conclusions and design
implications, as well as validity threats and limitations. Then, Section 8 discusses
related work and Section 9 offers concluding remarks and future work possibilities.

2 Goal Models and Contribution Links

2.1 Goal Models as Decision Support Tools

Goal modeling languages provide constructs for capturing the structure of the inten-
tions of individual and organizational actors. Our work focuses on a particular family
of goal modeling languages that are based on i* [99,100] and predominately the lat-
est iStar 2.0 standard [19] as well as the Goal-oriented Requirement Language (GRL)
which is part of the User Requirements Notation standard (URN) [6]. Two alterna-
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Fig. 1 Goal models featuring the symbolic (A) and numeric (B) approaches to labeling contribution links.

tive graphical representations of a goal model constructed using such languages can
be seen in Figures 1(A) and 1(B). These example models present a subset of features
of the languages that is interesting for our purposes and are structured in a specific
way to support decision exploration.

Focusing on the representation on the left, the model represents the goal struc-
ture of actor Researcher who wants to have a trip organized for a conference – a
case inspired by the running example in the iStar 2.0 guiding document [19]. The
oval-shaped elements are goals which represent states of the world that actors (circu-
lar elements) want to achieve, such as for example Have Trip Organized. The goals
are connected with each other with AND- and OR-decompositions. For an AND-
decomposed (resp. OR-decomposed) goal to be considered satisfied, all (resp. one)
of its subgoals need(s) to be satisfied. Subgoals can be recursively decomposed to
other goals forming and AND/OR tree. At the bottom of such decomposition tree are
tasks which describe actions that actors need to perform for the fulfillment of parent
goals. Some tasks, such as Follow Automatic Process, imply the presence of software
functions to be executed and as such are indicators of possible software requirements.
The root goal of the goal hierarchy can be satisfied by as many subsets of leaf level
tasks – henceforth alternatives – as the solutions of the AND/OR tree. As such, the
goal decomposition implies several possible sets of requirements that can fulfill the
main (root) functional goal.

To allow evaluation and comparison of the alternatives, analysts can represent
how each of those alternatives supports higher-level strategic objectives. This is rep-
resented through qualities (also here: quality goals) in the diagram – the cloud shaped
elements – which are formally defined as attributes for which an actor desires some
level of achievement [19], such as, e.g., Accessibility.
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Qualities do not necessarily have a clear definition, i.e., a precise way to decide
when a quality is achieved or not. As such, they are assumed to be satisfied to a certain
degree and based on the satisfaction of other goals or qualities for which evidence of
satisfaction is more available. This is attained through the use of contribution links
between goals and qualities and between qualities, which is the focus of this research.

2.2 Contribution Links and their Meaning

We now turn our focus to the notion of contribution links and the various approaches
that have been introduced for (a) diagrammatically representing them, and (b) defin-
ing their semantics so as to allow consistent reasoning about how satisfaction of one
goal affects satisfaction of another. We focus on a two-valued qualitative approach
(Section 2.2.2), and a one-valued quantitative approach (Section 2.2.3). This presen-
tation is important for understanding the experimental study we present thereafter,
which compares these two approaches.

2.2.1 Contribution links in goal diagrams

Contribution links in goal models represent the idea that satisfaction of one goal or
quality has an effect to the satisfaction of some (other) quality. In Figures 1(A) and
1(B) two ways for representing contribution links can be viewed – the diagrams are
identical otherwise. In the 1(A) a symbolic approach for representing contribution
links is presented. Positive symbols, such as “+” and “++”, represent that satisfac-
tion of the origin of the contribution link positively affects satisfaction of the desti-
nation of the link. The double sign (“++”) implies that the effect is somehow of a
greater size/impact. The reverse is true for negative symbols such as “−” and “−−”,
which imply that satisfaction of the origin goal affects negatively the satisfaction
of the destination goal in some way. The double sign (“−−") is, again, used to de-
note greater impact. Following a textual approach (not seen in the figure) we can
replace the symbols “−−",“−",“+" and “++" with words “break",“hurt",“help"
and “make", respectively [19]. The textual labels would have the meaning implied
by the words used. The numeric approach is to use numbers for labels as in Figure
1(B). In the case depicted, the numbers are from the interval [0.0, 1.0]: the higher the
number, the higher the contribution.

Irrespective of representation, contribution links, even informally understood as
above, can be useful for diagrammatically identifying optimal decisions. For exam-
ple, in either of the diagrams of Figure 1, if we know that Reduce Organizing Effort
is an important quality goal, it seems reasonable that the task Book through On-line
Agent is a better choice for goal Have Trip Booked than Self-Book. We can assume
so through simply intuiting that “+” implies a positive effect and “−” a negative one
(Figure 1(A)) or that 0.8 implies a larger (positive) effect than 0.2 (Figure 1(B)),
based on our prior experience on how such symbols and numbers are interpreted and
compared. Subsequently, we make the decision based on which option brings about
a comparatively more positive effect to the quality goal of interest.
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However, such intuitive inferences may be difficult in larger and more complex
models without offering precise semantics both of contribution links and of the no-
tion of goal and quality satisfaction that such links affect. This is particularly true
when longer contribution chains need to be traversed, aggregating various contribu-
tion links arriving at the same node along the way. For example, it is unclear how one
should choose between Follow Paper-based Process and Follow Automated Process
with respect to the top-level goal Overall Experience.

2.2.2 A two-valued qualitative framework

To allow more precise and unambiguous reasoning, a variety of definitions for contri-
bution link semantics have been proposed. The original and most expressive seman-
tics for contribution links has been provided by Giorgini et al. [30,31]. According
to that framework, each quality goal carries two variables describing its satisfaction
status, a satisfaction variable and a denial variable. Each variable takes a value that
describes the level of evidence we possess that the quality is, respectively, satisfied
or denied. It is convenient to think about their proposal as offering two options for
representing and reasoning about those variables: a qualitative and a quantitative,
represented in their simplest form through symbolic and numeric contribution links
as in the diagrams of Figure 1(A) and 1(B), respectively.

The qualitative interpretation assumes that the satisfaction and denial variables
take values from the set {N,P,F}, where F stands for full evidence, P for partial
evidence and N for no evidence of satisfaction or denial, respectively. The satisfac-
tion/denial status of each quality goal is then described through two such values.
For presentation convenience here we appropriately suffix each such value based on
whether it represents satisfaction (S) or denial (D). For example, for a quality we may
have full evidence of its satisfaction and no evidence of its denial, hence {FS,ND}
and, for another, partial evidence of satisfaction and full evidence of denial, thus
{PS,FD}. Note that representing conflicting information about the satisfaction status
of a quality goal (both satisfied and denied) is perfectly acceptable and one of the
features of the framework.

Given this way of representing quality goal satisfaction, contribution links can be
seen as mappings from the space of satisfaction and denial values of the origin of the
link to the corresponding spaces of the destination of the link. The mapping is de-
fined through a set of propagation rules. Different labels decorating the contribution
link are associated with different propagation rules. Positive contribution labels ++,
+, propagate the labels as they are or with F truncated to P, respectively. Negative
contribution labels −−, − operate similarly but with the difference that they invert
the satisfaction into denial and vice-versa. A list of all possibilities can be seen on
Table 1.

The label propagation algorithm proposed by the authors [30,31] employs an ev-
idence maximization principle for deciding what the satisfaction and denial value a
quality goal should have in the presence of multiple incoming contribution links, as it
happens with, e.g., quality Reduce Organizing Effort in Figure 1(A). In those cases,
the rules are applied for each incoming contribution link, resulting in a set of can-
didate satisfaction evidence values for each of the satisfaction and denial variables.
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Label Effect Label Effect Label Effect Label Effect

++

FS → FS
PS → PS
PD → PD
FD → FD

−−

FS → FD
PS → PD
PD → PS
FD → FS

+

FS → PS
PS → PS
PD → PD
FD → PD

−

FS → PD
PS → PD
PD → PS
FD → PS

Table 1 Symbolic contribution semantics. The rules in the “Effect” column represent how a value of the
origin goal/quality (left hand-side of the arrow) translates into a value of the destination quality (right
hand-side of the arrow), when the link is labeled as seen in the “Label” column. Adapted from [31].

Of those, the maximum is selected. For example assume that in Figure 1(A) we are
interested in the satisfaction values of Overall Experience, when Reduce Organizing
Effort is {FS,PD} and Accessibility is {FS,ND}. The candidate satisfaction values are
PS coming from Reduce Organizing Effort and FS coming from Accessibility. The
candidate denial values are, respectively PD and ND. Hence the values for Overall
Experience are {FS,PD}.

Giorgini et al. also present a quantitative version of their label propagation frame-
work [31]. According to this version, both satisfaction and denial values and contri-
bution labels are now numbers as seen in Figure 1(B) – for our purposes we demand
them to also be in the interval [0.0, 1.0], though this does not appear to be necessary
in the general framework. Instead of an exhaustive list or rules, a generic operator
⊗ is used to represent how the origin satisfaction and denial values are combined to
produce the corresponding values of the destination. Let g be a quality goal targeted
by another quality goal g′ using a contribution link with label w(g′, g). If v(g) and
v(g′) are satisfaction or denial values of g and g′ respectively, the general form of
a propagation rule is v(g) = v(g′) ⊗ w(g′, g). As in the qualitative framework, for
label propagation, a maximization of the candidate values is applied in each of the
steps.

Interestingly for our purposes, the generic operator can be interpreted in different
ways. The default is p1⊗p2 =def p1 ·p2, i.e., the product of the satisfaction value and
the contribution label – the authors call this the multiplicative interpretation. Under
this interpretation, the numbers constitute probabilities: v(g), v(g′) are the probabil-
ities of satisfaction (or denial) of the origin and destination goals, and w(g′, g) the
conditional probability that g′ is satisfied given that g is satisfied. However, other
interpretations are suggested by the authors as a side note: the minimum interpreta-
tion p1 ⊗ p2 =def min(p1, p2) (the one applied in the qualitative framework) and
the serial-parallel interpretation p1 ⊗ p2 =def p1 · p2/(p1 + p2). While in our ex-
periments we consider only the qualitative version of the two-valued framework, the
alternative ways by which participants combine values v(g′) and w(g′, g), is, as we
will see, relevant to one of our experimental tasks.

Note that the above constitutes a simplified presentation of the framework de-
scribed by the authors [31]. Specifically, the original framework allows for contri-
bution labels that propagate only satisfaction or denial values, such as, for example,
++S , −D and 0.7−D. The labels and propagation rules as we describe them here
represent the co-existence of satisfaction and denial propagation. For example, ++ is
used as a shorthand for two links, ++S and ++D, connecting the same goals. This
convention, and, generally, the above treatment of contribution links, is in agreement
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with the original proposal [31]. However, a simplification that departs from the orig-
inal, namely the merging of the satisfaction and denial values to allow evaluation of
distances between alternatives, will be necessary for the experimental study and is de-
scribed in the experimental design section. We stress that our intention here is not to
evaluate the corresponding frameworks per se but rather use them as starting points
for exploring the relationship between meaning and representation of contribution
constructs.

2.2.3 A one-valued quantitative approach

The above proposal is only one option for defining the semantics of contribution links
– we will henceforth refer to it as the label propagation approach. An alternative ap-
proach to the above framework has been proposed independently by Maiden et al.
[67] and Liaskos et al. [43], which under assumptions we discuss below, is also com-
pliant with the evaluation approach adopted by URN for evaluating GRL models [5].
In this framework, which is quantitative, the satisfaction status of each quality goal is
represented using a single value in the real interval [0, 1]. Contribution links are also
labeled with real values in [0, 1]. Rather than propagation of a label, contributions
are understood as the share of satisfaction of the destination quality due to the satis-
faction of the origin goal or quality that connects through the contribution. Assume
then that Og is the set of goals or qualities g′ such that there is a contribution link
from g′ to a quality goal g, and w(g′, g) is the numeric weight of that link. Then the
satisfaction s(g) of g is calculated from the satisfaction s(g′) of each g′ ∈ Og as
follows:

s(g) =
∑

g′∈Og

{s(g′)× w(g′, g)}

Considering again the diagram of Figure 1(B), with respect to the decision under
Have Expenses Reimbursed, option Follow Paper-Based Process wrt. Overall Expe-
rience has a value of 0.1∗0.7+0.6∗0.3 = 0.25 and, respectively, Follow Automated
Process has a value of 0.9 ∗ 0.7 + 0.4 ∗ 0.3 = 0.75.

This framework, thus, directly maps goal models to a family of Analytic Hierar-
chy Process (AHP) [81] decision problems, in which the quality subgraph plays the
role of the criteria, and each OR-decomposition is a separate decision process shar-
ing the same criteria and relative importance thereof. Although this approach is much
less expressive than the two-valued one and also imposes structural limitations to the
goal models (acyclicity), it has the benefit of an established elicitation technique for
the numbers (AHP pair-wise comparisons).

The GRL approach to evaluation of contribution links [5] can be seen as a gen-
eralization of the above. In GRL both weights and satisfaction values are defined in
[−100, 100], rather than [0, 1] and there is no requirement that the multiple incom-
ing weights add up to a maximum (e.g., 100); rather, the outcome of the weighted
summation is truncated, when needed, to fit the above interval. Should we restrict
values to [0, 100] and demand that incoming weights add up to 100, the two frame-
works propose essentially the same aggregation technique, except for presentation
style (a decimal versus a percentage-style number). Thus, while we generally follow
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the style proposed by Liaskos et al. [54], under these restrictions our findings can be
hypothesized to be applicable to GRL as well.

We will henceforth refer to this general representation and inference approach as
the weighted summations approach to contrast it with the label propagation approach
we discussed in Section 2.2.2. In our experimental study the main comparison is
between these two approaches.

3 Intuitiveness: Definition, Measurement, and Influencing Factors

We presented above various approaches for representing contribution relationships
between quality goals. As we saw, for each representation style, semantics have been
proposed, i.e., rules for deciding how satisfaction of the goal or quality that is origin
of such a link affects the satisfaction status of the destination quality. The general
question we investigate in this paper is whether these semantics, decided by the de-
signers of the language, are consistent with (henceforth also: align with) the seman-
tics that users of the notation naturally assign to these visualizations when using them.
In the following, we motivate the study of naturally evoked semantics, and discuss
intuitiveness as an empirical construct by which we can understand and, respectively,
empirically measure such alignment. We then discuss individual psychological traits
that may act as factors that affect the emergence or not of alignment. These are also
a subject of investigation in our study.

3.1 The Intuitive Comprehensibility Construct and its Measurement

One of the principal properties of successfully designed diagrammatic representa-
tions and constituent visual constructs (boxes, arcs and their labels, etc.) is that they
are able to communicate their meaning. In conceptual modeling, this quality of a vi-
sual construct has been referred to as semantic transparency [70] or, more broadly,
comprehensibility (or understandability [41]).

To empirically measure comprehensibility of a model, we need to unambiguously
describe the concept and establish operational definitions (metrics) [80] thereof. For
this purpose, is useful to refer to SEQUAL, a semiotic framework for organizing
conceptual model qualities [49,50]. In SEQUAL the notion of (manual) model ac-
tivation is proposed to describe the role of models in guiding human behavior. For
example, when providing a business process diagram to a participant or observer of
the business process represented in the diagram, the participant will organize their
work, answer questions, troubleshoot, make decisions etc., in a way that is consistent
with the information they believe that the diagram contains. In other words, users of
model representations utilize the information they perceive from the representation
in order to perform inferences which, in turn, inform their own action.

Model activation allows us to think about comprehensibility as the degree of
alignment between, on one hand, users’ beliefs about the content of the model, mani-
fested through related inferences they perform and observable consequences thereof,
and, on the other hand, the corresponding belief held by: (a) the builders of the spe-
cific model, (b) the designers of the conceptual modeling language that was used
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to build the model. It follows that if users perform inferences with the model that
are incompatible with the modeler’s and/or the language designer’s expectations, the
model has arguably not been comprehended. In other words, the evoked (by users) se-
mantics of the constructs does not align with the prescribed semantics defined by the
designers of the language (also, henceforth interchangeably: authoritative, normative
semantics); otherwise the inferences would be compatible. In Figure 1(A) for exam-
ple, we saw that based on the supposed meaning of contribution links and the “+"
and “−−" labels that decorate them, we expect that users of the model will infer that
one alternative (e.g., Book through On-line Agent) is better than another (Self-book)
with respect to a specific quality (Reduce Organizing Effort). If users, however, con-
sistently make the opposite inference, the designers of the labels and their meaning
may need to suspect that comprehension has not taken place and there is misalign-
ment between how they want users to understand the labels and how users actually
understand them. Thus, observing the frequency or quality of inconsistent inferences
appears to be one way to empirically measure comprehensibility.

Incidents of lack of comprehensibility of a specific model representation can be
attributed to a variety of factors, such as, the quality of the model, the circumstances
of the inference, the person making the inferences and their familiarity with the state
of affairs represented, or the modeling language used. Of particular interest here is
the modeling language: we are interested to see whether incomprehensibility is the
result of sub-optimal language construct design. When the focus is on the language
rather than individual models constructed using the language we use the term com-
prehensibility appropriateness of the language [33,97]. In our case, for example, the
meaning of a link decorated with a “+" label may not be comprehended as desired
due to either “+" being the wrong symbol for representing the concept “positive con-
tribution” or the concept itself being unknown, difficult to comprehend or otherwise
problematic. This problem concerns not the model in which the link was observed
but the language that was used to build the model and proposes the link as one of its
constructs.

As a specialization of the above, intuitive comprehensibility appropriateness of a
language construct, or, henceforth, intuitiveness, refers to the comprehensibility ap-
propriateness of the construct by users who have partial and limited prior exposure to
the language. The concept, and the need thereof, can be understood through reference
to our every day experience with signs [16]. Human computer interface icons, for ex-
ample, are preferably designed in a way that they easily convey their meaning and
function to users, without demanding the latter having to study or otherwise dedicate
time for familiarizing themselves with these meanings [79]. In our case, the use of
the + label to denote negative contribution would not support the intuitiveness of the
notation as it would require unnecessary training and probably be the source of errors
and inefficiencies in using the construct in the longer term.

Hence, intuitiveness, as defined above, can serve as a concrete empirical con-
struct for our purpose of describing the level of alignment between prescribed and
naturally evoked semantics of contribution link visualizations. Note that, with the
term “empirical construct" – not to be confused with language construct which refers
to constituents of modeling languages – we refer here to an abstract variable that is
meant to be used as an explanatory concept and is, as such, operationalized into a con-
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crete metric for empirical measurement [80]. The concept of model activation, offers
us an idea for operationalizing intuitiveness: we simply observe the inferences users
perform with the contribution links (e.g., how they use them to evaluate decision op-
tions) and quantitatively and qualitatively compare them with the inferences that the
prescribed semantics would allow. We specifically use the term accuracy to describe
the concrete quantitative measure of the alignment between observed and prescribed
inferences that is based on simply counting the number of times, over a number of
similar inference tasks, that the two inferences agree. Higher accuracy would then be
an indication of more intuitiveness. The precise metric formulations are discussed in
the experimental design section.

3.2 Mental Models

The above way to operationalize intuitiveness (measure agreement between observed
and normative inferences) relies on a process of semantics evocation, i.e., the adop-
tion of a way of using contribution links based on observing and interpreting their
visualization, by possibly utilizing prior knowledge of the meaning of the visualiza-
tion. It is natural to ask whether there is any theoretical basis for such a phenomenon,
to also allow us to obtain a richer and more confident interpretation of some of our
results.

A concept that can serve as such a basis are mental models [47,75,77,98]. Men-
tal models have been used in the interaction design literature to describe abstractions
that users of interactive artifacts form internally for the purpose of predicting and
explaining the behavior of said artifacts [75]. For the purpose of diagrammatic rea-
soning, a visualization of a modeling construct to which a user is exposed for the first
time, such as an arc with a label on it, can be understood to evoke an initial theory
on how it is to be used – i.e., how the arc is to be combined with other arcs to make
a decision. Hence, a visualization that evokes a mental model that is compliant to the
actual reasoning mechanism as intended by the designers (such as using “−" instead
of “+" to represent a negative contribution) can be claimed to preferable. As we will
see in our results section, the formation and actuation of mental models will help us
qualitatively analyze and interpret participant responses.

3.3 Intuitiveness and Individual Differences

In the above, we motivated the notion of intuitiveness and presented the general em-
pirical method we follow in order to measure and compare the intuitiveness of differ-
ent contribution link visualizations and semantics. In addition to such comparisons,
our study is also concerned with exploring if individual psychological characteristics
of those who use the models (i.e., their traits and abilities) affect how they interpret
and use contribution links, consequently increasing or decreasing alignment with pre-
scribed semantics. In this study, we are specifically interested in three such character-
istics: trait cognitive style, mathematics anxiety, and ability with mental arithmetic.
We describe and motivate the relevance of each of these in the following.
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A first question is whether users adopt and follow any kind of strategy in order to
perform a diagrammatic reasoning task with goal models – such as that of identifying
optimal solutions in Figure 1. One can, for instance, conjecture that some users make
rough, gut-feeling decisions whose rationale and exact procedure that led to them
are difficult to articulate. Other users may develop a concrete procedure which they
will consistently apply in all decision making instances. An empirical construct that
relates to such a distinction is cognitive style [2,35]. According to the theory behind
this construct, there is a cognitive continuum between analytic and intuitive cognitive
work that can be utilized for the solution of a judgment problem. Analytic processing
describes conscious, controlled, systematic and detailed-oriented work, while intu-
itive processing describes quick, approximate, holistic, synthetic and less conscious
approach. Hammond et al. supports that a different cognitive style is adopted based
on the nature of the task at hand [35].

However, it has been shown that the tendency to adopt a work approach towards
one or the other direction of the continuum can be seen as a measurable personality
trait. Allinson and Heyes have developed the Cognitive Style Index (CSI) [2] to mea-
sure one’s propensity to adopt the former or the latter strategy for solving problems.
The CSI is measured through a 38-question survey administered to participants in-
cluding questions such as “the best way for me to understand a problem is to break
it down into its constituent parts” and “I am inclined to scan through reports rather
than read them in detail", to which respondents must answer if they agree or not. A
score is then produced characterizing the propensity of the respondent to adopt an-
alytical or intuitive strategies in the given scenarios and situations. In the two above
questions, for instance, an analytical person would, respectively, respond “agree" and
“disagree" and an intuitive person the opposite.

The CSI index has been found to correlate to a variety of occupational, learning,
or other decision making and information processing preference and performance
measures [7,8,26,95]. The applications of the specific or similar indexes have also
been observed in the area of conceptual modeling. Türetken et al. [93], for example,
found that participants with low CSI (i.e., intuitively-inclined) performed worse in a
model comprehension test than their peers with a higher CSI score. A similar index,
OSIVQ [12], was found to affect preferences of representation formats (diagrams,
structured text, text) for business process models [27].

Such studies motivate the investigation of the role of different cognitive styles in
how conceptual models are read and comprehended. In our study, the specific focus is
how participants combine various contribution links in order to make a decision using
a goal model. We specifically hypothesize that the intuitively-inclined participants
will decide based on an abstract impression of which decision option is associated
with the most positive contributions, while the analytically-inclined ones will adopt
an algorithm to combine different contribution links based on their assumption of the
semantics of those links. We further want to explore, for each competing representa-
tion, whether either of the strategies leads to more accurate responses, i.e., responses
that are more often aligned with the authoritative ones.

As we discussed, our experiment involves asking participants to perform diagram-
matic inferences with models of either symbolic or numeric representations of contri-
bution links. When asked to perform inferences with the numeric models specifically,
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participants may feel invited to do so via performing some kind of mathematical oper-
ations. We may, hence, hypothesize that users with better ability in mental arithmetic
could be more effective in, firstly, guessing the normative way to perform such cal-
culations (weighted summations as we saw in Section 2), and, secondly, performing
the calculations correctly. At the same time, users with limited such ability and/or a
negative attitude towards numbers, might avoid any processing thereof and resort to
intuitive or arbitrary choices. It is hence relevant to our research questions to see if
attitudes towards numbers and ability in mental arithmetic affects response accuracy.

One construct related to attitude towards math in general is math anxiety [10],
which describes the presence of feelings of fear, tension and apprehension of math-
ematics, resulting, as it has been found, in lower performance in math related tasks
[11]. As such, math anxiety can be used as a proxy for math ability, and, as we hy-
pothesize in our case, a measure of resistance to engage in mental arithmetic when
dealing with a problem presented in the form of numbers. As with cognitive style, an
index for measuring math anxiety has been proposed, namely the 9-point Abbreviated
Math Anxiety Scale (AMAS) [37].

In addition to attitude towards math, in our experiment we test ability in mental
arithmetic. This is tested through a small number of timed questions whereby par-
ticipants are invited to perform additions, subtractions, multiplications and divisions,
and various combinations thereof, without using calculator and as quickly as possi-
ble. Our hypothesis is, again, that users that are more capable in mental arithmetic
will be able to respond more accurately in numeric models. We discuss how these
tests are designed in more detail in the results section.

A summary of the concepts we discussed above, including a description and,
where applicable, a sketch of how they are operationalized according to this study is
offered in Table 2.

4 Experimental Design

4.1 Research Questions and Design Approach

The study aims at addressing the following main research questions, organized in two
groups:

– Group 1: The role of representation in intuitive comprehensibility.
– RQ1.1: Do the two ways by which we represent contribution link labels in

diagrammatic goal models, numeric and symbolic, differ in terms of their
ability to evoke user inferences that are compliant with their semantics?

– RQ1.2: What process do users choose to follow in order to make inferences
with the goal models, when concrete guidance for such is absent? Does it
align with the normative process under different representations?

– Group 2: The role of individual differences in intuitive comprehensibility.
– RQ2.1: Do individual differences, specifically cognitive style, math anxiety

and ability with mental arithmetic affect the ability of users to perform infer-
ences that align with the normative semantics?
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Term/Construct Description Measurement Approach
Comprehensibility/
Understandability
(of model)

Level by which understanding of the model by
its readers agrees with the understanding of the
model by its creator. (see also: [28,41])

Compare inferences made by
users with inferences made
by model creators.

Comprehensibility
Appropriateness
(of modeling
language)

Level by which understanding of a modeling
construct by its readers agrees with the under-
standing of the modeling construct by the lan-
guage creator. (see also: [33,49])

As above over several instan-
tiations of the construct in
concrete models.

Model Activation User activity in accordance to a model. [49] Observe relevant user action
following exposure to the
model.

Evoked Semantics
(of language con-
struct)

The meaning of a modeling language con-
struct as assumed by a user of a construct-
instantiating model.

Observe inferences users per-
form with the construct when
using models that contain it.

Authoritative or
Normative Seman-
tics

The meaning of a modeling language construct
as defined by its creator (the language de-
signer).

Study language guide or
manual.

Intuitiveness Comprehensibility Appropriateness of model-
ing language (construct) after partial/limited
training on it. (see also: [45])

As with comprehensibility
appropriateness, with the re-
striction of partial training.

Mental Model Abstractions that users of interactive artifacts
form internally for the purpose of predicting
and explaining the behavior of said artifacts
[75]. Interactive artifacts are in our case dia-
grams to be “interacted” with by viewing. (see
also: [47,77,98])

Indirectly through observing
and interpreting user action
and explanations thereof.

Cognitive Style Adoption of a decision making or other prob-
lem solving strategy from a continuum between
analytical and intuitive strategies [35].

(see Hammond et al. [35])

Cognitive Style In-
dex (CSI)

Measures the propensity of adoption of analytic
or intuitive strategies for problem solving [2].

A 38-point questionnaire [3].

Abbreviated Math
Anxiety Scale
(AMAS)

Measures math anxiety, i.e., the level to which
respondents have feelings of fear, tension, and
apprehension towards mathematics [10].

A 9-point questionnaire [37].

Mental Arithmetic
Ability

Ability to quickly and correctly perform com-
mon arithmetic operations without the use of
calculator and notes.

Success in a series of
custom-made mental calcu-
lation tasks.

Table 2 Main constructs and measurements assumed in this study.

– RQ2.2: Does cognitive style specifically affect the method that users choose
to use for performing inferences with the model?

To answer these questions we asked a number of experimental participants to per-
form two types of tasks. One task is similar to the one we performed in Section 2.2 to
demonstrate the intuitiveness of contribution labels – but, this time, with more com-
plex models. Specifically, experimental participants were given a number of decision
problems in the form of a goal model with either numeric or symbolic contribution
links. According to normative semantics for contribution links offered earlier (Sub-
sections 2.2.2 and 2.2.3), the decision problem has a specific optimal decision with
respect to a top level quality goal of interest. We ask participants, who are not re-
vealed the exact semantics of the contribution links, to identify this optimal decision.
Participants will then have to intuit and adopt some way of performing inferences
using the contribution links in order to decide the optimal decision. Participants are
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further asked if they simply followed their intuition to make the decision, or whether
they followed a specific method, i.e., worked methodically. In latter case, they are
then asked to describe the method they followed.

Utilizing the decision outcomes, we, firstly, calculate accuracy – i.e., the pro-
portion of times that their decision is compliant to what the normative semantics
would predict – and investigate the effect of representation (numeric vs. symbolic –
RQ1.1), individual differences (RQ2.1) and whether a method was followed (RQ1.2)
to accuracy. Then, we also investigate if following a specific method (versus working
intuitively) is predicted by trait cognitive style (RQ2.2). If they follow a systematic
method which they have described, we qualitatively analyze these descriptions to
understand and codify how exactly the participants worked (RQ1.2).

A second task exposes participants to much simpler models consisting of a con-
tribution link connecting two goals. The participants are given the satisfaction of the
origin of the link and are asked to specify what they think the satisfaction level of the
destination of the link should be. Aimed at addressing RQ1.1 and RQ1.2, the outcome
is again compared with the normative, and the number of responses that are correct
is investigated with respect to the kind of representation (numeric, symbolic, strong
or weak contribution) and satisfaction status of the origin goal (positive, negative,
strong or weak).

The two above types of tasks are organized into two separate sections of a data
collection instrument. Moreover the results we report are based on three rounds of
administration representing three stages in the evolution of the data collection in-
strument and utilization of three different samples including University students and
Mechanical Turk [4,18] participants. Below we describe our design in more detail
starting from the experimental artifacts, i.e., the goal models we developed.

4.2 Experimental Artefacts

The experiment consists of a series of tasks performed sequentially on a computer by
individual participants. The tasks that are key to the experimental objectives involve
participants being presented with a goal model and asked to perform specific infer-
ences with it. The goal models utilized for these tasks are constructed for the purpose
of the experiment. There are two types of models that are developed, corresponding
to the two separate sections of the experiment, Section I and Section II. We describe
each type below, followed by a short discussion on the motivation behind devising
the specific exercises.

4.2.1 Section I: Decision Models

We develop a set of goal models including an OR-decomposition and a quality goal
hierarchy that represents criteria to be considered for the decision. Examples of such
models can be seen in Figure 2. The models represent decision problems in three sep-
arate decision domains: choosing an apartment, choosing a course within a university
program, and choosing a mode of transportation. Through the OR-decomposition,
the participants are given apartment/course/mode of transportation choices, and the
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Symbolic Numeric

Fig. 2 Examples of goals models utilized in Section I of the instrument.

impact of such choices to high-level qualities such as location, schedule and environ-
mental friendliness, respectively. The decision domains are chosen to be immediately
understandable by the participant pool.

The quality goal hierarchy of each model is rooted on a unique quality goal such
as Optimal Apartment Choice as seen in Figure 2 on the left. The labels are chosen
in a way that one of the options is optimal compared to the other options with respect
to the degree by which it satisfies the top level goal. Notice first that, depending on
the labels of the contribution links, each child of the OR-decomposition implies a
different satisfaction value for the root quality goal. To calculate that value of an
OR-decomposition child in question we simply assign full satisfaction value to it
(1.0 or {FS,ND} for numeric and symbolic models, respectively) while marking the
others with no such evidence (0.0 or {NS,ND}, respectively). Then we apply the
evaluation technique according to the type of contribution representation; for numeric
we use weighted summations ([54] - Section 2.2.3), and for symbolic we use label
propagation ([31] - Section 2.2.2).

Let us describe the choice of contribution labels in some more detail. In both
cases, symbolic and numeric, the labels are chosen randomly, provided that the fol-
lowing condition is met: the satisfaction level of the root quality as it results from the
selection of the optimal choice has a fixed distance from the corresponding value of
the second best choice. We want this distance to be neither too large, in which case
the optimal solution is too easy to spot, nor too small, in which case participants are
likely to answer just randomly.

For numeric models, we set this distance to be 0.4 – we justify the choice below.
For example, in the numeric model of Figure 2, it can be verified that the three choices
have values 0.198, 0.199 and 0.603, meeting the above requirement. For the model of
Figure 1, we saw that the two options under Have Expenses Reimbursed have values
of 0.25 and 0.75 wrt. Overall Experience. The distance is 0.5 hence too large for that
specific model slice to meet the requirement.
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For symbolic models, the comparison is more complicated due to the adoption
of a two-valued qualitative framework [31] in which both satisfaction and denial
values may co-exist in a solution, often in conflict. To allow identification of the
optimal alternative and control the distance between the two top alternatives we con-
vert the labels into numbers and aggregate them into one. Specifically each of the
satisfaction labels N,P and F are associated with numeric values 0,1,2, respectively.
Let sat(g) and den(g) be these numeric satisfaction and denial values of quality
g in a given evaluation scenario, respectively. We aggregate the two numbers into
eval(g) = sat(g) − den(g). Value eval(g) is then an integer in [−2, 2]. For ex-
ample, the aggregated satisfaction value eval(g) of a quality g with {FS,PD} is
eval(g) = sat(g)− den(g) = 2− 1 = 1. If g had a satisfaction status of {NS,FD},
then eval(g) = sat(g)− den(g) = 0− 2 = −2.

Given this translation from the ordinal two-valued system to the interval one,
the distance between the optimal and second-optimal satisfaction values can now be
defined. We specifically demand that distance to be exactly 2 satisfaction levels. In
the above example, the two satisfaction scenarios for quality goal g, {FS,PD} and
{NS,PD} meet this requirement as 1 - (-1) = 2. However, neither pair {NS,PD} and
{NS,FD} (-1 - (-2) = 1, too close) nor pair {FS,ND} and {NS,PD} (2 - (-1) = 3, too
far apart) meet the distance requirement of 2.

The 2 satisfaction levels distance requirement was chosen based on our intuition
of when the distance is becoming too large, revealing the optimal too obviously for
meaningful measurement versus when it is becoming too small, when even experts in
label propagation cannot guess the optimal without exhaustive calculation. Moreover,
the choice of the numeric distance, 0.4, is made to allow comparability. With eval(g)
taking values from [−2, 2], the distance of 2 satisfaction levels covers 50% of the
available space. In numeric goal models the equivalent distance (50% of the space)
would be 0.5. However, for some large model structures it was not possible to identify
labels that allow for such large distances. Hence, the level was restricted to 0.4, which
is slightly biased in favor of symbolic models given that wider distances are assumed
to be easier to spot.

For each of the three domains (apartment finding, course selection, transportation
choice), four (4) model structures are developed, two “small” including two choices
and a smaller tree of quality goals, and two “large” including three choices and a
larger quality goal tree. Two versions of each goal structure are instantiated, one with
numeric contribution links and one with symbolic contribution links. Hence, a total
of 2 (models) × 2 (sizes) × 3 (domains) = 12 models are instantiated for each of the
two label representation types (symbolic and numeric). Each participant is exposed
to one of the two sets of 12 models, either the symbolic or the numeric, in a between-
subjects fashion with respect to representation.

Each of the 12 models is used to create a separate task for the participants. Each
task includes displaying the model and asking the participant what the optimal alter-
native is for the displayed model. The tasks are organized into blocks based on the
decision domain. Both the blocks between themselves and the models within blocks
are randomly sequenced. Three additional warm-up decision problems are presented
to participants, one from each of the domains, all small. These problems are other-
wise the same as the actual decision tasks, except that responses to these problems
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Textual NumericSymbolic

Fig. 3 Examples of goals models for Section II

are not counted towards the final scores. Thus, in all, each participant is exposed to
15 decision problems, the responses to the last 12 of which are the only ones counted.
The responses of the 3 warm-up problems are not used for any other purpose such
feedback or data filtering/qualification.

Before these task screens are presented, two short video presentations are offered,
one describing the domains and another offering an introduction to goal models and
contribution links. The latter video discusses the notion of contribution links at a high-
level without disclosing any semantics or inference rules. Naturally, that video comes
into two different versions, one for the symbolic and one for the numeric represen-
tation. The two versions are identical (same narration, structure, visuals, examples)
except for the parts where the contribution link annotations need to be presented.

After they make the 12 (plus 3 warm-up) decisions, participants are asked if they
followed a specific method, or whether they responded “intuitively”. Response to
this question constitutes the dichotomous method factor in the results. Further, if they
answered that they followed a specific method, they were asked to describe in their
own words how exactly they worked, using an example diagram as a prop for their
explanation. In later rounds (more below) they are further asked how confident they
are with the responses and/or the process they followed.

4.2.2 Section II: Individual Links

For the second section of the experiment we focus on a simpler type of model, con-
sisting of two goals connected through a contribution link. We develop three sets of
twenty (20) such models each. Each model contains two quality goals A and B, the
former pointing to the latter through a contribution link.

The first set, which we call symbolic, all four (4) kinds of symbolic contribution
links “++",“+",“−" and“−−" are considered. For each contribution link, five (5)
models are devised corresponding to five different satisfaction levels of the origin
goal: FD, PD, N, PS, FS. The satisfaction level of the origin goal appears as an an-
notation next to the goal shape. The resulting 4 × 5 models represent all possible
combinations of origin goal satisfaction levels and contribution strengths. The sec-
ond set, which we will call textual, is an exact copy of the first set except that the
symbols “++",“+",“−" and“−−" are replaced with words help, make, hurt, break,
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respectively – the default iStar 2.0 representation [19]. The third set, which we call
numeric, is also a copy of the symbolic one with two differences. Firstly, symbols
“++",“+",“−" and“−−" are replaced with randomly chosen numbers from the in-
tervals [−1.0,−0.6], [−0.6,−0.2], [0.2, 0.6], [0.6, 1.0], using precision of one deci-
mal place. The intervals effectively discretize the interval [-1,1] into five constituent
intervals, four representing various levels and qualities of contribution and the one
in the middle ([−0.2,+0.2]) representing absence of contribution, and, as such, is
not utilized. A similar mapping from symbols to numbers takes place at the level of
satisfaction of the origin goal, in which the four satisfaction levels FD, PD, PS, FS
are mapped to a random sample from the aforementioned intervals, respectively, and
N is mapped to number zero (0). Examples of the three kinds of models can be seen
in Figure 3.

Each model is used to create a separate task. Each task asks participants to exam-
ine the model and respond with what they think the satisfaction value of the destina-
tion goal should be. For symbolic and textual models an inventory of five satisfaction
labels is offered for participants to respond. For the numeric models a text box is of-
fered for the participants to enter a value between -1.0 and 1.0. The screens are given
in random order.

4.2.3 AMAS, CSI, and Numeracy Tests

In addition to the core tasks described earlier the treatments include questions for
measuring the participants’ cognitive style, mathematics anxiety, and their ability
with mental arithmetic. As we saw, the 38-point CSI Cognitive Style Index (CSI) [2]
as well as the Abbreviated Math Anxiety Scale (AMAS) [37] are utilized for the first
two measures. Unable to identify a standardized instrument with mental arithmetic
tasks that are close to the ones that we would assume participants of the numeric
goal models would perform, we resorted to developing our own. We discuss the exact
form of the numeracy tests in the results section.

4.2.4 Section I and II Tasks: Rationale

Let us now discuss the rationale for developing the above artifacts and tasks vis-à-vis
our research questions. In the tasks of Section I, goal models are utilized for rep-
resenting decision problems: alternatives are represented as OR-decompositions and
contribution links are used to show how each alternative affects various quality crite-
ria of interest. Assuming contribution links have precise semantics, each model has
a clear optimal alternative according to these semantics. If participants, who are un-
aware of the precise semantics, guess that optimal, this is evidence that the semantics
align with how users naturally interpret the labels. This, in turn, supports that the con-
tribution link construct – the package of representation and semantics – is intuitive.
If the reverse is observed, i.e., participants cannot guess the optimal, such conclu-
sion is instead discouraged. The tasks check how the two representation approaches
compare with regards to intuitiveness (RQ1.1) and if the individual differences sum-
marized above play an additional role (RQ2.1). Solicitation of a free-form description
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of the method followed aims at clarifying if success in identifying the optimal can in-
deed be attributed to correctly guessing the underlying semantics (RQ1.2). We further
investigate if following a concrete method at all (vs. working intuitively) is affected
by trait cognitive style (RQ2.2).

The tasks of Section II follow the exact same measurement principle at a differ-
ent level. Rather than intuiting how contribution links are combined, participants are
asked to instead combine a satisfaction value with a contribution label to produce the
target satisfaction value. Again, whether the response agrees with the normative of
each representation is a measure of the intuitiveness of the latter (RQ1.1). Section II
tasks are aimed at clarifying and diagnosing the outcome of Section I. For example,
if Section I tasks indicate that weighted summations are intuitive, Section II clari-
fies if participants explicitly multiply weights with satisfaction values, or (as it turns
out) follow a different semi-formal procedure that is simply compatible with but not
necessarily the same as weighted summations. In addition, Section II models explore
the use of negative labels and satisfaction values for numeric models. Likewise, if
symbolic models turn out intuitive or unintuitive for making decisions, Section II
explains the circumstances that may cause this outcome. Note that the simplicity of
the exercise, makes the study of individual differences and chosen method irrelevant.
Hence Section II exclusively serves RQ1.1.

4.3 Administration Rounds and Participants

An ordered presentation of Section I and Section II tasks, the CSI, AMAS and Nu-
meracy Tests as well as other questions such as demographics constitute the exper-
imental instrument by which data is collected from participants. PsyToolkit [89,90]
is used for administering the tasks. In total, three (3) rounds of data acquisition are
performed, each with a slightly different version of the instrument and a different
sampling method.

More specifically, round 1 is administered to students of York University, tak-
ing a first year undergraduate management course, who are offered bonus grade for
their participation. Round 2 is administered to Information Technology students of
York University, having just finished a third-year Human Computer Interaction course
(they are offered a small gift card for their participation) and, as a follow up, to Me-
chanical Turk Participants with US college degrees. Round 3 is exclusively adminis-
tered to Mechanical Turk Participants with US college degrees.

In each round, the instrument undergoes revisions, rearrangements, and improve-
ments. In Table 3 the relevant tasks and the order by which they are offered in dif-
ferent rounds can be viewed. The tasks, listed in the first column, include response
to the CSI and AMAS questionnaires (CSI and AMAS, respectively), response to the
Numeracy Tests, provision of demographic information (Demographics), a video on
making decisions under multiple criteria (Decisions Training), a video on goal mod-
els and making decisions therewith (Goal Models Training), the 12 decision exercises
including the 3 warm-ups (Section I Tasks), the question on how confident the re-
spondent is with their decisions (Response Confidence), the question on whether the
participants used their intuition or a specific method, followed by a description of – if
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Sample:
1st Year

Administrative
Studies

3rd Year
Information Technology

& Mechanical Turk

Mechanical
Turk (only)

Task: Round 1 Round 2 Round 3
CSI 1 1 (pre)
AMAS 2 3
Numeracy Tests 3 12
Demographics 1 4 2
Decisions Training 5 4
Goal Models Training 2 6 5
Section I Tasks 7 6
Response Confidence 7
Method Declaration
(& Description) 8 8

Method Confidence 9
Contributions Training 3 9 10
Section II Tasks 4 10 11

Table 3 Instrument construction and administration rounds. Each column describes the sequence by which
components are presented to participants. Components administered on a separate pre-test are marked with
“(pre)”.

applicable – the specific method (Method Declaration (& Description)), the question
on how confident the respondent is with their method (Method Confidence), the video
describing contribution links in more detail (Contributions Training) in preparation
to individual links tasks (Section II Tasks).

Round 1, specifically, which was devised during early stages of this research, is
an initial study solely including the Section II tasks, whereas the remaining rounds
include both sections. For the remaining two rounds, the instrument is updated in
3 ways. In round 2, Section I Tasks is added as well as CSI, AMAS and Numer-
acy Tests. In round 3 the following changes are made: (a) Response Confidence and
Method Confidence questions are added (described above), (b) Numeracy Tests are
revised based on results from the previous rounds, (c) the order of administration is
updated (Numeracy Tests are now at the end). As we discuss below, we consider the
differences between rounds 2 and 3 to be minimal enough to allow for pooling of the
corresponding data following specific checks.

4.4 Participant Demographics

A total of 196 participants participate in the experiment: 35, 29 and 132, respectively
are 1st year business students (round 1), 3rd year IT students (round 2) and Mechan-
ical Turk workers (rounds 2 and 3 – 30 and 102, for each round respectively). Of
them, 93 are female and 103 are male. Their fields of (current or former) study are
predominately (more than half) Science, Technology and Engineering, Business and
Economics. Precise data can be seen in Table 4. Participants of round 1 only provide
their sex; though their academic field must be assumed to be in the Business and
Economics category.
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1st Year Business 3rd Year IT MTurk
Female Male Female Male Female Male

Science, Technology and Engineering 0 0 6 23 18 19
Business and Economics 0 0 0 0 11 27
Health Sciences 0 0 0 0 5 3

Social Sciences 0 0 0 0 9 5
Humanities 0 0 0 0 11 10
Fine Arts 0 0 0 0 3 4

Education 0 0 0 0 4 1
Other 0 0 0 0 0 2
N/A 26 9 0 0 0 0

Table 4 Participant Demographics

For all but round 1 participants, AMAS and CSI indexes are collected. The over-
all CSI average was 47.47 which is above reported averages in the literature (44.53
according to the CSI manual and Hmieleski and Corbett studying US college students
[36]). The overall AMAS average is 20.86 which is just below the reported averages
in the literature (21.1 according to D.R. Hopko et al. [37]).

In the two sections that follow we present the results for Section I (decision mod-
els) and Section II (single links) respectively. Given the absence of any prior evidence
in the literature on the topic – intuitiveness of contribution links for goal models –
we consider our analysis to be exploratory [88]. Hence hypotheses are formally con-
structed for only some of the analysis, where inferential statistics are possible, and by
default we hypothesize the presence of an effect for each of the involved the factors.
These are supplemented with visualizations and descriptive analyses.

The experimental data as well as complete markdown presentations of the analy-
ses can be found in our data repository [52]1.

5 Analysis and Results: Section I

5.1 Measurements, Factors and Analysis Approach

As we saw, the main measure of intuitiveness (in both sections) is accuracy, i.e.,
the number of times participant responses agreed with the normative/authoritative
ones. Recall that the normative optimal is given by application of symbolic label
propagation for symbolic models, and by the weighted summations approach, for
numeric models, both discussed in Section 2.

The main explanatory variables are representation group (or henceforth inter-
changeably representation or group) which refers to whether the models are numeric
or symbolic, individual differences measured through CSI, AMAS, as well as the
method that participants stated that they followed, i.e. methodically or intuitively.

1 For review purposes, the data can be accessed using this private URL: https://borealisdata
.ca/privateurl.xhtml?token=ea6aaabc-7ab1-4c77-98e3-a567d1a46184. Consent
agreement allows publication of data as presented there.

https://borealisdata.ca/privateurl.xhtml?token=ea6aaabc-7ab1-4c77-98e3-a567d1a46184
https://borealisdata.ca/privateurl.xhtml?token=ea6aaabc-7ab1-4c77-98e3-a567d1a46184
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Factor Name Related Task (Table 3) Factor Description
representation group
(or group or
representation)

[random assignment to
symbolic or numeric
instrument]

Whether participant was exposed to
symbolic or numeric models.

CSI CSI

Whether participants’ Cognitive Style
Index (CSI) is above or below
population average (analytic and
intuitive types, respectively).

AMAS AMAS
Whether participants AMAS score is
above or below population average
(high and low math anxiety, respectively).

method
Method Declaration
(& Description).

Whether participant followed "their
intuition" or a "specific method"
(according to their own declaration).

Table 5 The explanatory variables considered in the analysis; all dichotomous.

A summary of these factors is offered in Table 5. The following null hypothesis are
tested, corresponding to the research questions posed above (Subsection 4.1):

• HI,1
0 : There is no difference in response accuracy between numeric and sym-

bolic groups, i.e. average accuracy measures between the two groups are equal.
(RQ1.1).

• HI,2
0 : Accuracy does not depend on chosen method, i.e. the mean accuracy

scores of those who followed a specific method and those who used their intu-
ition are equal. (RQ1.2).

• HI,3
0 : AMAS does not affect accuracy, i.e. those with high AMAS (math anx-

ious) achieve the same accuracy as those with low AMAS (not math anxious)
(RQ2.1).

• HI,4
0 : CSI does not affect accuracy, i.e. those with high CSI score (analytic)

achieve the same accuracy as those with low CSI score (intuitive) (RQ2.1).

Note that, for brevity, the above hypotheses are assumed to also include effects of
each factor in the context of interactions.

ANOVA models [68] are developed for exploring the relationships between ex-
planatory and response variables. In particular we test the maximal (in number of
factors) model in which all four factors (group, AMAS, CSI, method) as well as inter-
actions between each of them and factors group and method are included. Section I
data are available from rounds 2 and 3 only. Data from both rounds are first analyzed
together. Given that they have a difference in the sequence of tasks (numeracy tests
precede or succeed respectively the tasks in question, and that round 2 has samples
from different two sources (students and Mechanical Turk participants) we include
two additional factors, sample and phase. Depending on whether significant effects
are found in these two factors or not, we perform a separate analysis for each set (at
a discounted α level to limit family-wise error) or continue with analyzing the data
together, respectively. We discuss these choices in more detail in the validity section.
Further, to simplify modeling and interpretation, CSI and AMAS are discretized into
two-value variables based on whether the score exceeds the population average or
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Fig. 4 Interaction plots for Representation Group and Method

not. Finally, separate analyses investigate the relationship between CSI and method
chosen, as well as the relationship of numeracy scores with accuracy.

5.2 The role of representation and approach

Fitting an ANOVA model as described earlier produces, among other effects, an inter-
action between sample and group (F(1,145) = 6.59, p = 0.011). As per our methodol-
ogy, we, hence, proceed with performing separate analyses for the two data sets, i.e.,
the student sample (n = 29) and the samples from Mechanical Turk (n = 132). The
model now is restricted to the factors that appear to be relevant: group, method, CSI,
AMAS and their in between interactions.

A look at the student data (29 cases, 15 symbolic and 14 numeric) reveals that
the sample is too unbalanced for reliable inferences if method is included. Thus,
for the student data only, we drop this factor and any interaction terms in which it
participates. The result with the simplified model indicates a strong (Cohen’s d =
-2.43 (large)) main effect on group, F(1,23) = 15.53, p < 0.001, and no other effects
or interactions. Hence numeric models evoke more accurate responses than symbolic
and by a large margin: group means of accuracy scores are 10.64 vs 5.8 out of a
maximum 12, respectively.

The Mechanical Turk sample, which is large enough to allow for the original
model (132 cases, 66 symbolic and 66 numeric), yields strong interactions between
group and method (F(1,116) = 6.55, p = 0.012) and between group and AMAS (F(1,116)
= 4.82, p = 0.03). While variances appear to be homogeneous across cells, some vio-
lations of normality assumptions prompt us to perform also Wilcox’s non-parametric
equivalents, which identify the same interactions (p = 0.007 and p = 0.022).

The first interaction is between the method that participants adopted for perform-
ing the tasks and the kind of representation that they were assigned to. In Figure
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4, the nature of the interaction can be seen more clearly. Referring to the interaction
plot on the left, for symbolic models whether or not an intuitive method was followed
does not seem to affect accuracy. On the contrary, for the numeric group, following
a specific method helped participants achieve better accuracy – Wilcoxon rank sum
W = 211, p = 0.001, effect size = 0.4 (moderate). Measured in terms of difference in
the mean correct answers, participants of the numeric group who work methodically
perform on average 2.34 more correct tasks (out of 12) than their members in the
same group who work intuitively (9.73 vs. 7.39).

Another way to see the same effect, visualized in the interaction plot on the right
of Figure 4 is that those who work intuitively do not benefit from working with nu-
meric models more than working with symbolic. Of those who work methodically
however, participants working with numeric models answer on average 3.61 more
correct questions compared to those working with symbolic models [9.73 vs. 6.12;
Wilcoxon rank sum W = 411, p < 0.001, effect size = 0.58 (large).

5.3 Qualitative Descriptions

Recall that after performing the decision tasks, participants are asked it they used their
intuition or a specific method to make the decision. (This binary method declaration
informs, as we saw, the method explanatory variable.) Those who say they used their
intuition go to the next task, while those who say they followed a specific method are
asked in the next screen to describe that method. We now focus on that data, aimed
at understanding the precise method that methodical participants follow that makes
them successful with numeric models but not so with symbolic.

For the analysis, we performed a simple iterative labeling task akin to grounded-
theoretic open coding [17]. Specifically, by reading the responses we identify labels
that describe patterns of work that participants are following to identify optimal de-
cisions. We iterate in order to refine the coding scheme and also identify dimensions
along which the participant approaches vary. We identify two such dimensions: the
way by which participants compare and/or combine contribution labels, and the di-
rection they follow in order to analyze and compare the alternatives.

Figures 5 and 6 depict the categories we identified for each dimension, the occur-
rence frequency among those who gave a response (96%) of each, and the accuracy
attained by the participants following the corresponding strategy. Although most of
the times it was difficult to exactly discern from their descriptions the method the
participants used to make the decision (identified as “Unclear” in the graph), for a
good part of the descriptions we are able to identify some common themes.

Starting from the Numeric group of Figure 5 on the left, most participants (32) do
not offer sufficient detail on how they worked, despite some indications of varying
specificity. For example in one participant’s words “I looked at what percentage each
choice applied to the optimal choice at the top of the hierarchy, and worked myself
down to see which option applied the highest percentage to the top tier choice” (Ex-
cerpt 1), or in another’s “I followed the path with the highest contributions” (Excerpt
2). These examples seem to indicate some general patterns of work – e.g., the first
one may be following the weighted summations approach – but are too ambiguous
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to be classified with certainty and/or reproduced. This category includes participants
who offer even less detail. For some participants it was clear that they followed a
technique which involved some kind of navigation from node to node whereby the
contribution link with the strongest label would be followed to the next node of inter-
est. For example, “I start at the top and whichever number is higher, I go down that
route. By following this technique going down, I eventually end up with the optimal
choice” (Excerpt 3). Although the heuristic is not guaranteed to offer the optimal an-
swer vis-à-vis the normative weighted summations procedure, it does however work
for the randomly prepared cases of our experiments and participants indeed appear to
be successful by following this approach. Other heuristics followed include adding
numbers for “each strand”, a scheme of node scoring and a swapping scheme. In
traversing the links, in responses where it was clear what directions they followed,
participants worked predominately top-down (see Excerpts 1 and 3 above), with a
few cases declaring bottom-up or a combined approach. Some simply mentioned that
they worked along paths (Excerpt 2).

2 2

18

1

32

12.00/12 10.00/12

11.22/12

6.00/12

9.59/12

0

10

20

30

Pick
Larger

Number

Add
Numbers

Node
Scoring

Swapping Unclear

Reasoning about contribution label

O
cc

ur
re

nc
e 

C
ou

nt

2

6

22

3

22

11.50/12

10.50/12

11.64/12

11.67/12

8.27/12

0

5

10

15

20

25

Top Down Bottom Up Top Down
Softgoals

− Bottom Up
Alternatives

Across Path Unclear

Evaluation Direction

O
cc

ur
re

nc
e 

C
ou

nt

Fig. 5 Self-reported Method Descriptions – Numeric Representation Group. The average accuracy exhib-
ited by the participants in each category is displayed with white background.

Figure 6 offers a view of the descriptions in the Symbolic group. In this group,
participants predominately seem to adopt a symbol counting technique, e.g. “I looked
for the option with the most amount of (+) symbols” and “Pick the one that has most
+ signs over − from all routes available to Optimal Choice”. Those who apparently
follow a top-down traversal process similar to the one that was popular in the numeric
group are labeled under “Pick Stronger Symbol”. For example, “I started from the
main goal ‘Optimal apartment choice’ and chose the positive link, or the most posi-
tive one, and went down the criteria, looking for the most positive route”. Following
such a process would lead participants at a minimum 2 and maximum 9 (mean =
5.66) of the 12 times to the response that is correct according to the authoritative
calculation.
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Fig. 7 The effects of AMAS and CSI to accuracy by Group.

5.4 CSI and AMAS

Let us now turn our focus to CSI and AMAS and their effect on accuracy based also
on the representation group, as it emerged in the Mechanical Turk sample. As we saw
AMAS appears to interact with group. However, Figure 7 shows this interaction to not
imply a qualitative difference. Increased AMAS indeed implies lower accuracy for
both representations, through even more so for numeric models where the difference
is statistically significant – Wilcoxon rank sum W = 318.5, p = 0.003, effect size =
0.18 (small).

CSI scores appear nowhere in the statistically significant results, leading us to
the hypothesis that the specific index does not relate with participants’ accuracy or
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Task Example Round 2 Round 3
Addition 0.76 + 0.19 =? 4 × (90s) –
Addition Comparison 0.92 + 0.16 vs. 0.25 + 0.89 4 × (90s, .05) –
Subtraction Comparison 0.81− 0.12 vs. 0.93− 0.28 4 × (90s, .05) –

Multiplication 0.28× 0.27 =? 4 × (90s)
4 × (*) +
4 × (20s)

Multiplication
Comparison 0.48× 0.29 vs. 0.12× 0.79 4 × (90s, .05)

4 × (*, .05) +
4 × (15s, .15)

Division 0.46/0.62 =? 4 × (90s) –
Division Comparison 0.25/0.98 vs. 0.11/0.55 4 × (90s, .05) –
Linear Combinations
Comparison

0.39× 0.97 + 0.46× 0.58 vs.
0.90× 0.82 + 0.56× 0.74

–
2 × (*, .25) +
4 × (15s, .5)

Table 6 Mental Arithmetic Tests. Round 2 is administered to Students and MTurk participants and round
3 to MT participants only. The number in the cell displays the number of exercises of the specific type
times, in parentheses the time participants had to respond comma the distance between responses when
there was a comparison. E.g. 4 × (15s,.15) means four questions of the type, 15 seconds each and distance
in the comparison is 0.15 and 2 × (*) means two questions of the type, no time limit.

even the method they choose to reason about the diagrams. Hence, analysis of the
proportions of high-CSI participants who chose to work intuitively, compared to the
low-CSI ones who made the same choice reveals no effect (Fisher’s exact test). To
see if we can make population inferences from this negative result, equivalence of
proportions analysis is then performed assuming equivalence bounds of -0.15 and
+0.15. The equivalence test was significant, Z =-2.2, p = 0.015. This means that there
is no difference in said proportions that is greater than 0.15 (the actual confidence
interval being close to 0.1).

Likewise, we investigate whether accuracy scores from high CSI and low CSI
participants (ignoring other factors) are equivalent at a small-to-medium effect level
d = 0.35. The equivalence test was significant, t(145.8) = 2.109, p = 1.83e-02. That
is, the difference between the scores produced by the two CSI types is not greater
than small-to-medium in the population (for α = 0.05).

5.5 Mental Arithmetic

Recall that one of the tasks that participants performed was a set of tests on mental
arithmetic. We devised our own tests that fit the kind of arithmetic that could be used
by participants to reason about numeric goal models. The tests consisted of addition,
subtraction, multiplication and division exercises with random numbers in the interval
(0, 1) with two significant digits. Some exercises ask for the result of an operation
whereas others offer two operations with results that have a known fixed distance and
ask participants which one is greater. For the former type, a 0-10 scoring is assigned
based on an exponentially decaying function of the distance between correct and
provided answer. Table 6 offers details on these tests and how they were updated
from one round of the experiment to the next.

To measure the effects of these numeracy tests, we calculate Kendall correla-
tions between the test scores and the accuracy scores for each round and representa-
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Numeric Symbolic
Student MTurk1 MTurk2 Student MTurk1 MTurk2

Addition 0.36* 0.17 - -0.22 0.15 -
Addition Comparison 0.05 -0.14 - 0.08 0.10 -
Division 0.18 -0.21 - -0.19 -0.04 -
Division Comparison 0.02 0.02 - 0.07 -0.03 -
Linear Comparison - - 0.19 - - 0.22
Multiplication -0.01 0.10 0.06 -0.11 -0.30 0.24
Multiplication Comparison 0.03 -0.10 0.19 -0.15 0.08 0.26
Subtraction Comparison 0.45 0.45 - -0.06 -0.24 -

Table 7 Pearson correlation coefficients between numeracy test components and accuracy scores. MTurk
1 are round 2 and MTurk 2 are round 3 participants. None is statistically significant p < 0.05, significant
with p < 0.1 marked with * and correlation values 0.3 and above in bold. Note also the presence of
(unintuitive) negative correlations.

tion group. The results can be seen in Table 7. Overall, very few strong correlations
emerge – only one statistically significant – and in patterns that are not interpretable.
For example ability in linear combination comparisons, does not seem to correlate to
accuracy in numeric models more than it does for symbolic models, despite the fact
that such operations describe the formal procedure for evaluating numeric models.

Given that our tests are not standardized, the construct validity threat is, of course,
salient here. Assuming, however, that the tests do successfully measure ability to
mentally perform arithmetic operations, the fact that accuracy does not correlate with
mental math ability may imply that such mental math operations are never performed
by participants. Rather, as evident in the self-reported commentary discussed above,
they devise simpler heuristics in which numbers are compared in isolation, rather than
through additions or multiplications. This is consistent with our finding in Section II
below in which, in their majority, participants do not appear to perform recognizable
arithmetic operations even when confronted with a single contribution problem.

5.6 Response and Method Confidence

Recall that a question on how confident participants felt on their responses and the
method they followed to make the decisions, was introduced in Round 3 – hence, data
on that aspect is collected from 102 Mechanical Turk participants.

The results show that participants are overwhelmingly confident in both their re-
sponses and the method they used: 71 of the 102 participants agree or strongly agree
that they are confident with the method they followed and 73 agree or strongly agree
that they are confident with their responses. Individual correlation tests do not reveal
notable differences in confidence between representation group, method chosen or
AMAS score.

Some relationship of CSI and response and method confidence can also be ob-
served. According to Hammond et al. [35] intuition implies high-confidence in an-
swer but low confidence in method, while analysis is associated with the opposite.
As seen in Figure 8, a slightly higher response confidence can indeed be observed
among the intuitive respondents (those with CSI below population average) com-
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Fig. 8 Response and method confidence with respect to cognitive style (intuitive is CSI score below popu-
lation average 45.1 and analytical is above that average). Questions: “I am confident of the answers I gave
in the optimal decision exercises I just completed” and “I am confident of the method I used to find the
optimal alternative in the decision exercises.”

pared to their analytical peers. Less can be inferred about method confidence from
the graph. Accordingly, although correlation between CSI and response confidence
agrees with theory and the graph (Kendall’s τ = −0.19, p = 0.017) the correlation
between CSI and method is too weak (rs = −0.12) and statistically insignificant for
conclusions.

5.7 Section I: Summary of findings

To summarize the findings of Section I, let us, first, examine the status of the null
hypotheses put forth earlier. Hypothesis HI,1

0 (group effect) is rejected in the student
sample as a main effect and in the Mechanical Turk sample in the context of interac-
tions: the effect occurs for methodical participants. HI,2

0 (effect of method chosen) is
also rejected in the Mechanical Turk, again, in the context of interaction with group
(working methodically or not matters only for the numeric group) but is not tested
in the student sample, due to highly unbalanced data. HI,3

0 (AMAS effect) is also
rejected through in the Mechanical Turk data, again for the numeric group only but
with low effect size; it is not rejected in the student data. We fail to reject HI,4

0 (CSI
effect) in any of the two samples.

Given the above, combined with the qualitative and descriptive analyses, some
general observations can be made with regards to the outcomes of Section I. Firstly,
the majority of participants appear to adopt a specific method for reasoning about the
models, instead of working intuitively – i.e., abstractly or even randomly. This shows
that the visualization itself and the abstract introduction to it may evoke some kind
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of a mental model (see Section 3) of what the conceptual model means and how it
“works”.

The representation group effect that was observed among those that claimed to
have followed a specific method, combined with the qualitative data supports this
method adoption hypothesis. Specifically, participants exposed to numeric contribu-
tions were successful by seemingly adopting a heuristic that led them to the author-
itative optimal with high likelihood. The corresponding heuristics adopted by the
symbolic group led to solutions that did not coincide with the authoritative ones. An
explanation of the high accuracy of the numeric group is the familiarity of participants
with numbers, on one hand, and the naturalness of viewing the numbers as propor-
tions as per the normative weighted summations approach, on the other. One can go
on and specifically hypothesize that numbers evoke more accurate responses due to
their affording familiar mental arithmetic that unfamiliar symbols do not. However,
according to the method descriptions offered by the participants, rather than complex
arithmetic calculations, they seem to work along paths simply making comparisons
along the way. It is, hence, the compatibility of the normative approach with the
participants’ ad-hoc approach that seems to bring about the accuracy effect. As we
discuss towards the end, this has useful design implications.

Further, we could not find evidence that the cognitive style index (CSI) appears
to play a role in attaining accuracy for either group, that it interacts with the group
factor or that it is even a strong predictor of the method that participants choose. We
instead find that effects that are small-to-medium or larger are not likely to exist in
the population. Future studies may attempt alternative assessments of the construct –
e.g. by Epstein et al. [24].

Finally, despite the inconsistencies in accuracy, participants are confident of both
the response and the method they followed, and their confidence does not appear to
be affected by representation or other factor. Consistent to expectations there is an
effect of CSI to response confidence, albeit a weak one.

6 Analysis and Results: Section II

We now turn to the tasks of Section II of the experiment. Recall that for Section II,
participants assign satisfaction values (e.g., FD, PD, 0.4, 0.8, etc.) to the destination
of a contribution link displayed to them given the satisfaction value annotating the
origin of the contribution link (Figure 3). The resulting values are analyzed with re-
spect to the agreement within participants (Section 6.2) and accuracy vis-à-vis the
authoritative values (Section 6.3); both measures defined below. Further, focusing on
numeric models we look at whether and what kind of arithmetic operation partici-
pants are likely to perform (Section 6.4). Finally, we explore the data for models with
zero satisfaction origin in a separate analysis (Section 6.5).

6.1 Measurement and Analysis Approach

To calculate either agreement or accuracy in a way that numeric and symbolic mod-
els can be compared, we first need to map satisfaction values FD, PD, N, PS, FS
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(or intervals [−1.0,−0.6], [−0.6,−0.2], [−0.2, 0.2], [0.2, 0.6], [0.6, 1.0] for numeric
models) into integers in the interval [1,5]. Depending on the answer each participant
offers, the corresponding code is used for the analysis. For example N is coded as 3
in the textual or symbolic groups and 0.5 is coded as 4 in the numeric group.

We calculate the agreement within participants with respect to their responses,
via measuring the average distance between each pair of participant responses. Let
ri(l) ∈ [1, 5] be the code of the response of a participant i in exercise l. To calculate
average pair-wise distance, for each exercise l we identify all pairs of participant
responses ri(l) and rj(l), i, j = 1 . . . N, i ̸= j, N being the number of respondents
for the exercise. For each pair we then calculate the normalized distance |ri(l) −
rj(l)|/4, and average over all N(N − 1)/2 pairs. Hence, average pairwise distance
apd(l) for each exercise l is given by:

apd(l) =
|ri(l)− rj(l)|/4
N(N − 1)/2

(1)

The lower the apd is for an exercise l the higher the agreement among participants.
Considering the authoritative response according to the theories detailed in Sec-

tion 2, we calculate accuracy through computing the distance between participant
response ri(l) in exercise l and the authoritative response a(l), both coded as above:

disti(l) = ri(l)− a(l)

Again, the lower the distance the higher the accuracy. Further, when disti(l) > 0
we say that the participant i overestimates the satisfaction of the destination goal,
assigning to it values higher than the normative. Likewise, when disti(l) < 0, i
underestimates the satisfaction of the destination goal.

For both agreement and accuracy analyses we consider three main relevant fac-
tors. One is contribution quality with levels positive and negative, representing the
corresponding effect of the contribution link in each exercise. Hence, links − and
−− and their corresponding textual and numeric versions are negative, while + and
++ and their corresponding versions are positive. A second factor is origin (satis-
faction) quality with level denied if the origin goal in the exercise is denied with FD,
PD or an equivalent numeric, level satisfied if the goal is satisfied with FS, PS or
an equivalent numeric, and level none if the goal is marked as N or with 0 satisfac-
tion. We will further refer to combinations of contribution and satisfaction qualities
as configurations, e.g. the Denial-Positive configuration. Thirdly, the factor group
represents the contribution link representation approach with levels symbolic, textual
and numeric.

Wherever inferential procedures are possible, which is in accuracy analysis, the
following null hypotheses are tested, all relating to the research question RQ1.1 of
Section 4.1:

• HII,1
0 : There is no difference in response accuracy between symbolic, textual

and numeric groups.
• HII,2

0 : Accuracy does not depend on the configuration of contribution quality
and satisfaction level.
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Fig. 9 (A) Agreement for round 1 data [Students, Symbolic vs. Textual](B) Agreement for round 2 and 3
data [Students, MTurk, Numeric vs. Symbolic]

6.2 Agreement Analysis

We compare descriptively the role of satisfaction and link quality to the overall agree-
ment among participants, measured as above. Recall, that for round 1 (Table 3) the
comparison is between symbolic and textual representation while for rounds 2 and
3 it is between symbolic and numeric. This analysis excludes the cases in which the
satisfaction is “none", which are dealt with separately (Section 6.5).

The data from round 1 can be seen in figure Figure 9(A), noting that the lower the
number the higher the agreement. It is clearly the case that satisfaction and positive
links lead to better agreement, which decreases with the presence of a denied origin
or a negative link, and becomes even lower when denied origin and negative link are
combined.

For rounds 2 and 3, where numeric labels are compared against symbolic the
result is seen in Figure 9(B). While agreement in symbolic models decreases with
the presence of denial in the origin goal and negative contributions, agreement in
numeric models remains largely unaffected. It is not clear, however, if any of the
groups evokes higher agreement overall.

6.3 Accuracy Analysis

6.3.1 Round 1: Symbolic vs. Textual

We first visualize accuracy with respect to, again, origin satisfaction quality, link qual-
ity as well as link representation (group). The first comparison concerns the round 1
data in which symbolic and textual representations are compared. A visualization can
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Fig. 10 (A) Accuracy for round 1 data [Students, Symbolic vs. Textual] | (B) Accuracy for round 2 and 3
data [Students, MTurk, Numeric vs. Symbolic].

be seen in Figure 10(A). Recall that when the distance from the normative is posi-
tive, the participant has overestimated the satisfaction of the destination goal, and
vice-versa when it is negative. We observe that while in the cases of a satisfied origin
and a positive link participants generally overestimate satisfaction of the destination,
the opposite is strongly the case when origin denial and negative contribution are
combined.

To explore this effect better we compare the distributions of responses of the two
extreme cases in Figure 11. Graph 11(A) presents the response count for each com-
bination of partial or full origin denial with weak (hurt / −) and strong (break / −−)
negative contribution labels, while the second graph (B) represents the corresponding
counts of partial or full origin satisfaction with weak (help / +) and strong (make /
++) positive contribution labels. In both graphs the bars representing responses that
are compliant to the normative are marked with a thicker outline as “Correct”.

Focusing on graph (A) of Figure 11, we observe that responses are often sym-
metric around N with the respondents ambivalent between a positive and a negative
satisfaction value. In the break / −− and FD combination (top right histogram) of
graph (A)) there are almost as many FS (correct) as there are FD (wrong). A similar
pattern can be seen in all combinations. In other words participants fail to recognize
the satisfaction reversal effect that a negative contribution has, in which, according to
the designed semantics, a denied goal and a negative contribution becomes satisfac-
tion evidence for the destination goal.

Moving to graph 11(B), on the other hand, disagreement is between the strength
of satisfaction rather than its quality. In three of the cases the majority of partici-
pants offer a compliant response, except for the case of full satisfaction and a weak
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contribution, where participants believe should still cause full satisfaction of the des-
tination, instead of partial. Regardless of this, the absence of satisfaction reversal
allows for more compliant responses.
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Fig. 11 Response counts for round 1 data per contribution label and origin satisfaction value. (A) Denial
Origin with Negative Contributions | (B) Satisfaction Origin with Positive Contributions.

We can attempt an inferential analysis through a 2× 4 ANOVA in which the first
factor is the representation group and the second is the configuration, i.e., each of the
four possible combinations of origin and link quality – the latter is also treated as a
repeated measures factor. The test offers no effect for representation and no effect
for interaction thereof with model configuration. The effect of the configuration itself
however was found to be statistically significant (Pillai F (3, 31) = 11.8, p < 0.001).
A view of the cell means can be seen in Figure 12. If we perform Bonferroni ad-
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justed pairwise paired t-tests we find differences as per Table 8: the Denial-Negative
configuration is distant from all other configurations (p < 0.01).
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Fig. 12 Mean distance and absolute mean distance interaction plots for round 1.

Denial-Negative Denial-Positive Satisfaction-Negative
Denial-Positive 0.000

Satisfaction-Negative 0.000 1.000
Satisfaction-Positive 0.000 0.313 0.293

Table 8 p-values of the pairwise comparison between configurations (both groups). Coding format [Origin
Quality]-[Link Quality]

The results suggest that origin denial, combined with negative contribution links,
leads quite certainly to less accuracy than all the other categories. However, the rep-
resentation style (symbolic vs. textual) does not seem to matter. In the following ex-
perimental rounds we, hence, switched focus to the symbolic representation style, as
featured in the original i* publications, and moved on to perform a similar compari-
son with numeric representations.

6.3.2 Rounds 2 and 3: Numeric vs. Symbolic

In rounds 2 and 3 we repeat the same exercise with the second student group and
the two Mechanical Turk groups. The modes of representation under comparison are
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Fig. 13 Response counts for round 2 and 3 per contribution label and origin satisfaction value (symbolic
models). (A) Denial Origins | (B) Satisfaction Origins.

now the symbolic against the numeric. A visualization of the data can be seen in Fig.
10(B). Symbolic representation follows the same pattern observed in round 1: accu-
racy substantially decreases when denial and/or negative contribution are featured in
the diagram. The same is less true with numeric models. Qualitatively, this lack of
accuracy is overestimation in all cases except, again, in the case where origin de-
nial and negative contribution are combined as seen in Figure 10(B). A look at the
corresponding distributions of responses for symbolic data can be seen in Figure 13,
where exactly the pattern of non-detection of satisfaction reversal is observed when
the origin goal is partially or fully denied (upper graph (A) – responses cover the
entire range) but not when the origin goal is partially or fully satisfied (lower graph
(B) – responses are concentrated to one side of the graph).
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We again perform a 2x4 ANOVA as before: between factor is group (represen-
tation style) and within factor are the four configurations – i.e., combinations of
link and origin qualities. We find a significant main effect on configurations – Pillai
F (3, 157) = 28.2, p < 0.001 as well as an interaction – Pillai F (3, 157) = 3.22, p =
0.024. The result can be seen in Figure 14 where mean distance is measured in both
as-is and as absolute value. It can specifically be seen that for both representations,
configurations including denied origin are the least accurate, particularly when con-
tribution is negative. The interaction is further studied through simple effects analysis
[68] of the group factor, after fixing configuration levels. Out of the four simple ef-
fects tests, configurations Denial-Negative (Wilcoxon W = 2488, p = 0.011) and
Satisfaction-Positive (W = 2275.5, p < 0.001), are the ones achieving statistical
significance (α = 0.05/4 = 0.0125) observed also in Figure 14. However, effects
are small (0.2 and 0.26, respectively) and do not lend themselves to any useful in-
terpretation. On the other hand, Bonferroni-corrected post-hoc pairwise paired t-tests
over the within-subjects factor (configuration) can be seen in Tables 9 and 10, for
fixing group level to symbolic and numeric respectively. The difference between the
Denial-Negative and all other configurations is salient indicating, again, the denial
inversion problem.

Denial-Negative Denial-Positive Satisfaction-Negative
Denial-Positive 0.00

Satisfaction-Negative 0.00 0.02
Satisfaction-Positive 0.00 0.00 0.43

Table 9 p-values of the pairwise comparison between configurations for the symbolic group. Coding for-
mat [Origin Quality]-[Link Quality]

Denial-Negative Denial-Positive Satisfaction-Negative
Denial-Positive 0.00

Satisfaction-Negative 0.00 0.00
Satisfaction-Positive 0.00 0.06 0.32

Table 10 p-values of the pairwise comparison between configurations for the numeric group. Coding
format [Origin Quality]-[Link Quality]

6.4 Quantitative Theory Adoption

We now explore what method respondents of the numeric group follow to arrive to the
satisfaction value they report. The goal is to understand the mental operation (if any)
that participants perform with the origin satisfaction value and the contribution label –
e.g., in Figure 3 how the number -0.3, the origin goal satisfaction, and the number 0.4,
the contribution label, are combined by the participant to calculate the satisfaction
level of the destination. We are particularly interested to see if participants perform
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Fig. 14 Mean distance and absolute mean distance interaction plots for rounds 2 and 3.

any of the candidate calculation approaches described in Section 2, namely addition
(so, in the example above −0.3+0.4 = 0.1 or 0.3+0.4 = 0.7), multiplication (0.12
or −0.12), minimum (−0.3 or 0.3), maximum (0.4). We thus allow for participants to
ignore or misuse negative signs, as long as the operation they perform on the absolute
values matches the hypothesized one. We decide that the participant has used one of
the operations if their response is 0.02 or less away from the corresponding normative
value.

Based on the above design, in most cases, we cannot strongly associate the re-
sponse to a specific operation, assuming instead that, participants predominantly of-
fer an intuitive value or choose some other operation not covered here. Recall, for
comparison, that in the decision problems of Section I there is no evidence that cal-
culations are taking place. Table 11 offers the distribution of number of participants
who consistently (at least three out of the four times in each configuration), followed
an identifiable calculation on the absolute values. Thus, several of the participants
followed an addition or subtraction approach, followed by some adoption of multi-
plication.

Origin Qual. Link Qual. Add or Subt. Mult. Min Max Other
1 Satisfaction Positive 23% 14% 5% 0% 58%
2 Satisfaction Negative 31% 15% 0% 5% 49%
3 Denial Positive 32% 10% 0% 5% 53%
4 Denial Negative 21% 10% 0% 0% 69%

Table 11 Calculation method per origin satisfaction and contribution type.
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Fig. 15 t-test confidence (Bonferroni adjusted) intervals on the existence of a difference between positive
and negative contribution links in the average reported destination satisfaction when origin satisfaction
level is N or 0.

6.5 Zero Satisfaction Analysis

We finally turn our focus to the cases in which the origin goal has no satisfaction or
denial; in other words, it is marked as N (symbolic, textual) or 0 (numeric). In such
cases, any satisfaction propagation framework would assume that the destination goal
should be marked with zero satisfaction. However, that does not appear to be the
case in the data. In Tables 12 and 13 we see the average assessed satisfaction value
of the destination observed for rounds 1 and 2 & 3, when the origin satisfaction
level is zero. In all cases and independent of representation mode, when the link
is positive it appears to somehow imply satisfaction of the destination goal while
when the link is negative it implies denial. Participants therefore tend to, to some
extent, see contribution links are generators of satisfaction or denial rather than mere
propagators. The observation is statistically significant – Figure 15 presents t-test
confidence intervals.

Group Break/– – Hurt/– Help/+ Make/++
Symbolic -0.44 -0.22 0.22 0.44
Textual -0.35 -0.24 0.12 0.41

Table 12 Observed satisfaction level for destination goal when origin goal is N or 0 (round 1).

Group Large Negative/– – Large Negative/– Small Positive/+ Large Positive/++
Numeric -0.22 -0.16 0.16 0.56
Symbolic -0.57 -0.32 0.48 0.90

Table 13 Observed satisfaction level for destination goal when origin goal is N or 0 (rounds 2 & 3).

6.6 Section II: Summary of findings

Let us summarize the findings of Section II of the experiment. In terms of hypotheses
we fail to reject HII,1

0 for the comparison between textual and symbolic models. We
reject it for the comparison between symbolic and numeric, but the effect is small and
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not suitable for useful generalizations: the two representations appear to each be more
suitable compared to the other for Satisfaction-Positive and Denial-Negative configu-
rations, respectively. More importantly, the Denial-Negative configuration appears to
offer a much lower accuracy score due to what we identified as the satisfaction/denial
inversion problem, i.e., failure to assume conversion of a satisfaction (resp. denial)
value of the origin goal of the link to a denial (resp. satisfaction) value for the desti-
nation of the link, due to a negative contribution label. Hence HII,2

0 is rejected. The
finding emerges descriptively in agreement data as well. Through further analysis,
we find that the majority of respondents of the numeric group do not follow an easily
identifiable numeric calculation approach, though some seem to have adopted some
version of addition, subtraction or multiplication. Finally we find that participants
assign satisfaction or denial to the destination despite the absence of satisfaction or
denial in the origin goal, due to simply the presence of a positive or, respectively,
negative contribution link.

7 Design Implications, Validity Threats, and Limitations

7.1 Summary of Findings and Language Design Implications

We summarize the key observations from our various analyses in Table 16. We sum-
marize the results in relation to our original research questions as follows.

Firstly, considering RQ1.2, users appear to adopt specific (though hard to pre-
cisely elicit and describe) methods for exploring the decision structure of the goal
model, and such methods may have some common characteristics (e.g., top-down
navigation, simple local comparisons). The methods, however, may not be compati-
ble with the normative semantics designed by researchers for the purpose of e.g. au-
tomatic reasoning. In other words, methods for visually navigating a presentation of a
decision problem may need to be designed distinctly from and in addition to methods
for automated generation of optimal solutions not meant to be used by humans.

The use of numbers (RQ1.1) appears to allow for more consistent reasoning com-
pared to symbols. However, this may be because it so happens that the ad-hoc meth-
ods adopted by participants are compliant in the particular examples with the author-
itative method, without however the two methods necessarily being the same. As a
design implication, it may, thus, be ideal that such compliance is by design rather
than by coincidence. An interesting future exploration, for instance, would be to de-
vise decision problem visualizations whereby the natural way of exploring them leads
to results that are guaranteed to be consistent with, e.g., the label-propagation theories
we took up in this study [30,31].

Secondly, the role of individual differences (RQ2.1, RQ2.2) turned out much
less important than we originally conjectured. Cognitive style, specifically, measured
by CSI, does not appear to be relevant to the phenomena in question, including,
to our surprise, the choice to work methodically or intuitively. It follows that, ei-
ther the choice of index is sub-optimal – alternative measures, such as the Rational-
Experiential Inventory (REI) [24] have been proposed – or that the cognitive work
needed to perform the tasks in question is not within the scope of the cognitive style
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Key Findings

Section I: Decision Problems

– The majority of participants adopt a specific method for performing decision making infer-
ences on the diagram.

– Participants appear to predominantly follow a top-down approach exploring paths from top
level criteria to decisions, making path choices and ultimately decisions based on simple lo-
cal comparisons (numeric and symbolic models) or cumulative weight (e.g. symbol counts)
accumulated along the path (symbolic models).

– Compared to using symbolic weights, using numerical weights evokes a diagrammatic rea-
soning method that is more compatible with the corresponding normative one (weighted
summations), without evidence however that the latter is precisely recognized and followed.

– Cognitive Style, measured by the CSI, does not have a large predictive power over the
phenomena in question.

– Math anxiety, as measured by the AMAS index, has a small effect in successfully perform-
ing the diagrammatic reasoning exercises and is more pronounced in numeric models.

– No evidence emerges that complex mental arithmetic is taking place in reasoning with the
diagrams.

– Participants are generally confident of their responses despite the inconsistency of accuracy
scores.

Section II: Individual Contributions

– There does not appear to be substantial difference between using symbols, such as ++,−,
etc., words, such as makes, hurts, etc. or numbers, such as 0.5, −0.7 etc., for labeling single
contribution links, in terms of identifying a satisfaction value for the destination of a link,
given the satisfaction level of its origin.

– Whenever negative contribution is combined with denial of the origin participants fail to
agree on the satisfaction quality of the destination.

– Participants misunderstand contribution as a generator of satisfaction (or denial) rather than
a mere propagator thereof.

– Most participants of the numeric group do not appear to perform any kind of arithmetic.
When they do this tends to be some form of addition, subtraction or, less likely, multiplica-
tion - not minimum, or maximum.

Fig. 16 Key Findings from Section I and II analysis

construct – e.g., they are too low-level. AMAS’s small effect shows that the partic-
ular construct may affect diagrammatic reasoning in general, especially if the latter
includes numbers. The effect, however, may be too low to be significant part of a
design process or future investigation.

7.2 Implications to Modeling using Current Languages

The results of the study may help improve diagrammatic practices even when uti-
lizing the current goal visualization languages. To see how, we focus on symbolic
and textual contribution annotations such as “+", “–" or “helps" and “breaks". These
are highly desirable in many cases in which a rough idea of the contribution struc-
ture needs to be conveyed and/or when systematic measurements (e.g. application of
AHP comparisons) are not available or practical. As we saw in Section 2, their abil-
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Fig. 17 Chain shortening (A) and semantics reversal (B) examples

ity to allow for intuitive diagrammatic reasoning in simple models such as those of
Figure 1 is highly compelling. However, our study suggests that the presence of neg-
ative contribution links and the emergence of satisfaction denial can be detrimental
to compliant reasoning with more complex models. Thus, if we follow a diagram-
ming approach that avoids these elements while preserving meaning, diagrams can
become more amenable to accurate diagrammatic reasoning. As examples, subject to
future evaluation and formalization, we sketch four possible guidelines that may help
achieve that:

– Chain Shortening. Our results revealed participants’ difficulty in interpreting
negative contribution links and goal denial values that these links result in. Such
problems will tend to emerge when negative links appear in chains of contribu-
tion links, i.e., series of quality goals each contributing to the next. In the Figure
17(A), left side, an analysis of the problem of choosing between two apartments
is presented. In the specific example, one option is far from the train station and
the other one is close. Closeness to the train station may have conflicting qualities:
it may be a noisy, lowering Quality of Living, but it allows quick access to trans-
portation, supporting Location Quality. Considering Apartment 1, two chains are
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Fig. 18 Slicing example.

formed, one consisting of two negative contribution links and a positive one and
one consisting of one negative and two positive ones. Our evidence suggests that
it is likely that users of the diagram will be confused with regards to how they
should combine the negative links in the chain. Recall for example that some
participants work along paths and count the number of symbols. Following such
technique they may for example infer that Apartment 1 hurts Quality of Living,
due to the number of negative symbols along the corresponding path, when, ac-
cording to semantics, it actually helps it.
To increase the chance of accurate reasoning, the modelers may prepare a sim-
plified version of the diagram, such as that of the right side of Figure 17(A).
The quality Location Close to Train Station has now been removed, and the first
two contributions have been replaced by one that aggregates them according to
semantics. The implications of each decision are now intuitively clearer – at the
cost of removing the intermediating goal and its explanatory function. It is, hence,
likely that symbol counting participants will more readily select Apartment 2 on
account of the stronger contribution of Location Quality to the root goal.

– Reverse goal semantics. It is often the case that to eliminate a negative contri-
bution it suffices to reverse the semantics of a goal. In Figure 17(B) left side, the
negative contribution between the two quality goals is the source of two prob-
lematic chains. However, if we reverse Location Close to Train Station with its
dual Location Far from Train Station, and to preserve model semantics, reverse
all incoming and outgoing contribution links, we arrive at a model (Figure 17(B)
right side) in which only one of the chains contains a negative link, making the
optimal easier to spot.
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– Slicing. In Figure 18, left-side, a problem with two criteria is presented. The con-
text here is to choose an elective university course. The student has two choices
with different qualities, ultimately contributing to top level goals Course Enjoy-
ability and Academic Record Strengthening (how good the course looks on the
student’s record).
Our results suggest that the representation is not really amenable to accurate di-
agrammatic reasoning, unless it is somehow simplified into one or more models
that avoid negative contributions in addition to being smaller. Analysts may first
observe that the top-level contributions do not offer much to the decision problem;
they merely suggest that the two sub-qualities are equally important. Hence, the
analysts may decide to remove the top goal and split the model into two separate
ones. In each of the latter, the above guidelines can be used to further simplify
them. By looking at the models of Figure 18 right-side it is quicker to understand
the impact of each course to each of the two important qualities.

– Avoid negative contributions. A final technique to make models more compre-
hensible is to avoid the emergence of negative contributions, which we saw invite
inaccuracy. We can achieve that via assuming by default and when possible, that
the worst possible contribution toward a goal is no contribution. Let us go back
to the model of Figure 17(B), right side. In that model, Apartment 2 is next to the
train station and Apartment 1 far from it. From an optimal decision viewpoint it
makes no difference to say that Apartment 2 denies the goal Location Far from
Train Station – i.e., causes it to have a negative satisfaction value, versus saying
that Apartment 2 has no contribution whatsoever to the same goal. In either case,
we make an assessment of how close a distance needs to be from the station for
the goal to be deemed not only not satisfied, but even worse (denied). In most
contexts where symbolic goal models are used, such as, for example, sketching
decision problems during early requirements, such assessment is rarely based on
concrete information or method. Meanwhile, as far as the decision problem is
concerned, Apartment 1 is still the preferred choice. We may, thus, choose to
avoid the negative contribution link. In all Figures 17(A), 17(B), and 18, negative
contributions that can be eliminated without harm to the corresponding decision
problem representation are grayed out. Note that the avoidance of unnecessary
negative contribution links and, subsequently goal denial, does not contravene
Giorgini et al. semantics.

Guidelines such as the above are rather informal and in need for further specifica-
tion and formalization into concrete rules that allow systematic transformations that
also make equivalence guarantees between the original and transformed representa-
tions. They show, however, the kind of follow up work that the evidence from our
study inspires, aimed at making goal models more useful visual instruments.

7.3 Validity Threats and Limitations

We now turn to validity threats of our study, focusing specifically on construct, inter-
nal, external, and statistical conclusions validity.
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With regards to construct validity a central question is the validity and usefulness
of our main quality concept, intuitive comprehensibility appropriateness, both itself
as a theoretical construct and with respect to the ways we operationalize it. We define
the theoretical construct on the basis of the traditional understanding of comprehen-
sibility – in our case defined as leading to model activation that is consistent with
language designer and modeler expectations – specialized to further demand that the
participants have no prior training to the modeling notation at hand. At the theoret-
ical level, the assumption is that there are representations that make better use of
users’ prior experiences and knowledge than others. For example, we hypothesized
that users are more comfortable with reading and manipulating numbers than idiosyn-
cratically defined symbols, as they are familiar with the former from their daily lives,
but have never seen the latter before.

At the operationalization level, measuring intuitiveness through observing intu-
itive reactions of untrained participants – instead of educated choices after complete
training – naturally follows the theoretical definition. Training participants to the ex-
act method would not allow us to detect any prior participant expectations and incli-
nations, as participants would simply execute the third-party method they learned; i.e.
the training itself would become a strong confounding factor. One can, however, hy-
pothesize that even in the full training scenario, error frequencies and response time
discrepancies may offer indications of the sought intuitiveness: representations and
(imposed) methods in which participants take longer or make many mistakes may
indirectly indicate unintuitive choices. Future studies may attempt this strategy while
carefully: (a) defining the construct being measured which is now more akin to a form
of learnability, (b) dealing with training and its quality as a nuisance variable.

Further, the use of accuracy for measuring comprehensibility appropriateness di-
rectly follows from the definition of the latter as the level of agreement between the
user and designer vis-à-vis the meaning of language constructs, via comparing ob-
servable inferences the two parties make. A caveat is that, as we saw, such agreement
may be coincidental, that is, although inferences agree, the underlying meaning and
thought process, which are unobservable, may be different. This difference may or
may not reveal itself in different sets of examples.

Two comments can be made with respect to this last concern. Firstly, if we are re-
stricted to observation of inferences, there appears to indeed be no guarantee that we
can ever completely learn if participants and designers follow the exact same mental
model; our confidence only increases as we consider more and more varied examples.
Secondly, there is a pragmatic benefit in simply measuring observable model activa-
tion: even if the mental models of participants are very different than those of the
designers, it is still useful to know that they are such that the majority of inferences
will coincide. This was observed in our results: participants are unlikely to have pre-
cisely followed a weighted summation approach to make decisions in the numerical
models. Whatever method they used, however, seems to have properties that make
it lead to the same answers as the aforementioned method. The analogy with mental
models is salient here: users may form and employ only an incomplete or surrogate
[75,98] model of the actual reasoning technique, which is nevertheless compliant
with the latter. This may be acceptable in practice.
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The above discussion is crucial also from an internal validity standpoint, which
is concerned with the claims of causal relationships between variables. Thus, while
the numeric models appear to lead to better accuracy, as we saw, there might be other
factors at play than the representation format per se, including the specific normative
reasoning approach attached with the representation. It is, hence, the combination of
representation and authoritative reasoning approach that is understood to bring about
the result, specifically in the decision problems. Future work can investigate differ-
ent such combinations, such as for example, the application of AHP-style decision
making where numbers are discretized as symbols. Given the wealth of such options,
however, the space of possible experiments is large.

An additional internal validity concern is that of training. Participants in our ex-
periments do attend some training videos in which they are presented to the concept
of goal models and contribution links, so that they can perform the exercises. They
are told, for example, that + is a positive contribution, or that a larger number im-
plies a stronger contribution. As we saw, however, this training does not discuss any
specific method for making the complex decisions or combining origin satisfaction
and contribution label to decide destination satisfaction level. Nevertheless, despite
the care that we took to keep that information hidden, the way by which we abstractly
described contributions could affect participant behavior. Furthermore, effort is made
for the training material between the two groups to be as similar as possible: the
same narration, voice, models, visuals, video length etc., with necessary differences
only when the contribution annotations are different. We find that detecting biases in
a training process, even when it is highly controlled (e.g. use of videos rather than
live lectures), is a non-trivial matter, addressed primarily through replications with
different training approaches.

The same difficulty emerges when we perform transformations in order to make
the two representation approaches, symbolic and numeric, comparable. This primar-
ily affects model generation for Section I, where we needed to arrange so that the
symbolic and numeric version of each of the 12 decision models allow for fair com-
parison, via keeping the distance between best and second best alternative consistent
across the models. In all cases, we needed to use our judgment with regards to the ap-
propriateness of the coding and transformation procedures employed to make the two
representation approaches comparable without favoring one of the two. In Section II,
for example, accuracy and agreement distances for numeric models are preceded by
discretization, so as to control for the advantage that numeric models may have due
to their expressiveness and allow for a fair comparison with symbolic ones. As with
training, however, replications with alternative coding procedures may be needed to
explore the sensitivity of such procedures to bias.

Further, some obvious external validity concerns can be raised with regards to
sampling of both participants and models. Firstly, to appreciate the rationale for par-
ticipant sampling, (students and Mechanical Turk participants), one needs to think
of the population of supposed users of goal model visualizations. While goal models
have been designed to be used primarily by requirements analysts [100], the decisions
that they can represent are really ones of arbitrary stakeholders. Hence, rather than
being a tool for exclusive use by analysts, goal models are much more attractive for
adoption in the requirements analysis practice when the stakeholders themselves can
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use the visualizations to explore and understand the decision problems themselves. It
is, thus, reasonable to expect that goal models aspire to offer visualizations that make
them usable to a wide range of decision-making professionals that can be involved as
stakeholders in a requirements analysis process in a variety of domains. While there
are no statistics on the exact profile of such a participant, we can assume that this
population is ultimately bound to primarily include people who have finished high-
school, and most likely attended a few years of University. Hence, samples from the
student population or the on-line participant pool with university degree qualifica-
tions appear appropriate for this investigation.

A more pertinent external validity threat is the sampling of goal models. While
we have created 24 of them in Section I, we imposed certain structural constraints
(e.g. one decision only, distance between the best and second best is fixed, specific
layouts, colors, shapes, fonts, etc.) that may be limiting their representativeness. As
we saw, measuring comprehensibility of a model does not amount to a measurement
of the comprehensibility appropriateness of the language that was used to construct it
[61]. Rather, diverse samples of models need to be tested prior to making statements
about the language. As such, replications with different models will be needed to
address the inherent pragmatic limitations of a single experiment.

An additional threat is also the size of goal models. In practical applications,
goal models are meant to be used for organizing large numbers of goals and their
in-between interactions (tens or often hundreds, see [38]), which raises the question
whether our small experimental models generalize to such realistic models. A first
comment is that if a certain kind of representation is ineffective for small models,
it is not problematic to also assume that such ineffectiveness also emerges in larger
models. For example, phenomena such as difficulty in combining denial of the origin
goal with a negative contribution link, or erroneously ascribing non-zero satisfaction
to a goal that is targeted only by goals with zero satisfaction, are not expected to cor-
rect themselves if we increase model size. They are rather pointing to foundational
design/visualization choices that need to be attended to prior to exploring larger mod-
els. Secondly, even large goal models are likely to contain a number of decisions, in
the form of OR-decompositions, that can be dealt with separately as smaller prob-
lems. Each such decision problem typically includes not all but a subset of relevant
quality goals. For example, even in the small goal models of Figure 1 it can be ob-
served that Have Trip Booked is a separate decision from Have Expenses Reimbursed
and the first decision is concerned with only two of the three quality goals. Hence,
even in large goal models, the need to visually reason with small or medium size
slices thereof is usually pertinent. Finally, to experiment with larger models is to in-
vestigate an activity – unguided visual reasoning against large and complex models
– that stakeholders will unlikely engage in in the first place. When models are large
and cannot be compartmentalized as above, rather than unguided visual reasoning, it
is more appealing to use – and hence study the effectiveness of – alternative visual-
ization techniques – e.g. [53], guided evaluation – e.g., [40], or automated reasoning
– e.g., [56,60]. Hence, while generalization of our findings to larger models can in-
deed only be hypothesized given our results, such generalizations might be of limited
practical use.
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Furthermore, utilizing our observations to make general statements about the goal
modeling and analysis frameworks utilized in this study (Giorgini et al. [30], GRL
[5], Liaskos et al. [54]) is not supported by our methodology. As we saw, simplifying
assumptions needed to be made for comparisons to be possible and only subsets of
corresponding modeling languages were utilized. For example, in the decision prob-
lems, numeric contribution links do not feature arbitrary weights in the [-100,100]
range, as proposed by GRL [5], and symbolic contribution labels do not distinguish
between propagation of satisfaction or denial as in the original framework [30]; e.g.,
+ vs. +S and/or +D. Rather than evaluating these frameworks, our study focuses on
the effect of specific design decisions (choice of label representation and meaning)
for specific tasks (visual reasoning) over small and medium size models, in order to
guide future investigation and notation design efforts.

One final comment on external validity concerns possible generalizations beyond
goal models to cover conceptual models in general. Although our study was not de-
signed for such, its results may offer useful indications of investigative directions
that are or are not worth pursuing. One is the question whether CSI is a predictor
of effectiveness or style for diagrammatic reasoning (in any diagram). Our results
discourage hypotheses that this may be the case, without however excluding a role
for CSI or other cognitive style index in, e.g., developing models, or choosing one
representation or model development approach over another. A second is the method
adoption construct, in which some participants operate intuitively and others adopt a
specific method. This may occur in any kind of model when participants are given
freedom as to how they should work with the model. In our results, the majority of
participants did adopt a concrete method. This seems to suggest that mental models
is a possible theoretical basis on which we can talk about diagrammatic reasoning in
general, especially when intuitiveness is the main subject – i.e., the evocation of a
way of working with the model.

Finally, in terms of statistical conclusion validity, a point of discussion may seem
to be the way we approach different samples and administration rounds in the analy-
sis. One my be consider that each of these rounds constitutes a member of a family of
experiments [82], and analyze each separately followed by meta-analysis. However,
in our case, the changes to the instrument are minimal and restricted to reordering the
mental math exercises. The models and the task remain exactly the same and so is the
response variable. The sample origin (students vs. Mechanical Turk) may be argued
to be a candidate for some effect. As we saw, we chose to originally include those
variables (round and sample) as additional factors and proceeded with separate treat-
ment only if those factors turned out to be relevant. That happened once in Section I,
where students were treated separately from Mechanical Turk participants.

8 Related Work

The role of problem representation in decision making has long been known to be im-
portant in the literature, as representations both help decision makers understand the
problem at hand [78] and may actually influence the corresponding decision [44,46,
65]. Several approaches to visualizing multi-criteria decision problems specifically
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have been proposed with a focus on representing alternatives and their impact on cri-
teria: tables, treemaps [9], value paths, parallel coordinate plots [29,69] as well as
a variety of more interactive and specialized approaches such as WeightLifter [76],
Grower Plots and Decision Balls [66] among others. Efforts for empirical evalua-
tion of decision support visualizations have also been reported, such as, for example,
Stone and Schade who compare numeric versus textual attribute values for the evalu-
ation of alternatives [91], or Dimara et al. [22] who study parallel coordinate graphs,
scatterplot matrices, and tabular visualizations. At the same time, a wealth of indi-
vidual studies on comprehensibility of conceptual models exist in the literature – see
Houy et al. [41] for an earlier survey and a presentation of the comprehensibility
construct problematic – while, more recently, the general problem of systematizing
evidence-based notation design in conceptual models has attracted increasing atten-
tion from researchers. Bork and Roelens, for example, offer a technique based on
iterative evaluation and improvement of notations [13].

Research has also focused on the relevance of cognitive fit theory [96] in pre-
dicting which visualizations will work best for a task at hand, e.g. [42,53,64,87,94].
The role of individual differences has also been studied. For example in a study by
Engin and Vetschera [23], CSI is reported to be a predictor of suitability of graphi-
cal versus tabular representations, while Luo et al. [64] use the verbalizer-visualizer
questionnaire [48] to obtain a similar result.

As we saw, goal models have long been considered to be tools for effectively
guiding decision problem understanding and exploration [74] via a variety of formal,
semi-formal or visual analysis approaches. Gonzàlez Baixuali et al. for example [32]
propose a tool for visualizing qualities of goal model alternatives through a variety of
techniques including pie-charts, bar-charts and tree-views. Horkoff and Yu propose
a way to semi-automatically evaluate satisfaction propagation, whereby model users
intervene to resolve conflicts [40]. Many other ways to reason about goal satisfaction
propagation and thereby resolving goal alternative selection have been proposed in
the literature, e.g. [5,51,55,57,60] – Horkoff and Yu offer a survey [39].

Despite the wealth for proposals for reasoning with goal models, efforts for em-
pirical exploration of such proposals are limited in number. Horkoff and Yu, for ex-
ample, perform an evaluation of their own proposal [40] while Hadar et al. [34] report
on a family of studies in which goal diagrams and use case diagrams are compared on
a variety of user tasks, such as reading and modification. In a similar vein, Abrahão
et al. [1] present an empirical comparison of i* with a specialization of GRL [99]
called value@GRL, and, through similar experimental practices, Morales et al. [72,
73] compare i*, KAOS (a goal modeling language [20]) and TRiStar (an extension to
i* for teleo-reactive systems). Elsewhere, Teruel et al. [92] compare again i* with an
extension thereof for collaborative systems requirements. The role of representation
becomes the subject of a study by Caire et al. [15] where, using Moody’s “physics
of notations” [71] as motivating theory, symbols used to represent goal modeling
constructs are the result of participant selection. In a similar vain, aimed at improv-
ing the semantic transparency of i*, Santos et al. compare the standard visualization
with an alternative one [85]. Tasks included answering comprehension question af-
ter studying a model and identifying issues in defective models and metrics included
accuracy, speed, and ease, the latter assessed with the assistance of eye tracking. Sim-



52 S. Liaskos

ilar work has been done by the same group on KAOS goal models [20,84]. Despite
these efforts, however, to our knowledge, no work reports empirical effort focusing
exclusively on the comprehensibility of contribution links for decision making.

9 Conclusions and Future Work

The ability of goal models to represent and support decisions [74] is arguably one of
their most appealing properties that makes them potentially valuable tools for every
stage of the IT planning and development lifecycle where decisions and tracking of
their rationale is involved. Hence, we consider evidence-based optimization of their
utility as visual aids to be a worthwhile research program. The study we presented
is meant to be used as a starting point for further empirical investigation aimed at,
firstly, informing the design of goal model based notations and decision support vi-
sualizations and techniques and, secondly and more generally, developing new or
utilizing and advancing existing empirical constructs (e.g., intuitiveness) and theoret-
ical approaches (e.g., mental models) to allow systematic study of modeling notation
design, beyond goal models.

With regards to goal model-specific research, we are interested in exploring novel
visual representations that are consistent with the more expressive semantics that have
been proposed for contribution links, so that formal reasoning is more explainable
and transparent. In earlier work [53] we showed, for example, that simple bar-charts
and pie-charts are, under specific circumstances, better tools for helping users iden-
tify the correct – according to weighted summation semantics – optimal alternatives
compared to diagrams. It is, thus, possible that there is a visualization that is op-
timal for conveying the semantics of label propagation, which, as we saw, are not
always served well by the current diagrammatic notation. Further, investigation can
go beyond static visualizations and into more interactive decision space exploration
experiences. This may also allow for measuring intuitiveness of the specific steps of
formal procedures. For example, a step-by-step interactive execution approach, such
as that proposed by Horkoff and Yu [40] where users intervene to resolve conflicts
resulting from the application of formal rules, can also be implemented as a step-
wise evaluation of the rules of formal reasoning themselves. Thus, instead of training
users to a given predefined reasoning mechanism, the latter is specially designed to
fit intuitive expectations of the former.

Furthermore, we plan to continue to study methodological aspects and particu-
larly the interaction between comprehensibility appropriateness, training, and learn-
ability, both within and outside the context of goal models. As we discussed above,
the process of measuring the former is confounded by adequate application of the lat-
ter: with sufficient training, any notation can become comprehensible, one may claim.
Intuitiveness as discussed here, becomes then a function of the amount of training
needed to reach a fixed level of comprehensibility or, reversely and as implemented
here, a measure of comprehensibility that is reached after a fixed amount of train-
ing. Sound ways to measure training “amounts” will be, hence, needed. Moreover,
at the measurement and data collection level, our experience in this study underlines
the importance of free-form verbalization as a way of contextualizing the observa-
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tional data. We plan to integrate such components in future studies focusing not only
on written retrospective comments but also oral ones offered during performance of
the activity [86]. Finally, the introduction of questionnaire-style measures of compre-
hensibility, analogous to widespread standardized instruments utilized in interaction
design such as SUS [14] or TAM [21], can allow for more reliable assessment and
potentially for a more refined theoretical model of comprehensibility.
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