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Abstract. Reinforcement learning (RL) is an important class of ma-
chine learning techniques, in which intelligent agents optimize their be-
havior by observing and evaluating the outcomes of their repeated inter-
actions with their environment. A key to successfully engineering such
agents is providing them the opportunity to engage in a large number of
such interactions safely and at a low cost. This is often achieved through
developing simulators of such interactions, in which the agents can be
trained while also different training strategies and parameters can be ex-
plored. However, specifying and implementing such simulators can be a
complex endeavor requiring a systematic process for capturing and ana-
lyzing both the goals and actions of the agents and the characteristics of
the target environment. We propose a framework for model-driven goal-
oriented development of RL simulation environments. The framework
utilizes a set of extensions to a standard goal modeling notation that al-
lows concise modeling of a large number of ways by which an intelligent
agent can interact with its environment. Though subsequent formaliza-
tion, the model can be used by a specially constructed simulation engine
to simulate agent behavior, such that off-the-shelf RL algorithms can use
it as a training environment. We present the extension of the goal mod-
eling language, sketch its semantics, and show how models built with it
can become executable.

Keywords: Goal Modeling · Reinforcement Learning · DT-Golog

1 Introduction

Over the past years, the demand for efficient Artificial Intelligence (AI) sys-
tems has been on the rise. Such systems perform tasks requiring autonomy and
complex decision making, such as driving vehicles, controlling devices, or making
trading decisions. Some of these AI systems are based on Reinforcement Learn-
ing (RL), whereby intelligent software agents learn to optimize their behavior
by continuously interacting with their environment [62]. RL has been studied
in a variety of application domains including energy [5], traffic control [64], fi-
nance [58], and healthcare [26]. Intelligent RL agents can be seen as engaging
in goal-oriented activity, whereby they perform actions to fulfill functional goals

This version of the contribution has been accepted for publication, after peer review but is not
the Version of Record and does not reflect post-acceptance improvements, or any corrections
(including title change). The Version of Record is available online at:
TBD
Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

https://orcid.org/0000-0001-5625-5297
https://orcid.org/0000-0003-0140-3584
https://orcid.org/0000-0002-8698-3292


2 Liaskos, Khan, Mylopoulos, and Golipour

(e.g., administer a therapy, trade securities, control a heating device, etc.), while
maximizing the satisfaction of higher level quality objectives (resp., health out-
come, profit, occupant comfort) based on experience.

Key to successfully engineering an RL agent is the ability to subject it to a
large number of training interactions with the target environment. Using a simu-
lator based on a model of the latter allows a large number of such interactions to
take place safely and at a low cost. When such a model is accurate, the trained
agent is readily deployable to the target environment. When the model is pro-
visional, approximate, or otherwise imprecise, simulator-based training is useful
for exploring the performance of different learning algorithms under alternative
problem formulations and parameter settings.

We propose a framework for model-driven, goal-oriented development of
training simulators for RL. The framework is based on developing goal models
that describe the required intentional structure of RL agents through represent-
ing how high-level agent goals are refined into low level actions, how the latter,
upon their performance, give raise to stochastic outcomes, and how such out-
comes, in turn, affect a variety of quality variables of interest, an aggregate of
which is used to represent action/outcome rewards. The requirements model is
then automatically translated into an action- and decision-theoretic formal spec-
ification, which, through a set of proposed querying and simulation components,
can be directly used by RL algorithms as a training workbench. In this way, the
training simulator is the result of a principled requirements-based approach that
fully embraces modeling both for facilitating analysis and communication of the
RL agent design and for generating its training simulator.

Our main contributions include the extensions to an existing goal-modeling
language for enabling RL agent modeling, the corresponding formalization rules,
and the architecture and implementation of components that make the models
executable and usable by RL algorithms. To demonstrate feasibility, a set of
experiments with a selection of popular RL algorithms is performed.

The paper is organized as follows. We describe the modeling language and
its semantics in Sections 2 and 3 and the generation of simulators in Section 4.
In Section 5 we discuss related work and we conclude in Section 6.

2 Modeling RL Domains

2.1 Motivating Example

Consider a large scale woodwork manufacturer who builds custom furniture
and other wooden building structures in a make-to-order fashion. For every order
they receive, they need to source the material and manufacture the requested
product – among many other activities omitted here for simplicity. They have
options as to how they perform these two steps. The material can be sourced from
domestic or foreign sources. In the first case, the cost is higher, but in the latter
case there are delay risks. Once the material is acquired, they can engage their
in-house crafts-persons to build the product or subcontract to a more specialized
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Fig. 1: An extended goal model.

group, who use precise manufacturing techniques but at a premium – plus they
only work with domestic material. Importantly, a decision outcome of one step of
the process, may affect what decision is best in a subsequent step. For example, a
delay in sourcing may necessitate expedience in manufacturing to meet deadlines.
In addition, choices have non-deterministic outcomes. For example, sourcing
material from abroad may or may not delay, and the in-house crafts-persons
may or may not produce a lower quality product.

The question for the manufacturer as they engage in this sequential deci-
sion making process for every incoming order is what decision they should be
making at each step so that their goals are, on average, maximally satisfied in
the end. Reinforcement learning (RL) refers to a set of techniques that have
been proposed for addressing this problem via learning through experience [62].
Specifically, an RL agent actively engages with the environment by repeatedly
performing actions which have the effect of (a) changing the state of the envi-
ronment, typically in a non-deterministic way, and (b) offering to the agent a
(positive or negative) reward reflecting the desirability of the action outcome
or state change. This is repeated until a goal state is reached. The agent then
restarts with a new effort to achieve the same goal. In the example case, an RL
agent would, for each order, make a sourcing option, observe the outcome (de-
layed or not), proceed with a manufacturing option, observe that result (good
quality or not), and move on to the next order. Various RL algorithms have been
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introduced for turning these repeated decision making sequences into a policy,
which prescribes what action should be taken at each state, so that total reward
is maximum on average.

As RL agents need to first process a potentially large number of cases before
they can start making safe and good quality decisions, it is preferable that their
training is not taking place in the actual environment but an executable model
thereof, i.e., a simulator. Such a model should capture the decision points that
are available to the RL agent, the corresponding alternative actions, the possible
effects that these actions bring about, as well as the reward structure reflecting
the preferability of the effects. The latter can be challenging in RL applications
within socio-technical systems, such as the one of our example, where reward
structures are abstract and multi-dimensional. We next describe an extension to
a standard goal modeling language that aims at developing such models.

2.2 Extending iStar for Reinforcement Learning: iStar-RL

The proposed language, which we will refer to as iStar-RL, extends iStar
2.0 [17], a language for goal-oriented modeling of socio-technical systems. Two
examples of iStar 2.0 models can be viewed in Figure 1. Diagram (a) on the left
shows the goals of the hypothetical woodwork manufacturer we discussed above.

As per the iStar 2.0 ontology, actors, such as Manufacturer, have goals, such
as (Have) Material Ordered, which represent states of affairs that actors want to
bring about and/or maintain. Through AND- and OR-decompositions, high-level
goals are refined into lower-level ones, whereby satisfaction of all or, respectively,
one subgoal(s) is necessary (resp., sufficient) for fulfilling the parent goal. At the
leaf level, tasks signify concrete actions to be taken for fulfilling goals – e.g. Source
Domestically. Quality goals (qualities) describe attributes for which actors desire
some level of achievement, without the requirement that such level is precisely
defined. Contribution links are used to signify that achievement of a goal/task
affects a quality in a way that is described using an annotation on the link.

Models such as that of Figure 1(a) can encode a great number of subsets
of leaf-level tasks and temporal orderings thereof that can fulfill top-level goals.
Various ways for formalizing goal models for purposes similar to identifying
such task sequences have been introduced – e.g. [23,30,36,53]. We adopt here a
decision-theoretic extension to iStar for reasoning in the presence of probabilistic
task effects [40,41] and further extend it with constructs that facilitate RL.

These extensions are showcased in Figure 1. A set of domain propositions
are, firstly, introduced for describing the state of the environment at different
points in time – for example, hasManufacturingCapacity and materialAvailable.
Domain propositions are included in the model as the contents of precondition
and effect elements. A precondition contains a boolean formula of domain predi-
cates, whereas an effect contains one such predicate. Preconditions are connected

to tasks through precedence links
pre−→ and, respectively, negative precedence links

npr−→ which denote that performance of the task is not possible unless (resp., if) the
formula in the precondition is satisfied. Precedence (resp., negative precedence)
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links can also originate from goals meaning that the task cannot be performed
unless (resp., if) the origin goal has been satisfied (resp., has been attempted,
i.e. at least one of its descendant tasks has been successfully performed).

Further, tasks are connected with effects through the use of effect links
eff−→,

denoting that performance of the task from where the link originates can cause
the effect which the link points at to occur, i.e., make the domain predicate
contained in it true. As tasks may have several possible effects, they may be
connected to effect groups which represent a collection of effects each carrying
a distinct probability to occur once the task is performed. The probability is
added as a label on the corresponding link on the diagram. Effects are marked
as task satisfying if their occurrence implies successful performance of the task,
and non-satisfying otherwise. For example, an attempt to submit an order may
be deemed successful (task satisfying) if it is finally delivered, despite delays,
errors, etc., and non-satisfying if it is never delivered. Moreover, indirect effects,
such as heaterOn in Figure 1(b), are effects whose truth status depends on other
effects in a way that is defined outside the diagram – noted through an fO
annotation. Effect links are used to connect regular effects with indirect effects.

Further, effects, including indirect ones, are connected to qualities through
a specialization of iStar 2.0 contribution links, which we call utility links. These
are annotated either with a number representing the amount of satisfaction that
the effect, if it occurs, adds to the quality or with the fO icon indicating that
a more complex formula describes the relationship. Qualities, which can also be
connected with each other using contribution links, form their own hierarchy
with a top-level goal otop representing the overall quality. In Figure 1, this goal
is Total Value. Each quality in iStar-RL is considered to be a continuous variable
whose value represents the level of satisfaction of the quality at a given state.

2.3 Task Histories, Goal Runs, and Episodes

Let us now focus on tasks. Let task (performance) history be a sequence
tH |I = [t1, t2, . . .]

|I of leaf-level tasks that (a) starts from an initial state in
which propositions and qualities have a value configuration I, and (b) is feasible
with respect to the precondition and effect constraints, i.e., t1 is feasible under
I and each subsequent ti is possible given the state that ti−1 brought about.
Attempt of each task results in the occurrence of an effect. Hence, a task history
is mapped to a set of possible effect (occurrence) histories, eH |I = [e1, e2, . . .]

|I –
we will henceforth omit the initial state superscript I unless needed. Further, let
H be the set of all goals and O the set of all qualities in a model. The mappings
satG : H×eH 7→ {true, false} and satQ : O×eH 7→ R, describe the satisfaction
or not of a goal, and, respectively, the level of satisfaction of a quality, given an
effect history eH from the set eH of all such. The former mapping reflects the
AND/OR decomposition structure and the latter the structure of utility links;
precisely how is discussed in a subsequent section.

To make effect histories meaningful for RL, we need additional constructs.
Let G be a goal model with root goal rG . A goal run for goal rG is an effect
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history eH = [e1, e2, . . .] such that (a) satG(rG , eH), i.e. the root goal is satisfied,
(successful run) or (b) no other task can be performed at eH, due to precondition
constraints, a situation we will call a deadlock.

Back in Figure 1(a), consider effect histories [deliveredInTimeDom, delivered-
BadQualityInH] (materials sourced domestically and in-house production was of
bad quality) and [neverDeliveredFrgn] (materials ordered from foreign sources
and were never delivered). Both histories are goal runs: the former satisfies the

root goal, whereas the latter cannot be continued due to the
pre−→ link between

Material Ordered andManufacturing Completed. However neither [deliveredLate-
Dom] nor [deliveredInTimeFrgn] are goal runs, as, in both cases, the root goal is
not satisfied and there are actions that are still possible. The level of satisfaction
satQ of quality Reputation for each of the aforementioned four (partial) histories
is +1.0 - 1.0 = 0, -5.0, -1.0, 1.0, respectively, calculated by simply adding up the
annotations of utility links originating from effects included in the history.

We further define an episode to be a concatenation of n goal runs eP |I =

[eH
|I
1 , eH

|I
2 , ..., eH

|I
n ] such that for all eH

|I
i , i < n the root goal is satisfied. In

other words, an episode describes a history of repeated goal runs all of which
lead to the root goal being satisfied except for the last one, that may lead to a
deadlock. For n > 1 the episode is a multi-run episode and for n = 1 a single-run
episode. We can specify the maximum number of runs that comprise an episode
(episode length) as an annotation next to the root goal - see Figure 1. In multi-
run episodes, each run is, by default, assumed to start from the same initial
configuration I. We may however wish to designate elements that carry their
values across goal runs. We accomplish this through cross-episode elements.

To appreciate the rationale for multi-run episodes and the role of cross-
episode elements in such episodes, consider the model of Figure 1(b). It describes
the function of a heating device controller, contrived here to showcase additional
features of the language. The controller periodically signals wirelessly to the de-
vice to turn on or off. This on or off signal can be lost with a probability. The
overall quality accrued from a sequence of signaling tasks is a function of the
distance of the temperature to an ideal one and the amount of time heating is on,
which represents cost and environmental impact. To make meaningful optimal
decisions one needs to look at the quality value accumulated over a sequence
of events of attaining the top level goal, i.e., over several goal runs. According
to the diagram this is set to four (4). Hence, if the controller makes a decision
every, e.g., 5 minutes, which constitutes one goal run, an entire episode spans 20
minutes and overall quality is calculated for all 4 decisions made.

In Figure 1(b), cross-episode elements (dashed outline and with a “PRE”
annotation) represent the (truth) value of the enclosed proposition or quality
in the previous state. The previous state is the configuration of truth values
before the latest action was performed within the episode, irrespective of goal
run boundaries. Thus, the truth status of the proposition within indirect effect
heaterOn (solid line effect), depends on its truth status at the end of the pre-
vious state (dashed line effect) and the current state of four regular effects in
the second run, represented through the remaining four incoming effects. The
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symbol f1O denotes that the exact formula that translates the truth value of these
five propositions into the new truth value for heaterOn is specified outside the
diagram. Likewise, the current value of Reach Ideal Temperature depends on its
previous value and the current value of heaterOn. Again, a symbol f2O denotes
that the formula for combining the two values is specified outside the diagram.

A final RL-related extension is the designation of the exported state set, i.e.,
the set of propositions and/or qualities to be used for the calculation of policies.
By default, we assume that the problem is modeled as a discrete-state one, i.e.,
the exported state set is the configuration of values of all propositions – the
discrete (exported) state set. However, in some cases it is useful to designate as
exported state a set of qualities of interest. In the heating controller example,
whether the heater should turn on or off more obviously depends on the level
to which Reach Ideal Temperature has been achieved than the history of on/off
actions. In the diagrams of Figure 1 we put a shaded rectangle at the background
of an indirect effect or a quality, to mark its inclusion in the exported state. When
the exported state contains at least one non-propositional element, we model
the problem as a continuous-state one. In Figure 1(b) we designate variables
heaterOn and Reach Ideal Temperature to exclusively comprise the exported
state set – a continuous exported state set. Note that such designation does not
affect how validity of task and effect histories is established, which is based solely
on the discrete state set; hence the “exported” qualification to prevent confusion.

2.4 iStar-RL and Reinforcement Learning

Let us now sketch how iStar-RL models can be used by an RL agent to
allow for optimal decision making. Recall that RL-agents observe the state of
the environment, perform an action from a set of available ones, and sense the
state that results from the action along with the reward that the action yields.
In our case, the state of the environment is, as we saw, the exported state,
i.e., a combination of values of designated domain propositions and/or qualities.
Upon sensing that state, the RL agent performs a task, which brings about the
corresponding effect, which, in turn, augments the current episode eP with one
more effect, and may also imply updated satG and satQ values. The RL agent
will sense the new state and perceive the total value satQ(otop, eHi) as the reward
of the latest action. It will then repeatedly proceed with the next action until
the episode is over, i.e., it reaches the maximum number of successful runs or
a deadlock. During training, the RL agent will attempt a great number of such
episodes, aimed at identifying a policy, i.e., a mapping from state to tasks that,
when repeatedly followed, maximizes the average total value.

For the RL agent to accomplish such training using the iStar-RL model, the
latter needs to be executable. In the next section, we describe how iStar-RL
models can be formalized, aimed at both clarifying their semantics and paving
the way for generating executable simulations of such models.



8 Liaskos, Khan, Mylopoulos, and Golipour

3 Semantics

3.1 DT-Golog

The semantics of iStar-RL are defined by means of its translation to DT-
Golog, a high-level agent programming language [12,61] based on the Situation
Calculus [59]. The basic constructs of DT-Golog are fluents, stochastic (or agent)
actions, nature actions, and situations. Fluents play the role of state features and
have different truth values in different situations. They are represented through
predicates such as materialDelivered(s), with the situation s as one of the pa-
rameters. Stochastic actions a are first-order terms signifying specific activity
initiated by agents and may have several alternative outcomes, each occurring
with a different probability. These outcomes are modeled through a set of nature
actions Â = {â1, â2, ...} associated with a through predicate choice(a, Â). The
corresponding probabilities are represented using prob(â, v, s), where v is the
probability of the occurrence of â. Further, a situation s denotes a sequence of
actions. Function do(â, s) denotes the situation which results from the perfor-
mance of nature action â in situation s. A special constant S0 denotes the initial
situation, where no action has been performed.

A DT-Golog specification contains axioms that prescribe what actions are
possible in different situations and how the truth value of fluents is affected by
the performance of actions. The former, precondition axioms are of the form:

∀s.poss(a, s)↔ Πa(s)
where Πa(s) is an arbitrary formula and special predicate Poss(a, s) states that
action a is executable in situation s. Successor state axioms are of the form:

∀â,x, s.f(x, do(â, s))↔ Φf (x, â, s)
where x signifies a list of arguments, f a fluent symbol and Φf (x, â, s) a formula
whose truth value depends on the parameters, the current situation, and the
nature action in question. Finally, by defining:

reward(v, s)↔ Ψr(v, s)
where Ψr(v, s) is a formula grounded on fluents, it is possible to assign a reward
value v to any situation or action.

3.2 From iStar-RL models to DT-Golog specifications

The DT-Golog-based semantics of iStar-RL is based on a treatment offered
by Liaskos et al. [40], with the necessary additions for supporting RL. In what
follows, let a goal model G containing a set H of goals, a set T of tasks, a set E
of effects, a set Q of domain predicates, and a set O of qualities.
Primitives. Each element in the set is translated to a DT-Golog primitive as
follows. For each domain proposition q ∈ Q introduce a fluent ϕq(s). For each
task t ∈ T associated with an effect group Et ⊆ E introduce the following: a
stochastic agent action at and a set of nature actions Nt each ât ∈ Nt associated
with an effect in Et. For each task t ∈ T and goal h ∈ H, introduce fluents ϕt(s)

and ϕh(s). For each quality o ∈ O introduce two fluents ϕ
(r)
o (v, s) and ϕ

(m)
o (v, s),
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respectively called current satisfaction fluent and cumulative satisfaction fluent;
for both fluents, parameter v ∈ R represents the satisfaction value of o.

Given the 1-1 correspondence between iStar-RL effects and situation calculus
nature actions, effect histories eH = [et1 , et2 , . . .] also map 1-1 to situations
s = do(. . . do(ât2 , do(ât1 , s0)) . . .), where âti is the nature action corresponding
to effect eti . For a goal h and quality o: satG(h, eH) iff ϕh(s) and satQ(o, eH) = v

iff ϕ
(r)
o (v, s), where s is the situation corresponding to effect history eH.

Successor State Axioms. For each domain predicate q, collect all (if any)
effects e1, e2, . . . that mention it and consider the corresponding â1, â2, . . . nature
actions. Introduce the following successor state axiom:

ϕq(do(a, s))↔ (a = â1 ∨ a = â2 ∨ . . .) ∨ ϕq(s).

Attempt and Attainment Formulae. Consider each task t connected with
an effect group Et. Consider all the effects of Et, and the domain predicates

q
(t)
1 , q

(t)
2 , . . . contained in them. Generate the following task attempt formula for t:

ϕ
(att)
t (s)↔ ϕ

q
(t)
1
(s) ∨ ϕ

q
(t)
2
(s) ∨ . . .

A task attainment formula ϕt(s) is defined similarly with the only difference
being that it excludes non-satisfying effects. Introduce also the a goal attainment
formula for each goal h as follows:

ϕh(s)↔ fAND/OR(ϕt1(s), ϕt2(s), . . .)

where t1, t2, . . . are the tasks that are descendants of h in the goal hierarchy,
ϕt1(s), ϕt2(s), . . . their corresponding task attainment formulae, and fAND/OR an
AND/OR formula reflecting the corresponding goal decomposition structure. A

goal attempt formula for h, ϕ
(att)
h (s), is similarly defined but grounded on task

attempt, rather than attainment, formulae.

Quality Formulae. Consider each quality or domain variable o ∈ O, all the
contribution links toward it coming from effects e1, e2, . . . labeled with values
le1 , le2 , . . ., and all contribution links coming from other qualities o1, o2, . . . –

see Figure 2 left side. Recalling that o is associated with fluents ϕ
(r)
o and ϕ

(m)
o ,

the value of each is defined by the formulae at the right side of Figure 2. In
the formulae, âi are the nature actions associated with effects ei. Intuitively,
the value v of quality o is a function f of the corresponding current or previous



10 Liaskos, Khan, Mylopoulos, and Golipour

(depending on cross-episode status) values of the other qualities and/or the labels
of utility links coming from effects that are(/were) currently(/previously) true.
Action Precondition Axioms. For each task t which receives precedence links
from a precondition element, a set of tasks {t1, t2, . . .}, a set of goals {h1, h2, . . .}
and a set of effects containing predicates {q1, q2, . . .} introduce:

poss(at, s)↔ ϕq1(s) ∧ ϕq2(s) ∧ . . . ∧ ϕt1(s) ∧ ϕt2(s) ∧ . . .

∧ϕh1
(s) ∧ ϕh2

(s) ∧ . . . ∧ gprec(s) ∧ ¬ϕ(att)
t (s)

where gprec(s) is the formula inside the precondition element, grounded on fluents

of type ϕq(s), and ϕ
(att)
t (s) is the attempt formula for the task in question itself.

As will become apparent below, the latter addition prevents the RL learning
agent from selecting the same task more than once in a given goal run. The

above formula can be extended to include
npr−→ incoming links, omitted here for

brevity; however it must be noted that for these links specifically, we utilize task
and goal attempt formulae rather than attainment ones.
Reward. The total reward calculated for each situation is simply the current
quality value of what has been designated as otop as per the quality formula:

reward(v, s)↔ ϕ
(r)
otop(v, s)

Probabilities. For each link that connects an effect e with its effect group,
introduce prob(â, p, ·), where â is the nature action associated with e, and p is
the probability label of the link – independent of situation, hence · instead of s.
OR-decomposition exclusivity. We finally demand that all children of OR-

decompositions are connected in pairs with
npr−→ links. More formally, let g1, g2, . . .

be children (goals or tasks) of an OR-decomposition. Then, assume gi
npr−→ gj for

all i ̸= j. The additions appear in action precondition axioms for the involved

goals, following from the semantics of
npr−→.

4 Making Models Executable

4.1 The RL Simulation Components and their Function

So far we have discussed the iStar-RL modeling language and how it can be
formalized into a DT-Golog specification. We now describe how the latter speci-
fication can serve as a domain simulator usable by software agents implementing
arbitrary RL algorithms. We adopt a widely used interface specification for RL
simulators, Open AI’s Gym framework [1], called gym.Env, which offers a small
collection of functions that satisfy the RL observe-decide-act interaction pattern.
Specifically, the most important of gym.Env ’s functions is:

observation, reward, terminated, info ← step(action)
The function requests the simulator to perform action, identified as an integer

within a range, and return: (a) the state which results from the performance of
action, which is encoded in variable observation as a state-identifying integer
for discrete-space problems or as an array of real values for continuous-space
problems, (b) the reward obtained for performing the action, and (c) whether
the current episode is terminated, and (d) other miscellaneous info. Our goal
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is, hence, to implement step (along with other auxiliary functions) such that it
behaves in a way that is compliant to iStar-RL models of our choice.

To achieve this we introduce two software components. The Query Engine
(QE ) offers a number of functions that answer queries about the domain rel-
ative to a given a history of actions, such as what fluents are true and what
actions are possible. These services are used by GMEnv, a second component
which implements the gym.Env standard. GMEnv maintains information about
the current state of execution of a simulated episode, and executes actions or
relays information as per the requests of the client environment. The latter is an
arbitrary RL agent, implementing some RL learning algorithm (e.g, A2C [46],
Deep Q Network (DQN) [47], etc.) and requiring the gym.Env interface for its
training. We examine the development of QE and GMEnv in sequence.

4.2 The Query Engine (QE)

QE offers a set of functions whereby the iStar-RL model can be queried with
respect to an effect history eH. The supported functions are listed in Table 1
and are implemented as logic programs in Prolog and in accordance to DT-Golog
semantics also seen in the table. Below we present these semantics in more detail.

Extracting State Information. Consider the set Q = q1, q2, . . . of domain
predicates in the goal model and an effect history eH = [e1, e2, . . .]. Define also
list LQ = [ql1, ql2, . . .] where qli = 1 if the predicate qi is satisfied after effect
history eH has been observed, and qli = 0 otherwise. For discrete-state problems,
LQ offers a representation of discrete exported state and it is easily translatable
to an integer identifier. For continuous-state problems, list LO = [ol1, ol2, . . .],
where oli = satQ(oi, eH), represents continuous exported state for the goal
model after eH for continuous exported state set {o1, o2, . . .} ⊆ O.

The semantics of LQ and LO in DT-Golog terms are understood as fol-
lows. Recall that there is a 1-1 correspondence between domain predicates Q =
{q1, q2, . . .} and DT-Golog fluents ΦQ = {ϕq1 , ϕq2 , . . .}, as well as between an
effect history eH and a DT-Golog situation s. The following rule then defines
LQ in terms of situation s:

getState(s, LQ) ↔ (ϕq1(s) ∧ (ql1 = 1) ∨ ¬ϕq1(s) ∧ (ql1 = 0))∧
(ϕq2(s) ∧ (ql2 = 1) ∨ ¬ϕq2(s) ∧ (ql2 = 0)) ∧ ...

Thus, getState(s, LQ) holds when binary list LQ captures the truth value
of every fluent in situation s. The predicate is the semantics of QE function
getState(eH): bit[] seen in entry 5 of Table 1. For continuous exported states,
recall that qualities o ∈ O in the goal model are associated with fluents of the

form ϕ
(r)
o (v, s) in which v is a real value representing o’s satisfaction satQ(o, eH).

Hence, for continuous exported state set {o1, o2, . . .} ⊆ O:
getContState(s, LO) ↔ ϕ

(r)
o1 (v1, s) ∧ (ol1 = v1) ∧ ϕ

(r)
o2 (v2, s) ∧ (ol2 = v2) ∧ ...

The predicate effectively maps a situation s with the value of fluents rep-
resenting the qualities included in the exported state set, and constitutes the
semantics of QE function getContState(eH):float[] – entry 6 of Table 1.

Episodes and Goal Runs. We now express the semantics of goal runs in
terms of DT-Golog constructs. Recall that a task history is a goal run iff the root
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QE Function Semantics QE Function Semantics

1
possibleAt(t,eH):

poss(at, s) 7 done(eH):bool
done(s) ≡

bool ϕatt
rG

∨ deadlock(s)

2
getOutcomes(t): choice(at, 8

deadlock(eH): ∀â ∈ NG .¬poss(â, s)
integer[] {â(1)

t , â
(2)
t , ...}) bool

3
getProbs(t,eH): getProbs(at, 9

getCrState(eH):
crossState(L, s)

float[] {p(1)
t , p

(2)
t , ...}, s) float/bool[]

4 reward(eH): float reward(s, r) 10
setCrState(X)

assert(X)
(X: initializations)

5 getState(eH):bit[] getState(s, LQ)
11 rootAchieved(eH):

ϕrG (s)
bool

6
getContState(eH): getConState

float[] (s, LO)

Table 1: Query Engine (QE) functions and their semantics. The functions assume
a mapping of nature and stochastic actions to integers, hence t and eH are
respectively an integer and an array thereof.

goal is satisfied or it leads to a deadlock. Recall also that for goal h, satG(h, eH)
iff ϕh(s), where s is the situation corresponding to history eH. Thus, root goal
rG is satisfied iff ϕrG (s). Secondly, to decide if a situation s is a deadlock we
examine if any of the action precondition axioms allow the performance of any
task at s. Let NG to be the set of all nature actions â (each corresponding to an
effect e ∈ EG), a situation s is a deadlock according to the following definition:

deadlock(s) ≡ ∀â ∈ NG .¬poss(â, s)
where poss(â, s) are, as we saw, the left-hand sides of action precondition

axioms. Given the above, we can now define predicate done(s) (entry 7 of Table
1) that holds when a situation s is a complete run with respect to root goal rG :

done(s) ≡ ϕrG (s) ∨ deadlock(s)

Cross-episode Elements. Recall from Figure 2 that in the initial situ-
ation S0, qualities are assigned an initial value vinit, while all other predi-
cates/fluents are assumed to be false. QE allows the client environment to both
assert these initial values and to read the values at a given situation s. This is
useful for implementing cross-episode elements within multi-run episodes. Let
L = {ol1, ol2, . . . , ql1, ql2, . . .} represent the values of all cross-episode qualities
o1, o2, . . . and propositions q1, q2, . . ., where oli = v iff ϕoi(v, s) and qli = 1 iff
ϕq(s), 0 otherwise. Predicate crossState(s, L) (the semantics of QE ’s getCrState
– see entry 9 of Table 1) allows extraction of cross-state information given situ-
ation s corresponding to effect history eH:

crossState(s, L) ↔ ϕ
(m)
o1 (v1, s) ∧ (ol1 = v1) ∧ ϕ

(m)
o2 (v2, s) ∧ (ol2 = v2) ∧ . . .

[ϕq1(s)∧ (ql1 = 1)∨¬ϕq1(s)∧ (ql1 = 0)]∧ [ϕq2(s)∧ (ql2 = 1)∨¬ϕq2(s)∧ (ql2 = 0)]∧ . . .

Dynamically defining initial states is a matter of asserting in the specification,
using setCrState the list of initializations {ϕo1(v

′
1, s0), ϕo2(v

′
2, s0), . . . , Φ

T
q (s0)},

where v′i are the desired initial values, ΦT
q (s0) the subset of fluents representing

propositions that are true in s0 – see entry 10 of Table 1. Thanks to the above two
functions, GMEnv can implement multi-run episodes by reading the values of
cross-episode elements o1, o2, . . . , q1, q2, . . . at the end of a run using getCrState

and setting these as the initial values of the next episode using setCrState.
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Algorithm 1 Implementation of the Step function of GMEnv.

1: Global: eH,tH = [] ▷ run-wide effect and task history
2: eH Ep,tH Ep =[] ▷ episode-wide effect and task history
3: curRun = 0 ▷ the goal run under current consideration
4: penaltyReward ▷ default penalty for infeasible actions
5: qe ▷ reference to a QE implementing object
6: function step(t)
7: if qe.possibleAt(t,eH) then
8: Et = qe.getOutcomes(t) ▷ Et : list of effects
9: Pt = qe.getProbs(t,eH) ▷ Pt: list of effect probabilities
10: et = pickRndAction(Et, Pt) ▷ randomly pick effect
11: eH = append(eH,et) ▷ append effect to history
12: tH = append(tH,t) ▷ append task to history
13: reward = qe.reward(eH) ▷ retrieve reward
14: state = qe.getState(eH) ▷ retrieve new discrete state
15: c state = qe.getConState(eH) ▷ optional: retrieve

new continuous state
16: n state = bitToInt(State) ▷ bit array to int
17: else
18: reward = penatlyReward ▷ penalize infeasible action
19: end if
20: if qe.rootAchieved(eH) then
21: X = constructInitClauses(qe.getCrState(eH))

22: qe.setCrState(X)

23: eH Ep.append(eH),tH Ep.append(tH)

24: eH,tH = []

25: curRun = curRun + 1

26: end if
27: return n state, reward, done, [c state]

28: end function
29:
30: function done
31: return ((curRun == N) or qe.deadlock(eH))

32: end function

Other predicates. The query engine offers additional functions, which can
be viewed on Table 1, along with their DT-Golog semantics. One of them:
getProbs(at, {p1, p2, . . .}, s) ↔ choice(at, {â(1)

t , â
(2)
t , . . .})∧
prob(â

(1)
t , p1, s) ∧ prob(â

(2)
t , p2, s) ∧ . . .

uses choice(at, Â) to collect probabilities {p1, p2, . . .} for all nature actions Â =

{â(1)t , â
(2)
t , . . .} associated with task t’s stochastic action at.

4.3 The GMEnv component

GMEnv implements gym.Env through utilizing QE ’s services. While QE is
stateless, GMEnv maintains episode information including the history of tasks
that have been attempted from the beginning of an episode, the effect history
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Model Characteristics Learning Tests

Model Size
Run
#

State
Space

Learning Reward Training Steps Training Time (s)
Rnd.

A2C DQN PPO A2C DQN PPO A2C DQN PPO
D
is
c
re
te

Material
Ordered

1,12
1 26 0.924 0.924 0.924 10K 10K 10K 6.813 5.000 24.00 0.773
2 212 1.711 1.712 1.715 10K 10K 10K 106.2 4.469 113.9 1.466

Product
Manuf.

2,20
1 210 0.477 0.480 0.465 10K 150K 20K 81.97 848 147.8 0.058
2 220 0.946 0.705 0.710 10K 80K 20K 8,123 23.49K 20.32K 0.065

Organize
Travel

3,29 1 214 0.789 0.694 0.788 20K 150K 10K 400.3 1,957 436.7 0.059

HVAC
Control

1,13 4 216 -1.36 -1.37 -1.36 10K 70K 10K 585 702.4 724.2 -5.041

C
o
n
ts
. Product

Manuf.
2,20

1 R2 0.456 0.472 0.048 50K 80K 50K 778.4 972.9 181.3 -78.42*
2 R2 0.286 0.667 0.325 70K 4.5M 70K 62.59 30,379 343.5 -90.95*

HVAC
Control

1,13 4 R2 -1.36 -1.36 -1.37 10K 110K 10K 709.5 390.1 769.8 -5.00*

Table 2: Training with off-the-shelf RL agents. Times in CPU seconds. (*) next to an

Rnd. reward signifies inclusion of deadlock penalty. Model size n,m: n is total # of

OR-nodes, m total # of elements.

that has resulted from these attempts, the run count since the episode’s begin-
ning, as well as the state after the performance of the latest action.

Of the gym.Env functions that GMEnv implements, the most important
is, as we saw, step(task): state, reward, terminate, info. Algorithm 1
sketches the implementation of the function. The function is iteratively called
by the RL agent, with parameter a task t of its choosing. Upon its call, step
checks first if the task is feasible given the current history of effect occur-
rences, stored in eH, through the use of QE ’s possibleAt(t,eH). If yes, through
getOutcomes(t) it retrieves a list of possible effects Et that t may have and
through getProbs(t,eH) their probabilities Pt. A random choice on the basis of
the probabilities is made and both task t and the chosen effect et are appended
to the corresponding lists, tH and eH respectively. The state resulting from the
performance of t is calculated through getState(eH), which translates a history
of effect occurrences to an array of bits representing the truth values of domain
propositions. An integer representation of the bit array, n state, is, in turn,
returned to the calling environment as per the gym.Env requirements. Likewise,
getConState(eH) is called to retrieve any continuous exported state set.

If task t is not feasible at eH, step does not proceed with any changes to
history lists and state, but may, based on user configuration, result in a negative
reward to bias the learning procedure against performance of the task in the
specific state. On the other hand, if the goal is achieved, the current run has
concluded at eH. Consequently (a) the cross-run elements at eH are retrieved
and reasserted as initial state for the next run, (b) the action and effect lists are
added to the episode-wide record and (c) reset, and (d) the run counter increases
by one. As we saw above, the episode is done if the root of the Nth goal run has
been achieved or a deadlock has been detected.

Finally, the second important gym.Env function to be implemented byGMEnv
reset(), simply empties the history lists and resets state to its initial values.



Model-driven Design and Generation of Domain Simulators for RL 15

4.4 In Action

The proposed components QE and GMEnv can be used by off-the-shelf al-
gorithms for learning optimal policies for any appropriately formalized iStar-RL
model. We performed tests with three such implementations, namely, Advantage
Actor Critic (A2C) [46], Deep Q Network (DQN) [47] and Proximal Policy Op-
timization (PPO) [60], which are part of the Stable-Baselines3 RL package [57].
For the experiments, we used discrete and continuous versions of models such
as those of Figure 1. As a benchmark, for discrete-space problems, we also cal-
culated optimal policies and their expected rewards using the DT-Golog inter-
preter. A modest Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 4 Core(s), 16Gb
RAM computer was used. In all cases, using default hyper-parameters, the RL
agents converged close to the optimal reward and away from the reward of the
random policy. Further, the three algorithms performed differently both in terms
of optimization outcome and in terms of numbers of steps and time required,
showing how the toolset can be useful for assessing the feasibility of various
training techniques. A more extensive presentation of the experimental study
along with a reproducibility package can be found at [38].

Note, that, while the formalized iStar-RL models can be used by DT-Golog
for exact, search-based identification of optimal policies (vs. learning-based that
RL agents do), this option is restricted to discrete-state problems, may not scale
for larger models, and requires accurate probabilities. In the absence of accu-
rate probabilities, where neither exact nor learning-based methods can calculate
the true optimal, the generated simulators can still be useful for exploring the
behavior of different RL algorithms using provisional probabilities.

5 Related Work

Substantial interest has developed over the past few years in studying the in-
tersection of conceptual modeling (CM) with artificial intelligence (AI), a space
referred to as CMAI [10, 11]. The latter describes both the application of AI
to support CM tasks (AI4CM), and reversely, the application of CM to sys-
tematize and support various qualities of AI-intensive systems (CM4AI). In the
CM4AI space, where our work naturally fits, the idea of using models to orga-
nize and support the ML development pipeline from input collection and prepa-
ration to training and inference, has been underlined [18]. Here, models have
been proposed for quality assuring the AI/ML process [33], detecting bias [66],
supporting meta-learning [28], chatbot generation [56] or generation of neural
architectures [35].

The problem of systematically devising AI solutions has also been studied
from the RE point of view. A major theme in that context is the quality of the
end-result [27], with an emphasis on explainability [13–15], how such systems
can be specified [9,63], and how the RE process can be organized [55]. In search
for a solution to the RE4AI [3] problem, Nalchigar et al. [51,52] propose a goal-
oriented conceptual framework for expressing machine learning requirements and
designs organized around three main modeling views (business, analytics design,
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and data preparation). Ahmad et al. [3] review, among other things, modeling
approaches for conducting RE for AI, to find that Goal Oriented RE languages,
along with UML/SySML, are the most popular for modeling in that space.

Goal models have indeed been known to be effective vehicles for allowing
formal reasoning about requirements and designs in various ways [19, 20, 23, 30,
36].This capability of goal models has been utilized also in the area of adaptive
systems [6, 8, 22] and multi-agent systems [25]. The modeling approach pro-
posed here, iStar-RL, is heavily based on an iStar dialect proposed for model-
ing decision-theoretic domains and, through formalization, perform search-based
reasoning thereof [40, 41]. The strength of the modeling approach we adopt,
compared to common approaches for modeling probabilistic transition systems
(e.g., [32]) lies in the combined ability of goal models both to concisely en-
code high-variability processes and behaviors, stemming from overarching stake-
holder goals, and to compare variants vis-à-vis intricate, multi-dimensional qual-
ity requirements structures [50]. Hence, efforts such as on probabilistic logic
shields [65] using ProbLog [34], or on using DT-Golog for Q-learning [7], indi-
cate promising destinations of iStar-RL transformations. Probabilistic reasoning
using conceptual models other than goal models, such as BPMN [54], has also
been proposed [21,31], with not clear connection to RL however.

6 Concluding Remarks and Future Work

We presented a framework for goal-oriented modeling and generation of simu-
lators for training RL agents. Through an extension to a standard goal modeling
language, designers capture the goals, action space, and reward structure of the
desired RL agents, along with the state and effect model of the environment the
agents are meant to interact with. The resulting models are subsequently trans-
lated to a formal specification, which is used by a set of interpreting components
to allow step-wise model execution, which is, in turn, directly usable by a variety
of RL algorithms. The framework is aimed at supporting investigations of the fea-
sibility and performance of different training techniques against different action,
reward, and probability models, and even at identifying a directly usable opti-
mal policy when reward and probability models are deemed accurate but search-
based methods are computationally expensive or inapplicable. The approach is,
hence, promising for systematically developing RL-powered high-variability sys-
tems, such as adaptive business processes or behaviorally customizable software,
while following well-studied goal-oriented requirements engineering processes.

Future research effort can be dedicated towards exploring how the goal model
representations can assist the learning process. Of particular interest is the explo-
ration of novel RL algorithms that are allowed partial access to the domain spec-
ification (e.g., the precondition and contribution structures, or some presumed
probability intervals) to be used for informing the training process. Further, po-
tential may exist in applying some version of our proposal to the problems of AI
safety and explainability. Firstly, the framework ensures that AI agent training
is based on interaction data stemming from well-studied and well-behaved mod-
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els, arguably confining the learned behavior to what is permitted by the model
that trained it, or, conversely, using the model as the source of safety standards
for the trained agent (e.g., non violation of precedence links). Secondly, by being
faithful to i* ’s fundamental principle of centering the analysis around action and
decision rationale, the iStar-RL model can serve as a suitable explanatory device
for the respective actions and decisions performed by the acting RL agent that
was trained against the model. Applications and case studies in various problem
domains can be helpful in assessing the utility of the approach in these areas.
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