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Abstract. Identifying and analyzing security requirements is an essen-
tial part of the information systems engineering lifecycle. Several tech-
niques have been introduced for comprehensively modeling such require-
ments. Once identified, security requirements must be translated into
designs that allow domain actors to securely accomplish business tasks
under given risk assumptions and contexts. Correctly translating require-
ments to such designs, however, can be challenging when considering
both the complexity and specialized nature of security mechanisms, such
as cryptography, and the role of varying practical and contextual as-
pects of the problem at hand in correctly applying such mechanisms.
We propose a model-driven pattern-based approach for supporting the
implementation of security requirements. Security requirements models,
augmented with descriptions of contextual and threat assumptions, are
combined with reusable domain-agnostic workflow patterns which model
established ways for securely performing common business tasks. The
combined models are compiled into a formal specification, whereby auto-
mated reasoning is applied for generating domain-appropriate workflows
that satisfy the security requirements. Using the technique, analysts can
efficiently explore the impact of different threat assumptions and prag-
matic constraints to candidate security designs, while ensuring that the
latter are consistent with tried-and-tested community knowledge.
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1 Introduction

Identifying and analyzing security requirements is considered to be an es-
sential part of the early stages of the software development lifecycle [9,16,19,36].
Specifying such requirements upfront allows the security components that imple-
ment them to become an organic part of the resulting system [11,14,23]. A wealth
of techniques for modeling security requirements have been proposed, aimed at
allowing precise description of both such requirements and their relationship to
other dimensions of the problem at hand [29,33,39].

However, developing models of security requirements is only the first step
towards a secure system. A design must be produced that appropriately imple-
ments such requirements in accordance to widely accepted security standards.
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For example, to support secure exchange of information, cryptographic prim-
itives [32] of the right kind vis-à-vis the required security guarantees need to
be introduced and correctly [15] applied. Furthermore, there may be multiple
options with regards to the choice and practical application of these primitives
based on varying perceptions about the key threats, vulnerabilities, and practical
constraints in the domain. Effectively capturing and combining these different
problem aspects to devise a well-fitted solution, that also includes the correct
choice and use of security mechanisms, can be challenging without support.

We propose a model-driven framework for supporting the implementation
of security requirements according to recommended best practices and consis-
tent with pragmatic constraints and threat assumptions of the problem at hand.
The framework is based on encoding such best practices as patterns that com-
pactly describe a large number of alternative workflows for fulfilling common
business tasks. Each such workflow includes or does not include different kinds
of security-enhancing steps, and is accompanied by a set of attack models, which
encode alternative attacks against security properties of the processes modeled
by the pattern. To address a specific problem, goal-oriented requirements anal-
ysis is performed using a combination of general-purpose and security-centered
goal models. Patterns that constitute appropriate implementations of security-
relevant goals in those models are adopted and infused into the models. The
result is subsequently augmented with a threat model, that describes the level
of sophistication of the attacks to be defended against, as well as other pertinent
domain constraints. It is then compiled into a formal specification that can be
used for automatically identifying workflows that indicate what security steps
domain actors need to take while pursuing their domain-specific business tasks.

The approach allows systematic exploration and derivation of security de-
signs that comply with requirements, community best practices, and constraints
of the problem at hand. Among its contributions are the use of high-variability
goal decompositions as best practice-encoding models for security and the uti-
lization of planners for high-level reasoning about both the security mechanisms
and the socio-technical processes in which these are embedded. To demonstrate
the technique, we apply it to a common inter-organizational order fulfillment
scenario, using a prototypical inter-actor information exchange pattern.

The paper is organized as follows. We present the modeling process in Section
2 and the formalization and analysis details in Section 3. We offer related work
in Section 4 and conclude in Section 5.

2 Developing Security-Enhanced Goal Models

2.1 Motivating Example and Framework Overview

Consider the example of a medium-sized residential building contractor re-
questing quotes, submitting orders, and sending payments to various material
suppliers. Typically, the contractor submits orders for materials and, once the
materials have been delivered, an invoice is sent with a payment information,
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Fig. 1. Framework overview.

often in the form of a bank account number for sending a wire transfer. The con-
tractor performs such interactions via email, which, however, introduces several
threats, including the submission and fulfillment of unauthorized orders through
spoofing, and invoice fraud, i.e., submission of a tampered invoice, where the
payment information has been replaced with the attacker’s account numbers.

If our contractor were a large company, a holistic B2B solution may have
been devised by experts, acquired, and integrated with, e.g., the company’s en-
terprise resource planning system. However, such solutions may not be accessi-
ble by smaller organizations that use common communication and productivity
software such as word processors, emails, and shared drives to arrange common
business transactions. Nevertheless, such systems offer security functions that
could offer protection to at least some level. In the contractor example, simple
encryption of the exchanged order and invoice documents from within their au-
thoring software [2,35] could protect against certain kinds of attacks. However,
without guidance, improper application of those tools and functions is possible.
For example, sending a symmetrically encrypted invoice by email followed by a
second email with the encryption key in plaintext does not protect against attack
scenarios in which the email accounts are compromised. How the encryption key
can be shared otherwise depends on what communication channels are available
and how secure these are perceived to be, given an assessment of how motivated
and capable potential attackers are. Contextual and practical aspects, such as
the willingness and skill of actors across organizations to utilize specific software
or take extra security steps may also affect the recommended solution.

The proposed framework is aimed at assisting analysts of cases such as the
above in systematically generating secure workflow designs – i.e., sequences of
steps that domain actors can take to accomplish business tasks in a secure way.
The framework is based on the development and gradual refinement of a series of
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models of various aspects of the problem, the selection and adoption of patterns
that encode multiple tried-and-tested ways to implement security requirements,
and the fusion of these developed and adopted artifacts into a formal specification
that allows automated identification of solutions.

An overview can be seen in Figure 1. The analysts begin by developing goal
models that describe the domain-specific functional and non-functional goals of
stakeholders of the socio-technical system in question (Step 1). Subsequently,
goals and dependencies that entail security-relevant actor activity are identi-
fied and the security requirements vis-à-vis those goals are specified (Step 2).
For each of the security-relevant goals, analysts identify matching security de-
composition patterns from a collection of such developed and supported by the
community of experts. They adopt the identified patterns by instantiating them
with domain specific information, and linking them to the matching security-
relevant goals (Step 3). Subsequently, they develop a threat model that reflects
the specific business context (Step 4). The subsequent tasks aim at identifying
secure workflows, i.e., solutions of the instantiated patterns that describe actor
activity to satisfy the domain goals of interest in a secure way. Specifically, the
instantiated decomposition patterns are first transformed into a formal specifi-
cation (Step 5) and the latter is used by an automated reasoner to generate the
required solutions (Step 6). In the following we describe each of these steps.

2.2 Extending iStar 2.0: iStar T

The main modeling language we use in our proposal is based on an extension
of the goal modeling standard iStar 2.0 [8], which we will here refer to as iStar T.
An example of an iStar T model can be viewed in Figure 3. The model features
most typical iStar 2.0 elements, such as goals (states of affairs that an actor
wants to achieve) and tasks (actions that an actor can execute to achieve goals).
For simplicity, the specific example omits additional iStar 2.0 elements such as
actors and qualities, the latter being attributes for which an actor wants some
level of achievement [8]. When a goal is AND-refined (resp., OR-refined) into a
set of other goals and/or tasks, all (resp., exactly one) of the goals in that set
needs to be satisfied for the parent goal to be considered satisfied.

The additional elements of iStar T are aimed at modeling temporal and
causal constraints. Firstly, a set of first-order domain literals, constructed us-
ing a vocabulary of domain predicates and domain objects, are introduced to
represent the state of the environment and how state changes as tasks are per-
formed. Thus, Has(john, encryptedDoc(invoice, publicKey(bill)) is a domain lit-
eral, constructed from predicate Has and objects john, bill, encryptedDoc(·,·),
and publicKey(·) – henceforth predicates and variables start with capital and in-
dividuals/functions with small letter. Two added visual elements contain domain
predicates: preconditions and effects. Preconditions contain boolean formulae of
domain literals and effects contain lists of such. In both cases, arguments are
either objects or variables. Three additional kinds of links are also introduced in

iStar T : precedence links
pre−→, negative precedence links

npr−→ and effect links
eff−→.
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Precedence (resp., negative precedence) links can be drawn from preconditions,
goals, or tasks and can target goals or tasks, and mean that performance of the
latter is not possible unless (resp., if), the origin is satisfied. Effect links are
drawn from tasks to effects and signify that performance of the task makes the
non-negated domain predicates listed in the effect true, and the negated false.

In addition, iStar T models may contain an initialization template. This el-
ement contains a list of patterns that describe what kinds of domain predicates
need to be introduced to allow instance-level analysis. The patterns are of the
form {P1, P2, . . . : Pred(P1, P2, . . .)} and mean that instances of Pred(P1, P2, . . .)
can be produced for various bindings of the corresponding variables with objects.
For example, based on domain information, template {S,R: HasEmailAddress(S,
R)}, may be instantiated to predicates HasEmailAddress(contractor,supplier)
and HasEmailAddress(accountant,contractor) – or to no predicates at all.

Finally, the content of goals and tasks in iStar T are also first-order literals
– e.g., Encrypt(Sender, Recipient, Document). Replacing the parameters with
domain objects signifies a specific instance of a goal or task, e.g., Encrypt(john,
bill, invoice). A subgoal, task, or effect can contain a subset of the parameters
contained by the parent goal and every enabling precondition. Likewise, the
parameters of literals in effects are a subset of those in the task that is associated
with the effect. Typically, the leaf level elements of an iStar T decomposition
model within the scope of an actor are tasks. However, it is possible that the
decomposition is terminated at a predicate-containing goal.

Given a complete iStar T model there is variability in the ways by which
tasks can be sequentially executed for fulfilling a root goal. A task trajectory
tH = {a1, a2, . . .} (also: solution to the root goal) represents one such sequence
that satisfies the added temporal constraints. It is, furthermore, goal-satisfying
if the tasks included in tH satisfy the root goal. The term workflow as discussed
in this paper refers to such trajectories.

2.3 Modeling Domain and Security Requirements

We now turn our focus to how we use iStar T, in conjunction with other kinds
of models, to generate security designs based on high-level security requirements.

Firstly, a goal-oriented analysis of the requirements of the problem at hand
is performed using iStar T. In Figure 2, top diagram, the interaction between
Contractor and Supplier is shown in the form of a hybrid strategic rationale
/ strategic dependency diagram [8]. The resulting model (here using only the
iStar 2.0 subset for simplicity) offers the rationale and context in which security-
relevant activity between the two actors needs to take place. To further identify
such activity and specify the exact security associated with it we use STS-ml
(Socio-Technical Security modeling language [9]). In STS-ml, a variety of views
are defined for describing security requirements within a socio-technical context.
We are here interested in the social view in which, among other things, the
exchange of information between domain actors is displayed, along with security
requirements that such exchange should satisfy. In Figure 2, bottom diagram,
an Invoice document needs to be submitted to the Contractor containing the
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Fig. 2. iStar and STS-ml requirements models.

amount owed and a bank account in which the amount is to be deposited. The
sender is to ensure that security requirements are to be met in such transmission.
In our case, we require that the document needs to remain confidential (marked
with the label Con), that it shall not be tampered with (marked with Int), and
that the recipient shall be able to verify that the document was indeed prepared
by the supplier (marked with Auth). This kind of analysis is performed for all
dependencies identified in the iStar model that entail some form of exchange of
an informational asset.

2.4 Decomposition Patterns

The models resulting from the above process describe the business context
and rationale of security-relevant actor activity and the specific security require-
ments associated with the latter. However, although they describe what security
is needed they do not say how it can be attained. For example, the models de-
scribe a need to transfer an invoice document from the supplier to the contractor
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with specific security requirements (Con, Int, etc.), but no concrete steps are of-
fered to fulfill those requirements. For example, should the supplier just email
the invoice as-is? Or should they encrypt it first? Maybe also sign it? If yes, with
what tools and configurations?

To capture authoritative ways by which such questions can be answered, a
number of security decomposition patterns embodying best practices for fulfilling
common business tasks are maintained and available for adoption and use. Each
pattern consists of (a) a goal decomposition model in iStar T with a mandatory
initialization template, together called the generic decomposition, and (b) a set
of attack trees and satisfaction conditions to be discussed below. The pattern is
identified by the root of the generic decomposition. Figure 3 shows a (partial for
brevity) generic decomposition for pattern Have Document Transmitted(Sender,
Recipient, Document). The model encodes various ways by which the goal can
be executed in secure or less secure ways. Further, its initialization template
seen at the top right of Figure 3, offers a vocabulary of predicates to be used
to define instance-level: (a) domain assumptions, (b) vulnerability assumptions
and (c) pertinent security requirements.

Domain assumptions are practical aspects of the domain at hand that may
affect the applicability of security controls and/or attacks against them. Exam-
ples of instances of such assumptions include whether the involved parties have
each other’s handles (email address, phone number, etc.), e.g., HasEmailAd-
dress(contractor, supplier), or statements about the format and size of the in-
formation to be exchanged, e.g., DigitalFile(invoice). Vulnerability assumptions,
on the other hand, represent a state of affairs in which possible attacks have
been successfully carried out. For instance, we may assume that the email ac-
count of either party has been compromised, that their PCs or phones run a
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rootkit, or that their physical space is compromised, using predicates such as
IsCompromised(supplier, emailAccount), IsHacked(contractor, cellphone), or Is-
Compromised(supplier,desk). Asserting a vulnerability assumption indicates that
an attacker is motivated enough to bear the cost of the corresponding attack,
given the business context and anticipated benefit. The set of concrete domain
and vulnerability assumptions that result from instantiating the corresponding
initialization templates constitute the threat model.

Finally, the initialization template of the generic decomposition contains
predicates of the form requires([SR]), where [SR] is a security requirement of
interest, represented through the appropriate individual (e.g., con or int).

The generic decomposition of Figure 3 describes various ways by which a
Document can be sent from a Sender to a Recipient. It includes the option to
send in plaintext with no encryption or to symmetrically encrypt, send, and
subsequently decrypt. It also shows two ways by which the message (encrypted
or otherwise) can be transmitted. A more complete model includes subgoals
for digitally signing, performing asymmetric encryption, exchanging keys, and
additional information exchange methods (e.g., by specific messenger, SMS, snail
mail etc.). An example – in formalized form, more below – can be found in our
supporting page [30]. The model, hence, implies a great number of alternative
goal-fulfilling task trajectories tH, each containing all, some, or none of the
security enabling tasks in the model. Which one of the implied trajectories is
recommended for the problem at hand will depend on the specific threat model
and security requirements, i.e., how the initialization template is instantiated,
as well as a model of possible attacks. We discuss the latter next.

2.5 Attack Trees and Satisfaction Conditions

While decomposition patterns capture a family of workflows by which goals
of domain actors can be fulfilled, associated attack trees [43] present a family of
ways by which an attacker can compromise such workflows from a point of view
of a specific security requirement. We model attack trees using iStar T as seen in
Figure 4. The model contains a quality goal whose breach is the root goal of the
attack tree. Each decomposition pattern is associated with a number of attack
trees, each showing how a specific security requirement (e.g., confidentiality,
integrity, or authentication) can be breached.

The attack tree contains several steps (and alternatives thereof) an attacker
needs to take in order to achieve that root goal. In the case of document trans-
mission, the attacker can compromise the recipient’s mailbox (e.g., crack their
email password) in order to retrieve the document itself or the key to its de-
cryption, if it has been encrypted. Alternatively, they can gain physical access
to the computer of the recipient and install tracking devices (e.g., keyloggers or
cameras). Importantly, for some attacks to be successful, the victim must have
performed enabling actions. For example, for the encryption key to be retrieved
from the recipient’s mailbox following successful cracking of their password, the
recipient must have received such keys in plaintext by email. These are repre-
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sented as goals at the leaf level of the attack tree, containing domain predicates
that appear in the associated generic decomposition (Figure 2).

From the attacker’s standpoint, each attack tree reduces to an AND/OR
formula that reflects the decomposition structure and is grounded on domain
literals that are either contained in effects of attacker’s actions (e.g., IsCompro-
mised(Recepient, emailBox)) or are included as the content of the leaf level goals
delegated to other actors (e.g., AtMailbox(Recepient, Document)). Depending on
the truth values of the domain literals, the formula is true or false, signifying
that the attack can be successful or not, respectively. The goal, hence, is to
identify task trajectories tH in the decomposition pattern such that, given an
initialization instantiation of the generic decomposition, the root(s) of one or
more attack trees relating to desired security qualities is/are not satisfied.

In addition to attack trees, patterns may contain satisfaction conditions that
describe necessary conditions that must be true for a specific security require-
ment to be satisfied. These are also AND/OR decompositions whose leaf level is
exclusively goals containing domain predicates from the generic decomposition.
For example, the satisfaction condition for authentication may consist of the sin-
gle goal containing predicateHasAuthenticated(Recepient, Sender,Document).

2.6 Pattern Selection and Instantiation

With the domain specific models developed and the set of security decom-
position patterns available, analysts identify specific patterns from that set that
match goals that they have identified in their analysis of the specific problem
(Step 3 in Figure 1). In Figure 2, for example, they identify two instances of the
pattern of Figure 3, namely the transmission of the order and the transmission
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of the invoice. The matching is represented using a dashed line connecting the
former with the root of the latter.

Instantiation of the pattern to fit the domain specific model takes place in two
steps. The first is binding the parameters of the root goal to domain-specific ob-
jects. In the invoice transmission example, Sender is bound to supplier, Recipient
to contractor, and Document to invoice. The second step involves appropriately
instantiating the initialization template of the generic decomposition to encode
the desired threat model and specific security requirements. In our example,
the initialization template can be instantiated with the threat model isCompro-
mised(contract,mailbox) (vuln. assumption) and CanMeet(contractor,supplier)
(dom. assumption), and concrete security requirements require(con), require(int),
and require(auth) as per the STS-ml model of Figure 2.

The result of the above process is that domain-specific goals are now linked
with generic decompositions, appropriately instantiated to information specific
with the problem at hand. This linkage can be seen as supplying authoritative de-
composition trees to security-relevant goals of the domain-specific model, instead
of developing these decompositions from scratch for every problem instance.
However, the adopted authoritative decompositions continue to be generic in
a sense that they support all possible ways, secure or otherwise, to fulfill the
security-relevant goals. The final step is to identify solutions tH of each decom-
position that satisfy the threat model and the security requirements, the latter
via denying and enabling, respectively, the corresponding attack trees and sat-
isfaction conditions. To do so, we formalize the instantiated patterns (Step 4 of
Figure 1) and utilize an automated reasoner to find such solutions (Step 5).

3 Generating Secure Workflows

To identify security requirements-satisfying solutions of the instantiated pat-
terns we translate the latter into an AI planning specification, according to trans-
lation rules we sketch in this section. We start by presenting the constituents of
an AI planning specification and proceed to present the rules.

3.1 HTN Planning

AI planners are automated reasoners which receive a domain specification
and a problem specification as input and generate a solution to the planning
problem as output. We will here focus on Hierarchical Task Network (HTN)
Planners, specifically SHOP2 [37] and its specification language.

A domain specification consists of: a set of domain predicates, a set of tasks,
a set of operators, a set of methods, and a set of axioms [37]. Domain predicates
are first-order predicate symbols used for representing state features, as, e.g., in
literal Encrypted(Document,Key). Tasks represent activity to be performed and
consist of a task symbol and its parameters, as in Encrypt(Document,Key). Tasks
can be primitive, in which case they can be accomplished through an operator,
or they can be compound, in which case they are broken down into smaller tasks
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according to one or more alternative method specifications. Operators describe
how primitive tasks can be performed and consist of a head t, which is the
primitive task that the operator specifies, and its parameters, a precondition tpre

containing a formula specifying what needs to be true in order for the operator
to be applicable, a delete list tdel, and an add list tadd, listing predicates that
turn, respectively, false or true, upon application of the operator. Operators
can also carry a cost value tc. In a well-formed operator, the parameters of the
predicates of tdel and tadd are the subset of the union of parameters of t and
tpre. Methods consist of a compound task m that the method decomposes, a
precondition mpre which needs to be true before the method can be considered,
and a list of tasks mt = {m1, m2, . . . , t1, t2} (marked ordered or unordered), to
which the method decomposes the head task. Finally, axioms are clauses of the
form h ← l, signifying that predicate h is true if formula l is true.

The planning problem specification includes an initial state, i.e., a list of
literals initially true, and a set of tasks to be accomplished. Given a domain and
a problem specification, an HTN planner recursively attempts different method
applications, aimed at finding sequences of primitive tasks t1, t2, . . . , tn (a plan)
that can be performed using operators, such that t1 is possible given the initial
state and ti+1 is possible given the state after ti. In searching for such plans, the
planner will also bias towards plans that minimize cost

∑n
i=1 tci .

3.2 Transforming to Planning Specifications

Let us now sketch how the instantiated decomposition patterns, which are
iStar T models, translate into HTN domain and problem specifications in order
to allow subsequent reasoning. The domain specification includes translations
of: (a) the generic decomposition model of the matched pattern (Figure 3), (b)
attack trees related to the matched pattern (e.g., Figure 4), and (c) security
requirements as initialization instances of the generic decomposition. The fol-
lowing are the key components of the translation of the generic decomposition
model to the domain specification.

Primitives. Primitive elements of the iStar T models are translated as fol-
lows: (a) every iStar T domain predicate into an HTN domain predicate, (b)
every iStar T goal g into (b-i) a compound task mg, and (b-ii) a predicate satg

(c) every iStar T task a into (c-i) an HTN primitive task ta, (c-ii) an operator
with the same head, (c-iii) an HTN predicate sata, (d) every iStar T precondi-
tion into an HTN formula representing the corresponding precondition formula,
and (e) every iStar T effect into a list of HTN literals corresponding to the iStar
T literals contained in the effect.

AND/OR decompositions. For each AND-decomposition of a goal g into
subgoals g1, g2, . . ., and subtasks a1, a2, . . ., introduce a method whose head mg is
the compound task corresponding to g, and its task list mtg contains an unordered
set {m1, m2, . . . , t1, t2} of compound and primitive tasks corresponding to the
subgoals and the subtasks, respectively. For each OR-decomposition of a goal
g, introduce a method for each subgoal or subtask to which g is decomposed.
Each method’s head is mg is the compound task corresponding to goal g and
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the task list contains exactly one element: the compound task m or primitive
task t corresponding to the subgoal or subtask, respectively. In addition, create
an axiom of the form satg ← satg1 [op] satg2 [op] . . . [op] sata1 [op] sata2

[op]. . . where [op] is ∧ or ∨ for AND and OR decompositions, respectively.

Effect Links. For each effect link, identify the operator whose head ta is
the primitive task corresponding to the iStar T task a from where the effect
link originates. Set tdela to be the list of predicates (translated to their HTN
counterparts) that are negated in the effect (if any), and tadda to the remaining
predicates (if any). Further, add predicate sata to the tadda .

Precedence Links. Firstly, for every
pre−→ and

npr−→ link that targets a goal,
replace the link with links of the same origin that target each leaf level task
that is a descendant of the goal. As a result, only tasks are now recipients of
such links. Subsequently, for each task a, first, collect predicates satgi , satai ,
and formulae ϕpi corresponding to goals gi, tasks ai and preconditions pi that

send a
pre−→ link to the task. Create formula ϕpre = satg1 ∧ satg2 . . .∧ sata1 ∧

sata2 . . .∧ ϕp1 ∧ ϕp2 . . . . Next, for the same task a, collect the corresponding

elements that send an
npr−→ link to the task, and create formula ϕnpr = satg1 ∨

. . .∨ sata1 . . .∨ ϕp1 . . . . Set the precondition tprea of the operator corresponding
to task a to ϕpre ∧ ¬ϕnpr.

Costs. As a final step, the costs tc of primitive tasks are set in a way that
reflects the delay, cognitive load, or actor dissatisfaction that performing the
task entails. Tasks such as No encryption have a cost of zero, and tasks such as
Generate Keys (not seen in the diagrams) have a cost greater than zero.

The above rules concern the translation of the generic decomposition trees
of a pattern. A different approach is followed for attack trees.

Attack Trees. Recall that an attack tree is an AND/OR formula grounded
on iStar T domain predicates, originating from effects or goals that reside at
the leaf of the tree. Construct first the corresponding HTN formula ϕatk, in
which the list of domain predicates in the effects translate to a conjunction
of the corresponding HTN predicates, and leaf level goals g translate to the
corresponding HTN predicates satg. Then, for each attack tree, create an axiom
of the form [SR]Breached ← ϕatk

[SR], where [SR] is the security requirement the
tree attempts to breach. The tree of Figure 4 for example is translated into
an attack axiom ConBreached ← ϕatk

Con, where ϕatk
Con corresponds to the formula

representing the specific tree. If satisfaction conditions are defined for a security
requirement [SR], a success axiom of the form [SR]Successful ← ϕsucc

[SR] is also
introduced, where formula ϕsucc

[SR] corresponds to [SR]’s satisfaction condition.

The above constitutes a translation of the decomposition pattern that is
reusable in any analysis instance. The security requirements and the threat
model need to be generated separately for every problem instance, as follows.

Security Requirements. Introduce a dummy primitive task td and a dummy
compound task md. The former will play the role of a necessary final task and the
latter will be the new root task. To accomplish that, introduce a method with
head md and ordered task list mtd = {mroot,td}, where mroot is the task that corre-
sponds to the root goal of the decomposition pattern. Notice that task mtd is not
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solvable unless td is feasible after mroot is attained. For each security requirement
SR mentioned in the pattern instantiation (through require(SR)), introduce a
conjunct to the t

pre
d that is itself a conjunction of the head of the success ax-

iom with the negation of the head of the attack axiom. For example, if Auth

is required, ¬AuthBreached∧AuthSuccessful is added as a conjunct in t
pre
d . The

intuition is that the solver will ignore plans which produce effects that satisfy
the attack model or deny the satisfaction conditions, as the precondition of the
last mandatory action td would not be satisfied in that case.

Threat Model. The threat model informs the construction of the HTN
problem specification. Specifically, recall that a pattern instantiation includes
an instantiation of the initalization associated with the pattern’s generic decom-
position with literals grounded on objects from the specific domain. Of these,
collect the domain and vulnerability assumptions and form formulae ϕdom and
ϕvln, respectively, which are conjunctions of corresponding predicates. Set the
initial state of the problem specification to be ϕinit = ϕdom ∧ ϕvuln.

3.3 Identifying Secure Workflows

With the instantiated patterns translated we can now use the planner to
identify secure workflows. The process involves selecting a domain-specific goal of
interest, and use the HTN specification of the associated decomposition instance
to generate plans. Each generated plan corresponds to a trajectory tH in the
corresponding iStar T decomposition.

Let us return to our running example and assume we are interested in a work-
flow for goal Invoice Received. The goal is associated with an instantiated de-
composition pattern Have Document Transmitted(supplier, customer, invoice).
We can calculate different workflows for accomplishing invoice transmission for
different threat models and security requirements, effectively cycling through
Steps 2-6 (noting that Step 3 is performed once) in an exploratory mood. Let
us consider a scenario in which no security requirements are given. This means
that, in the translation, the dummy final task td has no preconditions. In such
case, the planner will not be constrained in any way to produce the cheapest
possible plan, which involves a simple plaintext transmission of the invoice:
{0: email(supplier, contractor, invoice)}

Assume now confidentiality requirements for invoice transmission, as per the
STS-ml model of Figure 2. Then, plans will depend on the threat model. If no
vulnerability assumptions are made, meaning that attackers are not assumed to
be capable/motivated to perform any of the tasks in their attack tree, emailing
plaintext is again the best plan: none of the workflows satisfies the attack tree.

Assume subsequently that IsCompromised (mailbox, contractor) is true,
i.e., we assume that, in the worst scenario, the attackers can actually gain access
to the mailbox of the contractor. This can make the attack tree formula satisfied
if the domain actors perform certain tasks. Indeed the emailing of plaintext no
longer returns as part of a recommended plan. The planner will propose sending
the plaintext invoice via SMS attachment. At this point the analysts may decide
that either SMS is an inappropriate means of exchange of the document itself or



14 Liaskos, Mylopoulos and Khan

that that cellphones are also assumed to be compromised. These are expressed as
an additional domain or vulnerability assumption, respectively. Under the new
assumption, the planner will now output plans that involve encryption, e.g.:
{1: genSharedKey(supplier,contractor)

2: exchangeViaPhoneCall(supplier,contractor,key),

3: symmetricEncrypt(supplier,invoice,key),

4: email(supplier,contractor,invoice),

5: symmetricDecrypt(contractor,invoice,key)}
Thus, the plan involves symmetric encryption of the invoice preceded by key

generation and exchange through a channel not assumed to be compromised
according to the vulnerability assumptions, in our case via a voice call.

Assume, finally, that confidentiality is not an issue but invoice authenticity
is, i.e., the contractor must verify that the invoice was prepared by the supplier
(Auth) and has not been tampered with along the way (Int). Thus initializa-
tion will instantiate with require(auth) and require(int) which will be translated
into the appropriate preconditions to td. For the same vulnerability assumptions
(compromised email accounts), the solution includes asymmetric public key ex-
change (pKey) and digitally signing the document, but excludes encryption:
{1: installEncSoftware(supplier),

2: installEncSoftware(contractor),

3: genAsymKeys(supplier),

4: email(supplier,contractor,pKey),

5: sign(supplier,invoice,sKey),

6: email(supplier,contractor,invoice),

7: verify(contractor,supplier,invoice)}
Note that the above plans have been simplified for the interest of space;

readers can find full examples and commentary in our accompanying page [30].
Analysts can repeat this exploratory process for all security-relevant informa-
tion exchange tasks of the initial domain-specific model. With relatively minor
adaptations to the translation rules, omitted here for simplicity, global analysis
can be performed on the basis of a higher level domain-specific goal, such as
Have Building Framing Completed, following fusion of pattern instances into a
now expanded domain-specific model. The generated workflows then encompass
activities that aim to satisfy all relevant goals including order exchange, receipt
of invoice, and submission of payment.

4 Related Work

Several approaches to model security requirements have been proposed. The
SI* security language and the Secure Tropos methodology, for example, allow
modeling and reasoning with permission delegations in the presence or absence
of trust among agents [18,33,36]. Reasoners such as ASP [33], or, closer to our
approach, planners [6] have been used for reasoning about such models. These
early proposals appear to have inspired the Socio-Technical Security (STS) ap-
proach and modeling language we utilize here [9,39]. However, these approaches
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largely stay at the requirements level, naturally leaving implementation details,
such as use of cryptographic primitives, outside of their scope. Work that does
address utilization of cryptographic primitives has been introduced within the
UMLSec context [24,25,42] where architectural security patterns are used for
informing the design problem, supported by theorem proving techniques.

Many threat modeling frameworks have also been proposed – [44,49] for
surveys. Our approach is based on attack trees [43,45] implemented here as goal
decomposition models; an idea introduced and explored in the context of the
KAOS [10] goal modeling framework [46]. Among the differences of our work to
the KAOS-based approach is the focus on run-time agent decisions (vs. design-
time analysis) and on the generation of concrete secure sequences of actions.

Pattern systems have also been introduced [13,17,21,38,48] including for mod-
eling attack types and using them to test an STS specification [29]. Rather than
patterns of attack, we here envision design patterns (e.g., as in [47]) that specif-
ically describe workflows for correctly utilizing cryptographic and other security
primitives. Li et al. do adopt such a pattern system [27,28] based on contextual
goal models and a matching, adoption, and instantiation approach similar to
the one we propose. Among several differences, however, our proposal exploits
iStar T’s ability to model the temporal and causal aspect, allowing the genera-
tion of concrete solution workflows. Our approach is, further, distinct in scope
from the broad literature on formalizing and verifying security protocols, (e.g.,
[3,4,7,22,31]) – [34] and [40] for surveys. This also applies vis-à-vis efforts for us-
ing AI planners specifically [5,20], which, in addition, focus on generating attack
plans rather than security designs. Rather than verifying the nuts-and-bolts of
security protocols against elaborate attacks [12], our goal is to abstract away
the details of both protocols and attacks and recommend high-level designs that
take into account practical aspects of the underlying socio-technical processes
while remaining aligned with the specific security requirements of stakeholders.

5 Concluding Remarks

We presented a model-driven technique for automated generation of secure
workflow designs based on identified security requirements. The technique is
based on the availability of patterns, in the form of high-variability goal decom-
position models, that encode authoritative best practices for performing common
business tasks. The patterns also include attack trees that describe alternative
attacks against these authoritative models with respect to different security prop-
erties, as well as templates for modeling security goals and threat assumptions of
specific problems. When solving a specific problem, analysts adopt and instan-
tiate the patterns within their domain-specific models, and through automated
reasoning identify workflows whereby domain actors can fulfill business tasks in
compliance with security requirements. The benefits of the approach include: (i)
assisting analysts with no deep security expertise to produce high-level designs
that make coherent use of security primitives, (ii) ensuring that the necessary and
only the necessary security-related steps are included in the resulting designs,
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and (iii) offering a mechanism for exploring solutions under alternative security
requirements and threat assumptions, informing thereby the risk management
process at an early requirements stage. Our contribution is centered in the mod-
eling techniques introduced to accomplish the above: the use of high-variability
goal models to concisely represent multiple workflows involving different levels
of security-related actions (including none), the use of attack models to test
the appropriateness of candidate workflows, and the automated generation of
compliant workflows using an off-the-shelf reasoning tool.

The patterns we have developed so far employ basic cryptographic primitives
for information exchange using common channels, such as email, text messaging,
or in-person exchange [30]. A set of proof-of-concept attack trees that we have
built encode examples of compromising these exchange media as well as the
physical contexts in which they are utilized. For the framework to be directly
applicable in practice vis-à-vis information exchange, more comprehensive attack
trees and digital communication process models will be needed. Security pattern
development is generally known to be non-trivial [41]. Development of a useful
and reliable pattern base for our framework would require consultation with
experts and the literature, followed by extensive testing of the reasoning outputs.

While our current application scope, secure information exchange, by no
means exhausts the range of advanced threats and sophisticated attacks against
organizations and citizens, seemingly solvable problems within that scope such as
email compromise due to user oversight continue to be a major societal problem
[26]. Our modeling and reasoning architecture is aimed at being applicable for
different business activities, such as storing and archiving data, accessing system
functions and resources, handling payments (see Figure 2), or even handling
physical security and privacy in, e.g., transporting goods and people, or storing
materials. These can, moreover, be analyzed with respect to a variety of security
or privacy concerns via development of the corresponding attack trees. In general,
the approach is particularly applicable when complex sequences of steps are
required by both the domain actors to perform a business task and the attackers
for compromising said task with respect to a specific security requirement.

Moreover, substantial empirical work will be needed to evaluate the usability
and utility of the proposed modeling process, and to identify ways to optimize
it. For example, our so far experimentation with building patterns has revealed
that identifying the right level of model detail while keeping automated reasoning
tractable can be challenging. Examples are deciding the level of detail to include
when modeling primitives, and choosing whether to explicate exemplar workflows
or leave the reasoner to construct such. Further, case studies in different domains
will help us to better understand the scope of applicability of our technique.

Finally, tool support is essential for performing meaningful user and case
studies. Thanks to the translation rules (Section 3.2), the core of the formaliza-
tion process is automatable. Nevertheless, an interactive visual tool in support
of the end-to-end modeling and analysis process requires substantial interaction
design and evaluation. Alternatively, a textual representations (e.g., [1]) could
be explored for performance of said tasks through scripting.
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