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Overview

This volume presents a reference chapter for each item in the StatView analysis browser, orga-
nized according to the analysis browser’s default order. 

Analysis chapters include the following sections:

1. Discussion of the analysis: the theory behind it, how to use it, and guidelines for interpret-
ing your results

2. Dialog box settings: how to set analysis parameters and how your choices affect the results 
you get

3. Data requirements: how to organize your data, what types of variables to assign, and how 
to use buttons in the variable browser

4. Results: the tables and/or graphs you can produce and what they show

5. Templates: related templates in the Analyze menu and what they produce

6. Exercises: step-by-step examples showing you how to use the analysis

Chapter 1, “Descriptive Statistics”
Chapter 2, “Frequency Distribution”
Chapter 3, “Percentiles”

…

Chapter 24, “QC C/U”
Chapter 25, “Pareto Analysis”
Chapter 26, “Formulas”

…
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The final chapter, “Formulas,” details the functions and expression language that can be used 
with Formula, Recode, Series, Random Numbers, and Criteria commands. The chapter first 
discusses general rules for working with StatView’s expression language, then gives details and 
examples for each function. 
How to find what you want

Types of analyses

Both the manual and the program itself can help you find the main types of analyses:

Table of contents The “Contents,” p. ix, lists the main sections of each chapter. The page 
number for each function is listed for the “Formulas” chapter. 

Analysis browser If you want to know which analyses produce graphs, choose Graphs Only 
for Show in the analysis browser. Similarly, to learn which analyses produce the most basic sta-
tistics, choose Basic Statistics. Two other choices let you browse only the Quality Control or 
Survival Analysis items. (To see the analysis browser, open a view window by selecting New 
View from the Analyze menu.)
Certain tests

Suppose you want a Cramer’s V statistic and you can’t remember what type of analysis pro-
vides it. You have two ways to get an answer:

On-line help Both Windows help (Windows only) and StatView Guide (an Apple Guide, 
Macintosh only) index StatView’s tests by name. You can use these systems while you’re work-
ing to find tests quickly—and even get step-by-step instructions for completing the tests. If 
you need more discussion, look in the manual’s index…

Index The index to this volume points you to the page where each test and graph type is dis-
cussed. 
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Types of graphs

StatView produces many types of graphs for data analysis. Many StatView users are familiar 
with more than a few products for graphing, and each product classifies graph types differ-
ently. To aid your use of StatView, here is an overview of StatView’s main graph types, with 
thumbnail sketches of each. Use this chart to find your way to the graph you want.

This chart is by no means exhaustive. Countless variations are possible through assigning vari-
ables in different orders or to different roles, assigning Split By variables, using Edit Analysis 
to adjust parameters of the graph, using Edit Display on various graph components and the 
graph as a whole, adding colors and fills, and so on. In this chart we simply show a handful of 
tiny examples and variations, so that you know where to look in the program for the type of 
graph you need. 

Finally, we hope that this chart will spark your imagination, giving you ideas that will take 
your presentation to new worlds of graphic possibility. 
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Regression Regression Plot

simple regression simple regression, 
no intercept

polynomial regression, 
order 2

polynomial regression, 
order 7

exponential regression logarithmic regression

power regression growth regression exponential, 
log scale for Y axis
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simple regression no intercept square symbols
Dependent vs. Fitted

simple regression no intercept Y axis log base 2
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simple regression no intercept square, transposed
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ANOVA Interaction Bar Plot

one factor
two factors

assign factors in differ-
ent order

Interaction Line Plot

one factors
two factors

assign factors in differ-
ent order

Factor Unrotated Factor 
Plot(s)

principal components iterated principal axis Harris image, Equamax
Orthogonal Factor 
Plot(s)

principal components iterated principal axis Harris image, Equamax
Oblique Factor Plot(s)

principal components iterated principal axis Harris image, Equamax
Scree Plot

principal components iterated principal axis Harris image, Equamax

Survival
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Density Plot Censor Pattern Plot Event Pattern Plot Deviance Resid. Plot

Martingale Resid. Plot Quantile Plot

The first three types of plots are available with 
both nonparametric and regression methods, 
the next four with nonparametric, and the last 
two with regression. 

Univariate plots Scattergram

continuous variable nominal variable lines at mean, std dev
Line Chart

continuous variable lines at mean, 95% 
confidence interval

sorted

Bar Chart

continuous variable
nominal, transposed

nominal, sorted
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linear regression with 
95% confidence bands

separate regression 
line for each group
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Line Chart

two continuous sorted on X continuous Y, 
nominal X, sorted on Y

Cell plots Point Chart
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Line Chart
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notched, no outliers

Compare 
Percentiles

X and Y axes equal, 
with X=Y line

X and Y axes not 
equal, with X=Y line

X and Y axes equal, 
without X=Y line

S and Y axes equal, 
with Split By 

5 0

7 5
100

125
150

175
200

225
250
275

300

H
or

se
po

w
er

5 0 100 150 200 250 300 350 400
Displacement

Line Chart

5 0

7 5
100

125
150

175
200

225
250
275

300

H
or

se
po

w
er

1500 2000 2500 3000 3500 4000 4500
Weight

Line Chart

1500

2000

2500

3000

3500

4000

4500

W
ei

gh
t

Japan Other USA
Country

Line Chart

2200

2400

2600

2800

3000

3200

3400

3600

3800

C
el

l M
ea

n 
fo

r 
W

ei
gh

t

S
m

al
l

S
po

rt
y

C
om

pa
ct

M
ed

iu
m

La
rg

e

Cell Point Chart
Grouping Variable(s): Type

2000

2200

2400
2600

2800

3000

3200

3400

3600
3800

C
el

l M
ea

n 
fo

r 
W

ei
gh

t

S
m

al
l

S
po

rt
y

C
om

pa
ct

M
ed

iu
m

La
rg

e

Cell Point Chart
Grouping Variable(s): Type
Error Bars: ± 1 Standard Error(s)

2500 2700 2900 3100 3300
Cell Mean for Weight

Japan

Other

USA

Cell Point Chart
Grouping Variable(s): Country
Error Bars: 95% Confidence Interval

2200

2400

2600

2800

3000

3200

3400

3600

3800

C
el

l M
ea

n 
fo

r 
W

ei
gh

t

S
m

al
l

S
po

rt
y

C
om

pa
ct

M
ed

iu
m

La
rg

e

Cell Line Chart
Grouping Variable(s): Type

2000

2200
2400

2600
2800

3000
3200

3400

3600
3800

C
el

l M
ea

n 
fo

r 
W

ei
gh

t

S
m

al
l

S
po

rt
y

C
om

pa
ct

M
ed

iu
m

La
rg

e

USA

Other

Japan

Cell Line Chart
Grouping Variable(s): Type
Split By: Country

2000

2200
2400

2600

2800

3000

3200

3400

3600
3800

C
el

l M
ea

n 
fo

r 
W

ei
gh

t

Ja
pa

n,
 S

m
al

l
Ja

pa
n,

 S
po

rt
y

Ja
pa

n,
 C

om
pa

ct
Ja

pa
n,

 M
ed

iu
m

Ja
pa

n,
 L

ar
ge

O
th

er
, S

m
al

l
O

th
er

, S
po

rt
y

O
th

er
, C

om
pa

ct
O

th
er

, M
ed

iu
m

O
th

er
, L

ar
ge

U
S

A
, S

m
al

l
U

S
A

, S
po

rt
y

U
S

A
, C

om
pa

ct
U

S
A

, M
ed

iu
m

U
S

A
, L

ar
ge

Cell Line Chart
Grouping Variable(s): Country, Type

0

500

1000

1500

2000

2500

3000

3500

4000

C
el

l M
ea

n 
fo

r 
W

ei
gh

t

S
m

al
l

S
po

rt
y

C
om

pa
ct

M
ed

iu
m

La
rg

e

Cell Bar Chart
Grouping Variable(s): Type

0

500

1000

1500

2000

2500

3000

3500

4000

C
el

l M
ea

n 
fo

r 
W

ei
gh

t

Ja
pa

n,
 S

m
al

l
Ja

pa
n,

 S
po

rt
y

Ja
pa

n,
 C

om
pa

ct
Ja

pa
n,

 M
ed

iu
m

Ja
pa

n,
 L

ar
ge

O
th

er
, S

m
al

l
O

th
er

, S
po

rt
y

O
th

er
, C

om
pa

ct
O

th
er

, M
ed

iu
m

O
th

er
, L

ar
ge

U
S

A
, S

m
al

l
U

S
A

, S
po

rt
y

U
S

A
, C

om
pa

ct
U

S
A

, M
ed

iu
m

U
S

A
, L

ar
ge

Cell Bar Chart
Grouping Variable(s): Country, Type

0

500

1000
1500

2000

2500

3000

3500

4000
4500

C
el

l M
ea

n 
fo

r 
W

ei
gh

t

S
m

al
l

S
po

rt
y

C
om

pa
ct

M
ed

iu
m

La
rg

e

Cell Bar Chart
Grouping Variable(s): Type
Error Bars: ± 2 Standard Deviation(s)

1500

2000

2500

3000

3500

4000

4500

Weight

Box Plot

1500

2000

2500

3000

3500

4000

4500

W
ei

gh
t

Japan Other USA

Box Plot
Grouping Variable(s): Country

1500
1750
2000
2250
2500

2750
3000
3250
3500
3750
4000
4250

W
ei

gh
t

S
m

al
l

S
po

rt
y

C
om

pa
ct

M
ed

iu
m

La
rg

e

USA

Other

Japan

Box Plot
Grouping Variable(s): Type
Split By: Country

2200 2600 3000 3400 3800

Weight

Box Plot

100

120

140

160

180

200

220

240

fe
m

al
e

1 00 140 180 220
male

Percentile Comparison for Weight
Grouping Variable: Gender

100

110

120

130

140
150

160

170

180

190

fe
m

al
e

1 30 150 170 190 210 230
male

Percentile Comparison for Weight
Grouping Variable: Gender

100

120

140

160

180

200

220

240

fe
m

al
e

1 00 140 180 220
male

Percentile Comparison for Weight
Grouping Variable: Gender

100

120

140

160

180

200

220

240

fe
m

al
e

1 00 140 180 220
male

cigarettes

quit

no

Percentile Comparison for Weight
Grouping Variable: Gender
Split By: Smoking History



 



 

Overview

 

How to find what you want

          
QC Subgroup

Xbar line R needle S bar CUSUM point

QC Individual

I bar I point MR needle CUSUM line, no points

QC P/NP

P needle P line NP bar NP point

QC C/U

C bar C point U line U needle

Pareto

counts percents counts, cum. curve percents, cum. curve

73.96

73.98

7 4

74.02

74.04

74.06
74.08

74.1

74.12

74.14

M
ea

n 
of

 S
ea

t t
ub

e 
an

gl
es

3/
15

3/
16

3/
17

3/
18

3/
19

3/
22

3/
23

3/
24

3/
25

3/
26

Date

Xbar Line Chart
Control Limits: 3 Sigma

Center = 74.044

UCL = 74.124

LCL = 73.964 0

.05
.1

.15
.2

.25
.3

.35
.4

.45
.5

R
an

ge
 o

f S
ea

t t
ub

e 
an

gl
es

3/
15

3/
16

3/
17

3/
18

3/
19

3/
22

3/
23

3/
24

3/
25

3/
26

Date

R Needle Chart
Control Limits: 3 Sigma

Center = .26

UCL = .463

LCL = .058

.02

.04

.06

.08

.1

.12

.14

.16

S
td

. D
ev

. o
f S

ea
t t

ub
e 

an
gl

es

3/
15

3/
16

3/
17

3/
18

3/
19

3/
22

3/
23

3/
24

3/
25

3/
26

Date

S Bar Chart
Control Limits: 3 Sigma

Center = .082

UCL = .141

LCL = .023
- 5
- 4

- 3
- 2

- 1
0

1
2

3
4

5

C
U

S
U

M
 fo

r 
S

ea
t t

ub
e 

an
gl

es

3/
15

3/
16

3/
17

3/
18

3/
19

3/
22

3/
23

3/
24

3/
25

3/
26

Date

SL

SH

Cusum Point Chart
Mean Shift: 1
Control Limit: 4

73.7

73.8

73.9

7 4

74.1

74.2

74.3

74.4

S
ea

t t
ub

e 
an

gl
es

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

Date

I Bar Chart
Range Span: 2
Control Limits: 3 Sigma

Center = 74.044

UCL = 74.298

LCL = 73.789

73.7

73.8

73.9

7 4

74.1

74.2

74.3

74.4

S
ea

t t
ub

e 
an

gl
es

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

Date

I Point Chart
Range Span: 2
Control Limits: 3 Sigma

Center = 74.044

UCL = 74.298

LCL = 73.789

- . 05

0

.05

.1
.15

.2

.25

.3

.35

.4

M
ov

in
g 

R
an

ge
 o

f S
ea

t t
ub

e 
an

gl
es

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

Date

MR Needle Chart
Range Span: 2
Control Limits: 3 Sigma

Center = .094

UCL = .311

LCL = 0

- 5
- 4

- 3
- 2

- 1
0

1
2

3
4

5

C
U

S
U

M
 fo

r 
S

ea
t t

ub
e 

an
gl

es

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
15

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
16

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
17

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
18

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
19

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
22

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
23

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
24

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
25

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

3/
26

Date

SL

SH

Cusum Line Chart
Range Span: 2
Mean Shift: 1
Control Limit: 4

- . 02

0
.02

.04

.06

.08
.1

.12

.14

.16

.18

P
ro

po
rt

io
n 

fo
r 

N
on

co
nf

or
m

ity
?

1 2 3 4 5 6 7 8 9
10

Week

P Needle Chart
Control Limits: 3 Sigma

Center = .075

UCL

LCL

- .02

0
.02

.04

.06

.08
.1

.12

.14

.16

.18

P
ro

po
rt

io
n 

fo
r 

N
on

co
nf

or
m

ity
?

1 2 3 4 5 6 7 8 9
10

Week

P Line Chart
Control Limits: 3 Sigma

Center = .075

UCL

LCL

- 2

0
2

4
6

8
1 0

1 2
1 4

1 6
1 8

N
um

be
r 

fo
r 

N
on

co
nf

or
m

ity
?

1 2 3 4 5 6 7 8 9
10

Week

NP Bar Chart
Control Limits: 3 Sigma

Center

UCL

LCL

- 2

0
2

4
6

8
1 0

1 2
1 4

1 6
1 8

N
um

be
r 

fo
r 

N
on

co
nf

or
m

ity
?

1 2 3 4 5 6 7 8 9
10

Week

NP Point Chart
Control Limits: 3 Sigma

Center

UCL

LCL

- 2

0
2

4
6

8
1 0

1 2
1 4

1 6
1 8

C
ou

nt
 fo

r 
N

on
co

nf
or

m
ity

?

1 2 3 4 5 6 7 8 9
10

Week

C Bar Chart
Control Limits: 3 Sigma

Center

UCL

LCL

- 2

0
2

4
6

8
1 0

1 2
1 4

1 6
1 8

C
ou

nt
 fo

r 
N

on
co

nf
or

m
ity

?

1 2 3 4 5 6 7 8 9
10

Week

C Point Chart
Control Limits: 3 Sigma

Center

UCL

LCL

- .02

0
.02

.04

.06

.08
.1

.12

.14

.16

.18

C
ou

nt
/U

ni
t f

or
 N

on
co

nf
or

m
ity

?

1 2 3 4 5 6 7 8 9
10

Week

U Line Chart
Control Limits: 3 Sigma

Center = .075

UCL

LCL

- .02

0
.02

.04

.06

.08
.1

.12

.14

.16

.18

C
ou

nt
/U

ni
t f

or
 N

on
co

nf
or

m
ity

?

1 2 3 4 5 6 7 8 9
10

Week

U Needle Chart
Control Limits: 3 Sigma

Center = .075

UCL

LCL

0

5 0

100

150

200

250

300

350

400

C
ou

nt

V
is

e 
m

ar
ks

S
tr

ay
 fi

le
 m

ar
ks

P
oo

r 
m

ite
rin

g

O
va

l X
-s

ec
tio

n

B
ur

rs

Week 8 defects

Pareto Chart

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

P
er

ce
nt

V
is

e 
m

ar
ks

S
tr

ay
 fi

le
 m

ar
ks

P
oo

r 
m

ite
rin

g

O
va

l X
-s

ec
tio

n

B
ur

rs

Week 8 defects

Pareto Chart

0

200

400

600

800

1000

C
ou

nt

V
is

e 
m

ar
ks

S
tr

ay
 fi

le
 m

ar
ks

P
oo

r 
m

ite
rin

g

O
va

l X
-s

ec
tio

n

B
ur

rs

Week 8 defects

Pareto Chart

0

2 0

4 0

6 0

8 0

100

P
er

ce
nt

V
is

e 
m

ar
ks

S
tr

ay
 fi

le
 m

ar
ks

P
oo

r 
m

ite
rin

g

O
va

l X
-s

ec
tio

n

B
ur

rs

Week 8 defects

Pareto Chart



 

Co
nte

nts

                                                                          
Contents
1 Descriptive Statistics 

Discussion  Dialog box settings 

Measures of central tendency 
Measures of variability 
Measures of distribution 

characteristics 
Data requirements 
Results 
Templates 
Exercise 
2 Frequency Distribution 

Discussion  Data requirements 

Histograms and pie charts 
z-score histograms 

Dialog box settings 
Results 
Templates 
Exercise 
3 Percentiles 

Dialog box settings  Templates 

Data requirements 
Results 
Exercise 
4 One Sample Analysis 

Discussion  Data requirements 

One sample t-test 
Chi-square test 
Tail 

Dialog box settings 
Results 
Templates 
Exercise 



 



 

Contents

                                                
5 Paired Comparisons 

Discussion  Results 

Paired t-test 
Z-test for correlation coefficients 

Dialog box settings 
Data requirements 
Templates 
Exercises 

Paired t-test 
Z-test 
6 Unpaired Comparisons 

Discussion  Standard layout 

Unpaired t-test 
F-test 

Dialog box settings 
Data requirements 
Compact variable 
Results 
Templates 
Exercise 
7 Correlation and Covariance 

Discussion  Partial correlation 

Correlation coefficient 
Fisher’s r to z 
Bartlett’s test of sphericity 
Confidence intervals 
Listwise/pairwise deletion 
Covariance 
Dialog box settings 
Data requirements 
Results 
Templates 
Exercise 
8 Regression 

Discussion  Results 

Simple and multiple regression 
Polynomial regression 
Stepwise regression 
Nonlinear models 
Model coefficients and intercept 
Criteria for model quality 
Residuals 

Dialog box settings 
Data requirements 
Templates 
Exercises 

Simple linear regression 
Polynomial regression 
Growth regression 
Exponential regression 
Multiple regression 
Stepwise regression 
9 ANOVA 

Discussion  Hypothesis testing 



Contents 
Model building 
ANOVA 
Regression 
ANCOVA 
MANOVA and MANCOVA 
Repeated measures ANOVA 
Post hoc tests (Multiple 

comparisons) 
Dialog box settings 
Data requirements 

Factorial 
Repeated measures 
Results 
Templates 
Exercises 

Fully factorial ANOVA 
Repeated measures ANOVA 
ANCOVA 
Randomized complete block 

ANOVA 
Latin square ANOVA 
Factorial MANOVA design 
10 Contingency Tables 

Discussion  Data requirements 

Chi-square test 
Tables produced 
Additional statistics: G-statistic and 

Cramer’s V 
2x2 contingency tables: Fisher’s exact 

test, Phi coefficient 
Dialog box settings 
Coded raw data 
Coded summary data 
Two-way table 

Results 
Templates 
Exercise 
11 Nonparametrics 

Discussion  Friedman test 

One sample sign test 
Mann-Whitney U test 
Kolmogorov-Smirnov test 
Wald-Wolfowitz runs test 
Wilcoxon signed rank test 
Paired sign test 
Spearman rank correlation 

coefficient 
Kendall’s rank correlation 

coefficient 
Kruskal-Wallis test 
Dialog box settings 
Data requirements 
Results 
Templates 
Exercises 

One sample sign test 
Mann-Whitney U test 
Wilcoxon signed rank test 
Kendall rank correlation 
Kruskal-Wallis test 
Friedman test 
12 Factor Analysis 

Discussion  Factor loadings 

Data input 
Factor extraction methods 
Rotations 
Number of factors to extract 



 Contents
Transformation method 
Factor scores 

Dialog box settings 
Data requirements 
Results 
Templates 
Exercise 

Plots 
13 Survival: Nonparametric 

Introduction to survival analysis  Hazard plots 

What is survival analysis? 
Survival and hazard functions 
Regression models 
Parametric and nonparametric 

analyses 
Censored observations 
An example 

Nonparametric methods 
Discussion 

Understanding the event time 
variable 

Nonparametric survival function 
estimates 
Comparisons of survival functions 
Dialog Box Settings 

Survival: Nonparametric Methods dia-
log box 

Survival Columns dialog box 
Rank Tests dialog box 

Data requirements 
Results 

Default Results 
Other Results 

Templates 
Exercise 
14 Survival: Regression 

Regression methods  Joint Significance Tests dialog box 

Discussion 

Proportional hazards model 
Stratified proportional hazard 

models 
Significance tests and confidence 

intervals 
Residual plots 
Parametric models 

Dialog Box Settings 
Survival: Regression Models dialog 

box 
Survival Columns dialog box 
Estimation Parameters dialog box (pro-
portional hazards) 

Estimation Parameters dialog box (para-
metric models) 

Coefficient Initial Values dialog box 
Data requirements 
Results 

Default Results 
Other Results 

Templates 
Exercise 
15 Logistic regression 

Discussion  Assumptions 

Simple logistic regression model 
Multiple logistic regression models 
Estimating coefficients 
Polytomous logistic regression 



Contents 
models 
Dialog box settings 
Data requirements 

Nominal data coding 
Results 
Templates 
Exercises 

Simple logistic regression 
Multiple logistic regression 
Polytomous logistic regression 
16 Univariate Plots 

Dialog box settings  Templates 

Data requirements 
Results 
Exercise 
17 Bivariate Plots 

Fitted lines  Exercises 

Linear regression 
Smoothing bivariate plots 

Dialog box settings 
Data requirements 
Results 
Templates 
Bivariate scattergram 
Linear regression 
Bivariate plot with nominal data 
Cubic spline 
Lowess fit 
Supersmoother 
18 Cell Plots 

Dialog box settings  Templates 

Data requirements 
Results 
Exercises 
19 Box Plots 

Dialog box settings  Templates 

Data requirements 
Results 
Exercises 
20 Compare Percentile Plots 

Dialog box settings  Templates 

Data requirements 
Results 
Exercise 



 Contents
21 QC Subgroup Measurements 

Introduction to SPC  Tests for Special Causes dialog box 

What is statistical process control? 
When is a process in control? 
Process control vs. process capability 
An example 

Subgroup measurements 
Discussion 

Xbar (subgroup mean) charts 
R (subgroup range) charts 
S (subgroup standard deviation) 

charts 
Tests for special causes 
CUSUM (cumulative sum) charts 
Capability indices 

Dialog box settings 
QC Subgroup Measurements dialog 

box 
Custom Tests dialog box 
CUSUM Parameters dialog box 
QC Line Parameters dialog box 
Variables dialog box 
CAPA Parameters dialog box 

Data requirements 
Results 

Xbar Statistics results 
Special Causes Definitions table 
R Statistics results 
S Statistics results 
CUSUM Statistics results 
CAPA table 
Summary Table 

Templates 
Exercise 
22 QC Individual Measurements 

Discussion  Results 

I (individual measurement) charts 
MR (moving range) charts 
Tests for special causes 
CUSUM charts 
Capability indices 

Dialog box settings 
QC Individual Measurements dialog 

box 
Data requirements 
I Statistics results 
Special Causes Definitions tables 
MR Statistics results 
CUSUM Statistics results 
CAPA results 
Summary table 

Templates 
Exercise 
23 QC P/NP 

Discussion  Format 2 

p (proportion defective) charts 
np (number defective) charts 
Tests for special causes and custom 

tests 
Dialog box settings 

QC P/NP dialog box 
Data requirements 

Format 1 
Results 
p results 
np results 
Special Causes Definitions table 
Summary table 

Templates 
Exercise 



Contents 
24 QC C/U 

Discussion  Results 

c (count of defects) charts 
u (average number of defects) charts 
Tests for special causes and custom 

tests 
Dialog box settings 

QC C/U dialog box 
Data requirements 
c results 
u results 
Special Causes Definitions table 
Summary Table 

Templates 
Exercise 
25 Pareto Analysis 

Discussion  Results 

Dialog box settings 
Data requirements 
Templates 
Exercise 
26 Formulas 

Overview  Relations and logical operators 

Examples in this chapter 

Introduction 
Variable types and formats 
Casewise and columnwise 

operations 
Arguments 
Order of operations 
Remarks 
Static and dynamic formulas 
Date and time functions 
Text functions 

Operators 
?+? 
?–? 
?*? or ? ? 
?/? 
?^? or ?**? 
+? 
–? 
(?) 

Sets, intervals, and ranges 
{…} 
(?:?), [?:?], (?:?], [?:?) 
<?, >? 
?<? 
?<=? 
?=? 
?>=? 
?>? 
?<>? 
if ? then ? else ? 
IsMissing(?) 
IsRowExcluded 
IsRowIncluded 
NOT(?) 
false 
true 
? AND ? 
? ElementOf ? 
? IS ? 
? ISNOT ? 
? OR ? 
? XOR ? 

Functions 
Abs(?) 
ArcCos(?) 
ArcCosh(?) 
ArcCot(?) 



 Contents
ArcCsc(?) 
ArcSec(?) 
ArcSin(?) 
ArcSinh(?) 
ArcTan(?) 
ArcTanh(?) 
Average(?, …) 
AverageIgnoreMissing(?, …) 
BinomialCoeffs 
BoxCox(?, ?) 
Ceil(?) 
ChooseArg(?) 
CoeffOfVariation(?, AllRows) 
Combinations(?, ?) 
Concat(?) 
Correlation(?, ?, AllRows) 
Cos(?) 
Cosh(?) 
Cot(?) 
Count(?, AllRows) 
Covariance(?, ?, AllRows) 
Csc(?) 
CubicSeries(1, 0, 0, 1) 
CumProduct(?) 
CumSum(?) 
CumSumSquares(?) 
Date(?, ?, ?) 
DateDifference(?, ?, ?) 
Day(?) 
DayOfWeek(?) 
DayOfYear(?) 
DegToRad(?) 
Difference(?, 1, 1) 
Div(?, ?) 
DotProduct(?, ?) 
e 
Erf(?) 
ExponentialSeries(1) 
Factorial(?) 
FibonacciSeries 
Find(?, ?, ?, false) 
Floor(?) 
GeometricMean(?, AllRows) 
GeometricSeries(1, 2) 
Groups(?, …) 
HarmonicMean(?, AllRows) 
Hour(?) 
Lag(?,1) 
Len(?) 
LinearSeries(1, 1) 
Ln(?) 
Log(?) 
LogB(?, ?) 
LogOdds(?) 
MAD(?, AllRows) 
Maximum(?, AllRows) 
Mean(?, AllRows) 
Median(?, AllRows) 
Minimum(?, AllRows) 
Minute(?) 
Mod(?, ?) 
Mode(?, AllRows) 
Month(?) 
MovingAverage(?, ?) 
Norm(?, AllRows) 
Now 
NumberMissing(?, AllRows) 
NumberOfRows 
OneGroupChiSquare(?, ?, ?) 
Percentages(?, AllRows) 
Percentile(?, ?, ?) 
Permutations(?, ?) 
Pi 
ProbBinomial(?, ?, ?) 
ProbChiSquare(?, 1) 
ProbF(?, 1, 1) 
ProbNormal(?, 0, 1) 
Probt(?, 1) 
QuadraticSeries(1, 0, 1) 
QuarticSeries(1, 0, 0, 0, 1) 
RadToDeg(?) 
RandomBeta(1, 1) 
RandomBinomial(?, ?) 
RandomChiSquare(1) 
RandomExponential(1) 
RandomF(1, 1) 
RandomGamma(1) 
RandomGaussian(0, 1) 
RandomInclusion(?) 
RandomNormal(0, 1) 
RandomPoisson(1) 
RandomT(1) 
RandomUniform(0, 1) 
RandomUniformInteger(?, ?) 



Contents 
Range(?, AllRows) 
Rank(?, AllRows) 
Remainder(?, ?) 
ReturnChiSquare(?, ?) 
ReturnF(?, 1, 1) 
ReturnNormal(?, 0, 1) 
ReturnT(?, 1) 
Round(?) 
RowNumber 
Sec(?) 
Second(?) 
Sin(?) 
Sinh(?) 
Sqrt(?) 
StandardDeviation(?, AllRows) 
StandardError(?, AllRows) 
StandardScores(?, AllRows) 
Substring(?, ?, ?) 
Sum(?, …) 
SumIgnoreMissing(?, …) 
SumOfColumn(?, AllRows) 
SumOfSquares(?, AllRows) 
Tan(?) 
Tanh(?) 
Time(?, ?, ?) 
TrimmedMean(?, ?, AllRows) 
Trunc(?) 
VariableElement(?, ?) 
Variance(?, AllRows) 
Weekday(?) 
WeekOfYear(?) 
Year(?) 
A Algorithms 

General  Bartlett’s test of sphericity 

Sum of squares calculations 
Matrix inversions 

Descriptive Statistics 
Continuous variables 
Nominal variables 

Percentiles 
One Sample Analysis 

One sample t-test 
Confidence interval for the mean 
Chi-Square test for variance 
Confidence interval for variance 

Paired Comparisons 
Paired t-test 
Confidence interval for the paired mean 

difference 
Z test and confidence interval for the 

correlation coefficient 
Unpaired Comparisons 

Unpaired t-test 
Confidence interval for the unpaired 

mean difference 
F test for variance ratio 
Confidence interval for the variance 

ratio 
Correlation and Covariance 

Partial correlations 
p values and confidence intervals 
Regression 
ANOVA 

Multivariate analysis of variance 
(MANOVA) 

Multiple comparisons 
Contingency Tables 

Two way tables 
Nonparametrics 

One sample sign test 
Mann-Whitney U 
Kolmogorov-Smirnov 
Wald-Wolfowitz runs test 
Wilcoxon signed-rank 
Paired sign test 
Spearman rank correlation 

coefficient 
Kendall correlation coefficient 
Kruskal-Wallis test 
Friedman test 

Survival analysis 
Kaplan-Meier 
Actuarial 
Linear rank tests 
Proportional hazards model 
Parametric models 



 Contents
Estimation (proportional hazards) 
Estimation (parametric models) 
Newton-Raphson iteration 
Coefficient covariances 
Model coefficient p values (Wald) 
Confidence intervals 
Survival function and related 

quantities 
Testing the global null hypothesis 
Joint significance tests 
Stratification (proportional hazards 

only) 
Stepwise 

Logistic Regression 
Logistic model 
Estimation 
Parameter fitting 
Coefficient covariances 
Model coefficient p values (Wald 

test) 
Partial correlation (R statistic) 
Confidence intervals 
Likelihood ratio tests 
Classification 
Global tests 

Bivariate Plots 
Cubic spline 

QC Subgroup Measurements 
Sigma 
Xbar analyses 
R analyses 
S analyses 
CUSUM analyses 
Capability analyses 

QC Individual Measurements 
Sigma 
I analyses 
MR analyses 
CUSUM and capability analyses 

QC P/NP 
p analyses 
np analyses 

QC C/U 
c analyses 
u analyses 
B References 

Suggested Reading  Logistic regression 

General 
Factor analysis 
Survival analysis 
QC analysis 
C Glossary 

Index 





Descriptive Statistics 1
Descriptive statistics compute numbers that summarize data rather than making comparisons 
between the data or its sources. Descriptive statistics fall into three categories:

1. measures of central tendency, which give an idea of the average value of a number or other 
quantity (where average can take on a variety of meanings)

2. measures of variability, which convey whether most measurements are clustered within a 
narrow range of values or spread over a large range

3. measures of an overall distribution property indicated by a single number

You can use descriptive statistics on measurements representing a sample of some underlying 
population, anecdotal evidence, available data, or the entire population. This population may 
be real (people who live in a particular city) or theoretical (all the plants of a particular type). 
The size of a population or the destructive nature of the measurement method usually makes 
it undesirable to undertake measuring the entire population. Descriptive statistics can be 
merely descriptive, but are more often estimates of usually immeasurable quantities known as 
population statistics. Since descriptive statistics are calculated from a sample of the popula-
tion, they are often called sample statistics. Later references are to sample statistics unless oth-
erwise stated. Sample statistics characterize the population on which they are based.
Discussion

Measures of central tendency

A descriptive statistic summarizes data with a single number. One approach uses the mean, or 
arithmetic average, to summarize the central tendency of a set of numbers.

Mean
The mean is the sum of the observations divided by the number of observations. The sum of 
the differences between each observation and the mean is zero. Each observation plays a part 
in the calculation of the mean, so difficulties can arise if your data contains outliers, observa-
tions that are distant from the bulk of your data. Outliers can be discarded or corrected if they 
arise from an obvious error in data collection; but often they are important to the data and 



 1 Descriptive Statistics Discussion
should not be ignored. A simple example concerns the salaries of employees of a small com-
pany. There are five employees: two clerks each making $12,000 per year; two sales reps mak-
ing $15,000 and $18,000; and the owner of the company, whose salary is $100,000. (In 
practice, measurements based on a sample of only five observations should be regarded with 
caution.) The mean of the salaries is $31,400. This is not an accurate reflection of the “aver-
age” employee salary of the company. The owner’s salary distorts the value of the mean since it 
is so much larger than the other salaries, yet all are given equal weight. The same problem 
occurs with the “average” price of homes in a neighborhood; several expensive homes may 
inflate the mean price of homes, giving the consumer a distorted image of the cost of neigh-
borhood housing.

Median
An alternative measure of central tendency that can solve this problem is the median. The 
median is the middle value in a set of observations that is ordered from lowest to highest 
value. When there is an even number of observations, the median is the average of the two 
numbers on either side of the middle. By definition, half of the observations are less than or 
equal to the median, while the other half is greater than the median. For the salary example 
given above, the median salary is $15,000, a much better estimate of an “average” employee 
salary. The effect of outliers is eliminated because only the central one or two observations 
determine the median. The importance of most other observations is eliminated along with 
the outliers since only the order of the observations is ever used in calculating the median.

Trimmed mean
A measure of central tendency that provides an alternative to discarding all the observations 
except the central one or two is the trimmed mean. This statistic is a compromise between the 
mean, which uses all the data, and the median, which focuses on only one or two central val-
ues. The observations that are most distant from the center of the data are eliminated 
(trimmed) before the mean is calculated. You decide the amount of data to be trimmed before 
the remaining observations are averaged; the default is 10%. The amount of data that is 
ignored at both extremes of the dataset is expressed as a percentage. In an example of 100 
observations, 20% of which are trimmed, the 20 largest and the 20 smallest (40 observations 
in all) are eliminated from consideration, and the mean is calculated from the remaining 60 
observations. For the salary example, the 20% trimmed mean is $15,000. 

Mode
Another measure of central tendency is the mode, the value that occurs most often in a 
dataset. Your chances of guessing the value of an observation correctly are best if you choose 
the mode. The mode has a number of shortcomings when used as a measure of central ten-
dency. Data collected using a continuous measurement scale (such as height or weight) may 
not contain observations with the same value. In such a case, the data has to be grouped 
before a meaningful value of the mode is determined. Alternatively, a dataset can have several 
modes, making it difficult to decide the appropriate value to use. Nevertheless, the mode may 
be a useful measure of central tendency for a variable that takes on a limited number of values, 
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or where the values are mostly in one clump. The salary example has mode $12,000, since 
that value appears twice and the others each appear once. 

Geometric and harmonic mean
Two less common measures of central tendency are the geometric mean and harmonic mean. 
These measure the central tendency of a mathematical transformation of the original observa-
tions. The transformed data may have more desirable statistical properties than the raw data. 
With variables like economic indices and bacterial counts, for example, which exhibit more 
variability as their values increase, the logarithm of the data often behaves better than the 
untransformed data. The geometric mean is calculated from the logarithm of the variables and 
re-transformed to the original scale of measurement. The harmonic mean is calculated simi-
larly, but uses a reciprocal transformation (transforms a value by dividing one by that value). 
The harmonic mean is sometimes used to report the central tendency of rates or ratios. The 
salary example has geometric mean $20,794 and harmonic mean $16,728. 

Any variable containing zeros or negative values will return missing values for the harmonic 
and geometric means. 
Measures of variability

A measure of central tendency alone generally does not provide enough information to sum-
marize a set of numbers. For example, if every value in one dataset has the same value, but the 
values in a second dataset are spread over a wide range, the mean, median or trimmed mean 
for the two datasets can still be the same. The mean of the dataset containing identical values 
is more representative of the sample’s central tendency than the mean of the more diverse sam-
ple. One effective way to display the spread or variability of a set of numbers is a histogram (a 
bar chart representing a frequency distribution). There are also several descriptive statistics 
that summarize variability. See “Histograms and pie charts,” p. 13, for more information 
about histograms.

Minimum, maximum and range
A simple expression of the variability of a set of numbers is a report of the minimum (the 
smallest value in the set of numbers), the maximum (the largest value) and the range (the dif-
ference between the minimum and maximum). These values may not be representative of the 
rest of the dataset, so providing only the minimum, maximum and range can be misleading, 
but their easy interpretation might make it useful to report them in addition to other mea-
sures of variability. The minimum salary is $12,000 and the maximum is $100,000 for a 
range of $88,000. 

Variance
It is usually better to report some average measure of the difference between each value in a 
variable and a measure of central tendency (usually the mean). You cannot calculate a simple 
average because, by the definition of the mean, the average difference between each observa-
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tion in a dataset and the mean must be zero. One of the most common measures which gets 
around this problem is the variance. 

The variance does this by squaring the differences between the observations and the mean 
before averaging. The sample variance, which is the type of variance most commonly used, is 
usually calculated by dividing these squared differences by one less than the number of obser-
vations. The population variance is calculated by dividing the squared differences by the 
number of observations. StatView defaults to calculating the sample variance. If the data you 
are analyzing is an entire population as opposed to a sample of a population, you can choose 
to divide by the number of observations (n, as opposed to n–1) in the Descriptive Statistics 
dialog box. Use of the square of the differences increases the influence of observations far from 
the mean in calculating the variance. This may or may not be desirable, depending on the 
nature of your dataset. For example, if your data contains many outliers, the variance might 
be considerably larger than if you did not have outliers. The salary example has a large vari-
ance (1,476,800,000), due in part to the extreme upper value ($100,000). Variance is often 
used as a measure of variability when the mean is used as a measure of central tendency 
because the sum of squares of differences from a set of data and any single value is minimized 
when that value is the sample mean. 

Standard deviation
A consequence of using the square of the differences is that the variance is reported in the 
square of the original unit of measurement and can be difficult to interpret. For example, if 
the height of a group of plants is measured in centimeters, the variance is expressed as square 
centimeters. To overcome this problem, variability is usually reported as the standard devia-
tion (the square root of the variance). This represents an “average” deviation from the mean in 
the same unit of measurement as the original observations. The salary example has standard 
deviation $38,429. 

Data from a normal (Gaussian or bell-shaped) distribution follow the empirical rule of statis-
tics: 68% of the data is contained in the range of the mean plus or minus the standard devia-
tion; 95% in the range of the mean plus or minus twice the standard deviation; 99.7% in the 
range of the mean plus or minus three times the standard deviation. Thus, a quick rule of 
thumb for normally distributed data is: the vast majority of observations (95%) fall within 
two standard deviations of the mean.

Coefficient of variation
The coefficient of variation (CV) is a unitless expression of variability calculated by dividing 
the sample standard deviation by the sample mean. It is especially useful when comparing the 
variability of several measurements, or when measurements are in different units. When the 
mean is numerically small (near zero), the coefficient of variation may be very large, even 
though the variation in the data is not excessive. The salary example has CV 1.224. 
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Standard error of the mean
The standard deviation of a set of observations estimates the variability of the underlying pop-
ulation. For example, the empirical rule described above relates to the proportion of individ-
ual values that will fall within a particular range. However, it is often more meaningful to 
consider the variability of the sample mean, since it is the statistic that is actually used to gain 
insight into the central tendency of the data. The standard error of the mean is a statistic that 
estimates the variability in the sample mean you expect if you take repeated samples of the 
same size from the population. It is calculated by dividing the standard deviation of the obser-
vations by the square root of the number of observations. Since it is unlikely that a sample of 
observations would all be unusually high or low, we would expect the variability of the mean 
to be less than that of an individual value.

For example, a dataset contains the weights of 100 ten year old boys. You could calculate the 
standard deviation of the data to get an idea of the variation in weights for these individual 
boys. But if you repeatedly sample 100 boys from a theoretical population of ten-year-olds, it 
is unlikely that you would ever get a sample where most or all of the boys are unusually light 
or heavy; thus the variability of the mean will be less than the variabilities of the individual 
values.

To apply the empirical rule to the mean of a group of measurements, use the standard error of 
the mean instead of the standard deviation. In such a case, you estimate the standard devia-
tion of a hypothetical population of means, and interpret the standard error of the mean rela-
tive to the mean just as you would the standard deviation relative to the observations.

Interquartile range (IQR)
In the presence of outliers, the median or trimmed mean provides a measure of central ten-
dency. Similarly, a variety of measures of variability are appropriate when outliers are present. 
One measure closely related to the median is the interquartile range or . Recall that the 
median is the value greater than or equal to one half of the data and less than the other half. 
The median is an example of a group of measures called percentiles. The nth percentile is the 
value such that n% of the data is equal to or less than the percentile. Thus, the median is the 
50th percentile, and 90% of all values are found at or below the 90th percentile. The inter-
quartile range is calculated by subtracting the 25th percentile from the 75th. Thus, it is the 
spread of values containing the central 50% of the data and, like the median, ignores the out-
ermost points in a dataset. 



 1 Descriptive Statistics Discussion
Median absolute deviation (MAD)
The median absolute deviation () is a measure of variability that incorporates all the data, 
but does not give as much influence to outliers as the standard deviation. The  is the 
median of the set of absolute differences between each data point and the median of the data. 
The  is often a useful measure of variability when the median is used to describe the cen-
tral tendency of the data. 
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Measures of distribution characteristics

While measures of central tendency and variability are useful for succinctly describing the 
characteristics of data, sometimes more information is needed. It may be of interest to know if 
the outlying values are mostly very large or very small, or if most of the values are close to the 
central values. Two useful statistics that describe these properties of a set of data are skewness 
and kurtosis. 

Skewness
Skewness is a reflection of the symmetry of the distribution, that is, the parts of the distribu-
tion above and below the mean. For a symmetric distribution of values, the mean and the 
median coincide. A histogram of the data will show one side of the data as a mirror image of 
the other side, with the value of the mean as the “mirror.” 

A symmetric distribution has a skewness value of zero. When the number of values smaller 
than the mean is less than the number of values larger than the mean, the distribution is 
skewed to the left, or negatively skewed. In this case the tails will “stretch out” more on the 
left (lower) side of the distribution. The skewness value is less than zero and the mean is less 
than the median. In the opposite case, when the number of smaller values is greater, the distri-
bution is skewed to the right, or positively skewed. The skewness value is greater than zero 
and the mean is greater than the median. 
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Kurtosis
Kurtosis is a measure of the amount of data in the tails (as opposed to the central part of the 
distribution). Kurtosis is scaled such that normally distributed data has a kurtosis value of 
zero. Positive kurtosis values indicate that the data is squeezed into the middle of the distribu-
tion (the tails of the distribution are slim and there are few extreme values). Negative values 
indicate the data has many extreme values spread out over a wide range (the tails are fat). 
There are terms to describe these three situations: platykurtic, for negative kurtosis values; 
mesokurtic, for kurtosis values near zero; and leptokurtic, for positive kurtosis values.
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Dialog box settings

When you create or edit descriptive statistics, you set the analysis parameters in two dialog 
boxes, a small one with few choices and an expanded one with many choices. In the first of 
the two, you can select either a subset of the descriptive statistics (Basic) or all the descriptive 
statistics (Complete) and click OK. 
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If you click the More choices button, you see an expanded dialog box listing all the descriptive 
statistics. 

Using this dialog box, you can pick and choose from all the available descriptive statistics by 
clicking in the checkbox. The statistics are displayed in three separate groups: Basic statistics 
(continuous), Basic statistics (nominal) and Additional statistics. If Basic is selected in the 
fewer choices dialog box, than only the basic statistics are checked in the expanded dialog box. 
If Complete is selected, then all statistics will be checked in the expanded dialog box. Those 
statistics with a check mark next to them are included in the summary table. Using the 
expanded dialog box, you can customize which statistics to display by clicking to remove the 
check mark. 

Denominator for variance Specify which value to use in calculating the variance. The default 
calculates a sample variance. See the previous discussion on the variance for more informa-
tion. 

Trimmed mean percentage Specify the percentage of observations to exclude at the high and 
low ends of the distribution when calculating the trimmed mean. The default is 10%, which 
trims the highest and lowest 10% of the observations before calculating the mean.
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Data requirements

Descriptive statistics can be generated for one or more nominal or continuous variables.

Variable browser buttons

Add To generate descriptive statistics, select the variable(s) that you wish to analyze and click Add. 
When you select a descriptive statistics table and assign additional variables, they are added to 
the summary table which expands to include the new variables.

Split By When you assign one or more split-by variables to a descriptive statistics table, results for each 
cell in the split-by variable(s) as well as totals for all groups are displayed in a single summary 
table.
Results

For explanations of the results, please see the preceding “Discussion,” p. 1.

Basic continuous Table containing the mean, standard deviation, standard error of the mean, count, minimum, 
maximum, and the number missing for continuous variables. 

Basic nominal Table containing the number of levels, count, number missing and mode for nominal variables. 
Additional statistics 
available

Table containing the above statistics and the variance, coefficient of variation, range, sum, sum 
of squares, geometric mean, harmonic mean, skewness, kurtosis, median, interquartile range, 
mode, trimmed mean, and median absolute deviation for continuous variables.
Templates

The following templates provide descriptive statistics. 

Descriptive Statistics Descriptive Statistics Basic continuous statistics table. 
Descriptive Stats--
Complete

Complete continuous statistics table.

Nominal Descriptive 
Stats

Nominal statistics table and histogram. 
Exercise

In this exercise you create a set of descriptive statistics using the sample Car Data. It contains 
information about weight, gas tank size, turning circle, horsepower and engine displacement 
for 116 cars from different countries. 

• Open Car Data from the Sample Data folder

• From the Analyze menu, select New View
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• In the analysis browser, double-click Descriptive Statistics

• Click OK to accept the default analysis parameters

• In the variable browser, click and drag to select from Country to Gas Tank Size, and click 
Add

StatView calculates two tables, one for the continuous variables and one for nominal. For a 
discussion of nominal and continuous data class, see “Data class,” p. 50 of Using StatView. 

It is useful to compare the subgroups of one variable that are defined by the levels of another 
variable. For example, comparing Turning Circle for cars from various countries will suggest 
which country makes the largest cars. To do this, you must first deselect the tables you just 
created. This avoids using the variables from existing tables in the new analysis. (New analyses 
are always created using the variables in any selected results.)

• Click in a blank space in the view

The tables are deselected. When deselected, the black handles around the tables disappear and 
the variables in the variable browser lose their usage markers.

• In the analysis browser, again double-click Descriptive Statistics

• Click More choices 

The expanded Descriptive Statistics dialog box contains a scrolling list of statistics under three 
headings: Basic statistics (continuous), Basic statistics (nominal) and Additional statistics. 
Since Basic was selected in the first dialog box, all the basic statistics are selected in the 
expanded box. You will remove check marks from the statistics you do not wish to calculate. 
For this analysis, you will use only four descriptive statistics: mean, standard deviation, maxi-
mum and minimum. 

• Uncheck Standard error of mean, Count, and Number missing from the continuous list

• Click OK

• In the variable browser, select Turning Circle and click Add

• In the variable browser, select Country and click Split By

2957.629 535.664 49.735 116 1695.000 4285.000 0

38.586 3.132 .291 116 32.000 47.000 0

158.310 60.409 5.609 116 61.000 350.000 0

130.198 39.822 3.697 116 55.000 278.000 0

16.238 3.076 .286 116 9.200 27.000 0

Mean Std. Dev. Std. Error Count Minimum Maximum # Missing

Weight

Turning Circle

Displacement

Horsepower

Gas Tank Size

Descriptive Statistics

3 116 0 3

5 116 0 4

# Levels Count # Missing Mode

Country

Type

Nominal Descriptive Statistics
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The table shows statistics broken down by the groups of the nominal variable. These results 
indicate that cars from the  have the largest turning circle, and cars from Japan and other 
European countries have turning circles smaller than average.

38.586 3.132 32.000 47.000

37.233 2.956 32.000 42.000

36.676 2.199 33.000 42.000

40.857 2.318 36.000 47.000

Mean Std. Dev. Minimum Maximum

Turning Circle, Total

Turning Circle, Japan

Turning Circle, Other

Turning Circle, USA

Descriptive Statistics
Split By: Country
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Frequency Distribution 2
A frequency distribution table or graph can be useful for getting a sense of the distribution of 
your data. Histograms and pie charts divide your data into a number of ranges and display a 
bar or pie slice for each range. The height of each bar or size of pie slice is proportional to the 
fraction of your data which falls in that range. Frequency distribution tables and graphs can 
help identify some data characteristics that may influence which descriptive statistics and 
other analyses you will use. 
Discussion

Histograms and pie charts

The graph of a frequency distribution is one of the quickest and easiest ways to get a picture of 
your data and perform a visual test for normality. A histogram divides your data into bars 
whose height is proportionate to the amount of data which falls in the range of the bar. A pie 
chart accomplishes the same thing with pie wedges. The advantage of a histogram is that the 
X axis has meaning, so you have two visual cues rather than one. 

Pie charts can be useful for comparing portions of a whole, but they do not illustrate fine dif-
ferences. It is easier to compare bar heights than to compare pie wedges, particularly when the 
differences between bars or wedges is small. When one range dominates your data, as in the 
percentage of the U.S. budget spent on defense, a pie chart offers a much more dramatic dem-
onstration. When there are small differences between ranges, a histogram allows you to rank 
the ranges with greater ease.
z-score histograms 

A z-score histogram converts the values so the mean is zero and the standard deviation is one. 
The scale is the same for all z-score histograms, regardless of the original units of measure-
ment. This graph is particularly useful when you compare two measurements which were 
made on different scales. If the data are normally distributed, fewer than 1 out of 100 points 
will be higher than 3 or lower than –3, and only 5% of the points will be larger than 2 or 
smaller than –2.
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Dialog box settings

When you create or edit frequency distribution results, you see the Frequency Distribution 
dialog box, in which you set or change the analysis parameters.

Intervals The top half of the dialog box controls the intervals in the analysis. The number of 
intervals is equal to the number of bars or pie slices in the resulting graph. The number of 
intervals defaults to 10 for continuous variables; you can enter a different number. The num-
ber of intervals for nominal variables is determined by the number of unique values of the 
variable. For continuous variables you can also set the interval width and the starting point. 
The width defaults to the range of the data divided by the number of intervals, and the initial 
value defaults to the lowest value in the variable, so the entire range is displayed. When you set 
a different width and initial value, the graph might not display the full range of the data. If 
this is the case, a note appears under the graph.

Changing interval width and initial value is useful when you want to examine one part of the 
distribution of your data more closely. The histogram on the left below was created using the 
defaults. The one on the right gives a closer look at the lower end of the distribution, since the 
interval width is set at 10 and the initial value at 250.

When values in your data fall on an interval boundary, you can set the intervals to include the 
lowest value (which is the default) or the highest value. Suppose two adjacent intervals extend 
from 10 to 20 and 20 to 30 respectively. If one of your data values is 20, you need to know 
which interval to include it in. If intervals include their lowest value, 20 will go in the second 
interval; otherwise it will go in the first. Intervals can also be cumulative, rather than count, 
which is the default. Cumulative intervals include the totals of previous intervals, as shown 
below.
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Normal comparisons The checkbox for showing normal comparisons applies only to contin-
uous variables. If you check this option StatView draws in the histogram the expected fre-
quency curve for a normal distribution with the same mean and standard deviation as the 
variable. Normal counts, percents and relative frequencies will also appear in the summary 
table. 

Counts, percents and relative frequencies You can display interval values as counts, percents 
or relative frequencies, in both the table and the histogram. The histogram can show only one 
scale; tables can include all three. Counts show how many observations fall inside each inter-
val. Percents show what percentage of observations fall inside each interval, and relative fre-
quencies show which fraction of values fall inside each interval; relative frequencies the same 
as percents divided by 100.

0

2 0

4 0

6 0

8 0

100

120

C
ou

nt

1 50 200 250 300 350 400 450 500 550
Trunk Girth

Histogram

32.000 33.500 5 3.997

33.500 35.000 6 8.573

35.000 36.500 2 0 14.683

36.500 38.000 1 3 20.078

38.000 39.500 3 0 21.924

39.500 41.000 5 19.115

41.000 42.500 2 8 13.308

42.500 44.000 4 7.398

44.000 45.500 4 3.284

45.500 47.000 1 1.164

Total 116 113.523

From (≥) To (<) Count Normal Count
Frequency Distribution for Turning Circle
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32.000 33.500 5 .043 4.310

33.500 35.000 6 .052 5.172

35.000 36.500 2 0 .172 17.241

36.500 38.000 1 3 .112 11.207

38.000 39.500 3 0 .259 25.862

39.500 41.000 5 .043 4.310

41.000 42.500 2 8 .241 24.138

42.500 44.000 4 .034 3.448

44.000 45.500 4 .034 3.448

45.500 47.000 1 .009 .862

Total 116 1.000 100.000

From (≥) To (<) Count Rel. Freq. Percent
Frequency Distribution for Turning Circle



 2 Frequency Distribution Data requirements
Data requirements

Frequency distributions can be generated for nominal or continuous variables. 

Variable browser buttons

Add To generate frequency distributions, select one or more nominal or continuous variables and 
click Add. 
Each additional variable assigned creates a new table or histogram.

Split By When you assign one or more split-by variables to a frequency distribution table, results for 
each cell in the split-by variable(s) as well as totals for all groups are displayed in a single 
summary table. When you assign split-by variable(s) to a histogram or pie chart, a separate 
graph is generated for each cell.
Results

For explanation of the results, please see the preceding “Discussion,” p. 13. The histogram is 
the default result for a frequency distribution. 

Summary Table Table containing the upper and lower values and the count, relative frequency or percentage of 
total observations for each interval. A comparison to a normal distribution may also be 
displayed using the dialog box. 

Histogram Graph showing the percent, relative frequency, or number of observations in each interval as a 
bar chart. Comparison to a normal distribution may also be displayed using the dialog box.

Z Score Histogram Graph showing the frequency distribution normalized so that the mean is zero and the standard 
deviation is one.

Pie Chart Graph showing the number of observations in each interval as slices in a pie.
Templates

The following templates provide frequency distribution results. 

Descriptive Statistics Frequency Dist--
Continuous

Frequency distribution table and histogram. 

Frequency Dist.--
Nominal

Frequency distribution table and histogram. 

Graphs Histogram Histogram for continuous variable with normal curve. 
Pie Chart--Continuous Pie chart for continuous variable. 
Pie Chart--Nominal Pie chart for nominal variable.
Scatter Matrix 4x4 w 
Histograms

4x4 matrix of scattergrams, with one scattergram for each X-Y pairing 
of continuous variables; diagonal cells have histograms with fitted 
normal curves. 
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Scatter w Histograms Scattergram for continuous variables; has histograms with fitted normal 
curves along top and right sides. 

Z-score Histogram Z-score histogram for continuous variable. 
Exercise

In this exercise you will create a frequency distribution using the sample Car Data. It has 
information on weight, gas tank size, turning circle, horsepower and engine displacement for 
116 cars from different countries. You will generate a frequency distribution of horsepower to 
determine whether horsepower follows a normal distribution.

• Open Car Data from the Sample Data folder 

• From the Analyze menu, select New View

• In the analysis browser under Frequency Distribution, select Histogram and Summary 
Table and click Create Analysis

• Check Show normal comparison (turn the option on) and click OK

The Show normal comparison option overlays a normal distribution curve (sometimes called 
a bell-shaped curve) in the histogram and adds normal counts to the summary table. 

• In the variable browser, select Horsepower and click Add

The data is positively skewed relative to a normal distribution.The histogram tells us there are 
no cars with horsepower in the lowest 10% or so of the hypothetical normal distribution 
curve.

55.000 77.300 4 7.255

77.300 99.600 2 1 14.976

99.600 121.900 3 1 22.774

121.900 144.200 2 1 25.516
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Percentiles 3
A percentiles plot graphs observed values of a variable against its percentiles. It allows you to 
see the percentage of the data that is less than or equal to an observation. Percentiles plots are 
useful in comparing the distribution of different groups or variables. You can plot multiple 
variables in a single percentiles plot and use split-by variables to distinguish different groups. 
In addition, you can add reference lines to show the 10th, 25th, 50th, 75th, and 90th percen-
tiles as well as display a table listing these values.
Dialog box settings

When you create or edit a percentiles plot, you see this dialog box. You can place lines the per-
centiles you choose:
Data requirements

Percentile tables and plots can be generated for one or more continuous variables.

Variable browser buttons

Add To generate a percentiles table or plot, select one or more continuous variables and click Add.
Each additional variable assigned is added to the analysis.

Split By The groups defined by any nominal variable(s) assigned using the Split By button appear in the 
same table or plot.
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Results

The default output for this analysis is both the Summary Table and the Percentiles Plot.

Percentiles 
Summary Table

Table of values of the 10th, 25th, 50th (median), 75th and 90th percentiles.

Percentiles Plot Values in each variable plotted against their percentiles. Lines indicating the 10th, 25th, 50th 
(median), 75th and 90th percentiles can be added to the plot using the dialog box.
Templates

The following templates provide percentile results. 

Descriptive Statistics Percentiles Percentiles summary table and plot for continuous variable.
Graphs Compare Percentiles Compare Percentiles plot for continuous variable and two-level nominal 

variable. 
Exercise

This example uses data containing measurements of weight, gas tank size, turning circle, 
horsepower and engine displacement for 116 cars from different countries. You will see 
whether there is a difference between the weights of cars from different countries. 

• Open Car Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser under Percentiles, select Percentiles Plot and click Create Analysis 

• Click OK to accept the default analysis parameters

• In the variable browser, select Weight and click Add

• Select Country and click Split By 
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This graph shows how weights differ by country of manufacture. You can see that the 50th 
percentile, or median, of Japan and other countries is significantly lower than that of the U.S. 
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One Sample Analysis 4
StatView offers two one sample hypothesis tests: the t-test and the chi-square test. The t-test 
can be used to test the hypothesis that the mean of a normally distributed variable is equal to 
a value which you specify. The chi-square test can be used to test the hypothesis that the vari-
ance of a normally distributed variable is equal to a value which you specify. In each case, you 
can set a significance level and choose between one-tailed and two-tailed tests, as explained 
below.
Discussion

One sample t-test

The one sample t-test compares a sample mean to a hypothesized mean and determines the 
likelihood that the observed difference between the sample and hypothesized mean occurred 
by chance. The chance is reported as the p value. A p value close to 1 means it is very likely 
that the hypothesized and sample means are the same, since it is very likely that such a result 
would happen by chance if the null hypothesis of no difference is true. A small p value (for 
example, 0.01) means it is unlikely (only a one in 100 chance) that such a difference would 
occur by chance if the two means were the same. In such a case we would say that the sample 
mean is significantly different from the hypothesized value. The t value reported in the table 
expresses the difference between the mean and the hypothesized value in terms of the standard 
error.

Confidence interval
An alternative is to form a confidence interval around the sample mean. A confidence interval 
reports a range of values within which a particular parameter would likely occur if samples 
were taken repeatedly from the same distribution. If the sample mean is not significantly dif-
ferent from the hypothesized value, the hypothesized value is likely to be included in the con-
fidence interval. Alternatively, when the hypothesized value is not contained in the confidence 
interval, the sample mean is probably not equal to that value, and the two means can be 
declared significantly different. Thus, the t-test and the confidence interval procedures pro-
vide similar information in different ways. Confidence intervals can be created using the One 
Sample Analysis dialog box.
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Chi-square test

The chi-square test tests the hypothesis that the variance of a sample from a normal distribu-
tion is equal to some hypothesized value. The test compares the sample variance with the 
hypothesized variance and determines the likelihood that the observed discrepancy between 
the two occurred by chance. This likelihood is reported as the p value. A p value close to 1 
means it is very likely that the hypothesized and sample variances are the same, since it is 
probable that such a result would happen by chance if the null hypothesis of no difference is 
true. A small p value (for example, 0.01) means it is unlikely (only a one in 100 chance) that 
the observed discrepancy would occur by chance if the two variances were the same. In such a 
case we would say that the sample variance is significantly different from the hypothesized 
variance.

Confidence interval
An alternative is to form a confidence interval around the variance of the sample. A confi-
dence interval reports a range of values within which a particular parameter would most likely 
occur if samples were taken from the same distribution over and over again. If the sample vari-
ance is not significantly different from the hypothesized value, the hypothesized value is likely 
to be included in the confidence interval. Alternatively, when the hypothesized variance is not 
contained in the confidence interval, the sample variance is probably not equal to that value, 
and the two can be declared statistically different. Thus, the chi-square test and the confidence 
interval procedures provide similar information in different ways. Confidence intervals can be 
created using the One Sample Analysis dialog box.
Tail

You can perform the t-test or chi-square test as a one-tailed or two-tailed test. The One Sam-
ple Analysis dialog box offers the choice of upper, lower or both tails. By default, the tests con-
sider both possibilities: that the sample’s mean/variance is larger than the hypothesized mean/
variance, and that the hypothesized mean/variance is larger than the sample’s. Such a test is 
called a two-sided or two-tailed test. A one-tailed test considers a difference in only one direc-
tion; that the difference is either greater than (upper), or less than (lower) the hypothesized 
mean or hypothesized variance.

There are rare instances in which only one direction of difference is possible. In such cases, a 
one-sided test is more sensitive to differences than a two-sided test since it considers differ-
ences in only one direction. A great deal of knowledge about the nature of the problem at 
hand is necessary for the one-sided test to be valid. It is essential to be sure that a difference in 
the other direction is physically impossible.
Dialog box settings

When you create or edit one sample analysis results, you set the analysis parameters in this 
dialog box:
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You can elect to perform an analysis of means (t-test) or variances (chi-square test) and set 
confidence intervals for both. If you choose a t-test, you compare the sample mean to a 
hypothesized mean, which you enter yourself in the text box. If you choose a chi-square test, 
you compare the sample variance to a hypothesized population variance, which you enter 
yourself in the text box. The hypothesized mean or variance embodies the question that you 
want the analysis to answer; you have reason to suspect that the mean or variance has a certain 
value. 

For both tests, you can specify whether the test/confidence interval is two-tailed or one-tailed, 
and if one-tailed, which tail is to be used in the analysis. If you intend to use a one-tailed test, 
please read the caution in the earlier section, “Tail,” p. 24.
Data requirements

A one sample analysis (t-test or chi-square) requires one or more continuous variables.

Variable browser buttons

Add To generate a one sample analysis, select one or more continuous variables and click Add.
Each additional continuous variable assigned is added to the existing table.

Split By When you assign one or more split-by variable to an one sample analysis table, results for each 
cell in the split-by variable(s) as well as totals for all groups are displayed in a single summary 
table
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Results

For explanation of the results, please see the preceding “Discussion,” p. 23. 

Mean One Sample t-test Table generated if only t-test is selected. This table shows the sample 
mean, the degrees of freedom, and the t value and the p value for the 
difference between the actual and hypothesized value.

Confidence Interval Table generated if only confidence interval is selected. This table shows 
the sample mean and the upper and/or lower confidence intervals as 
set in the dialog box. 

One Sample Analysis Table generated if both t-test and confidence interval are selected. This 
table combines the above tables.

Variance Chi-square test Table generated if only chi-square test is selected. This table shows the 
sample variance, the degrees of freedom, the chi-square, and the 
p value for the test.

Confidence Interval Table generated if only confidence interval is selected. This table shows 
the variance and the upper and/or lower confidence intervals as set in 
the dialog box.

One Sample Analysis Table generated if both chi-square test and confidence interval are 
selected. This table combines the above tables.
Templates

The following templates provide one sample analysis results. 

ANOVA and t-tests One-Group Variance 
Test

One sample analysis table with 95% confidence intervals.

t-Test (One Group) One sample t-test table. 
Exercise

In this exercise you perform a one sample t-test on data from blood lipid screenings of medical 
students. You want to know whether the mean cholesterol level is significantly greater than 
190, a point above which cholesterol levels may be unhealthy. You test the null hypothesis 
that the mean value for cholesterol is 190. If you reject the null hypothesis, you can conclude 
that the mean differs significantly from190. Because a one-tailed test would be inappropriate, 
you will do a two-tailed t-test.

• Open Lipid Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser, select One Sample Analysis and click Create Analysis

• For hypothesized mean, type 190 and click OK
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• In the variable browser, select Cholesterol and click Add

The mean is slightly higher than the hypothesized value of 190. However, although the mean 
is in fact higher, you cannot reject the null hypothesis that the mean is 190 because 191.232 is 
well within the range of sampling variance. The p value indicates you would see a difference of 
this magnitude by chance more than 73% of the time.

191.232 9 4 .336 .7373

Mean DF t-Value P-Value

Cholesterol

One Sample t-test
Hypothesized Mean = 190
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Paired Comparisons 5
There are several ways you can compare two samples of experimental units. One approach 
compares the means of the two samples by performing a t-test. If the samples are naturally 
paired in some way, a paired t-test is appropriate. The most common case is a paired compar-
ison of two measurements taken from the same experimental unit at different times or under 
different conditions. 

If instead you want to compare average measurements for the two groups, rather than paired 
variables, an unpaired t-test is appropriate. Unpaired comparisons are described in the next 
chapter, p. 37. Note that the paired t-test is the equivalent of a repeated measures  (see 
“ANOVA,” p. 73) for two repeated measurements. 

Another approach examines the relationship or closeness of association between properties of 
paired experimental units. For example, a researcher may question how closely a bird’s body 
length follows its wing span. This can be done using a correlation analysis. The paired t-test 
and correlation analysis are described below. The tests assume that both samples are normally 
distributed and have the same variance. Extensions of these techniques for dealing with more 
than two groups or data that is not normally distributed are discussed in the chapters 
“ANOVA,” p. 73 and “Nonparametrics,” p. 119.
Discussion

Paired t-test

The most common use of a paired t-test is the comparison of two measurements from the 
same individual or experimental unit. The two measurements can be made at different times 
or under different conditions. The paired t-test tests the hypothesis that the mean of the dif-
ferences between pairs of experimental units is equal to some hypothesized value, usually set at 
zero. An hypothesized value of zero is equivalent to the hypothesis that there is no difference 
between the two samples. The paired t-test compares the two samples and determines the like-
lihood of the observed difference occurring by chance. The chance is reported as the p value. 
A small p value (for example, 0.01) means it is unlikely (only a one in 100 chance) that such a 
mean difference would occur by chance under the assumption that the mean difference were 
zero. In such a case we would say that there is a statistically significant difference between the 
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two groups. The t value reported in the table expresses the difference between the mean dif-
ference and the hypothesized value in terms of the standard error.

A paired t-test is more powerful than the unpaired t-test, because it takes into account the fact 
that measurements from the same unit tend to be more similar than measurements from dif-
ferent units. For example, in a test administered before and after a training program, the usual 
(unpaired) t-test may not detect consistent but small increases in each individual’s scores. The 
paired t-test is more sensitive to the fact that one measurement of each pair essentially serves 
as a control for the other.

The paired t-test is also appropriate when some other natural pairing exists. For example, a 
survey of husbands and wives is designed to test for differences of opinion on particular issues. 
Each couple’s responses are viewed as a pair and tested for differences with a paired t-test. In 
some designed experiments, subjects are selected for similarities of age, race or sex. A paired t-
test is appropriate to use on such measurements. The critical issue is whether a pair’s responses 
are more likely to be similar than responses from random experimental units. When the pair’s 
responses are likely to be consistently more similar, a paired t-test is more powerful than an 
unpaired t-test. 

You may also may wish to examine your data graphically using a cell plot. See “Cell Plots,” 
p. 237, for a discussion of cell plots.

Mean difference confidence interval
An alternative is to form a confidence interval for the mean of the difference between the two 
measurements for each experimental unit. When the two measures are not significantly differ-
ent, the value of zero is likely to be included in the confidence interval. Alternatively, when 
zero is not contained in the confidence interval, the difference is probably not zero, and the 
measures can be declared significantly different. 

Tail
You can perform the paired t-test as a one-tailed or two-tailed test. The Paired Comparisons 
dialog box offers the choice of upper, lower or both tails. By default, the tests consider both 
possibilities: that the first group’s mean is larger than the second group’s mean, and that the 
second group’s mean will be larger than the first’s. Such a test is called a two-sided or two-
tailed test.

There are rare instances in which only one direction of difference is possible. In such cases, a 
one-sided test is more sensitive to differences than a two-sided test since it considers differ-
ences in only one direction. A great deal of knowledge about the nature of the problem at 
hand is necessary for the one-sided test to be valid. It is essential to be sure that a difference in 
the other direction is physically impossible. 

A one-tailed test considers a difference in means in only one direction; that the difference is 
either greater than (upper tail), or less than (lower tail) the hypothesized difference or hypoth-
esized correlation. 
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Z-test for correlation coefficients

The paired t-test is used to compare the means of measurements of the same variable taken at 
different times. Comparison of two variables which measure different things requires a differ-
ent approach. The z-test tests the hypothesis that the correlation coefficient is equal to an 
hypothesized value, usually set at zero. An hypothesized correlation coefficient of zero is 
equivalent to the hypothesis that there is no correlation between variables. The z-test com-
pares the two groups and determines the likelihood of the observed correlation occurring by 
chance. The chance is reported as the p value. A small p value (for example, 0.01) means it is 
unlikely (only a one in 100 chance) that such a correlation would occur by chance. In such a 
case we would say that there is a statistically significant difference between the two groups.

The most powerful tool for examining relationships of this sort is the bivariate scattergram 
(see “Bivariate Plots,” p. 221). A bivariate scattergram plots the values of one variable on the X 
axis and the values of the other on the Y axis. It is easy to see whether a relationship exists. For 
example, this scattergram shows a near linear relationship between two variables:

Correlation coefficient
The correlation coefficient is a more quantitative measure of the relationship between two 
variables than the bivariate scattergram. A correlation coefficient of –1 indicates that large val-
ues of one variable are exactly associated with small values of the other variable. A correlation 
coefficient of +1 indicates large values of one variable are exactly associated with large values of 
the other variable. The scattergram above has a correlation coefficient of 0.916.

The distinction between statistical significance and practical significance is important when 
using the correlation coefficient. The level of correlation that is practically significant varies 
from situation to situation. Generally, unless the absolute value of the correlation is greater 
than 0.5, the relationship between variables is not important. However, a correlation of 0.1 
may be statistically significant with a large enough sample. This seems contradictory, but it 
means that a large enough sample size lends significance to a weak correlation. The statistical 
significance indicates that the value of the correlation coefficient is not zero; the decision 
remains whether the correlation is large enough to be important.

Correlation is useful for testing the relationship between more than two variables. The corre-
lation of many variables can be displayed as a correlation matrix (table). The Correlation/
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Covariance analysis, discussed in “Correlation and Covariance,” p. 43, produces such a table. 
A correlation coefficient for all pairs of variables appears in the cell at the intersection of the 
variables’ respective row and column. A partial correlation matrix removes the linear effect of 
one or more variables before examining the relationships of the other variables. For more 
information about correlation, see “Correlation and Covariance,” p. 43, and “Nonparamet-
rics,” p. 119.

The correlation coefficient measures only the linear relationship between variables. It cannot 
reveal anything about non-linear relationships and can be misleading if used with them. Poly-
nomial relationships can be examined using polynomial regression (see “Regression,” p. 51). 
In some cases, you may be able to transform the data (using the formula capability) so that the 
relationship becomes linear. If it is possible to divide the independent variable into groups, 
you can test for the presence of a more general relationship than simply linear between these 
groups and a dependent variable, by using  (see “ANOVA,” p. 73).

Tail
You can also perform a z-test as a one- or two-tailed test. The Paired Comparisons dialog box 
offers the choice of upper, lower or both tails. By default the test considers both possibilities: 
that the correlation coefficient is either smaller or larger than an hypothesized value. A great 
deal of knowledge about the nature of the problem at hand is necessary for the one-sided test 
to be valid. You must be certain before you start the experiment that a difference in only one 
direction is possible.
Dialog box settings

When you create or edit paired comparison results, you set the analysis parameters in this dia-
log box:

You can choose to analyze the mean difference, correlation, or both, by clicking in the appro-
priate checkboxes. The paired t-test computes a paired t value between two variables when the 
row entry for each variable is a measure on the same subject. The z-test uses Fisher’s R to z 
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transformation to test the hypothesis that the correlation between two variables is equal to the 
specified value. You can set confidence intervals for both tests, and designate either as two-
tailed or one-tailed (upper or lower). Please read the caution in the “Discussion,” p. 29, if you 
are using a one-tailed test. 
Data requirements

Paired comparisons require two or more continuous variables. If more than two continuous 
variables are assigned, paired comparisons are calculated for all possible variable pairs.

The data for each sample of the paired comparison must be located in a single continuous 
variable (column). Each row entry for the two columns being analyzed must be a measure for 
the same subject or for observations that are naturally paired. For an introduction to dataset 
organization, see “Dataset structure,” p. 49 of Using StatView. In addition, the “Exercises,” 
p. 34, will help you see how to organize your data for this analysis. 

Variable browser buttons

Add To generate paired comparisons, select a two or more continuous variables and click Add.
Each additional variable is added to the summary table which expands to include the new 
variable(s). 

Split By When you assign one or more split-by variables to a paired comparisons table, results for each 
cell in the split-by variable(s) as well as totals for all groups are displayed in a single summary 
table.
Results

For explanation of the results, please see the preceding “Discussion,” p. 29. The hypothesis 
being tested is shown in the title of the table.

Mean difference Paired t-test Generated if only paired t-test is selected. This table shows the mean of 
the differences between pairs, the degrees of freedom, the t value and 
the p value for the mean difference.

Confidence Interval Generated if only confidence interval is selected. This table shows the 
difference between the group means and the upper and lower 
confidence intervals for that difference as set in dialog box.

Paired Means 
Comparison

Generated if both paired t-test and confidence intervals are selected. 
This table combines the above tables.
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Correlation Fisher’s R to Z Generated if only z-test is selected. This table shows the correlation 
between variables, the number of paired observations, and the z value 
and the p value for the correlation.

Confidence Interval Generated if only confidence interval is selected. This table shows the 
correlation coefficient, and the upper and lower confidence intervals as 
set in the dialog box.

Correlation Coefficient Generated if both z-test and confidence intervals are selected. This 
table combines the above tables.
Templates

The following templates provide paired comparisons results. 

ANOVA and t-tests t-Test (Paired) Paired t-test table with 95% confidence interval.
Correlations Correlation Z-Test Fisher’s R to Z with 95% confidence interval. 
Exercises

Paired t-test

In this exercise you will perform a paired t-test. The data used in this exercise comes from 
blood lipid screenings of medical students. You will determine whether initial triglyceride lev-
els are different from those measured in the same subjects after three years.

• Open Lipid Data from the Sample Data folder 

• From the Analyze menu, select New View

• In the analysis browser, select Paired Comparisons and click Create Analysis 

• Click OK to accept the default analysis parameters

• In the variable browser, select Triglycerides and Trig-3 yrs and click Add 
Control-click (Windows) or Command-click (Macintosh) to select several nonadjacent 
variables at a time

From this paired t-test, you can accept the hypothesis of no difference between means of the 
two groups. The mean difference is so small the p value indicates you are likely to see a differ-
ence of this magnitude by chance 70% of the time. You are now finished with this example. 
You may save the view to any folder and open it with the same dataset to perform any further 
analyses you wish.

3.419 4 2 .386 .7015

Mean Diff. DF t-Value P-Value

Triglycerides, Trig-3yrs

Paired t-test
Hypothesized Difference = 0
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Z-test

The previous exercise compares the means of groups with the same variable: triglyceride levels. 
Comparison of two variables which measure different things on the same or paired experi-
mental units requires a different approach.

In this exercise you create a scattergram and calculate a correlation coefficient to determine 
the degree of linear relationship between two variables. The data you use rates a number of 
different western cities by nine criteria. You will discover whether better climate is accompa-
nied by an increase in housing costs.

• Open Western States Rated Data from the Sample Data folder

For Climate & Terrain, a higher score is better; for Housing, the lower the score the better. 
The first step is to create a bivariate plot to see how linear the relationship is between the two 
variables in question.

• From the Analyze menu, select New View

• In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis

• Click OK to accept the default parameters

• In the variable browser, select Climate&Terrain and click X Variable

• In the variable browser, select Housing and click Y Variable

You can see that there is some degree of linear relationship between higher housing costs and 
more desirable climate (as defined by the criteria of the study). To confirm this judgement, 
examine the correlation coefficient for these two variables with a paired comparisons test. 

You can avoid the step of assigning the Climate&Terrain and Housing variables again. by 
keeping the scattergram selected and then requesting Paired Comparisons. 

• Make sure the scattergram is still selected (has black handles)

• In the analysis browser, double-click Paired Comparisons

• Uncheck Paired t-test, and check Z test under Correlation
(We leave the hypothesized correlation set to 0 to test the hypothesis of no relationship 
between the variables. This test will produce a correlation coefficient and a p value indicat-
ing the likelihood of this correlation occurring by chance.)

• Click OK
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From this test, you can conclude that a positive correlation exists between Climate&Terrain 
and Housing because of a significant correlation coefficient and a p value that indicates a very 
low likelihood that this degree of correlation could occur by chance.

.659 5 2 5.533 <.0001

Correlation Count Z-Value P-Value

Climate&Terrain, Housing

Fisher's R to Z
Hypothesized Correlation = 0
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Unpaired comparisons are comparisons made between the average measurements of two 
groups rather than between paired variables within those groups. StatView performs an 
unpaired t-test for comparing two means and an unpaired F-test for comparing two variances, 
both under the assumption that your data is normally distributed. If you want to compare 
paired measurements of the variables rather than averages for the two groups, read about 
paired comparisons in the preceding chapter, “Paired Comparisons,” p. 29. 
Discussion

Unpaired t-test

A measurement taken from two different groups raises the question: on the average, are the 
measurements for one group different from the measurements for the other group? This can 
be answered by performing an unpaired t-test on the measurements.

The unpaired t-test compares the means of two groups and determines the likelihood of the 
observed difference occurring by chance. The chance is reported as the p value. A p value close 
to 1 means it is very likely that the two groups have the same mean, since it is very likely that 
such a result would happen by chance if the null hypothesis of no difference between groups is 
true. A small p value (for example, 0.01) means it is unlikely (only a one in 100 chance) that 
such a difference would occur by chance if the two groups had the same mean. In such a case 
we would say that there is a significant difference between the two means. The t value 
expresses the difference between the mean difference and the hypothesized value in terms of 
the standard error. 

You may also wish to examine your data graphically using a cell plot. See “Cell Plots,” p. 237, 
for a discussion of cell plots.

Confidence interval
An alternative is to form a confidence interval for the difference between the means of the two 
groups. When the two means are not significantly different, the value of zero is likely to be 
included in the confidence interval. Alternatively, when zero is not contained in the confi-
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dence interval, the difference is probably not zero, and the measures can be declared signifi-
cantly different. Confidence intervals can be created using the dialog box.

Tail
The unpaired t-test assumes that two groups are normally distributed and have the same vari-
ance. It is usually difficult to predict the direction in which the differences will lie. By default, 
the t-test considers both possibilities: that the first group’s mean will be larger than the second 
group’s mean, and that the second group’s mean will be larger than the first’s. Such a test is 
called a two-sided or two-tailed test.

A one-sided test is more sensitive to differences than a two-sided test since it considers differ-
ences in only one direction. A great deal of knowledge about the nature of the problem at 
hand is necessary for the one-sided test to be valid. You must be certain before you start the 
experiment that a difference in only one direction is possible.
F-test

A comparison of the variance of groups of measurements can be useful to validate the assump-
tions of the t-test, and for other purposes. For example, a mechanical part is manufactured by 
two different methods. You want to know if the size of the part differs between the two meth-
ods, and also whether one method or the other produces more consistent results. The F-test 
for variances shows whether the variance of one group is smaller, larger or equal to the vari-
ance of the other group.

The F-test depends on two parameters: the degrees of freedom for each of the two groups. 
This will be equal to the number of observations in the group minus one. Since the F-test is 
formed as a ratio of the two variances, the parameters are referred to as numerator degrees of 
freedom and denominator degrees of freedom.

Confidence interval
An alternative is to form a confidence interval for the ratio of the variances of the two groups. 
When the two variances are not significantly different, the value of 1 is likely to be included in 
the confidence interval. Alternatively, when 1 is not contained in the confidence interval, the 
variances are probably not equal and can be declared significantly different. Confidence inter-
vals can be created in the dialog box.

Tail
 It is usually difficult to predict the direction in which the variance differences will lie. By 
default, the F-test considers both possibilities: that the first group’s variance will be larger than 
the second group’s, and that the second group’s variance will be larger than the first’s. Such a 
test is called a two-sided or two-tailed test.

A one-sided test is more sensitive to differences than a two-sided test since it considers differ-
ences in only one direction. A great deal of knowledge about the nature of the problem at 



6 Unpaired Comparisons Dialog box settings 
hand is necessary for the one-sided test to be valid. You must be certain before you start the 
experiment that a difference in only one direction is possible.
Dialog box settings

When you create or edit unpaired comparisons results, you set the analysis parameters in this 
dialog box:

You can choose to analyze the mean difference, variance ratio, or both by clicking in the 
appropriate checkboxes. The unpaired t-test defaults to a hypothesized value of zero. The F-
test tests the hypothesis that the ratio of the two variances is equal to the hypothesized ratio, 
which defaults to one. You can set confidence intervals for both tests, and designate either as 
two-tailed or one-tailed (upper or lower). Please read the caution in the “Discussion,” p. 37, if 
you are using a one tailed test.
Data requirements

Unpaired comparisons require a single nominal grouping variable with two or more groups 
and one continuous variable. If the nominal variable contains more than two groups, 
unpaired comparisons will be calculated for all possible pairs of groups.

To compare groups, your data must be organized in a way that allows the unpaired compari-
son analysis to identify which group an observation belongs to. This can be done using a col-
umn containing a separate nominal grouping variable or by using a compact variable. For an 
introduction to dataset organization, see “Dataset structure,” p. 49 of Using StatView. In addi-
tion, the “Exercise,” p. 41, will help you see how to organize your data for this particular anal-
ysis.
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Standard layout

The dataset below shows one way to organize your data if you wished to perform an analysis 
comparing cholesterol levels for males and females. 

The cholesterol values for both males and females appear in a single column. The variable 
Gender is a separate nominal column and acts as a grouping variable that identifies the group 
(Male or Female) for each Cholesterol measurement. There will be one row in the dataset for 
each subject in the analysis. 
Compact variable

If you are prefer to place different groups in separate columns, StatView offers an alternative 
to the data organization shown above. In this dataset organization, the observations for each 
group appear in a single column. Your dataset will contain as many columns as there are 
groups being compared. If you enter your data this way, you must create a simple compact 
variable in order for the analysis to know which group each observation belongs to. The cho-
lesterol measurements for male and female from the above dataset look like this in a compact 
variable format:

The male cholesterol measurements are all placed in one column and the female cholesterol 
measurements in another. The column identifies the group, not the row. If there are unequal 
numbers of observations in the two groups, missing values ( . ) are automatically inserted in 
the column with fewer observations. These missing values are ignored in the analysis. 

If you plan to use a compact variable, please read the discussion “Compact variables,” p. 84 of 
Using StatView.

Variable browser buttons

Add To generate unpaired comparisons, select a single nominal grouping variable and a single 
continuous variable and click Add.
Each additional nominal variable assigned creates a new analysis using the new nominal 
variable and the old continuous variable. Each additional continuous variable assigned creates a 
new analysis using the new continuous variable and the old nominal variable.

Split By When you assign one or more split-by variables to an unpaired comparisons table, results for 
each cell in the split-by variable(s) as well as totals for all groups are displayed in a single 
table.
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Results

For explanation of the results, please see the preceding “Discussion,” p. 37. The hypothesis 
being tested is shown in the title of the table.

Mean difference Unpaired t-test Generated if only unpaired t-test is selected. This table shows the 
difference between the group means, the degrees of freedom, and the 
t value and the p value for the mean difference.

Confidence Interval Generated if only confidence interval is selected. This table shows the 
difference between the group means and the upper and lower 
confidence intervals as set in dialog box.

Unpaired Means 
Comparison

Generated if both unpaired t-test and confidence intervals are selected. 
This table combines the above tables.

Group Info Always generated and shows the count, mean, variance, standard 
deviation, and standard error for each group.

Variance ratio F-test Generated if only F-test is selected. This table shows the ratio of the 
group variances, the degrees of freedom in the numerator and 
denominator, and the F value and p value for the variance ratio.

Confidence Interval Generated if only confidence interval is selected. This table shows the 
ratio of the group variances, and the upper and lower confidence 
intervals as set in the dialog box.

Variance Comparison Generated if both F-test and confidence intervals are selected. This 
table combines the above tables.

Group Info Always generated and shows the count, mean, variance, standard 
deviation, and standard error for each group.
Templates

The following templates provide unpaired comparison results. 

ANOVA and t-tests Equality of Variances F 
Test

Variance comparison F test and group info tables. 

t-Test (Unpaired) Unpaired means comparison, variance comparison, and group info 
tables. 
Exercise

In this exercise you perform an unpaired t-test on census information for 506 housing tracts 
in the Boston area. You will examine two groups of housing tracts, those near the Charles 
River and those farther away from it. You will find out whether the median value of owner-
occupied homes varies depending on how far houses are located from the river. To do this, you 
will test the null hypothesis that no difference in median housing prices exists.
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• Open Boston Housing Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser, select Unpaired Comparisons and click Create Analysis 

• Click OK to accept the default analysis parameters
(We leave the hypothesized difference 0 to test the hypothesis of no difference between 
means of the two groups.)

• In the variable browser, select Median Value and click Add

• In the variable browser, select Charles and click Add

Charles has a G usage marker indicating it acts as a grouping variable in the analysis. 

You can reject the null hypothesis of no difference between the price of houses near to and far 
from the Charles River. The mean value is significantly higher for housing near the river than 
for housing far from it. The low p value indicates a probability of less than one in 10,000 that 
such a difference would occur by chance.

6.346 504 3.996 <.0001

Mean Diff. DF t-Value P-Value

Near, Far

Unpaired t-test for Median Value
Grouping Variable: Charles
Hypothesized Difference = 0

3 5 28.440 139.633 11.817 1.997

471 22.094 77.993 8.831 .407

Count Mean Variance Std. Dev. Std. Err

Near

Far

Group Info for Median Value
Grouping Variable: Charles
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Correlation and covariance values indicate the degree of linear relationship between two vari-
ables. Computing these values generally requires a single sample with two sets of observed val-
ues on each subject or sampling unit. Correlation and covariance measure only the linear 
relationship between two variables. If the relationship is other than linear, these coefficients 
can be very misleading. Before relying on the correlation or covariance of two variables as a 
measure of their association, you should examine a scattergram of the two variables. In this 
way you can make sure there is not some nonlinear relationship which the correlation or cova-
riance would not detect.
Discussion

Correlation coefficient

The Pearson correlation coefficient has an absolute value between 0 and 1, with 1 indicating 
a perfect linear relationship and 0 meaning no linear relationship exists. When two variables 
increase or decrease proportionately (as one variable increases, the other variable increases; 
when one decreases, so does the other), a positive correlation between them exists. When one 
variable increases when the other decreases proportionately, there is a negative correlation 
(inverse relationship). A correlation of exactly 0 almost never occurs in practice. If an exact 
linear relationship exists among some of the variables, the matrix is said to be singular. A sin-
gular matrix is not invertible, so it is not possible to compute partial correlations or Bartlett’s 
test of sphericity. If this occurs, an error message tells you the correlation matrix is singular.

Correlation matrix
When many variables are measured, it is useful to display the correlation coefficients in a cor-
relation matrix, a table in which each row or column represents a different variable in the 
dataset. The cell at the intersection of a row and column contains the correlation coefficient 
for the two variables the row and column represent. In an exercise later, you will create and 
interpret a correlation matrix. Other values, such as the probability that a particular correla-
tion is different from 0, may also be displayed in similar tables.
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You have the option of saving the correlation matrix as a new dataset. 

1.000 .089 - .021 .106 .024 - .064

.089 1.000 .698 .074 .157 .136

- .021 .698 1.000 - .138 .084 .063

.106 .074 - .138 1.000 - .099 - .038

.024 .157 .084 - .099 1.000 .335

- .064 .136 .063 - .038 .335 1.000

Age Weight Height Skinfold Systolic BP Diastolic BP

Age

Weight

Height

Skinfold

Systolic BP

Diastolic BP
95 observations were used in this computation.

Correlation Matrix
Fisher’s r to z

To determine if a correlation coefficient is significantly different from zero, a Fisher’s r to z 
transformation is carried out on the correlation. This transforms the correlation coefficient to 
a variable with a standard normal distribution, allowing a probability level (p value) to be cal-
culated for the null hypothesis that the correlation is equal to zero. One caution about judging 
correlation coefficients based on their significance levels: for a large enough sample, any corre-
lation coefficient that is not exactly equal to zero will have a significant probability level.

The distinction between statistical significance and practical significance is important when 
using the correlation coefficient. The level of correlation that has practical significance will 
vary from situation to situation. Generally, unless the absolute value of the correlation is 
greater than 0.5, the relationship between two variables is probably not of much importance. 
On the other hand, with a large enough sample, a correlation of 0.1 may be significant. This 
may seem contradictory. It simply means that when the sample size is large enough, even a 
weak correlation can safely be considered different from no correlation at all. The statistical 
significance simply indicates that the value of the correlation coefficient is not 0; it is up to 
you to decide whether the magnitude of the correlation is large enough to be of importance.
Bartlett’s test of sphericity

One special correlation pattern which may exist among a set of variables is sphericity. It 
means that all the variables in question are uncorrelated with each other, resulting in a correla-
tion matrix with zeroes everywhere except the diagonal. You can test to see if a correlation 
matrix conforms to this pattern by requesting Bartlett’s test of sphericity. A high chi-square 
and associated low p value imply that the null hypothesis of no correlation between variables 
can be rejected. If the matrix is singular (an exact linear relationship exists among some of the 
variables) it is not possible to compute Bartlett’s test and you see an error message noting that 
the matrix is singular.
Confidence intervals

You may also form a confidence interval for the correlation between pairs of samples of exper-
imental units. When two variables are not correlated, the value of zero is likely to be included 
in the confidence interval. Alternatively, when zero is not contained in the confidence inter-
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val, the correlation is probably not zero, and the measures may be declared significantly corre-
lated. You create confidence intervals using the dialog box.
Listwise/pairwise deletion

Sometimes a correlation coefficient in a correlation matrix may not agree with a value 
reported as a single correlation when the correlation coefficient is calculated for just two of the 
variables included in the matrix. This discrepancy may arise because StatView, by default, 
eliminates all rows that have a missing value for any of the variables for which correlations are 
calculated. This procedure is called listwise deletion. Such a correlation matrix has certain 
desirable statistical properties when used in further calculations, even though the deleting of 
cases may obscure some relationships in the data. You can override this by choosing the pair-
wise deletion option in the Correlation/Covariance dialog box; if you do so, partial correla-
tions and Bartlett’s test of sphericity are not calculated. 
Covariance

When several variables are studied simultaneously, it is often of interest to determine if any or 
all of the variables are related to each other. One way of doing this is to calculate a measure of 
how much changes in one variable affect the values of the other variables. When we consider 
changes in the linear sense, the measure is known as covariance. By a linear sense, we mean 
that a straight line on a graph would be a good representation of the relationship between the 
two variables. As one variable increases, the other consistently either increases or decreases. 
The covariance between two variables is measured on a scale which is heavily influenced by 
the magnitudes of the variables involved, and may be hard to interpret if the variables being 
studied are measured on vastly differing scales. For this reason, the correlation coefficient is 
usually preferred as a measure of linear relationships, because it is standardized to be in the 
range of –1 to 1, and is not affected by the scale of measurement.
Partial correlation

A correlation matrix may involve many variables. Since the entries in the matrix only address 
the relation between two variables at a time, there are many situations where the correlation 
coefficient may not accurately measure the strength of the relationship of interest. For exam-
ple, suppose we have a dataset consisting of age, weight and a score on a fitness test.

The correlation between weight and the fitness score may mislead us into believing that there 
is a strong relationship between these two variables, when in fact it may be just the effect of 
age, since that is related to both weight and fitness score. What we would like is a measure of 
correlation between weight and fitness score with the effects of age removed. This is the basic 
idea behind partial correlation. The partial correlation of two variables with respect to a third 
is the correlation of the two variables after the linear effect of the third variable has been 
removed. Notice that, like the regular correlation coefficient, if non-linear relationships exist, 
the partial correlation coefficient may not be valid. Nevertheless, the partial correlation coeffi-
cient can be a useful tool when you are studying a set of closely related variables.
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If the correlation matrix is singular (an exact linear relationship exists among some of the vari-
ables) it is not possible to compute partial correlations and you will see an error message not-
ing that the matrix is singular.
Dialog box settings

When you create or edit a correlation or covariance analysis, you set the analysis parameters in 
this dialog box:

Select from correlation, covariance and partial correlation by clicking in the checkboxes at the 
top. Rows are eliminated from the analysis if they contain a missing value (listwise deletion) 
unless you select pairwise deletion instead. (A matrix formed with the pairwise method should 
not be used as input for a factor analysis.) For a further discussion of listwise and pairwise 
deletion, see the preceding section, “Listwise/pairwise deletion,” p. 45.

At the bottom of the dialog box you can choose to generate the following additional statistics: 
Bartlett’s test of sphericity, Fisher’s r to z (p values), and a user specified confidence interval 
around the correlation coefficients.

Save correlation matrix to dataset If you check save correlation matrix, the computed corre-
lation matrix is saved to a new dataset titled Correlation Matrix. The dataset will have as many 
columns and rows as variables assigned to the correlation. The names of each column are Cor 
“Variable name” where “Variable name” is the name of one of the assigned variables for the 
correlation. 

Note that the correlation matrix dataset is a very special dataset with many features. The 
dataset is linked to the correlation analysis. If you change the parameters of the analysis or any 
of the input data, the dataset will automatically update to reflect the new correlation matrix. If 
you close the view that contains the correlation analysis, this correlation dataset will close as 
well. When the view is reopened, the correlation matrix dataset is automatically recreated. 
Please note that because this dataset is linked to your analysis, it is a “read only” dataset; you 
can not change any value in the dataset (except the formatting) until you break the link 
between the dataset and the analysis. If you plan to use this correlation matrix as an input to 
another analysis, such as factor analysis, the analysis must appear in the same view as the cor-
relation analysis that dataset is associated with. 
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You cannot close the matrix dataset, but can hide it by clicking the close box. It is merely hid-
den and is accessible through the Window menu. To sever the link between the dataset and 
the correlation analysis, you need to choose Save As from the File menu and save the dataset 
under a different name. This will save on the disk a copy of the correlation matrix as a dataset. 
You can then open this dataset as you would any other dataset. When you save a copy of the 
correlation matrix dataset to your disk, StatView automatically appends the letters “UE” to 
the beginning of the column names to indicate that these columns are now user entered. 
Data requirements

Correlation and covariance require two or more continuous variables.

Variable browser buttons

Add To generate a correlation, select the continuous variable(s) that you wish to analyze and click 
Add. 
Additional variables are added to the summary table which expands to include the new 
variables.

Split By When you assign one or more split-by variable to a correlation or covariance analysis, results 
for each cell in the split-by variable(s) are displayed in a separate tables.
Results

For explanation of the results, please see the preceding “Discussion,” p. 43.

Correlation Matrix Matrix of correlation coefficients for all pairs of variables in the analysis.
Covariance Matrix Matrix of covariances for all pairs of variables in the analysis.
Partial Correlation Matrix of partial correlation coefficients for all pairs of variables in the analysis.
Correlation Analysis Generated if confidence interval and/or Fisher’s r to z is selected in the dialog box. This table 

shows the correlation coefficients and the associated confidence intervals and/or p values for all 
pairs of variables.

Bartlett’s Test of 
Sphericity

Table containing the degrees of freedom, determinant of the correlation matrix, the chi square 
statistic, and p value.
Templates

The following templates provide correlation and covariance results. 

Correlations Bartlett’s Test of 
Sphericity

Bartlett’s test of sphericity table.

Correlation Matrix Correlation matrix table. 
Correlation Z-Test Fisher’s R to Z with 95% confidence interval. 
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Covariance Matrix Covariance matrix table. 
Partial Correlation 
Matrix

Partial correlation matrix table. 
Exercise

In this exercise you perform a correlation analysis on data in which different western cities are 
rated by nine criteria. For all but two of the variables, the higher the score, the better. For 
Housing and Crime, the lower the score the better. You will discover whether there is a linear 
correlation between any two of the criteria by creating a correlation matrix. Then you will 
graph correlated and uncorrelated variables in order to see a graphic representation of a high 
and low correlation.

• Open Western States Rated Data from the Sample Data folder 

• From the Analyze menu, select New View

• In the analysis browser, select Correlation/Covariance and click Create Analysis

• Click OK to accept the default analysis parameters

• In the variable browser, select all the continuous variables and click Add

Each cell at the intersection of a row and column contains a correlation coefficient for the two 
variables represented by the row and column. Scroll the window from side to side to see the 
complete matrix. (We have made several columns narrower to fit the page.) Scan the matrix to 
see where a correlation coefficient may be high enough to indicate a linear relationship 
between variables. Remember, 0 means no correlation and 1 means a perfect one to one rela-
tionship. A negative value means an inverse relationship.

Health Care & Environment and The Arts have a correlation of 0.949, a very high score. 
Most other correlations are fairly low, between 0.3 and 0.5. Climate&Terrain and Crime have 
a very low correlation, 0.042. To get a better idea of what these correlations mean, look at 
scattergrams of the variables with high and low correlations.

• Click an empty area in the view to deselect all results 

• In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis

• Click OK to accept the default analysis parameters

Notice that the buttons in the variables browser have changed. The Remove and Split By but-
tons are the same, but the Add button has become two buttons: X Variable and Y Variable. 
You must assign at least one X and one Y variable to complete the analysis.

1.000 .659 .445 .042 .086 .151 .442 .260 - .122

.659 1.000 .575 .147 .313 .177 .533 .397 .366

.445 .575 1.000 .520 .399 .477 .949 .470 .262

.042 .147 .520 1.000 .289 .233 .553 .303 .239

.086 .313 .399 .289 1.000 .302 .398 .454 .161

.151 .177 .477 .233 .302 1.000 .455 .169 - .069

.442 .533 .949 .553 .398 .455 1.000 .525 .189

.260 .397 .470 .303 .454 .169 .525 1.000 .222

- .122 .366 .262 .239 .161 - .069 .189 .222 1.000

Climate&T… Housing Health C… Crime Transportation Education The Arts Recreation Economics

Climate&Terrain

Housing

Health Care & Environment

Crime

Transportation

Education

The Arts

Recreation

Economics

52 observations were used in this computation.

Correlation Matrix



7 Correlation and Covariance Exercise 
Health Care & Environment and The Arts are the two variables with the highest correlation 
coefficient in the matrix. Begin by creating a scattergram with these two variables.

• In the variable browser, select Health Care & Environment and click X Variable

The variable has an X usage marker indicating you have assigned it to the X axis.

• In the variable browser, select The Arts and click Y Variable 

The variable has a Y usage marker indicating you have assigned it to the Y axis.

The plotted values of these variables occur along a fairly straight line, indicating that a high 
correlation exists between them. If there were a perfect linear relationship between Health 
Care & Environment and The Arts, a coefficient of one, the values would form a perfectly 
straight line. 

If you look at a scattergram of two variables with a very low correlation, such as Climate&Ter-
rain and Crime, you will notice that this scattergram differs from the preceding one showing a 
high correlation. In this one, points are scattered all over the graph rather than clustered along 
a fairly straight line. This graph provides visual evidence of a very low correlation between Cli-
mate&Terrain and Crime as determined in the correlation matrix. The correlation coefficient 
for these two is only 0.042.
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Regression 8
Regression analysis explains or predicts the value of a dependent variable from one or more 
independent variables. All variables must be continuous. StatView can estimate these regres-
sion models:

1. Simple (one independent variable)

2. Polynomial (linear, quadratic, cubic, etc. terms for a single independent variable)

3. Multiple (two or more independent variables)

4. Forward and backward stepwise (for selecting from a set of possible independent variables)

5. Nonlinear (exponential, logarithmic, power, and growth models for one independent vari-
able)
Discussion

Regression analysis is a tool for discerning relationships among variables. Given one or more 
variables, regression can predict a related variable and illuminate the nature of the relationship 
among variables. For example, you can predict a stock index based on unemployment rates or 
other economic indicators. You can estimate the yield of a chemical reaction using tempera-
ture, pressure and quantities of input materials.

Regression modeling is useful when all of the following conditions apply:

1. There is a linear relationship between the variable of interest (the dependent variable) and 
the variables used as predictors (the independent variables). As the value of any indepen-
dent variable increases, the value of the dependent variable must increase or decrease con-
sistently. In the case of nonlinear regression, the corresponding nonlinear relationship is 
present between the dependent and independent variables. 

2. All observations (values for the dependent and independent variables) are independent of 
each other. If this is not the case (observations measured on the same object over time, for 
example), regression analysis can be used to examine relationships within your data, but 
the probability values for hypothesis tests will not be valid.

3. The portion of the dependent variable not explained by the independent variables is due to 
random error. For linear and logarithmic regression, the error is assumed to be additive and 
normally distributed with a constant variance. For exponential, power, and growth regres-
sion, the error is assumed to be multiplicative, and the natural logarithm of the error is 
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assumed to be normally distributed with a constant variance. There are diagnostics to help 
identify cases that do not follow this distribution and transformations that can help correct 
the problem. These are discussed in the later section,“Residuals,” p. 57.

4. Error in the independent variables is nonexistent, or at least negligible relative to error in 
the dependent variable. 
Simple and multiple regression

Simple regression is appropriate when you wish to model a dependent variable with exactly 
one independent variable. You can verify the linearity of the relationship between variables by 
looking at a scattergram of the two variables. For more than one independent variable, the 
appropriate technique to use is multiple regression. This takes into account the linear effect of 
several independent variables in predicting the dependent variable. As the name implies, mul-
tiple regression is more complex than simple regression, since relationships among the inde-
pendent variables can make it difficult to interpret the results (see “Colinearity,” p. 53). If you 
have many independent variables, you might want to consider a model selection procedure 
(described later under stepwise regression).
Polynomial regression

When the relationship between a dependent variable and an independent variable is not lin-
ear, polynomial regression can be a useful tool. As stated earlier, a linear relation implies that 
the dependent variable’s values must consistently increase or decrease as the value of the inde-
pendent variable increases. By including terms for the square, cube, fourth power, etc. of the 
original variables, this strict linear relation is no longer required. For example, if you include 
the square of a variable as an independent variable, then the dependent variable can rise and 
fall (or fall and rise) once as the original variable’s value increases. Similarly, the cube of a vari-
able will allow for two changes in direction of the dependent variable as the independent vari-
able increases. In addition, a polynomial regression can be useful when the relationship 
between a dependent variable and an independent variable follows a curve, for example if the 
dependent variable’s rate of increase is less as the value of the independent variable increases.

Remember, however, that polynomial regression is just a mathematical tool for fitting a curve, 
and while it can be useful for prediction, care should be taken before assuming that the under-
lying relationship between the two variables being studied is actually polynomial.
Stepwise regression

In regression analysis, a model selection procedure helps choose the independent variables 
that are most useful in explaining or predicting your dependent variable. StatView offers for-
ward and backward stepwise selection.

Forward selection starts with an empty model and adds independent variables in order of 
their ability to predict the dependent variable. Backward selection starts with all the indepen-
dent variables in the model and at each step removes the one that is least useful in predicting 
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the dependent variable. The criteria for adding and deleting variables is the partial F-ratio, 
which is the square of the t-test value for the null hypothesis that the coefficient of the variable 
in question is equal to zero.

The forward procedure starts with no variables in the model except the intercept (if present). 
The backwards procedure starts with all the variables in the model. Both procedures then use 
the same algorithm to enter or remove variables. First, the partial F-ratio for each variable in 
the model is examined. If the least of these is less than the F-to-remove you specify, the corre-
sponding variable is removed. Otherwise, the partial F-ratio for each variable not in the model 
is examined. If the greatest of these is greater than the F-to-enter you specify, the correspond-
ing variable is entered. This completes one step. Stepping stops when no variable is entered or 
removed. 

The default criteria are appropriate for most models, but you can adjust them to suit your 
needs. For example, if you wish to build a model containing only variables that seem very use-
ful for prediction (i.e., a model with few variables), then raise the criteria for entering variables 
by increasing the value of the F-to-enter and F-to-remove.

Force
Variables can be forced into the model using the Force button on the variable browser. In the 
forward procedure, all forced variables are entered at step 0; in the backward procedure, all 
variables are entered at step 0. In either procedure, forced variables are never removed from 
the model regardless their partial F-ratios.

Stepwise regression summary
StatView displays regression summary tables to help you assess the quality of the regression 
model at each step. Also, a stepwise regression summary table, displayed only for stepwise 
models, reports the number of steps, number of variables entered, F-to-enter and F-to-
remove. 

Colinearity
Forward and backward stepwise selection techniques do not always choose the same model 
due to the close relationship between independent variables in regression studies. When a 
variable is considered for entry or removal, its importance can be highly influenced by the 
presence of other variables in the model. You can identify sets of related variables by using 
both forward and backward selection and comparing the chosen models. If variables appear in 
one model but not the other, they can be too closely related to provide useful information; 
one of them should be removed. This phenomenon is known as colinearity.

When you perform a regression with many variables, some of the independent variables will 
inevitably be related. If the relationships are not too strong (if the maximum correlations 
between any two independent variables is less than 0.8), this is not likely to cause problems. 
However, if there are strong relationships among some of the independent variables, your 
results can be difficult to interpret or even useless. In a stepwise regression, one indication of 
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colinearity is the sign of the estimated coefficient for a particular variable changing depending 
on which other independent variables are included in the model.
Nonlinear models

StatView can estimate the four most commonly used nonlinear transformations of the simple 
linear regression model:

1. Exponential

2. Logarithmic

3. Power

4. Growth

StatView computes estimates for the coefficients of these models by first linearizing the trans-
formations and proceeding with the usual linear regression calculations, and then back-trans-
forming the estimates into the terms of the nonlinear equation. (For example, to compute the 
exponential model discussed below, StatView first logs the values of the dependent variable 
you specify, represented here by Y, then performs its usual calculations. The resulting intercept 
is then exponentiated to correspond to the original nonlinear form of the equation.) Note that 
this method differs from the generalized nonlinear fitting performed by other statistical pro-
grams, which fit arbitrary models by iteratively minimizing a loss function or by iteratively 
maximizing likelihood. 

Exponential
Exponential transformations are useful for fitting data that increase or decrease at high rates. 
One common use is to model allometric data—measures of the change in proportion of vari-
ous anatomical parts of an organism throughout the organism’s growth cycle. The basic form 
of the exponential transformation is this:

StatView estimates the linearized form of the model:

StatView’s linearization constrains Y to positive values, since logarithms of negative or zero 
values are undefined. Negative or zero data cause error messages. 

Logarithmic
Logarithmic transformations are useful for modeling slow-growth data. For example, metal 
powder subjected to high temperatures will tend to form crystals whose size are a logarithm of 
the time of treatment. The basic form of the logarithmic transformation is this:

Y b0e
b1X

=

Yln b0ln b1X+=

Y b0 b1 Xln+=
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By definition the logarithmic model cannot be used with negative or zero values in the inde-
pendent variable. Negative or zero data cause error messages. This model is already linear, so 
StatView estimates it directly after transforming X values. 

Power
Power transformations are often used in industrial situations; for example, tool life can be 
modeled as a power of cutting speed. Power transformations are also useful with allometric 
data, e.g., relating the mass of a fish to its length throughout its growth cycle. The basic form 
of the power transformation is this: 

StatView estimates the linearized form of the model:

StatView’s linearization constrains Y and X to positive values, since logarithms of negative or 
zero values are undefined. Negative or zero data cause error messages. 

Growth
Growth transformations are often used to model population growth over time. The basic form 
of the growth transformation is this:

StatView estimates the linearized form of the model:

StatView’s linearization constrains Y to positive values, since logarithms of negative or zero 
values are undefined. Negative or zero data cause error messages. 

Y b0X
b1=

Yln b0ln b1 Xln+=

Y e
b0 b1X+

=

Yln b0 b1X+=
Model coefficients and intercept

An intercept is the expected value of the dependent variable if all the independent variables 
had values of zero. In many cases its purpose is to correct for differences in units of measure-
ment between the dependent and independent variables. 

StatView automatically includes an intercept as part of a regression model unless you specify 
otherwise (for nonlinear regression, the  or  term cannot be removed). The Regres-
sion dialog box contains a checkbox labeled “No intercept in model,” which removes the 
intercept and forces the model through the origin. It might be appropriate to remove the 
intercept from the model, but do so with caution. Sometimes there is a physical reason to 
remove the intercept: it is known ahead of time that if the independent variable(s) are 0, the 
dependent variable must be 0 (the weight of a tree must be 0 if its height is 0). Some of the 
statistics produced by StatView have a different interpretation when the intercept is removed 
from the model. You can test for significance of the intercept; the coefficients table provides a 

b0 b0ln
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p value for the intercept along with the coefficients for the variable(s). The standard error of 
the intercept is also provided in the coefficients table.

A linear regression model is an equation , where y 
is the dependent variable,  are the independent variables, and  is the intercept. 
The model intercept and coefficients  for each variable are listed with their standard 
errors in the model coefficient table. Note that in a simple regression, the intercept and coeffi-
cient of the independent variable in the model coefficient table are the intercept and slope of 
the regression line.

Standardized regression coefficients
Since the magnitudes of independent variables might vary widely, it is difficult to compare the 
relative importance of a regression coefficient for one variable with that of another variable. 
For this reason, standardized regression coefficients are often useful in determining which 
independent variables in a regression are most important in helping to predict the dependent 
variable. Standardized coefficients are calculated as if all of the independent variables had vari-
ance 1; thus two standardized coefficients can be directly compared, regardless of differences 
in the scale of the variables involved.

y b0 b1x1 b2x2 b3x3 … error+ + + + +=
x1 x23 …, , b0

b1 b2 …, ,
Criteria for model quality
R squared
The simplest statistic to assess the quality of a regression model is the  value, also called the 
coefficient of determination. It is the proportion of the dependent variable’s variability that is 
explained by the independent variables (with a maximum value of 1). Thus, an  of 0.80 
means that 80% of the dependent variable’s variation is explained by the independent vari-
able(s). An  close to one can be achieved by including many independent variables in the 
model. If the number of independent variables in a model is close to the number of observa-
tions, interpret the with extreme caution.

One problem with the use of is that the number of variables is not explicitly included in 
the formula used to calculate it. Thus, when you assign an additional independent variable to 
an existing regression, the value of is guaranteed to increase. A modification of  known 
as the adjusted attempts to remedy this situation by applying a “penalty” to the  value 
based on the number of variables assigned. The adjusted is especially useful for comparing 
a variety of models with different numbers of independent variables.

Upper-case  vs. lower-case In the case of simple linear regression (one independent 
variable),  is the coefficient of simple determination and is equal to , the square of the 
correlation coefficient. Both represent the proportion of variability in the dependent variable 
that can be explained by a straight-line relationship with the independent variable. However, 
for multiple linear models (more than one independent variable),  is the coefficient of mul-
tiple determination (representing the proportion of variability in the dependent variable that 
can be explained by a straight-line relationship with a set of independent variables) and is not 
the same as the squared correlation coefficient, . In any case,  is the correct notation and 
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is preferred by most statistical packages, although for simple linear regression the  notation 
would not be incorrect. 

t-test
You can assess the adequacy of each independent variable in the model with a t-test. This tests 
the hypothesis that there is no linear relationship between the dependent variable and the 
independent variable. This differs from the hypothesis of no correlation between the two vari-
ables (read about z-tests in the chapter “Paired Comparisons,” p. 29). The t value displayed 
through the regression takes into account the other variables in the regression model, whereas 
correlation is performed for only two variables at a time. The t values and associated p values 
for the intercept and each model coefficient can be found in the model coefficients table. 

ANOVA statistics
Another measure of model quality is the regression  table. This table uses the sum of 
squares and mean squares to calculate an F statistic, as a standard  (see “ANOVA,” 
p. 73) does. The probability of the F-statistic for a regression is a guide to how important the 
independent variable(s) are in explaining the behavior of the dependent variable; a low p value 
associated with an F-statistic means it is unlikely that an F-statistic as large as the one calcu-
lated would have happened by chance. Thus we assume that the variable(s) in question are 
useful for explaining variation in the dependent variable. 

r2
Residuals

Because a regression model rarely estimates the value of the dependent variable exactly, there is 
a difference between the predicted or fitted value of the dependent variable and its actual 
value. This difference is known as the residual.

Residual plots
Residuals are useful in helping you identify outliers, observations that behave very differently 
than the bulk of the observations. The residuals from a regression represent the portion of the 
data that is not explained by the model. In the residual plots described below, any point that is 
distant from most of the points on the plot is considered an outlier and its origin investigated. 
If it is clear that the observation is an error (for example, a mistake in data transcription or 
entry), then you correct it or delete it from the analysis. The fact that an observation does not 
fit in with the other observations in the analysis does not justify its removal. Before removing 
outliers, always investigate the source of the outlier to provide justification based on the con-
text of the data collection process. If an unusual residual is the only reason for deleting an 
observation, it is best to leave it in the model and continue to investigate the cause of the 
unusual residual. Sometimes these observations contain important information about your 
data.

One useful residual plot is the plot of residuals versus fitted values. The following are some 
different shapes for this plot.
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If the assumptions of the regression are met, the plot of residuals versus fitted values will show 
a band of constant width independent of the fitted value. The cone shape is a common devia-
tion from this pattern, as in the upper right plot where the spread of residuals is wider for 
larger fitted values. This tells you that the variance of the observations increases as the mean 
increases. That generally indicates a need to transform the dependent variable by a logarithmic 
or square root transformation before regression is carried out. If the data are counts, for exam-
ple, a square root transformation is often helpful.

Another useful residual plot uses the residuals plotted against each of the independent vari-
ables in the model. Once again, the expected pattern, if the assumptions are met, is a band of 
residuals of constant width throughout the range of the regressor. If the assumption of a 
purely linear relationship between the dependent and independent variable is not appropriate, 
the residual plots will display a systematic deviation from the constant width pattern. For 
example, if the residuals tend to lie in a band that curves either upward or downward, as in the 
lower right plot, the addition of a new term representing the square of the regressor might 
improve the fit. Similarly, the cone shape pattern suggests that a transformation of the regres-
sor in question might be in order. The plot of residuals versus independent variables might be 
useful when colinearity is suspected among the independent variables.

The assumption of independence of observations might be violated when observations are 
measured across time. As with the other violations of assumptions, a residual plot can help 
make this clear, though the observed pattern of the residuals might be more subtle. A plot of 
residuals versus a variable representing time should, as always, show no discernible pattern. 
Any regularity, such as noticeable cyclical patterns, indicates that a more complex analysis is 
necessary to accommodate the time series nature of the data.
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Residual statistics
Along with residual plots, StatView produces statistics which help summarize the behavior of 
the residuals. These include the number of residuals greater than zero and less than zero. Since 
the mean value of the residuals is guaranteed to equal zero, these two numbers can give you a 
feel for the symmetry of the residuals. If they are symmetric, the two numbers should be 
approximately equal. If not, the residuals might be skewed, and a transformation or a different 
model might be appropriate.

The remaining residual statistics help assess the level of first degree autocorrelation within the 
residuals, i.e., the level of correlation between each residual and the residual immediately 
before it in the dataset. Thus, they are only of value if the observations in your data are 
ordered in a meaningful way. These statistics are labelled SS[e(i) – e(i–1)], Durbin-Watson, 
and Serial Autocorrelation. An autocorrelation close to –1 or 1 implies a high degree of corre-
lation between the residuals.
Dialog box settings

When you create or edit a regression analysis, you set the analysis parameters in two dialog 
boxes, a small one with few choices and an expanded one with many choices. In the first of 
the two, you can select simple, polynomial, multiple or stepwise regression and click OK to 
accept the default parameters.

Model If you choose polynomial, you must specify an order or degree of the polynomial 
between 2 and 9. If you choose stepwise, your model will be created using the default stepwise 
parameters (forward stepwise with an F-to-Enter of 4.000 and an F-to-Remove of 3.996). You 
can change these parameters in the expanded dialog box by clicking More Choices. If you 
choose Nonlinear, you must choose which nonlinear transformation to use. 

If you select a result and click Edit Analysis, you will not be able to change the model type 
from multiple or stepwise to simple, polynomial, or nonlinear regression. You must instead 
create a new analysis with the desired model type. 
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No intercept This option lets you remove the intercept from the model. Please read the cau-
tions discussed under “Model coefficients and intercept,” p. 55 before doing so. Suppressing 
the intercept is not allowed for nonlinear models. 

More choices To see an expanded dialog box with additional choices for regression analysis, 
click More choices. You can return to the smaller dialog box by clicking the Fewer choices 
button.

Options in the top section of this dialog box are the same as in the Fewer Choices dialog box. 

Stepwise parameters The section below that is available only if you choose stepwise regres-
sion. You can specify forward or backward, and set the partial F-ratio criteria for entering and 
removing variables. The F-to-remove defaults to 3.996, and must be lower than the F-to-
enter, which defaults to 4.

Residual, fitted, and predicted values There are checkboxes allowing you to generate and 
save residual, fitted and predicted values. These values are saved to the dataset containing the 
dependent variable and are dynamically linked to the analysis. They are assigned the name Fit-
ted Y, Residual Y, or Predicted Y, where Y is the name of the dependent variable for the regres-
sion. StatView identifies the source of these columns that are generated as part of an analysis 
as Analysis Generated variables (see “Save to dataset,” p. 61). 

StatView distinguishes fitted and predicted values as follows:

1. Fitted values are values of the dependent variable predicted by the analysis using the data 
with which the regression model were fit.

2. Predicted values are values of the dependent variable predicted by the regression model 
using new data. You enter these data into the columns which contain the independent vari-
able(s), leaving missing values in the dependent column. These values can be entered into 
any row in the independent variable(s). The predicted values will appear in the same row in 
the Predicted Y column. Note that predicted values will also be generated for any row that 
contains a missing value for the dependent variable if predicted values is checked in the 
dialog box. However, predicted, fitted, and residual values have a missing value if any row 
is missing for the independent variable.

Included rows or All rows You can choose whether to compute residual, fitted and predicted 
values using all the rows in the dataset, or for only the included rows. If you select Included 
rows, the values are calculated for just the included rows of the dataset; excluded rows contain 
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missing values. If you select All rows, the values are calculated for all rows in the dataset 
regardless of their included or excluded state.

Confidence bands and intervals The bottom choices in the dialog box allow you to plot con-
fidence bands for the mean, slope, or both in the simple regression plot. The confidence level 
text box specifies the level for the mean and slope for the regression plot and is also used with 
the confidence interval table. Confidence intervals are only available for simple linear regres-
sion. 

Save to dataset An analysis generated variable is dynamically tied to the regression analysis 
that created it. If you change the parameters of the model or any of the data in the indepen-
dent or dependent variables, the analysis generated variable in the dataset will automatically 
update. In addition, the variable is associated with the view that contains the analysis, not the 
dataset in which they appear. This means that it will automatically be added to the dataset 
which contains the dependent variable when the view which contains the regression is 
reopened and the regression analysis recalculated. If you close the view, the variable will be 
removed from the dataset. One consequence of this is that if you plan to use an analysis gener-
ated variable in a formula, you need to open the view containing the regression analysis for the 
formula to compute. 

Because these variables are dynamic, you can generate a graph or statistic using the residual, 
fitted, or predicted values, that will also automatically update when the model or underlying 
data change. You can create a histogram or box plot showing the distribution of your residuals 
and the plot will stay current with any changes you make to your model. Note that any result 
created using analysis generated variables must be located in the same view as the regression 
analysis. 

To break the link between an analysis generated variable and the analysis, change its source to 
User Entered. This causes all ties to the analysis to be broken and the letters “UE” appended 
to the front of the variable name to indicate that it is now user entered. Any change to the 
regression that created it will have no effect on the variable, and they act just as any user-
entered variable would. If you delete any of these analysis generated columns it is equivalent 
to turning off the Save options in the Regression dialog box. 
Data requirements

Simple, polynomial, and nonlinear regression models require one continuous independent 
and one continuous dependent variable. Multiple and stepwise regression require one or more 
continuous independent variables and one continuous dependent variable. 

Variable browser buttons

Simple, polynomial, 
and nonlinear 
regression

Independent Select the continuous variable which is the independent variable for the 
model and click the Independent button. 
Each additional independent variable assigned creates a new analysis 
with the new independent and the previous dependent variable.
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Dependent Select the continuous variable which is the dependent variable for the 
model and click the Dependent button. 
Each additional dependent variable assigned creates a new analysis 
using the new dependent variable and the old independent variable. 

Force The Force button is the same as the Independent button for all 
regression analyses except Stepwise regression (see below).

Split By When you assign one or more split-by variables to any regression 
results, results for each cell in the split-by variable(s) are displayed in 
separate tables and plots. 

Multiple and stepwise 
regression

Independent Select the continuous variables which are the independent variables for 
the model and click the Independent button. 
Additional independent variables are added to the model.

Dependent Select the continuous variable which is the dependent variable for the 
model and click the Dependent button. 
Each additional dependent variable assigned creates a new analysis 
using the new dependent variable and the old independent variable(s). 

Force The Force button allows you to force continuous variables into a 
stepwise regression. Each forced variable will automatically be an 
independent variable of the model even if these variables do not meet 
the model criteria. For a multiple regression, the Force button is the 
same as the Independent button, except that variables entered with the 
Force button appear first in tables.

Split By When you assign one or more split-by variables to any regression 
results, results for each cell in the split-by variable(s) are displayed in 
separate tables and plots. 
Results

For explanation of the results, please see the preceding “Discussion,” p. 51. The Regression 
Summary,  table, and Regression Coefficients table are the default output for this anal-
ysis. Most of the results below are computed for both linear and nonlinear regression; excep-
tions are noted within the table.

Regression Summary Table containing count, number missing, correlation coefficient (R), R2, adjusted R2, and RMS 
residual. For exponential, growth, and power models, R, R2, adjusted R2, and RMS residual are 
not computed. 

ANOVA Table Table containing the degrees of freedom, sum of squares, mean squares, F value, and p value 
for the regression ANOVA. The table is not computed for exponential, growth, and power models. 

Regression Coefficients Table containing the coefficients of the regression equation. Standardized coefficients, standard 
error, t value and p value are also displayed. For exponential and power models, standard 
error, t value and p values are not computed for the intercept term. An additional row for the 
log-intercept term is shown for exponential and power models. 

Confidence Intervals Table containing both regular regression coefficients and their upper and lower confidence 
intervals as set in the dialog box. This table is not available for stepwise regression.
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For further options on plotting scattergrams with fitted regression lines or smoothed curves, 
see “Bivariate Plots,” p. 221.

Additional stepwise regression results
The following tables appear only if stepwise regression is selected. The Stepwise summary 
always appears. The Variables in Model and Variables Not in Model tables appear if regression 
coefficients are requested.

Residual Statistics Table containing the number of positive or zero residuals, the number of negative residuals, and 
autocorrelation statistics. For exponential, power, and growth models, the Durbin-Watson 
statistic is not computed. 

Regression Plot A scattergram of the dependent vs. the independent variable with regression line and equation. 
For simple regression, confidence intervals can be added for the mean and slope using the 
dialog box. Not available for multiple regression.

Residual Plots Graphs of residuals vs. fitted dependent and dependent and of dependent vs. fitted dependent 
are available. For a stepwise regression, these plots will include information for the last step.

Stepwise Regression 
Summary

Table containing F-to-enter, F-to-remove, number of steps, variables entered, variables forced 
and the stepwise procedure used. 

Variables in Model Table containing the names and coefficients of the variables entered into the model at each 
step. Standardized coefficients, standard error, and the F-to-Remove are also displayed.

Variables Not in Model Table containing the partial correlation and the F-to-Enter of the variables not entered into the 
model at each step.
Templates

The following templates provide regression results. 

Graphs Bivariate Regression 
Plot

Bivariate scattergram with regression line and equation. 

Regression Exponential Regression Simple regression summary and coefficients tables and regression plot 
using the exponential transformation. 

Growth Regression Simple regression summary and coefficients tables and regression plot 
using the growth transformation. 

Logarithmic Regression Simple regression summary, ANOVA, and coefficients tables and 
regression plot the logarithmic transformation. 

Power Regression Simple regression summary and coefficients tables and regression plot 
using the power transformation. 

Regression--Multiple Multiple regression summary, ANOVA, and coefficients tables. 
Regression--Polynomial Polynomial regression summary, ANOVA, and coefficients tables; 

polynomial regression plot. 
Regression--Simple Simple regression summary, ANOVA, and coefficients tables; regression 

plot.
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Regression--Stepwise Stepwise summary table and regression plot; for each step, ANOVA, 
coefficients, summary, Variables In, and Variables Not In tables. 

Residual Stats--Simple 
Regr

Simple regression residual statistics table, residuals vs. fitted and 
residuals vs. dependent plots. 
Exercises

Several of these exercises analyze the Tree Data sample dataset. In the 1930s, the weights and 
trunk girths were measured for eight specimens from each of thirteen root-stocks, for a total 
of 104 tree specimens. 
Simple linear regression

We will perform a simple regression to predict the weight of trees from their girth. This makes 
it possible to get accurate estimates of weight without having to cut trees down and weigh 
them, a destructive and difficult process. Your first step is to perform a simple regression to see 
whether there is a linear relationship between weight and girth. A high R squared ( ) would 
indicate a strong linear relationship.

• Open Tree Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser under Regression, select Regression Summary and Regression Coef-
ficients and click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent results

• Click OK to accept the default parameter settings

• In the variable browser, select Trunk Girth and click Independent

• In the variable browser, select Weight and click Dependent

You can see from the high  value in this summary table that there seems to be a clear rela-
tionship between Weight and Trunk Girth. Now, to examine the relationship and to confirm 
the notion that it is linear, create a regression plot. This is a bivariate scattergram of Weight vs. 
Trunk Girth with a regression line added.

• Make sure at least one table is still selected

• In the analysis browser, select Regression Plot and click Create Analysis
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Notice that you did not need to assign variables to this plot. The preceding table was selected 
when you created this plot, so StatView treats the plot as additional output from the existing 
regression analysis, rather than a newly requested analysis you are creating from scratch. 
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Regression Plot
Polynomial regression

The plot shows that the weight of trees increases faster than it would if there were a strictly 
linear relationship. The spread of points is curved with values at the ends above the regression 
line and those in the middle below it. The relationship between Weight and Trunk Girth 
might be better explained by adding a quadratic term in Trunk Girth. You can test this 
hypothesis by changing the current analysis to a polynomial regression.

• Make sure at least one result is still selected

• Click Edit Analysis (a button at the top of the view window)

The Regression dialog box reappears so that you can change parameter settings. 

• Choose Polynomial of order and click OK (keep the order setting of 2)

104

0

.948

.898

.896

147.192

Count

Num. Missing

R

R Squared

Adjusted R Squared

RMS Residual

Regression Summary
Weight vs. Trunk Girth

946.869 297.493 946.869 3.183 .0019

-6 .489 1.640 -1 .012 -3 .956 .0001

.017 .002 1.944 7.597 <.0001

Coefficient Std. Error Std. Coeff. t-Value P-Value

Intercept

Trunk Girth

Trunk Girth^2

Regression Coefficients
Weight vs. Trunk Girth

0
250
500
750

1000
1250

1500
1750
2000
2250
2500
2750

W
ei

gh
t

1 50 200 250 300 350 400 450 500 550
Trunk Girth

Y = 946.869 - 6.489 * X + .017 * X^2; R^2 = .898

Regression Plot



 8 Regression Exercises
In these results, p < 0.0001 for the squared term shows that the quadratic term is useful for 
explaining the relationship between the two variables. The graph shows how well the second 
order polynomial regression fits the data.

Predicted values
Now you can use this model to predict a tree’s weight based on its trunk girth. StatView will 
predict a value for any row in the dataset that has a value for the independent variable and a 
missing value for the dependent variable.

• Uncheck Recalculate (in the upper left corner of the view window)

This prevents predicted values from being calculated one at a time while you add each inde-
pendent value to the dataset. We will enable calculation after adding all the new independent 
values to the dataset.

• Make sure at least one of the regression results is selected

• Click Edit Analysis 

• Click More choices

• Select Predicted (after Save to dataset) and click OK

• Select Tree Data from the Window menu to bring it forward

A new Predicted Weight variable at the end of the dataset contains missing values ( . ).Your 
predicted values will appear in this column. Next, we will add four new rows to the dataset by 
adding values at the bottom of Trunk Girth.

• At the bottom of Trunk Girth column (after row 104), enter the values 500, 600, 700, 800

• Select the view from the Window menu to bring it forward

• Check Recalculate 

• Select Tree Data from the Window menu to bring it forward

In the Predicted Weight column of the dataset, the following values appear:

The second order polynomial regression model predicts these values for weight based on the 
trunk girth values you entered. 

While the polynomial regression plot appears to be a reasonable fit, one aspect is troubling: it 
would not be an effective model for predicting weight from smaller girth measurements. The 
parabolic behavior of a quadratic fit doesn’t make biological sense, which becomes apparent if 
we extend the horizontal axis to zero:

• Click in the blank area of the view to deselect all results, then click the horizontal scale of 
the Regression Plot result to select it

• Click Edit Display

• Change the From bound to 0 and click OK
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Adding smaller Trunk Girth values to the dataset would reveal similar results in the Predicted 
Weight column. 
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A nonlinear model might be more suitable. Let’s try fitting a growth regression model:

• Make sure at least one result is still selected

• Click Edit Analysis (a button at the top of the view window)

The Regression dialog box reappears so that you can change parameter settings. 

• Click the Fewer Choices button

• Choose Nonlinear, select Growth, and click OK
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We can tell intuitively from the regression plot that the growth regression fit is fairly good, 
and unlike the polynomial curve, the growth curve shows reasonable behavior for narrower-
trunked trees. The p values indicate that both terms are useful for explaining the relationship 
between girth and weight. 

Let’s examine a plot of residuals vs. fitted values to assess this model further:

• Make sure at least one result is still selected

• In the analysis browser under Regression, double-click Residuals vs. Fitted Values

The plot has a slight cone shape, suggesting that a logarithmic transformation of the depen-
dent variable might help (see “Residual plots,” p. 57). So, let’s try an exponential regression.
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• Make sure at least one result is still selected

• Click Edit Analysis (a button at the top of the view window)

• From Nonlinear, select Exponential, and click OK
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These results appear to be nearly identical, right down to the residuals. How could that be? 
Look at the equations under the regression plots. A little algebra reveals that for these data, the 
two fits are nearly equal:

Since we still see some cone-like spreading to the right in the residuals plot, we need to exer-
cise caution predicting values too far beyond the range of the data. 
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Multiple regression

We turn now to a multiple regression model. The Car Data sample dataset has information on 
116 cars compiled by Consumer Reports. This information includes data about weight, gas 
tank size, turning circle, horsepower and engine displacement for cars from different coun-
tries. We want to find out whether there is a relationship between gas tank size and other vari-
ables.

• Open Car Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser under Regression, select Regression Summary and Regression Coef-
ficients, and click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent results

• Choose Multiple and click OK

• In the variable browser, select Gas Tank Size, and click Dependent
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• Select Weight, Turning Circle, Displacement, and Horsepower and click Independent

The p values in the Regression Coefficients table tell you that Weight is the only variable use-
ful in predicting gas tank size. In addition, an adjusted  value of 0.717 indicates a fairly 
strong overall relationship. To confirm the relationship between Gas Tank Size and Weight 
graphically, you might want to plot these two variables using a bivariate plot. 
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Stepwise regression

In this exercise you perform a stepwise regression using census data for 506 housing tracts in 
the Boston area from Belsley, Kuh, and Welch (1980). You will determine what factors are 
most useful in predicting the median value (in thousands of dollars) of homes. Variables 
include crime rate, percentage of land zoned for large lots, percentage of non-retail business 
acres, nearness to the Charles river, nitrogen oxygen concentration (ppb), average number of 
rooms, percentage of units built before 1940, weighted distance to five employment centers, 
accessibility to radial highways, property tax rate ($ per $10,000), district pupil/teacher ratio, 
and percentage of lower status population. 

• Open Boston Housing Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser under Regression, select Regression Coefficients and click Create 
Analysis

• Choose Stepwise 

The stepwise setting produces a forward stepwise regression with an F-to-Enter of 4.000 and 
an F-to-Remove of 3.996. If you would like to change these parameters, click the More 
Choices button. 

• Click OK

• In the variable browser, select all the continuous variables except Median Value and click 
Independent
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent variables

• In the variable browser, select Median Value and click Dependent 

The analysis calculates and results appear in the view. The Stepwise Regression Summary table 
indicates that nine variables were entered into the model in nine steps. 
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To see which variables were entered and which were not, scroll to the bottom of the view and 
examine the information for step 9. All variables were entered in the model except Industry 
and Before 1940.

This result suggests that all nine variables entered in the model are somehow significant in 
explaining the dependent variable, Median Value. It gives no details about the individual vari-
ables themselves. You can examine these data further with the Dependent vs. Fitted plot.

• Make sure at least one result is still selected

• In the analysis browser under Regression, select Dependent vs. Fitted and click Create 
Analysis

The houses with the highest median values cluster at the top of the graph in a straight line of 
points suggesting that their predicted values have no relation to the actual values. This sug-
gests that we should reanalyze the data using two separate models: one for high value houses 
and one for all other values. Using the Recode command, you could create a nominal variable 
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from Median Value that divides the dataset into two such groups. You would then assign this 
variable as a split-by variable to perform such an analysis.





ANOVA 9
An analysis of variance () studies the effect of nominal independent variables on a con-
tinuous dependent variable. (A nominal variable can take on only a limited number of values, 
whereas a continuous variable can take on any value over a wide range. See “Data class,” p. 50 
of Using StatView for a discussion of nominal and continuous data classes.) 

A repeated measures analysis of variance (repeated measures ) studies the effect of 
nominal independent variables (“between factors” or “between-subject effects”) on a continu-
ous response variable within successive measurements (“within factors” or “within-subject 
effects”). StatView expects within factors (the repeated measures) to be stored as compact vari-
ables in the dataset; see “Compact variables,” p. 84 of Using StatView. 

An analysis of covariance () studies the effect of both nominal and continuous inde-
pendent variables on a continuous dependent variable. 

A multivariate analysis of variance () studies the simultaneous effect of nominal 
independent variables on several continuous dependent variables. 

A multivariate analysis of covariance () studies the simultaneous effect of nominal 
and continuous independent variables on several continuous dependent variables. 

StatView does not compute repeated measures , , or  designs. 
Discussion

Analysis of variance determines the significance of the effects in a model by calculating how 
much of the variability in the dependent variable can be explained by the effect in question. It 
does this by calculating a quantity called the mean square, which is mathematically similar to 
the variance. This quantity is calculated by dividing the sum of squares of deviations from the 
means by the degrees of freedom for the effect (the number of parameters that the model is 
estimating to test for the significance of the effect). For main effects, the number of degrees of 
freedom is one less than the number of discrete values for the factor in question. The degrees 
of freedom for an interaction is the product of the degrees of freedom of each of the factors 
contained in the interaction. Finally, this mean square is divided by an estimate of error vari-
ance known as the residual mean square. This ratio (mean square of the effect divided by 
residual mean square) results in an F-statistic that can be used to test the importance of the 
effect in question. 
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The probability (p value) of the F-statistic for an effect is a guide to how important that effect 
is in explaining the behavior of the dependent variable; a low p value associated with an F-sta-
tistic for an effect means it is unlikely that an F-statistic as large as the one calculated would 
have happened by chance. Thus we assume that the effect in question is important in helping 
to explain the dependent variable. The power value gives the probability of correctly rejecting 
a false null hypothesis, and lambda is a quantity called the “noncentrality parameter” used in 
the calculation of power. 

Post hoc tests evaluate pairwise differences among levels of main effects, with protection 
against simultaneous test error. 

In the following sections, we explore each of these concepts in more detail. First, we review 
the basics of hypothesis testing; then we discuss the components of [][] models and 
each type of model. Finally, we discuss post hoc tests. 
Hypothesis testing

Hypothesis testing is the formal statistical technique of collecting data to answer questions 
about something through the use of a statistical model. Each question asked about a study 
should be stated in the form of a null hypothesis. A null hypothesis states that there are no 
differences between the values of the dependent variable that can be explained by the differ-
ences in the independent variables of your model. For example, if you were comparing several 
quality control procedures for manufacturing computer chips, an appropriate null hypothesis 
would be that there are no quality differences between chips manufactured under the various 
quality control procedures. 

The hypothesis tests in the analysis of variance are known as omnibus tests, because they test 
a null hypothesis against the collection of all alternative hypotheses. Taking the quality control 
example, assume that there are four different procedures being compared. The null hypothesis 
is that there are no differences among the four techniques as measured by the mean purity of 
the chips produced. What circumstances would cause this null hypothesis to be rejected? One 
possibility is that three of the four techniques are equivalent, but the fourth is better than the 
others; another is that three the four are equivalent, but the fourth is worse. Still another pos-
sibility is that two techniques are equivalent but result in lower purity than the other two. 

A single null hypothesis is always the basis for a statistical test, and the results of a test simply 
lead you either to reject the null hypothesis (if you observe significant differences) or to accept 
it (if you do not observe significant differences). Failure to detect significant differences that 
would enable you to reject a null hypothesis means that you must continue to assume that the 
independent variable(s) has no effect on the dependent variable, unless and until more evi-
dence arises to demonstrate measurable, significant differences. 

Each term entered into a linear model generates a hypothesis test, where the F statistic is a 
measure of whether or not the null hypothesis should be rejected. The F-test compares the 
observed F value with the value that would be expected theoretically if the null hypothesis 
were true, and it reports the probability that an F statistic as large as that observed could have 
been observed simply by chance. (Even when the null hypothesis is true, it’s possible that the 
particular data observed could result in a higher F-ratio than expected.) A small probability 



9 ANOVA Discussion 
means that an F statistic is unlikely to occur by chance, so the null hypothesis should be 
rejected. 

A typical significance level (or “cutoff level”) used for declaring differences significant is 0.05. 
This means that if the null hypothesis were true, you would incorrectly reject it only 5% of 
the time, if you reject the null hypothesis when the probability of the corresponding F statistic 
is 0.05. The significance level to be used in interpreting hypothesis tests should be stated 
before carrying out the analysis, which is why StatView asks you to specify an “alpha value” 
before computing the analysis. 

The incorrect rejection of the null hypothesis when it is actually true is known as a type I or 
alpha error. You should control for this type of error by setting an appropriate significance 
level and interpreting the hypothesis tests as described.

You can adjust the significance level or alpha value as needed. For example, if you conducted 
a study to determine whether an expensive treatment should be applied to a population, you 
would need to avoid accidentally rejecting the null hypothesis of no need for the treatment 
when in fact there was no need. In such a case, you would set your significance level lower 
than 0.05, perhaps to 0.01 or even 0.001. However, you would want to follow a different 
approach if you were screening for further study a large number of potentially useful tech-
niques. In this case, you could tentatively reject a null hypothesis of no difference among the 
techniques because it would be more vital that a useful technique not be incorrectly rejected. 
A significance level of 0.10 or perhaps even 0.25 might be appropriate. Remember, although a 
significance level of 0.05 is often used, it is not the best level for every situation. 

Setting the significance level to a specific value controls the type I error of a statistical test, but 
there is another type of possible error in hypothesis test performance: the type II or beta 
error. Beta error occurs when the null hypothesis is not rejected, even though it is not true. 
For example, suppose you were conducting a survey of customers in two stores about the 
amount of money they spent on clothing in the last month. The null hypothesis for the survey 
would be that there is no difference between the two stores in the amount of money spent. 
Suppose your budget limited you to questioning only five customers in each store. It would 
not be surprising if, due to the small number of subjects in the study, you were unable to 
assert that there were any differences. It might even be that the observed averages were very 
different, but the statistical test was unable to declare the difference statistically significant. 

When you set an alpha level, you are choosing a level of probability for making a type I error 
(where you fail to reject a null hypothesis that is in fact false), so choosing a smaller alpha 
value and minimizing the probability of type I error means increasing the probability of type 
II error (where you accept a null hypothesis that is in fact false). These relationships can be 
summarized like this:
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Power and Lambda
The ability of a statistical test to declare a true difference “statistically significant” is known as 
the power of a statistical test. Obviously the power will vary depending upon which of the 
many alternative hypotheses are in fact true, how many subjects are studied, and other details 
of the experimental design. For these and other reasons, it is much harder to guard against 
type II error than type I error. To ensure that a hypothesis test is carried out with reasonable 
power, make sure you base your analyses on a sufficient number of experimental units, and 
that an appropriate design has been chosen for carrying out and analyzing the experiment or 
study. 

Two statistics that help you assess the power of a test are power and lambda. Power describes 
the probability of concluding that each effect is significant when in fact it is significant. Beta 
(not shown by StatView) is simply one minus power, or power is one minus beta. Lambda is a 
quantity that is used to compute power. It is sometimes called “partial eta squared” (partial 

) or “noncentrality value,” because the power value comes from a computation of the non-
central F distribution, based in part on lambda and indirectly on alpha. The method for cal-
culating power and lambda appears under “Power and lambda,” p. 441. 

Reject null hypothesis Accept null hypothesis

Null hypothesis true Type I error Correct decision

Null hypothesis false Correct decision
 (power)

Type II error
α 1 α–

1 β– β

η2
Model building

This section is a conceptual overview of model building to help you make the right decisions 
about dependent and independent variables, main effects, and interactions in your models. 
Subsequent sections examine each type of model (, , [], and repeated 
measures ) in more detail.

Dependent variables
The first decision to be made in building a model is the choice of dependent variable. The 
dependent variable is the variable whose value you are trying to estimate or predict. For exam-
ple, if you were looking at the effect of different fertilizers on the yield of corn, the yield 
would be your dependent variable. To predict college  score from aptitude tests, the college 
 scores would be the dependent variable. For a comparison of different advertising strate-
gies to determine which one resulted in the most sales, a measure of sales would be the depen-
dent variable. 

In some cases there is more than one dependent variable. In a study of the effects of different 
diets on mice, for example, the growth of the mice might be measured in various ways, such as 
length, girth, body weight, head circumference, and so on. You could study each of these 
dependent variables individually in several individual s, but if the dependent variables 
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are correlated, you should study the effect of diet on all the measurements at once in a 
. 

In any case, the dependent variable must always be a continuous variable. For nominal depen-
dent variables you should consider other methods, such as logistic regression; see the chapter 
“Logistic regression,” p. 199. 

Independent variables
The rest of the variables in any model are known as independent variables. These are the 
variables to be used in predicting or estimating the dependent variable (or variables). Looking 
at it another way, the independent variables are the variables which you suspect will explain 
differences seen in the dependent variable. 

A model with one dependent variable and one independent variable as a simple regressor is 
known as a simple regression model. If there is more than one independent variable, but all 
the independent variables are entered as simple regressors, the model is known as a multiple 
regression model. Fitting a variable as a simple regressor is a good idea if it is appropriate for 
your data for the importance of that variable. In statistical terms, only one degree of freedom 
is given up from the estimate of residual variability by including a simple regressor in the 
model. This, in turn, makes the tests that StatView performs more sensitive to any true rela-
tionships that might exist between the independent variables and the dependent variable. 
However, there is a price to be paid. When you add a simple regressor to a model, you are 
assuming that its behavior is the same over the entire range of the independent variable. For 
instance, in a salary study, adding years of education as a simple regressor involves the assump-
tion that no matter how much education a person has, more education still suggests higher 
salary potential than less education, and that salary increases at a fixed rate. 

If the assumption of a consistent linear relationship throughout the range of the independent 
variable is not supported, it is more appropriate to analyze a nominal version of the indepen-
dent variable as a factor. Models in which all of the independent variables are treated as factors 
are known as analysis of variance models. 

For example, suppose you are trying to determine the effect of advertising on sales. If you used 
the number of advertisements as a simple regressor, you would be assuming that the effect of 
more advertisements doesn’t diminish as they increase in number. If you suspect that sales will 
level off after a certain number of advertisements, then you would want to treat number of 
advertisements as a factor, not as a simple regressor. To accommodate the added flexibility in 
describing the relationship between number of advertisements and sales,  estimates sev-
eral parameters, one fewer than the number of values of advertisements studied. 

Another example where adding a variable to a model as a factor would be appropriate is in a 
study of the effect of different exercise plans on blood cholesterol level. Suppose subjects were 
randomly divided into groups: one group that ran each day, another group that ran three 
times a week, and a third group that attended daily aerobics classes. The three different types 
of exercise would represent three levels of a factor to be added to a model, with the dependent 
variable being blood cholesterol level at the end of the experiment. It would be meaningless to 
fit type of exercise as a simple regressor, because there is no scale on which the three types of 
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exercise can be assigned that would meet the assumption of a linear relationship throughout 
the range of the variable. 

Models with both regressors and factors are known as analysis of covariance models. These 
models typically arise in one of two ways. First, a continuous variable measured before an 
experiment or study begins might be expected to affect the value of the dependent variable. 
For example, in a study to test the effects of different exercise programs on weight loss, one 
might guess that the initial weights of the participants would affect the amount of weight they 
lose over the course of the study. The model would include starting weight as a regressor, or 
covariate. Notice that it is not really of interest whether the initial weight is helpful in pre-
dicting the weight loss; it is included the model to remove its effect so that the influence of the 
different programs can be more accurately measured. Second, an experiment might happen to 
have both continuous and nominal independent variables, i.e., both factors and regressors. 
For example, to study the sales of soft drinks at several different stores, you might test whether 
the average temperature in the area influenced the overall sale of soft drinks. You would be 
interested in both the effect of the different stores as levels of a factor and the effect of the tem-
perature as a covariate. 

Main effects and interactions
After deciding which independent variables should be used to help explain or predict the val-
ues of a dependent variable, and whether they should be entered into the model as regressors 
or factors, a third consideration for your model is that of main effects and interactions. 

As an example, consider a study of training programs to teach people how to use a new pro-
gram on a computer. The dependent variable to be measured is the time it takes students to 
complete a particular task on the computer using the program. Some students have had previ-
ous computer training and some have not. It is felt that this difference might influence the 
results of the study, so previous training, with two levels, is entered into the model as a factor. 
The students are randomly divided into three groups: one group which receives an instruction 
manual, one which receives classroom training, and a third which views a videotape on the use 
of the program. Type of training is entered into the model as a factor (with three levels). 

Effects in a model that consist of a single variable are known as main effects. The word 
“main” in “main effect” doesn’t mean that a main effect is the main point of interest but rather 
that it is “not an interaction effect.”In fact, a main effect could be less interesting than an 
interaction effect, where the effect of one factor differs according to the level of another factor 
(or factors). For example, in the computer training study it might be most interesting to know 
whether the relative merits of the three programs were the same for both novice and experi-
enced users. A significant result (a low p value, e.g. ) for an interaction leads you to 
reject the null hypothesis that the effect of one is the same regardless of the other. You should 
then examine the means table or interaction plots, which show the means of the dependent 
variable for each combination of factors, to determine the source of the differences. The exer-
cise “Factorial,” p. 91, illustrates the use of interaction plots. (You can also create interaction 
plots for bars, lines, and point with the Cell Plots analysis described in “Cell Plots,” p. 237.)

p 0.05<
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ANOVA

Analysis of variance () is useful in the same kinds of situations as regression analysis—
when you are trying to relate the effect of one or more independent variables on a dependent 
variable. However,  models are used when an independent variable has nominal (non-
numerical) values, such as hair color (with possible values black, brown, blonde and red) or 
the state in which subjects live (such as California, New York, Texas, and so on). In cases like 
these, it is impossible to calculate a linear relationship between the value of the independent 
variable (such as black, brown or blonde) and the dependent variable. Although such a vari-
able could be coded numerically (1=black, 2=brown, and so on), it would not be appropriate 
to include it as a continuous regressor since it has no inherent numerical or even ordinal value. 

Since the sum of squares calculated for main effects (the effects composed of only one vari-
able) in an  model are used to test the null hypothesis that the mean of the dependent 
variable is the same regardless of the level the main effect,  models can often detect dif-
ferences even when the relationship is more complex than the simple linear one required by 
regression analysis. (The price paid for the extra sensitivity is that the linear model contains 
more parameters to account for these differences, which reduces the power of the analysis.) 

Thus,  models can be useful even if the independent variable is continuous, if it is 
known or assumed that the relationship between the independent variable and the dependent 
variable will not easily be explained by a linear or polynomial relationship, or by some other 
simple relationship that is easily linearized. For example, increasing the concentration of a fer-
tilizer increases yield of a plant up to a certain point, but the yield remains constant after that 
point. Such a relationship, called a plateau, is not linear. In cases like this, you can create a 
new nominal variable from the original independent variable by dividing the original inde-
pendent variable’s values into a few non-overlapping categories and using this new variable as 
one of the factors in your  model. For information on how to do this, see “Recode 
data,” p. 117 of Using StatView. 

One other benefit of  models is their ability to detect interaction between factors in a 
model. An interaction between factors means that the effect of one of the factors differs 
depending on the level(s) of the other factor(s) involved in the interaction. For example, if you 
were interested in the effect of different types of fertilizer on the yield of different varieties of 
corn, it might be the case that some types of fertilizer were more effective on some varieties of 
corn than on other varieties. A main effect test of type of fertilizer, for example, would average 
out the effects of variety and would not address this question. Similarly, the main effect test 
for variety would average out the effects of fertilizer. However, the interaction test of variety 
by fertilizer (labeled “variety*fertilizer” in the  table) would test the null hypothesis that 
the effect of fertilizer is the same regardless of the corn variety. An equivalent null hypothesis 
is that the effect of variety of corn is the same regardless of fertilizer type.

Models whose effects are all factors can detect the widest variety of interactions. Although you 
can enter interaction terms composed of regressors only, be aware that introducing such terms 
implies a linear relation between the dependent variable and the arithmetic product of the 
independent variables involved in the interaction. This might not always be the case for the 
regressors you study. The increased ability to detect interactions in the  model as 
opposed to regression comes at the price of additional parameter estimates and potentially 
decreased sensitivity. 
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Regression

When you add an independent variable to a linear model as a regressor, you assume that an 
increase in the independent variable will cause a proportionate increase or decrease in the 
dependent variable. You can include a continuous variable as an independent variable in an 
 model. Usually the purpose of that functionality is for including covariates for  
or  models, but it also makes it possible for you to compute regression models using 
the  procedure and assigning only continuous variable(s) as independent variable(s). 
One reason you might want to consider doing so is that the  table includes lambda and 
power results (discussed under “Power and Lambda,” p. 76), which are not available from the 
Regression procedure. However, regression models usually should include a constant (inter-
cept) term, which is not possible from the  procedure. For more information, see the 
chapter “Regression,” p. 51. 
ANCOVA

A model containing both factors and regressors is known as analysis of covariance. The name 
derives from the fact that in an analysis of variance model, a regressor as well as the factors 
may affect the dependent variable. Models such as these can be looked upon as analysis of 
variance models with the addition of a “nuisance” regressor that affects the dependent variable 
and whose effect should be removed, as much as possible, before the actual analysis of variance 
takes place. However, there is no reason to think of the covariate as being more or less impor-
tant than the factors in these kinds of models. StatView lets you test not just the regressors but 
also their interactions with the factors. 

To understand when these tests may be helpful, it is useful to explain some terminology. 
When a single regressor is fit to a dependent variable, the linear model can be summed up by 
two parameters: the intercept and the slope. The intercept is that part of the predicted value 
which the regressor doesn’t explain. The slope is the multiplier of the regressor’s value that 
scales it to the values of the dependent variable. If the slope is a large number (either positive 
or negative), then changes in the regressor result in large changes in the dependent variable. If 
the slope is small (close to zero), then changes in the regressor do not affect the value of the 
dependent variable very much. To test the significance of the relationship of the regressor to 
the dependent variable, you simply include the regressor in the model. 

When factors are also present in the model, the situation becomes more complex. It might be 
that the slope for the regressor is the same for each level of the factor. On the other hand, it 
might be that the regressor has a different effect on the dependent variable depending on the 
value of the factors in the model. Suppose you are studying weight gains of three groups of 
volunteers under a special diet: a sedentary group of office workers, a group of active college 
students, and a group of marathon runners in training. Suppose that you have also measured 
the calorie intake of the subjects during the course of the study and want to include that infor-
mation in the analysis. It would be reasonable to suspect that the calorie intake might affect 
the three groups differently. 

To test the null hypothesis that the slopes are the same for the different levels of a factor, you 
include the interaction of the factor and covariate. In the soft drink sales example, suppose 
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some stores were located in shopping malls and others were located outside. It might be rea-
sonable to suspect that temperature would not have the same influence in all stores, which 
you could test by including the interaction between temperature and store. This type of exper-
imental design is known as grouped regression, because StatView actually performs a separate 
regression for each group. Since it compares the results of several regressions, a test for factor-
covariate interaction is sometimes called a test for homogeneity of slopes or a test for com-
mon slopes. A significant result tells you that the slope of the regressor differs depending on 
the level of the factor (or combination of levels of the factors, if there is more than one). 

We can go further and test homogeneity of slopes with respect to an interaction of several fac-
tors by adding an interaction term with the factors and the covariate. If the hypothesis of 
homogeneity of slopes cannot be rejected, then the effect of the covariate can be adequately 
estimated by a single, common slope, and we can eliminate the interaction involving the cova-
riate from the model. 

You can examine the interaction graphically by creating a scattergram of the dependent vari-
able vs. the covariate, with separate fitted regression lines for each level of the factor(s) in ques-
tion and then comparing the slopes of the lines. This technique is demonstrated in the 
exercise “ANCOVA,” p. 99. 

In simple regression, the intercept is usually not of much interest. However, the test for the 
significance of a factor in an  is often called a test for common intercepts. If the 
hypothesis of common intercepts cannot be rejected (i.e., the probability level corresponding 
to the factor is greater than the significance level you have chosen), then it might be appropri-
ate to remove the factor from the analysis and examine a simple regression model. However, if 
the hypothesis of homogeneity of slopes is rejected, it is customary to keep the factor in the 
model. 
MANOVA and MANCOVA

Many experimental situations have more than one dependent variable. For example, in study-
ing the effects of a special diet on volunteers, you might measure their weights, blood choles-
terol levels, waistlines, oxygen consumption on a treadmill, and so on. Or, a study of pollution 
levels in different settings might take measurements of oxides of nitrogen, carbon monoxide 
and particulate matter. 

In either example, the measurements are qualitatively different from each other—that is, the 
things measured are inherently different from each other. When this is not the case—where 
the same thing is measured several times on the same subject—repeated measures  
methods are more appropriate. Examples of this would be weight gains after one, two, and 
three months on a diet, or nitrogen oxide levels measured repeatedly on the same factories 
using various filtering systems. The subjects (the people or the factories) are the same, and the 
variables being measured (weights or pollution levels) are the same. What changes is time or 
circumstance. For more information, see “Repeated measures ANOVA,” p. 82. 

In situations where a variety of different measurements are recorded, one obvious alternative is 
to analyze each dependent variable separately. There are two drawbacks to this approach. First, 
it might be difficult, if not impossible, to make sense of the reams of output that would be 
generated. It could be that some variables are influenced by one effect in the model, while oth-
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ers are influenced by different effects, and some are not significantly influenced by any of the 
effects. In such cases, it would be hard to come up with a simple, easy-to-explain summary of 
the results. It is also possible that a subtle pattern of changes might not be apparent, even after 
careful study of the output. However, there is an even more serious problem. When several 
measurements are taken on the same experimental units, they tend to be correlated: that is, 
the values of some of the variables can be readily predicted by the values of the other variables. 
The correlations of multiple variables often do not contain much information about the 
underlying process because each variable is a different way of looking at the same thing. This 
is not always the case, but it is wise to take the possibility into account. 

The technique that performs analysis of variance on more than one dependent variable and 
explicitly takes into account the correlation among the dependent variables is known as mul-
tivariate analysis of variance, or . StatView’s  results are multivariate counter-
parts of the tests you would see if you were analyzing only one dependent variable. For 
example, if you requested multivariate tests for a one-factor factorial design, with teaching 
method as the grouping variable and dependent variables math score, history score, and read-
ing comprehension score, you would see tables with multivariate tests for the null hypothesis 
that teaching method had no simultaneous effect on all three scores. The null hypothesis for a 
univariate model with only math score would simply test that teaching method had no effect 
on the math score. 

This subtle difference can be important when the observations are highly correlated, because 
you might be misled into overestimating the significance of your results when the individual 
univariate tests are all significant. Similarly, if there is a subtle difference between the groups 
that can only be discerned when considering all three scores simultaneously, the  tests 
might be able to detect it, where the univariate analyses would not. The multivariate tests help 
you decide whether the significance is due to different relationships among the dependent 
variables or just to one underlying mechanism being measured several ways.

In the univariate analysis of variance, most statisticians agree that the statistic of choice to test 
the null hypotheses generally associated with linear models is the following: an F-test that uses 
a statistic formed as a ratio of the mean square attributable to an effect and the mean square 
attributable to error. Because such a consensus does not exist for multivariate hypothesis tests, 
StatView provides the four most popular multivariate statistics. Each of these tests is formed 
from the eigenvalues of matrices that are analogous to the mean squares used in univariate 
hypothesis tests, but they represent different statistical approaches to the multivariate prob-
lem. In many cases, the tests lend the same conclusions. However, in some cases they will not, 
because each test is more sensitive against some alternative hypotheses than others, although 
none has been shown to be universally superior to the others. The choice of statistic, therefore, 
is often rather arbitrary. Wilks’ Lambda is favored by some statisticians because it is derived 
by the maximum likelihood technique, which has been shown to be effective and useful for 
deriving similar hypothesis tests in other experimental situations. StatView also computes 
Roy’s Greatest Root, the Hotelling-Lawley trace, and Pillai’s trace. 
Repeated measures ANOVA

Many times an experiment or study will result in several measurements being taken on each 
experimental unit. (An experimental unit is the smallest object involved in a study, for exam-
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ple, a student in a study on teaching methods, a store in a sales survey, or a manufactured item 
in a quality control study.) These several measurements may represent different things, such as 
height and weight, or the levels of different substances in a sample of blood, or the amount of 
money spent on various budget items. In such cases, you can analyze your data with either a 
set of univariate analyses, or with a multivariate analysis. (See “ANOVA,” p. 79, and 
“MANOVA and MANCOVA,” p. 81.) 

There are also many situations where the measurements taken on each experimental unit are 
essentially the same but measured under different times or experimental conditions. Examples 
would be the level of a given substance in the blood at 1, 2, 5, and 10 days after treatment, or 
the performance of students on a particular test at ages 5, 6, and 7, or the productivity of 
workers under a variety of environmental conditions. Sets of measurements like these are 
known as repeated measurements. The statistical technique often used to analyze them is 
known as repeated measures analysis of variance. 

The main distinction between a repeated measures analysis and a standard multivariate analy-
sis is that in a repeated measures analysis of variance, the different measurements each repre-
sent essentially the same quantity measured on the same experimental unit but under different 
conditions. Often the measurements are simply repeated over time, but repeated measures 
analysis of variance can be appropriate in other settings as well.

Some repeated measures designs, especially those where the effect of interest is time, have no 
alternative. In other cases, an alternative may exist. For example, in the productivity study, an 
alternative to measuring each of the workers under each of the conditions would be selecting a 
large group of workers, randomly assigning them to different environmental conditions, and 
measuring their productivity. However, this alternative has two potential drawbacks. First, it 
might be expensive, difficult, or even impossible to find enough subjects. Second, there is the 
danger that despite randomization, a larger proportion of the most productive workers could 
end up in one group, causing a false association between that group’s environment and its 
increased productivity. This effect is eliminated in the repeated measures design, as each sub-
ject is its own control, so individual effects can be removed. This property subjects repeated 
measures designs to a natural restriction in randomization. This is one of the reasons why 
repeated measures designs require special analysis. 

The appropriate measure of variability for assessing the effects involving the repeated measure 
(known as “within-subject effects”) differs from the measure used to assess effects averaged 
over subjects (known as “between-subjects effects”). A term labelled “Subject(Group)” is auto-
matically added to your  table. It is a within subjects error term. StatView must calcu-
late more than one estimate of variability to assess the importance of the different effects in a 
repeated measures design, since the variability of measurements taken on the same individual 
is generally smaller than that of measurements taken on different individuals. For those effects 
that compare differences among the grouping variables (between subjects tests), the usual 
estimate of residual error is appropriate. But for tests involving the repeated measure itself 
(within subject tests), a separate estimate of error must be calculated. 
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Post hoc tests (Multiple comparisons)

When your  determines that some of the effects in your model are significant, you will 
usually want to examine the mean values of the dependent variable for each level of the fac-
tor(s) to determine which means are different from each other. In the corn variety/fertilizer 
example, it would be helpful to examine the mean value of yield for each level of variety and 
fertilizer, and each of their combinations, to determine which fertilizer types and/or corn vari-
eties result in the highest yield. 

When you are testing main effects, there are several tests available to help you find out where 
the differences in the dependent variable’s values are coming from. These tests, known as post 
hoc tests, or multiple comparisons, are specifically designed to make many comparisons 
among a group of means and still present results that are accurate at the significance levels that 
they report. 

StatView offers a variety of post hoc tests. Each test addresses a potentially important consid-
eration of a researcher that no other procedure addresses. However, if you do not have a pref-
erence for a particular procedure, the Games-Howell is one of the more useful, recently 
developed post hoc procedures. The Dunnett is a good alternative if you want to compare a 
control mean to a collection of treatment means. All tests are based on two-tailed, null 
hypothesis comparisons, so they make no distinction between the case where a given mean is 
larger than another mean and the case where a given mean is smaller. 

Each test defines a particular critical difference for a given pair of means. These critical differ-
ences vary as a function of cell sample sizes and variances (a cell is one level of a factor), the 
number of means involved in a set of comparisons, concern about either type I (alpha) or type 
II (power) errors, and whether or not you want the type I and type II error rates to be associ-
ated with a single comparison between two means or with a set of comparisons among a col-
lection of means. 

The following table summarizes the assumptions of each test and shows the maximum num-
ber of means allowed for a set of comparisons. 

Test
Usefulness of test 

Significant 
F-ratio

Homoge-
neity of 
variance

Equal 
cell n

Cell 
normality

Maximum 
number of 
means

Fisher PLSD
all pairwise comparisons with 
multiple t statistic

yes yes yes yes no limit

Tukey-Kramer
control overall Type I error

no yes either equal 
cell ns or 

ratios ≥ 3:1

yes 20

SNK
all pairwise comparisons, ordered 
from smallest to largest

yes yes yes yes 20

Scheffé’s
robust to violations of assumptions

yes no no no no limit
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Some of StatView’s tests control the probability of type I error per comparison, while other 
procedures control the error probability per set of comparisons. (Recall that alpha error or type 
I error is the probability of incorrectly rejecting a true null hypothesis—that is, the probabil-
ity of concluding that a pair of means are significantly different when they are really not dif-
ferent.) The following table summarizes how each post hoc addresses type I errors. If you 
specify a low alpha value, error rates associated with violations of the assumption of normality 
are almost negligible, as is the difference between error rate per comparison versus error rate 
per set of comparisons.

Post hoc tests produce tables like the following. The first column reports the mean difference 
between groups. The second column reports the mean difference that would be required for it 
to be significant at the level you set in the dialog box. The third column reports the probabil-
ity that there is no difference between groups. The “S” to the right of a row appears only when 
the difference is significant at the alpha level you chose. 

If you determine that an interaction among some of the factors in your model is significant, 
you should then examine the means of the dependent variable for each combination of the 
factors in question to get more insight into what the interaction means. However, there are no 
statistical tests for interactions like the multiple comparisons tests for main effects. You could 
split your data by one of the factors and perform a multiple comparisons test on the other fac-

Games/Howell
robust to unequal ns, 
heterogeneous variances, non-
normality

yes no no; cell ns ≥ 6 no 20

Bonferroni/Dunn
all pairwise comparisons

no yes yes yes no limit

Dunnett
comparison of set of treatment 
means to a control mean

no no no yes 20

Procedure Error Summary

Fisher PLSD p=α per comparison and p>α per set of comparisons
Tukey-Kramer p≤α per comparison and p=α per set of comparisons
SNK p=α by layer of comparison and p>α per set of comparisons
Scheffé’s p<α per comparison and p<α per set of comparisons
Games-Howell p=α per comparison and p=α per set of comparisons
Bonferroni /Dunn p<α per comparison and p=α per set of comparisons
Dunnett p≤α per set of comparisons

165.865 132.607 .0147 S

-306.653 125.126 <.0001 S

-472.518 117.555 <.0001 S

Mean Diff. Crit. Diff P-Value

Japan, Other

Japan, USA

Other, USA

Fisher's PLSD for Weight
Effect: Country
Significance Level: 5 %
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tor to help determine where the significant interaction is arising from, but keep in mind that 
such a test does not use all of your data, so it might not be powerful enough to establish where 
the differences lie. In many cases, examining an interaction plot or means table can be more 
worthwhile. 

Fisher’s Protected Least Significant Difference 
Assuming that a significant F-ratio has been defined (an F-ratio is significant if the reported 
p value is less than a pre-specified significance level), Fisher’s  evaluates all possible pair-
wise comparisons with a multiple t-statistic. This multiple t-test assumes that the means have 
been ordered from smallest to largest. It determines the critical value to be exceeded, for any 
pair of comparisons, on the basis of the maximum number of steps between the smallest and 
largest mean. StatView implements the test in a general way for use with unequal as well as 
equal sample ns. The original  assumed equal sample size.

The  is the most liberal post hoc procedure of the three available in StatView. By insisting 
that the associated main effect be significant, p < α, Fisher argued that the associated probabil-
ity of a Type I error across all pairwise comparisons would be approximately α.

It is possible for an effect to have a significant F-ratio associated with it but not have any sig-
nificant pairwise comparisons. This occurs when the contrasts of some linear combinations of 
the means, not necessarily pairwise, are significantly different. The probability of a type I error 
is also inflated when the sample sizes are unequal.

Scheffé’s F
Scheffé’s F (1953) procedure for post hoc comparisons is very robust to violations of the 
assumptions typically associated with multiple comparison procedures. It may be used when 
you have unequal cell ns as well as when you have heterogeneous variances, that is, in the case 
where the variances of the cells are not equal. (In the case of heterogeneous variances, the basic 
assumptions of the analysis of variance are violated, and the significance levels associated with 
all the hypothesis tests must be interpreted with caution.) This procedure was developed with 
the assumption that all possible comparisons would be made; in StatView, the procedure has 
only been implemented to make pairwise comparisons of means.

The Scheffé is the most conservative of the paired comparison procedures. However, because 
it was the first paired comparison procedure with demonstrated robustness to assumption vio-
lations, it has enjoyed a long popularity and is still used by many researchers.

Bonferroni/Dunn
The Bonferroni/Dunn procedure is a multiple comparison procedure for making all possible 
pairwise contrasts amongst a collection of means. There are (p(p–1)/2) comparisons when you 
implement the Dunn as a procedure for comparing all pairwise differences for p means. It has 
no limit on the number of comparison means that may be contrasted. This procedure tends to 
be less conservative than Scheffé’s F; it is more likely to determine that differences are signifi-
cant. 
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The procedure is attributed to Dunn (1961) and based on the Bonferroni inequality and is 
sometimes referred to as the Bonferroni t-procedure or the Bonferroni/Dunn test. 

Dunnett’s Test
In an experiment it is often desirable to compare the collection of treatment means to a con-
trol mean. The Dunnett (1955, 1964) is such a specialized multiple-comparison procedure. If 
there is a total of p means, then there will be  paired comparisons for this comparison 
procedure, whereas for the other post hoc procedures there will be  comparisons. 
When computing the probable “error” associated with the contrasts, the Dunnett considers 
only the  comparisons to the control. It is therefore more efficient than the general post 
hoc procedures when its use is appropriate. Generally, it may be assumed that when using the 
Dunnett, as opposed to the Tukey or some other multiple comparison procedure, a smaller 
difference will be required for significance. 

As implemented, the Dunnett can be used when the control group n and the comparison 
group n are unequal. It can also be used when the control group variance is not equal to the 
comparison group variance. As with the Games-Howell procedure, the critical value to exceed 
is determined in part by the variances and cell ns associated with each pairwise comparison. 

Tukey-Kramer Test
The Tukey-Kramer Test, or Tukey’s  (Honestly Significant Difference), originally devel-
oped by John Tukey in 1953, is an extension of Fisher’s . It is intended to keep the exper-
iment-wise probability of a type I error at alpha. Since it controls for overall error, the Tukey-
Kramer test detects fewer significant differences than other tests. (See Keselman and Rogan, 
1978, for a thorough discussion of Tukey’s procedure.) 

While it makes the same assumptions as the , the Tukey  uses the studentized range 
statistic instead of the Student t-distribution. The Tukey , when all cell ns are equal, deter-
mines a single critical value that all comparisons must exceed to achieve significance. This crit-
ical value is a function of the total number of means involved in the collection of 
comparisons. 

The original  assumed all cell ns to be equal. However, Kramer (1956) modified it to be 
used with post hoc tests having unequal cell ns. This modification is applied to Tukey’s proce-
dure to allow the  to be used when the cell ns are not equal. By the early 1980s researchers 
had discovered that this modification made the Tukey procedure very robust to violations of 
equal cell ns (Jaccard, Becker and Wood, 1984; Games, Keselman and Rogan, 1981; Dun-
nett, 1980). 

The original Tukey test is calculated if all cell ns are equal. The Kramer (1956) modification, 
properly referred to as the Tukey-Kramer test is calculated if at least one pair of cells has 
unequal ns. Although this procedure is similar to an extension of the Tukey , there is an 
important distinction: the value that a pairwise comparison must exceed for significance 
changes every time that a cell n changes.

With regard to error, Dunnett (1980) and Keselman & Rogan (1978) both suggest that with 
extreme discrepancies amongst cell ns—ratios of 3:1 or greater—the Kramer modification of 
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the  is also conservative and behaves very much like the  for equal cell ns. However, 
Dunnett also suggests that when cell ns are approximately equal the Kramer modification is 
no longer conservative. For approximately equal cell ns, the probability of a type I error is 
greater than alpha. Thus, it is best to assume that the  is appropriate for either equal cell ns 
or very discrepant cell ns. 

Games-Howell Test
Perhaps the most robust of a new genre of multiple comparison procedures is the one devel-
oped by Games and Howell (1976). This procedure seems to be very robust with cells having 
unequal ns and heterogeneous variances, as well as those violating the assumption of normal-
ity (Jaccard, Becker and Wood, 1984; Games, Keselman and Rogan, 1981; Keselman and 
Rogan, 1978; Dunnett, 1980a and 1980b). 

While in the Tukey tradition, this procedure utilizes a Behrens-Fisher approach to estimating 
the error of a comparison, and an approximation procedure that follows from Smith (1936), 
Welch (1949), and Satterwaite (1946) for estimating degrees of freedom. It also requires each 
cell n to be at least 6.

This procedure defines a different value for each pairwise comparison to exceed for signifi-
cance. The critical value to exceed is determined in part by the variances and cell ns associated 
with each pairwise comparison. 

Student-Newman-Keuls Test
The Student-Newman-Keuls test is a post hoc that makes all pairwise comparisons. It orders 
all means from smallest to largest. 

If you assume that there are r means, the largest difference will involve means that are r steps 
apart. This difference is tested for . If it is significant, the differences associated with 
means  steps apart are tested for . If they are all significant, the differences associ-
ated with means  steps apart are test for , etc. Thus the procedure is sometimes 
called a stepwise or layered multiple comparison procedure. 

For this multiple comparison procedure, the error rate deals with the set of comparisons asso-
ciated with a particular step, e.g., all comparisons that are  steps apart. Therefore it has 
neither an experiment-wise nor comparison-wise error rate. 

Limitations of post hoc tests
Repeated measures designs Multiple comparison procedures are designed to allow compari-
sons between several groups of uncorrelated means, under the assumption that the means are 
normally distributed with a common variance. Many of these methods rely on results based 
on the order statistics of uncorrelated variables derived from normal distributions with the 
appropriate variances. However, repeated observations on a given subject are correlated, and 
so the means based on these groupings (i.e., within subjects factors) are correlated. Therefore, 
comparing the means of within factors with post hoc tests is not recommended. 

p α=
r 1– p α=

r 2– p α=

r 2–
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Since the between factors summarize observations over the within factors, multiple compari-
son tests are appropriate for the between subjects effects in a design. However, these are usu-
ally not the factors of major interest in repeated measures designs, so the use of multiple 
comparisons procedures for these factors is usually not a high priority among users.

Interaction effects These multiple comparison tests are designed to allow comparisons of 
uncorrelated means. Strictly speaking, they should really only be used in models with a single 
factor. As a compromise to utility, however, the notion of multiple comparisons is generally 
extended to allow comparing the means corresponding to the levels of any single factor in the 
design. You should remember that in most cases the only information from the rest of the 
design that is used in the multiple comparisons test is the error mean square; the means being 
compared are simply arithmetic means, ignoring any other factors in the model.

When a factor of interest is an interaction, it is much more difficult to ignore the other terms 
in the model when comparing means. Due to imbalances in designs, arithmetic means are 
often not consistent with the linear model being considered. Furthermore, there is some ques-
tion whether the multiple comparisons procedures are still valid when a certain structure is 
being assumed through the modeling process. In other words, it is somewhat awkward to 
claim that you are modeling the mean of a particular cell as the sum of several terms in the lin-
ear model but then to use the simple arithmetic mean to compare these cells. The same prob-
lems exist in the case of a single factor; however, it is much easier to rethink the problem as 
being one of comparing several means in the single factor case, because it is such a natural 
extension of the spirit under which the procedures are derived.

An alternative would be to arrange your dataset so that the design were essentially a one way 
 where each level of the single factor represented a unique combination of the factors in 
the desired interaction. Then you could run the usual multiple comparisons tests. Since these 
tests would ignore the underlying concept of interaction, however, their use would be ques-
tionable. Furthermore, since a given interaction usually has many factor combinations, the 
post hoc test tends to be less than optimally useful, since the procedure must protect itself 
against errors from the many comparisons being performed. 
Dialog box settings

You set analysis parameters for  results in this dialog box:
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Experiment type You must first choose the type of your , either factorial or repeated 
measures. If you specify a repeated measures design, StatView automatically builds the correct 
 table for this type of model. Remember, if you select repeated measures, your dataset 
must contain a compact variable to identify the within factor(s). For more information on 
compact variables, see the following section, “Data requirements,” p. 90.

Include all interactions up to depth Choose the depth of interactions to be included in the 
model. The default is Full, which includes all main effects and all interactions at every depth. 
You can choose 1 for just the main effects, 2 for all main effects and second-order (two-factor) 
interactions, and so on, up to 7 for all main effects through seven-factor interactions. 

The commentaries on each type of model in the preceding “Discussion,” p. 73, offer some 
advice for determining which interactions should be included and how to interpret the signif-
icance of interaction effects. Generally, you should begin by including full interactions; 
depending on the results, you might then want to click Edit Analysis and adjust the depth of 
the model. 

Alpha value Specify as a percentage the alpha value (significance level) to be used for post hoc 
tests and power calculations. The default is 5%, or . 

Means tables and interaction plots The choices at the bottom of the dialog box control how 
many means tables and interaction plots are displayed (if you have selected these results from 
the analysis browser). If you choose “Highest order effects only,” StatView produces the 
means tables and interaction plots for only the effects of the highest order, according to your 
Depth choice. If you choose “All effects,” means tables and interaction plots appear for each 
effect included the model. 

Error bars StatView can add error bars to your graphs. You can choose among no error bars, 
or the number of standard deviations or standard errors you specify, or confidence intervals 
for the percentage you specify. 

Note: post hoc tests are no longer requested in the  dialog box. Instead you must select 
the post hoc test(s) you desire in the analysis browser. See “Results,” p. 95. 

α 0.05=
Data requirements

A factorial  requires one or more nominal independent variables with one continuous 
dependent variable.  requires one or more nominal independent variables and two or 
more continuous dependent variables.  and  models include one or more 
continuous independent variables. A repeated measures  requires a single compact vari-
able and optionally one or more nominal variables. 

Your data must be organized in a way that allows StatView to identify which group(s) the 
observations belong to. For a repeated measures design, you must create a compact variable to 
identify the groups of the within factor(s). For an introduction to dataset organization includ-
ing compact variables, see “Datasets,” p. 49 of Using StatView. In addition, the “Exercises,” 
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p. 96, will help you see how to organize your data for both factorial and repeated measures 
experiments. 
Factorial

In a factorial experiment, you assign one or more nominal variables (factors) and one or more 
continuous variable (the dependent variables). The nominal variables are the independent 
variables for the analysis. Your dataset needs to be organized so that all the values of the 
dependent variable appear in a single column. Each nominal variable appears in a separate col-
umn. The nominal variables divide your dependent data into groups. There will be one row in 
the dataset for each subject or other experimental unit in the analysis.

The dataset above shows the organization for a factorial . All observations for the 
dependent variable, Weight, are in a single column. The grouping variable Height is a separate 
nominal column identifying the group (tall or short) for each Weight measurement.The vari-
able Gender is another separate nominal column that identifies the group (male or female) for 
each Weight measurement. Each row in the dataset represents a separate, unique, subject in 
the experiment.

Some users may wish to use compact variables to identify the groups of the between factors 
for their factorial . In a compact variable, the values of the columns (variables) in the 
usual dataset organization become the rows in the dataset with the compact variable. If you 
plan to use a compact variable, please read “Compact variables,” p. 84 of Using StatView.
Repeated measures

In a repeated measures experiment, you can have one or more between factors and one or 
more within factors. Between factors must be set up as individual nominal columns. A single 
within factor must be set up as compact variables, and multiple within factors must be set up 
as complex compact variables. 

One between factor and one within factor
Consider an experiment testing the mobility of six athletes, male and female, at four tempera-
tures (60˚, 70˚, 80˚ and 90˚ Fahrenheit). The dataset for this experiment would have six rows, 
one for each subject in the experiment, and five columns. One column would indicate the 
gender of the subject. This nominal column would be a between factor in the repeated mea-
sures experiment. The other four columns would record the mobility measurements taken at 
the four different temperatures. 

For StatView to understand that these four columns are related and represent different groups 
(or levels) of the within factor, they must be combined into a single compact variable. To cre-
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ate a compact variable, you select the columns that represent the groups of the within factor 
and click the Compact button at the top of the dataset. You then need to enter a name for the 
variable. You might enter the data like this: 

To compact the columns into a single compact variable, select the four columns, click Com-
pact, and enter a name for the repeated measure, such as “Mobility.” Now your dataset might 
look like this:

A compact variable is a unique data structure. All the cells of a compact variable taken 
together are the measurement variable (the continuous dependent variable), and the way 
those cells are arranged into four columns indicates their group memberships (the nominal 
within factor). Therefore, in the variable browser, the nominal part of a compact variable is 
listed in a drop-down list under the name of the continuous variable: 

For more detail on creating and understanding compact variables, see “Compact variables,” 
p. 84 of Using StatView. 

Two between factors and two within factors
Suppose the mobility experiment had another between factor for type of athlete (swimmer or 
runner) and the four mobility measurements were repeated a week later for an additional 
within factor. You would simply add a nominal variable Sport for the additional between fac-
tor. For the additional within factor, you would need to create a complex compact variable. 
Your dataset might like this:

In the variable browser, you would see a continuous variable (Mobility) with two nominal 
parts, Trial and Temperature:
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Step-by-step instructions for creating complex compact variables appear under “Complex 
compact variable,” p. 89 of Using StatView. 
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Model design Variable browser buttons (and their usage markers)

ANOVA Independent (X) Select a nominal variable (or the nominal part of a compact variable) 
for each factor and click Independent. 
Additional variables are added to the analysis. 

Dependent (Y) Select one continuous variable (or the continuous part of a compact 
variable) and click Dependent. 
If additional Dependent variables are assigned, the analysis becomes a 
MANOVA. 

MANOVA Independent (X) Select a nominal variable (or the nominal part of a compact variable) 
for each factor and click Independent. 
Additional variables are added to the analysis. 

Dependent (Y) Select two or more continuous variables (or the continuous parts of 
compact variables) and click Dependent. 
Additional Dependent variables are added to the analysis. 

ANCOVA Independent (X) Select a nominal grouping variable (or the nominal part of a compact 
variable) for each factor and click Independent. Then select a 
continuous variable (or the continuous part of a compact variable) for 
each covariate and click Independent. Or, you can select the name of a 
compact variable and click Independent to assign both parts at once, 
the continuous part as a covariate and the nominal part as a factor. 
Additional nominal or continuous Independent variables are added to 
the analysis. 

Dependent (Y) Select one continuous variable (or the continuous part of a compact 
variable) and click Dependent. 
If additional Dependent variables are assigned, the analysis becomes a 
MANCOVA. 

MANCOVA Independent (X) Select a nominal grouping variable (or the nominal part of a compact 
variable) for each factor and click Independent. Then select a 
continuous variable (or the continuous part of a compact variable) for 
each covariate and click Independent. Or, you can select the name of a 
compact variable and click Independent to assign both parts at once, 
the continuous part as a covariate and the nominal part as a factor. 
Additional nominal or continuous Independent variables are added to 
the analysis. 

Dependent (Y) Select two or more continuous variables (or the continuous parts of 
compact variables) and click Dependent. 
Additional Dependent variables are added to the analysis. 
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Repeated measures 
ANOVA

Independent (X) Select a nominal variable (or the nominal part of a compact variable) 
for each between factor (if any) and click Independent. 
Any additional nominal variables added as Independents are added to 
the analysis as additional between factors. 

Dependent (Y) Select one compact variable containing the within factor(s) and click 
Dependent. (Multiple within factors intended for a single repeated 
measures ANOVA must be entered as a single complex compact variable; 
see “Data requirements,” p. 90.) 
Any additional compact variable added as a Dependent causes the 
analysis to clone with the new variable as the within factor. 

All models Split By (S) When you assign one or more split-by variables to an [M]AN[C]OVA, 
results for each cell defined by the split-by variable(s) are displayed 
separately.
Results

For explanation of the results, please see the preceding “Discussion,” p. 73. The default out-
put for this statistic is the  table. 

ANOVA Table Table containing the degrees of freedom, sum of squares, mean square, F value, p value, 
lambda, and power for each effect in the ANOVA model. 

Means Table Table containing the count, mean, standard deviation, and standard error for each group or 
combination of groups in the nominal variable(s). 

ANOVA Coefficients 
Table

Table containing the coefficient, standard error, t-test, and p value for the intercept term and 
each level of each effect. (For interaction effects, each combination of levels is listed. For 
interactions that include covariates, each combination of levels for the nominal variable/s in 
that covariate is listed.) 
Not available for repeated measures models. 

Interaction Bar Chart Graph displaying the means of each group or combination of groups in the nominal variable(s) 
as bars. Error bars may be added using the dialog box. For factorial designs with more than 
one factor, the factor assigned last is used as a legend variable. For repeated measures designs, 
between factors appear in the legend.

Interaction Line Chart Graph displaying the means of each group or combination of groups in the nominal variable(s) 
as points connected by lines. Error bars may be added using the dialog box. For factorial 
designs with more than one factor, the factor assigned last is used as a legend variable. For 
repeated measures designs, between factors appear in the legend. 

MANOVA Tables Table containing the statistics, F values, numerator and denominator degrees of freedom, and p 
values for Wilks’ Lambda, Roy’s Greatest Root, Hotelling-Lawley Trace, and Pillai Trace. 
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Note that for interaction charts, StatView places groups of the first variable in the interaction 
(the first variable assigned to the model) in the legend. Cell plots (see “Cell Plots,” p. 237) 
offer additional control over creating interaction plots.

Post Hoc Tests Tables containing Fisher’s PLSD, Scheffé’s F, Bonferroni/Dunn, Dunnett’s, Tukey-Kramer, Games-
Howell, and Student-Newman-Keuls statistics for each main effect. The tables show the mean 
difference and critical difference for all test. Fisher, Scheffé’s, and Bonferroni/Dunn are the 
default tests; for a different combination of tests, select the specific tests you want from the 
Post Hoc Tests list in the analysis browser. 
For Fisher, Scheffé, and Bonferroni/Dunn, the table includes the p value for the difference 
between all pairs of groups in the nominal variable(s). For Dunnett’s, Tukey-Kramer, Games-
Howell, and Student-Newman-Keuls, mean differences are compared to critical differences from 
stored tables for the specified value of alpha. 
The symbol “S” appears to the right of each row if the mean difference exceeds the critical 
difference. 
Templates

The following templates provide  results. 

ANOVA and t-tests ANOVA or ANCOVA ANOVA, means, and Fisher’s PLSD tables; interaction bar plot. 
ANOVA Post Hoc Tests Interaction line plots and Fisher’s PLSD, Scheffé’s, Bonferroni/Dunn, 

Dunnett’s, Tukey-Kramer, Games-Howell, and Student-Newman-Keuls 
tables. 

Interaction Bar Chart Interaction bar plot with 95% confidence level error bars. 
Interaction Line Chart Interaction line plot with 95% confidence level error bars. 
MANOVA or MANCOVA ANOVA, means, MANOVA, and Fisher’s PLSD tables; interaction bar plot. 
Repeated Measures 
ANOVA

For each effect, ANOVA, means, and MANOVA tables, interaction bar 
chart. 
Exercises

Fully factorial ANOVA

In this exercise you perform a factorial  using data on weight and type for 116 cars from 
different countries. You will determine whether car weight is related to the type and country 
of origin of cars.

• Open Car Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser under , select  Table and click Create Analysis 

• Click OK to accept the default analysis parameters
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• In the variable browser, select Country and Type and click Independent

• Select Weight and click Dependent

Since Weight is the dependent variable in the analysis, a Y usage marker appears next to it in 
the variable browser. Type and Country are independent variables, marked with X. 

From this  table, you can see that Type has a strong influence on the variable Weight, as 
indicated by the low p value, < 0.0001. The interaction of Type and Country also seems to 
have a strong influence. The main effect of Country does not, however, as its much higher 
p value shows. We will now examine the interaction of Type and Country more closely with 
an interaction plot.

• Make sure the  table is still selected

• In the analysis browser under , select Interaction Line Plot and click Create Analysis 

Notice that the lines for the different types of cars are spread out over the range of weights. 
This confirms that the type of car has a significant main effect. To understand the interaction 
between type and country, concentrate on the places in the graph where the lines are not par-
allel. For example, sporty cars made in the  are heavier than other sporty cars, but  
compact cars are lighter than other compact cars. You might also like to produce an interac-
tion chart which uses side-by-side bars to show this information. 

2 246287.238 123143.619 1.663 .1946 3.327 .331

4 14307811.192 3576952.798 48.317 <.0001 193.266 1.000

8 1404272.808 175534.101 2.371 .0221 18.969 .874

101 7477200.453 74031.688 . . . .

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

Country

Type

Country * Type

Residual

ANOVA Table for Weight
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Effect: Country * Type
Repeated measures ANOVA

In this exercise, we perform a repeated measures  using data from a study of industrial 
health, testing the effectiveness of several techniques for teaching the use of a respirator mask. 
Subjects are divided randomly into three groups: a control group that received no training in 
the use of the mask; a group that received a detailed instruction sheet; and a third group that 
attended a thirty minute class. The effectiveness of the mask (measured as the amount of par-
ticulate matter that passed through the mask while performing a fixed task—lower amounts 
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mean better effectiveness) was measured for each of the subjects before training and also one 
and two weeks after training. 

We want to find out whether, averaged over time, there is any difference in effectiveness 
among the three teaching techniques. We have two questions about the within-subjects factor, 
Time: whether the test scores change over time if averaged over treatments, and whether the 
pattern of change over time is the same for each teaching technique.

• Open Teaching Effectiveness Data from the Sample Data folder

The first column of the dataset contains the group labels for teaching technique—Control, 
Instructions and Lecture—in a category variable. The three remaining columns are a compact 
variable recording the effectiveness of the mask before training (week 0) and 1 and 2 week 
after training. Repeated measures designs require that data are arranged in a compact variable 
(see “Compact variables,” p. 84 of Using StatView). Assigning a compact variable to a repeated 
measures analysis as a Dependent variable also assigns the nominal portion of the compact 
variable as a between-subjects factor. 

• From the Analyze menu, select New View

• In the analysis browser under , select  Table and click Create Analysis

• Choose Repeated Measures and click OK

• In the variable browser, select Teaching and click Independent

• Select Effectiveness and click Dependent. 

The between-group main effect for teaching technique is not significant. This means that 
averaged over the three times, there was no difference in the effectiveness scores of the three 
teaching methods. This test could be misleading, however, since it includes the pretraining 
(week 0) scores, which you would expect to be the same for all groups. 

In many repeated measures experiments, the between-group main effect and interaction tests 
have this limitation and are therefore not the main focus of the analysis. Keep in mind, how-
ever, that including these effects reduces the estimate of residual error, making the tests more 
powerful, and providing an opportunity to study the between-subjects by within-subjects 
interactions, which are usually of great interest.

You can see that time after training had a very significant effect. This makes sense: as the sub-
jects became more familiar with the respirator masks, they learned to use them more effec-
tively. Of special interest is the significant teaching technique-by-time interaction, indicating 
that the patterns of changes in effectiveness over time differed by teaching technique. 

We can look at an interaction plot to see how effectiveness differs among groups and times:

• Make sure the  table is still selected

• In the analysis browser under , select Interaction Bar Plot and click Create Analysis

2 26.751 13.376 2.154 .1370

2 5 155.225 6.209

2 18.926 9.463 8.783 .0005

4 18.171 4.543 4.216 .0051

5 0 53.869 1.077

DF Sum of Squares Mean Square F-Value P-Value

Teaching

Subject(Group)

Time

Time * Teaching

Time * Subject(Group)

ANOVA Table for Effectiveness
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Now we can see how the significance of the Time*Teaching interaction arose. The control 
group had very little change in effectiveness over time, but the two experimental groups saw 
considerable improvements. The group that attended the lecture showed progress over time, 
but the group with the instruction sheets showed even more progress. The instruction sheets 
seem to have been the most effective teaching method. 
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Effect: Time * Teaching
ANCOVA

Suppose a university English department wants to know whether its first-year composition 
course is as effective for history and math majors as it is for English majors. We could do a 
simple analysis of variance with final class scores as the dependent variable and major as the 
factor. However, students could have differing verbal abilities, and we must control for that by 
including their Verbal  (Scholastic Achievement Test) scores as a covariate. We might have 
data such as these (which are simulated): 

• Open Writing Scores from the Sample Data folder

The main question, of course, is whether the course is equally effective for students of differ-
ent majors. Secondarily, we want to estimate the average class score for students in each major. 
Finally, we want to know whether  scores are effective for controlling for variability among 
individual students. 

The first concern is to test for homogeneity of slopes—that is, whether the interaction term is 
significant. A visual way to do this is to create a bivariate plot of the dependent by the covari-
ate, with separate lines for each group in the factor. 

• From the Analyze menu, select New View

• In the analysis browser under Bivariate Plots, select Bivariate scattergram and click Create 
Analysis

• Choose Regression lines, and for “When split, show lines for,” choose “each group sepa-
rately”

• Click OK

• In the variable browser, select  Score and click X

• Select Class score and click Y

• Select Major and click Split By
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None of the three regression lines are flat, suggesting that the covariate is a meaningful term to 
include. The lines have slightly different slopes, but it’s unclear whether the slopes are signifi-
cantly different. The lines are roughly parallel, suggesting that the covariate-factor interaction 
probably is not significant, but we should test that to be sure. We will need to examine the sta-
tistical results. (We also notice how sparse the dataset is, which should give us pause in inter-
preting results.) 

• Make sure the plot is still selected

• In the analysis browser under , double-click  Table

• Click OK to accept the default analysis parameters

• In the variable browser, select Major and click Remove, then click Independent
(The other variable assignments are fine the way they were “adopted” from the plot.)

StatView automatically treats Major as a factor since it is nominal, and it treats  Score as a 
covariate or regressor since it is continuous. In the variable browser, both variables have X 
usage markers to indicate that they are independent variables, and Class score has a Y usage 
marker to indicate that it is a dependent variable. 

We can tell from the F and p values that the  Score*Major interaction term is not signifi-
cant, just as we expected from the roughly parallel regression lines for each factor level. There-
fore, we can remove the interaction from the model. (Notice that we focus our attention on 
the interaction term before paying much attention to the results for the main effects. That the 
interaction term is not significant is good news; parallel slopes are one of the requirements for 
analysis of covariance.) We remove the interaction term by choosing interactions up to depth 
1—that is, to main effects only:

• Make sure the result is still selected

• Click Edit Analysis
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Class score = -408.729 + 1.589 * SAT score; R^2 = .809 (English)
Class score = 277.978 + .396 * SAT score; R^2 = .388 (Math)
Class score = 199.203 + .665 * SAT score; R^2 = .735 (History)

Bivariate Scattergram with Regression
Split By: Major

1 49255.924 49255.924 15.652 .0016 15.652 .966

2 7732.295 3866.148 1.229 .3246 2.457 .215

2 11580.897 5790.449 1.840 .1979 3.680 .306

1 3 40911.036 3147.003 . . . .

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

SAT score

Major

SAT score * Major

Residual

ANOVA Table for Class score
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• For the option Include all interactions up to depth, choose 1 (instead of Full) and click OK

The F and p values for Major are still not significant, which is good news for the department: 
the class appears to be as effective for history and math majors as for English majors. (Strictly 
speaking, the result only tells us we cannot reject the null hypothesis that scores are the same 
for students of different majors.) Meanwhile, the F and p values for  Score show that  
Score clearly is useful for predicting class score, so including the term in the model is useful: it 
controls for differences already in existence before the experiment. 

1 71902.115 71902.115 20.547 .0004 20.547 .994

2 22414.844 11207.422 3.203 .0695 6.405 .516

1 5 52491.933 3499.462 . . . .

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

SAT score

Major

Residual

ANOVA Table for Class score
Randomized complete block ANOVA

The sample dataset Flax Oil Content, from Steel and Torrie (1980), shows percentage mea-
surements of oil content in flaxseed grown in each of four different locations for six different 
treatments. At each location one plant was inoculated with bacteria as a seedling, one plant in 
early bloom, one in full bloom, one at a lower dose in full bloom, and one when the plant was 
ripening. A sixth plant in each location was a control case, not inoculated at all. There was no 
replication of treatment by location combinations. 

• Open Flax Oil Content from the Sample Data folder

The measurements, recorded as oil percentage minus 30, are organized in a compact variable. 
Note that adding or subtracting a constant to each value in a dataset doesn’t change the results 
of the analysis, because all of the sums of squares to be calculated are corrected for the overall 
mean. 

The purpose of the experiment was to determine whether the treatments had any effect on the 
oil content of the flaxseed. The experiment was replicated in four different locations so that 
the results of the experiment could be generalized over a wider area. Without such replication, 
it could have been argued that conclusions might apply only to a certain planting location. 

A randomized complete block experiment differs from the usual factorial experiment in that 
one factor (in this example, location) is included in the analysis simply to control variability 
and make the experiment more meaningful—not because the effect of that factor is thought 
to be interesting. This factor is known as the blocking factor, or simply the block. 

Usually only one observation is taken for each treatment and block combination. Therefore, 
the effect of any interaction between the treatment and blocks cannot be assessed in the usual 
way. Because of this, the randomized complete block is only appropriate when you know that 
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there is no interaction between the blocking factor and the treatment. For the analysis to be 
valid, the experimenter must be certain that the behavior of the treatments is the same in each 
of the locations studied. 

The oil content may be uniformly higher or lower for one location than another, as long as 
this is true for each of the treatments. In fact, one reason to include treatment in the model is 
to control for differences of that sort. The randomized complete block analysis is not appro-
priate if the behavior of the treatments differs among blocks. For example, if one of the blocks 
were very wet and another dry, and you knew that the soil’s moisture content changed the 
behavior of the bacteria, then a randomized complete block analysis would be inappropriate. 

Remember, there must be no interaction between the treatments and the blocks. That point is 
usually confirmed by the researcher’s knowledge of the subject matter or by previous experi-
ments. Remember in turn that you must restrict the model to interactions of depth 1—that 
is, to main effects only. 

• From the analysis browser under , select  Table and click Create Analysis

• Select 1 for the option Include all interactions up to depth and click OK
(Only main effects are appropriate for randomized complete block designs.)

• Select Oil content (just the continuous part) and click Dependent

• From the variable browser, select Treatment and Location (the nominal part of the com-
pact variable Oil content) and click Independent

The variable browser’s X and Y usage markers indicate that the variables (or compact variable 
parts) are assigned to independent and dependent roles for the analysis, respectively. 

We can ignore the F and p values for the blocking factor (Location), since that term is only 
included to control variability, but it is reassuring that we cannot reject the null hypothesis 
(that oil content is the same among different locations). Being unable to reject that null 
hypothesis is a requirement for a randomized complete block design to be valid. The F value 
for Treatment is 4.816, with a p value of .0080, indicating significant differences among treat-
ments. Thus, the time of inoculation by bacteria does have an effect on the oil content of the 
flax seed. 

To find the source of the treatment differences, it is useful to examine a table of means. 

• Make sure the  table is still selected

• In the analysis browser under , double-click Means Table

5 31.652 6.330 4.816 .0080 24.081 .910

3 3.141 1.047 .797 .5147 2.390 .178

1 5 19.716 1.314 . . . .

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

Treatment

Location

Residual

ANOVA Table for Oil content
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The lowest oil percentages are evident in those plants where inoculation took place in early or 
full bloom. We can disregard the means table for Location, since it serves only as a blocking 
factor. We can use post hoc tests to compare these means. 

• Make sure one of the results is still selected

• In the analysis browser under /Post-hoc tests, select all seven tests and click Create 
Analysis 
Click and drag or Shift-click to select several adjacent results

Again we ignore the results for the blocking factor, Location. Since Fisher’s  is the most 
liberal of the post hoc tests, it is not surprising that it shows significant results (indicated by an 
“S” to the right of the p value) for the most pairs of treatment levels. Recall that the critical 
difference (1.728) is the difference between a given pair of means that would be required for 
the test to be significant at the alpha level set in the  dialog box (here, .05). 

4 4.300 2.233 1.117

4 4.000 .638 .319

4 6.700 .258 .129

4 6.050 .915 .457

4 5.100 .990 .495

4 7.025 .585 .293

Count Mean Std. Dev. Std. Err.

Early bloom

Full bloom

Full bloom (1/100)

Ripening

Seedling

Uninoculated(Control)

Means Table for Oil content
Effect: Treatment

6 5.267 1.419 .579

6 5.100 1.961 .800

6 6.000 1.213 .495

6 5.750 1.716 .700

Count Mean Std. Dev. Std. Err.

Location 1

Location 2

Location 3

Location 4

Means Table for Oil content
Effect: Location

.300 1.728 .7165

-2 .400 1.728 .0097 S

-1.750 1.728 .0475 S

- .800 1.728 .3394

-2 .725 1.728 .0043 S

-2.700 1.728 .0046 S

-2.050 1.728 .0232 S

-1.100 1.728 .1949

-3 .025 1.728 .0020 S

.650 1.728 .4352

1.600 1.728 .0671

- .325 1.728 .6941

.950 1.728 .2595

- .975 1.728 .2477

-1 .925 1.728 .0313 S

Mean Diff. Crit. Diff P-Value

Early bloom, Full bloom

Early bloom, Full bloom (1/100)

Early bloom, Ripening

Early bloom, Seedling

Early bloom, Uninoculated (Control)

Full bloom, Full bloom (1/100)

Full bloom, Ripening

Full bloom, Seedling

Full bloom, Uninoculated (Control)

Full bloom (1/100), Ripening

Full bloom (1/100), Seedling

Full bloom (1/100), Uninoculated (Control)

Ripening, Seedling

Ripening, Uninoculated (Control)

Seedling, Uninoculated (Control)

Fisher's PLSD for Oil content
Effect: Treatment
Significance Level: 5 %
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By contrast, Scheffé is the most conservative of the post hoc tests, and by its standards none of 
the pairs of means are significantly different. 

Bonferroni/Dunn tends to fall between the two, as evidenced in this case by the single signifi-
cant pair. Notice that StatView warns that only comparisons with p values less than 0.0033 
are significant for the alpha value (.05) specified. The Tukey-Kramer, Dunnett, Games-How-
ell, and Student-Newman-Keuls test are similar. 

We can examine these results graphically with an interaction line plot or bar chart. The rela-
tive oil content levels are of greater interest to us than their actual values (recall that the 
researchers subtracted 30 from each measurement when recording the data, so the measure-
ments are already somewhat abstract). StatView chooses a vertical (Y axis) scale for line plots 
to suit the range of the data for line charts, whereas it prefers a vertical scale from 0 to the data 
maximum (when practical) for bar charts. Therefore, we will choose a line plot. 

• Make sure at least one of the results is still selected

.300 3.088 .9996

-2 .400 3.088 .1834

-1 .750 3.088 .4879

- .800 3.088 .9598

-2 .725 3.088 .1015

-2 .700 3.088 .1064

-2 .050 3.088 .3237

-1 .100 3.088 .8625

-3 .025 3.088 .0567

.650 3.088 .9835

1.600 3.088 .5800

- .325 3.088 .9994

.950 3.088 .9199

- .975 3.088 .9116

-1 .925 3.088 .3878

Mean Diff. Crit. Diff P-Value

Early bloom, Full bloom

Early bloom, Full bloom (1/100)

Early bloom, Ripening

Early bloom, Seedling

Early bloom, Uninoculated (Control)

Full bloom, Full bloom (1/100)

Full bloom, Ripening

Full bloom, Seedling

Full bloom, Uninoculated (Control)

Full bloom (1/100), Ripening

Full bloom (1/100), Seedling

Full bloom (1/100), Uninoculated (Control)

Ripening, Seedling

Ripening, Uninoculated (Control)

Seedling, Uninoculated (Control)

Scheffe for Oil content
Effect: Treatment
Significance Level: 5 %

.300 2.824 .7165

-2 .400 2.824 .0097

-1 .750 2.824 .0475

- .800 2.824 .3394

-2 .725 2.824 .0043

-2 .700 2.824 .0046

-2 .050 2.824 .0232

-1 .100 2.824 .1949

-3 .025 2.824 .0020 S

.650 2.824 .4352

1.600 2.824 .0671

- .325 2.824 .6941

.950 2.824 .2595

- .975 2.824 .2477

-1 .925 2.824 .0313

Mean Diff. Crit. Diff P-Value

Early bloom, Full bloom

Early bloom, Full bloom (1/100)

Early bloom, Ripening

Early bloom, Seedling

Early bloom, Uninoculated (Control)

Full bloom, Full bloom (1/100)

Full bloom, Ripening

Full bloom, Seedling

Full bloom, Uninoculated (Control)

Full bloom (1/100), Ripening

Full bloom (1/100), Seedling

Full bloom (1/100), Uninoculated (Control)

Ripening, Seedling

Ripening, Uninoculated (Control)

Seedling, Uninoculated (Control)
Comparisons in this table are not significant unless the
corresponding p-value is less than .0033.

Bonferroni/Dunn for Oil content
Effect: Treatment
Significance Level: 5 %
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• In the analysis browser under , select Interaction Line Plot and click OK

Again, we disregard the result for Location. The wide difference in oil content between full 
bloom inoculation and no inoculation illustrates the single significant comparison in the Bon-
ferroni/Dunn results. The researchers can safely conclude that inoculation, particularly at the 
time of full bloom, decreases oil content. 
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Interaction Line Plot for Oil content
Effect: Treatment
Latin square ANOVA

To determine whether the moisture content of turnip green leaves is affected by time in stor-
age, researchers classified the leaves of five turnip plants into five size groups, subjected these 
leaves to one of five lengths of storage time according to a specific pattern, and finally mea-
sured the moisture content of each leaf. 

Since it is reasonable to suspect that the moisture content might vary from plant to plant, sev-
eral different plants were sampled in a Latin square design. Like the randomized complete 
block design, Latin square experimental designs include factors that are intended solely to 
reduce variability and give analysis results validity over a wider range of samples. Another 
approach to this experiment would be to think of the plants as replicates within a leaf size/
time of storage classification and to analyze the model as a two-way factorial design. The dis-
advantage of such an approach is that it would not account for any differences between 
plants—they would be interpreted as part of the residual error, possibly making the analysis 
insensitive to true differences. 

Latin square designs must be applied with caution, because not every possible combination of 
factor levels is observed; our example has a single observation for each plant/leaf size combina-
tion, which means that numerous possible plant/leaf size/storage time combinations are not 
observed. Therefore, the analysis is invalid in the presence of any interaction, even if the inter-
action has no practical consequences. For example, if storage time dramatically affects mois-
ture content for a particular leaf size, then the Latin square analysis would not be valid. 
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The key feature of the Latin square design is that each treatment appears exactly once for each 
combination of two blocking factors. This balance, combined with the lack of interactions, is 
required for the analysis to be valid. Thus, a Latin square is appropriate only when it is possi-
ble to create two blocking factors for your data, each of which has the same number of levels 
as the number of treatments in the experiment. In our examples, the researchers studied five 
storage times, so they used five leaf types from five individual plants. 

Latin squares are useful for agricultural experiments that must control for variability in fertil-
ity of a field, when it is convenient to divide the field into a number of rows and columns 
matching the number of treatments. Although one could work out by hand the treatment 
combinations needed, researchers usually refer to published tables of these designs, such as 
those in Cochran and Cox (1957). Not all numbers of treatments can be accommodated by 
Latin squares designs, so it is wise to consult a reference early in the planning stage of an 
experiment. 

• Open Turnip Moisture from the Sample Data folder

Plant and Leaf Size are the blocking factors, Time of Storage is the treatment factor, and Mois-
ture Content is the dependent measurement variable. Observe how each storage time is repre-
sented once in each plant and once in each leaf size. The design is more apparent when 
arranged in a compact variable. (Unfortunately “compact” arrangement is considerably less 
convenient to enter in the dataset in this case; the way it reveals the data design is its value.) 

• Open Turnip Moisture Compact from the Sample Data folder

According to the assumptions of the Latin square design, we must include only main effects in 
the model. If we attempted to include interaction effects, error messages about matrix singu-
larity would quickly alert us to our mistake, since so many cells have few if any data points. 

• From the Analyze menu, select New View

• In the analysis browser under , select  Table and click Create Analysis

• Choose 1 for Include all interactions up to depth

• Click OK

We will demonstrate variable assignments with both versions of the dataset; you may choose 
either one or repeat the steps above to try both methods. 

• In the variable browser, choose Turnip Moisture for Dataset

• Select Moisture Content and click Dependent

• Select Plant, Leaf Size, and Storage Time and click Independent
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Using the compact version of the dataset works similarly. The only tricky thing is that here it 
is important to assign Moisture as a Dependent before attempting to assign its nominal parts 
as Independents: StatView does not allow you to assign the nominal part of a compact vari-
able to an  unless you have already assigned its continuous part to the analysis. 

• In the variable browser, choose Turnip Moisture Compact for Dataset

• Click the triangle to the left of Moisture Content to expose the nominal parts of the com-
pact variable

• Select Moisture Content and click Dependent

• Select Storage Time and the nominal parts of the compact variable, Plant and Leaf Size, 
and click Independent

The results from either dataset are the same: 

The significant F ratios for Plant and Leaf Size (10.714, with p value 0.0006 and 8.794 with 
p value 0.0015, respectively) indicate that these factors served their purpose, removing vari-
ability from the analysis. Otherwise they are of no great interest. However, we cannot reject 
the null hypothesis that storage time does not affect moisture content, because the F ratio 
0.233 is so low, with p value 0.9147. In other words, the researchers have not found evidence 
to support their theory that storage time affects moisture content. A glance at interaction line 
plots will explain this:

• Make sure the  Table is still selected in the view

• From the analysis browser under ANOVA, double-click Interaction Line Plot

Observe that, while moisture content does seem to drop off as storage times increase to treat-
ment IV, it jumps back up again for the longest storage time, treatment V. This makes no 
sense. Also note that the least and greatest cell means are less than half a percent apart. What 
little difference we see is probably random. 

4 .627 .157 .233 .9147 .931 .085

4 28.885 7.221 10.714 .0006 42.857 .996

4 23.708 5.927 8.794 .0015 35.176 .986

1 2 8.088 .674 . . . .

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

Storage

Plant

Leaf Size

Residual

ANOVA Table for Moisture Content

6.85

6.9

6.95
7

7.05

7.1
7.15

7.2
7.25

7.3

7.35
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I I I III IV V
Cell

Interaction Line Plot for Moisture Content
Effect: Storage
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Factorial MANOVA design

Suppose you are an exercise physiologist who wants to determine whether stretching and 
wearing ankle weights has any effect on the value of treadmill exercise. You could test this 
hypothesis by measuring calories burned, average speed in meters per minute, and oxygen 
consumed in liters for a number of subjects who you have previously determined have roughly 
the same level of physical fitness, divided randomly into four groups: with or without ankle 
weights, and with or without a period of stretching before the exercise. This would be a  
factorial design. 

Suppose you tested twenty subjects and recorded measurements such as the following:

• Open Exercise from the Sample Data folder

The goal of this experiment is to determine whether pre-stretching and wearing ankle weights 
change the outcome measurements for the exercise. One interesting point is that we know 
that the null hypothesis that wearing ankle weights has no effect is almost certainly false. 
However, we don’t know whether the effects of pre-stretching, if any, are the same whether or 
not the ankle weights are worn. Thus, the ankle weights serve to some extent as a blocking fac-
tor in the experiment, even though it is a complete factorial design. 

If we were only interested in one of the measurements of exercise value, such as calories 
burned, we could simply analyze the data with a two-way factorial  design. However, 
we want to know whether or not the factors affect three measurements (energy, velocity and 
oxygen consumption) simultaneously. This is why we should take correlations among depen-
dent variables into account by examining StatView’s  tables of results for multivariate 
hypothesis tests. 

• From the Analyze menu, select New View

• In the analysis browser under , select  Table and  Tables and click 
Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select multiple nonadjacent 
analyses.

• Click OK to accept the default analysis parameters

2 2×
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(We leave the default interaction depth, Full, because we must test the interaction of weights 
and pre-stretching—we don’t yet know whether the effect of stretching will be the same 
regardless of whether weights are worn.) 

• In the variable browser, select Pre-stretch and Ankle Weights and click Independent
Shift-click or click and drag to select multiple adjacent variables

• Select Energy (cal), Speed (m/min), and Oxygen (l) and click Dependent
Shift-click or click and drag to select multiple adjacent variables

The interaction Pre-stretch * Ankle Weights does not appear to be significant: the p value for 
the term is nowhere close to the alpha level of 5% in any of the  or  tables. This 
means that the effects of ankle weights during are the same with or without pre-stretching. 
Another way to view it is that pre-stretching has the same effect with or without weights. 
Therefore, we can remove the term from the model and examine only main effects. 

• Make sure at least one of the tables is still selected

• Click Edit Analysis

• Choose 1 for Include all interactions up to depth and click OK

The  results for Pre-stretch show a p value of 0.0491 for the three measurements, so at 
the 5% significance level, we reject the null hypothesis that stretching has no effect. 

The  results for Ankle Weights are even more clear. The p value of 0.0012 means that 
we should definitely reject the null hypothesis that ankle weights have no effect. This is no 
surprise—we expected that ankle weights would have a significant effect. 

1.000 . . . .

.500 . . . .

6.500 . . . .

.602 3.309 3 1 5 .0491

.662 3.309 3 1 5 .0491

.662 3.309 3 1 5 .0491

.398 3.309 3 1 5 .0491

Value F-Value Num DF Den DF P-Value

S

M

N

Wilks' Lambda

Roy's Greatest Root

Hotelling-Lawley Trace

Pillai Trace

MANOVA Table for Pre-stretch

1.000 . . . .

.500 . . . .

6.500 . . . .

.358 8.963 3 1 5 .0012

1.793 8.963 3 1 5 .0012

1.793 8.963 3 1 5 .0012

.642 8.963 3 1 5 .0012

Value F-Value Num DF Den DF P-Value

S

M

N

Wilks' Lambda

Roy's Greatest Root

Hotelling-Lawley Trace

Pillai Trace

MANOVA Table for Ankle Weights
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From the univariate tests, we can see that pre-stretching has a significant effect on energy and 
oxygen consumption. Likewise, ankle weights have a significant effect on energy and oxygen 
consumption. However, neither seem to have much effect on speed, which is a bit surprising. 
Now that we know both factors are significant, we want to know how they effected the out-
come measurements.

• Make sure at least one of the results is still selected

• In the analysis browser under , double-click Means Tables or one of the interaction 
plots

Clearly, wearing weights increases oxygen consumption (27.75 vs. 39.35 liters) and energy 
consumption (90.9 vs. 102.3 calories), and also decreases speed (85.7 vs. 83.6). The tables for 
pre-stretching show that whether subjects stretch or not also has a slight effect on the outcome 
measurements. 

1 591.872 591.872 10.696 .0045 10.696 .884

1 649.800 649.800 11.743 .0032 11.743 .913

1 7 940.688 55.335 . . . .

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

Pre-stretch

Ankle Weights

Residual

ANOVA Table for Energy (cal)

1 2.450 2.450 .172 .6836 .172 .067

1 22.472 22.472 1.577 .2261 1.577 .209

1 7 242.200 14.247 . . . .

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

Pre-stretch

Ankle Weights

Residual

ANOVA Table for Speed (m/min)

1 194.688 194.688 7.329 .0149 7.329 .729

1 672.800 672.800 25.327 .0001 25.327 .999

1 7 451.602 26.565 . . . .

DF Sum of Squares Mean Square F-Value P-Value Lambda Power

Pre-stretch

Ankle Weights

Residual

ANOVA Table for Oxygen (l)

1 0 90.900 9.405 2.974

1 0 102.300 9.046 2.861

Count Mean Std. Dev. Std. Err.

No weights

Weights

Means Table for Energy (cal)
Effect: Ankle Weights

1 0 85.730 4.307 1.362

1 0 83.610 2.938 .929

Count Mean Std. Dev. Std. Err.

No weights

Weights

Means Table for Speed (m/min)
Effect: Ankle Weights

1 0 27.750 5.370 1.698

1 0 39.350 6.556 2.073

Count Mean Std. Dev. Std. Err.

No weights

Weights

Means Table for Oxygen (l)
Effect: Ankle Weights
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Contingency table analyses determine whether a relationship exists between two nominal 
variables. Other statistics (t-tests, regressions, means, correlation tests) apply to dependent 
variables that are continuous, that is, they are capable of taking on many different values with 
an obvious ordering to them like height, weight, income, chemical concentration, sales, etc. 
Tests applied to continuous variables lose their validity with nominal variables that do not 
have an ordered, continuous property. (See “Dataset structure,” p. 49 of Using StatView for a 
discussion of nominal and continuous variable classes.)

Height is a continuous variable because an underlying meaning to the ordering of values 
applies to it-—sixty inches is clearly bigger than fifty inches—and this relationship holds 
through the range of the scale. But hair color and eye color, for example, cannot constitute 
continuous variables, for there is no natural ordering to brunette, blonde, red and black; nor 
to blue, gray, brown and green.

Thus, even if we recode a variable representing hair color as brunette=1, black=2, red=3 and 
so forth, any tests performed on the transformed variable would be pointless. (It is possible for 
a nominal variable to be ordered, but StatView provides no special tests for this case.) For 
example, it is meaningless to say that brunette is only one third of red. In addition, if we study 
the relationship of hair color and eye color, we cannot calculate a mean for hair color because 
there is no numerical quantity we can assign to a particular hair color that helps describe it.
Discussion

When you collect data, it may be wise to think in terms of a two-way tabular arrangement in 
which you categorize each observation into one group for each of two nominal (grouping) 
variables. Such an arrangement is called a contingency table. The intersection of a row and 
column in the table is called a cell. If you study the cross-classification of eye color and hair 
color, for example, each cell would contain a count of observations for each possible combina-
tion of hair and eye color groups: blue eyes/brown hair, brown eyes/brown hair, blue eyes/
blonde hair, brown eyes/blonde hair and so forth. It could look something like this:

Brown hair Blonde hair Black hair Red hair
Brown eyes 21 10 7 2
Blue eyes 9 17 2 3
Green eyes 1 3 1 3
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Chi-square test

It may be of interest to study this contingency table to see which combinations of groups have 
more or less observations than would be expected if the two variables were independent. For 
this you can apply the chi-square test for independence. The hypothesis of independence 
states that the likelihood of an observation falling into one group for one variable is indepen-
dent of the other group the observation falls into. To calculate this test, StatView finds the 
expected value for the number of observations for every combination of groups based on the 
hypothesis of independence and compares the expected with the observed values in each cell.

(The chi-square test is not valid when the minimum expected value is less than five. You may 
have cells in your contingency tables with observed values less than five without causing any 
problems. The key issue is whether or not the expected values are greater than five. You can 
print a table of expected values for your contingency table.)

A low chi-square value and high probability (p value) would suggest accepting the null 
hypothesis. If the hypothesis of independence were not rejected for the example given, the 
chi-square test would indicate that people with blonde hair are no more likely to have blue 
eyes than any other color eyes, and that people with brown eyes are no more likely to have 
brown hair than any other color hair. If rejected—a large chi-square value and correspond-
ingly low probability—the test would show that a relationship between certain variable 
groups exists. You would then study the contingency table to see which combinations of 
groups have more or fewer observations than would be expected if the two variables were 
independent. You can do this by comparing the contingency table (observed frequencies) to 
the expected values table, or by examining a table of post hoc cell contributions to the overall 
chi-square statistic.
Tables produced

In addition to the contingency table itself, StatView offers a variety of displays with the groups 
of one variable in the cross classification displayed in the rows of a table and the groups of the 
other displayed in the columns of the table. One set of tables displays the percents of row or 
column totals. In a table displaying the Percents of Row Totals, for example, column percent-
ages represent the proportion of data in the first variable that falls into each group of the sec-
ond variable. Under the hypothesis of independence, the column percentages within each 
group of the first variable (each row of the table) should be the same. You can compare the 
values in a given row with the totals displayed at the bottom of the table and determine which 
cells are out of line. The cells that stand out indicate a larger or smaller proportion falling in a 
particular combination of groups than would be expected under the hypothesis of indepen-
dence. A similar analysis holds for the Percents of Column Totals table, except that you com-
pare the values in the rows with the totals on the right hand side of the table.

Post hoc cell contributions
An alternative to studying percents is to study the table of post hoc cell contributions. These 
numbers are a form of standardized residual that indicate what each cell in the table contrib-
utes to the chi-square statistic. Since they are calculated to follow a standard normal distribu-
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tion, absolute values greater than, for example, 1.96 for a 0.05 probability level indicate that 
the cell in question provides significant information about the combinations of groups of the 
variables whose occurrence is different than would be expected under the hypothesis of inde-
pendence. An example of the use of post hoc cell contributions is given in the “Exercise,” 
p. 117.

Cell chi-squares
The chi-square statistic reported in the summary table is the sum of the values in the cell chi-
squares table. By examining this table, you can tell which cells have observed frequencies that 
differ most from what is expected under the hypothesis of independence. This is the same 
information obtained from the post hoc cell contributions, except that the cell chi-squares are 
compared to the total chi-square whereas post hoc cell contributions are compared to the nor-
mal distribution.
Additional statistics: G-statistic and Cramer’s V

An alternative statistic for testing the hypothesis of independence between two categorical 
variables is the G-statistic. The G-statistic is derived using a statistical principle known as the 
likelihood ratio principle.

Another statistic, the contingency coefficient, is offered by analogy to the correlation coeffi-
cient, which is used to test the association between two continuous variables. An attractive 
feature of the correlation coefficient is that it is always in the range of –1 to 1, so that several 
different relationships can be compared on an equivalent scale. The contingency coefficient is 
a transformation of the chi-square statistic so that the contingency coefficient is in the range 
of 0 and 1. Thus it can be useful for comparing associations between different pairs of vari-
ables. Closely related to the contingency coefficient, and testing the same hypothesis of no 
association between variables, is Cramer’s V (pronounced kruh-merz´). High values of these 
statistics indicate that there is dependence between the variables. The range of V is from 0 to 
1, so its interpretation is more in line with that of a correlation coefficient.
2x2 contingency tables: Fisher’s exact test, Phi coefficient

Other statistics are available in the summary table for the special case of 2×2 tables (in which 
both variables studied have exactly two groups). Fisher’s exact test is calculated by enumerat-
ing all possible rearrangements of the observations and comparing the number of unusual 
rearrangements to the observed counts under the assumption of no association between the 
two variables. The probability levels reported for this test are exact, not large sample approxi-
mations like the G-statistic and chi-square described earlier. The continuity correction for a 
2×2 table, and its associated p value is an alternative technique which is used to make the 
probability level of the 2×2 test for independence closer to the exact probability level. The phi 
coefficient is similar to the contingency coefficient in that it is bounded in the range from 0 to 
1; it is the same as Cramer’s V except in the special case of 2×2 tables. Its interpretation is sim-
ilar to that of the correlation coefficient and may be especially useful if the categories for each 
of the variables have a natural ordering.
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Dialog box settings

When you create or edit a contingency table, you set the analysis parameters in this dialog 
box: 

You use this dialog box to specify how your data is organized for the contingency table analy-
sis. Please see the preceding section, “Data requirements,” p. 114, for more information and 
for examples of these types of data. This dialog box also allows you to disable computation of 
Fisher’s Exact Test (available only for 2×2 data). This option is provided so that you can avoid 
the lengthy computation required for large datasets.
Data requirements

Variable requirements differ depending on the type of data being analyzed. 

1. Coded raw data requires two nominal variables. 

2. Coded summary data requires two nominal variables and one continuous variable. 

3. A two-way table requires two or more continuous variables. In the cases where continuous 
variables are required, those variables represent counts based on the levels of the nominal 
variables in your analysis. 

The discussions below describe how to enter data each way for a study to determine whether a 
relationship exists between eye color and gender for eight athletes.
Coded raw data

Coded raw data for this example would contain two nominal columns: one indicating the eye 
color and the other the gender for each athlete. The dataset would contain eight rows, one for 
each athlete. A dataset organized in this manner would appear as:
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The nominal variables appear as separate columns in the dataset. Each row identifies the eye 
color group and the gender group for an athlete.
Coded summary data

Coded summary data for this example would contain two nominal grouping variables in col-
umns and an additional column with the count in each combination of groups (cell). A 
dataset organized in this manner would appear as:

The dataset contains six rows, one for each possible combination of eye color and gender: blue 
eyes/female, blue eyes/male, brown eyes/female, and so on. Each combination is made up of 
entries in the nominal Eye Color and Gender columns. The count for each combination 
appears in the count column. 

You are not required to have as many rows as there are combinations. If duplicate combina-
tions appear in your data, StatView will sum the counts for that combination. Also, if a frac-
tional value appears in a count column, the value will be rounded to the nearest integer. 
Two-way table

To use a two-way table, you enter a contingency table of observed values directly into a dataset 
as input for the analysis. Each column is a column of the contingency table and each row a 
row of the table. The observed frequencies are entered as individual observations. There will 
be as many columns as groups in one nominal variable and as many rows as groups in the sec-
ond nominal variable. A dataset organized in this manner would appear as:
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The two columns represent the two gender groups: male and female. The three rows the three 
eye color groups: blue, brown and green. The values in each cell are the counts for the partic-
ular combination. 

Variable browser buttons

Add For coded raw data, select two nominal variables and click Add. For coded summary data, select 
two nominal variables and one continuous variable and click Add. For a two-way table, select 
two or more continuous variables, and click Add.
For raw data, each additional nominal variable assigned creates a new analysis. For coded 
summary data, each additional nominal or continuous variable assigned creates a new analysis. 
For a two-way table, each additional variable you assign is added to the existing analysis.

Split By When you assign one or more split-by variables to a contingency table result, results for each 
cell in the split-by variable(s) are displayed in separate tables. 
Results 

For explanation of the results, please see the preceding “Discussion,” p. 111. The Summary 
and Observed Frequencies tables are the default output for this analysis. 

Summary Table Table containing the degrees of freedom, the chi-square statistic and associated p value, the G-
squared statistic and its associated p value, the contingency coefficient, and Cramer’s V for the 
analysis. If 2x2 data are used, the Fisher’s exact test, the continuity correction with its 
associated p value are displayed, and the phi coefficient is displayed instead of Cramer’s V.

Observed Frequencies Table containing the number of observations in each cell (combination of groups) of the dataset 
with totals for each group in the grouping variables.

Percents of Row/
Column Totals

Table containing the percentage of the observations in each group of one grouping variable that 
fall into each group of the second grouping variable.

Percents of Overall 
Total

Table containing the percent of total observations in the dataset that falls in each cell 
(combination of groups).

Expected Values Table containing the expected values for the number of observations in each cell (combination 
of groups) if the variables were independent.

Post Hoc Cell 
Contributions

Table containing the post hoc cell contributions for each cell (combination of groups).

Cell Chi Squares Table containing the chi-squares statistic for each cell (combination of groups).
Templates

The following templates provide contingency table results. 

Correlations Contingency Table--2 
Way Data

Summary and observed frequencies tables for two-way data. 
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Contingency Table--Raw 
Data

Summary and observed frequencies tables for raw data. 

Contingency Table--
Summary Data

Summary and observed frequencies tables for summary data.
Exercise 

In this exercise you will perform a contingency table analysis of coded raw data. The dataset 
contains information on weight, gas tank size, turning circle, horsepower and engine displace-
ment for 116 cars from different countries. You will determine whether some countries tend 
to produce larger or smaller cars than other countries.

• Open Car Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser under Contingency Table, select Summary Table and Observed 
Frequencies and click Create Analysis 

• Click OK to accept the default parameter, Coded raw data

• In the variable browser, select Type and click Add, then select Country and click Add
(It is important to add the variables in this order.)

Note that the groups of the first variable appear as rows of the contingency table; the groups 
of the second variable appear as columns. The variables are highlighted with G usage markers 
indicating grouping variables assigned to the analysis. The analysis calculates and tables appear 
in the view.

The high chi-square and low p values in the summary table suggest a relationship between 
country and car size. You will now determine which cells are contributing to the large chi-
square values by examining post-hoc cell contributions.

• Make sure at least one table is still selected

• In the analysis browser, select Post Hoc Cell Contributions and click Create Analysis
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You did not have to assign variables to the Post Hoc Cell Contributions table. The variables 
analyzed in the tables preceding it were used because those tables were selected when you cre-
ated Post Hoc Cell Contributions. 

Relative to what is expected if the distribution of car sizes were the same for each country, the 
Other group has more small cars than Japan, and more still than the . The , however, 
has many more cars categorized in the Large group. You may want to examine the table of 
expected values to verify that the discrepancies arise from the cells with large post hoc cell con-
tributions.
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Nonparametric statistics test hypotheses about data for which the underlying distribution of 
the data is not assumed. Rather than estimate the parameters of a hypothesized distribution, 
then perform a computation on these estimates (parametric statistics), nonparametrics 
employ alternatives such as sequentially ranking observations from all groups or variables of 
interest or comparing two groups observation by observation to test hypotheses.
Discussion

Most of the hypothesis tests presented in other chapters require the data being studied to ful-
fill certain assumptions, usually regarding the nature of the underlying distribution from 
which the data arises. In order for the probability levels presented by a t-test to be valid, for 
example, the data being studied must come from a normal distribution. These assumptions 
are so important that many statisticians feel that a significant probability value associated with 
a test statistic needs to be interpreted as either evidence that the null hypothesis is false or evi-
dence that the assumptions of the test have been violated.

Occasionally the assumptions required for a parametric test are not met because of the nature 
of the data. If you are measuring the amount of time it takes people to do a simple task, you 
might know that most responses will be around zero, with fewer and fewer responses corre-
sponding to increasing time. This would not result in a normal distribution of data since nor-
mal distribution must be symmetric, with equal amounts of data on either side of the mean. 
In other cases, your examination of the data (or residuals from regression or analysis of vari-
ance) might indicate that the assumptions of the analysis are not being met. Under such cir-
cumstances, performing one of the nonparametric tests described in this chapter can be 
appropriate.
One sample sign test

The one sample sign test is the nonparametric equivalent of the one sample t-test. It tests 
whether the values of a variable are centered around a specified value. That is, it tests the 
hypothesis that the median of a distribution is equal to some hypothesized value by compar-
ing the number of observations above and below that value.
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Mann-Whitney U test

The Mann-Whitney U test is useful in the same cases as an unpaired t-test. It is the nonpara-
metric version of the two group unpaired t-test. Recall that a t-test tests the hypothesis that 
the means of the two groups are equal, assuming normality of the observations. The Mann-
Whitney U tests the hypothesis that the distributions underlying the two groups are the same. 
The requirements for validity of the Mann-Whitney test are that the two groups of observa-
tions come from continuous distributions and are independent of each other, both within and 
between groups. Since the Mann-Whitney test does not look at the observations but instead 
considers their ranks, it is resistant to outliers in either of the groups being compared.
Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test tests whether the distribution of a continuous variable is the 
same for two groups.That is, it tests the null hypothesis that two distributions are the same 
under the assumption that the observations from the two distribution are independent of each 
other. It is calculated by comparing the two distributions at a number of points and then con-
sidering the maximum difference between the two distributions. (The actual data points are 
not compared, but a function of the points is calculated and compared.) Since this test relies 
on the maximum value in a set of numbers, it may be heavily influenced by outliers and 
should be used with caution if outliers are suspected.
Wald-Wolfowitz runs test

The Wald-Wolfowitz runs test tests whether the two groups of observations have been ran-
domly sampled from the same population. This test compares two groups assumed to be inde-
pendent of each other by combining the data for both groups, ranking the data and counting 
the number of runs present in the ranked data. A run is a sequence of consecutive observa-
tions from one or the other of the groups. (Only the number of runs is important, not their 
lengths.) If the two samples come from different distributions, we would expect many groups 
of small runs, while if observations from one group tend to be larger than those from the 
other group, we would see only a few runs in the data. Since the test is based on ranks, it is 
resistant to outliers.

The Wald-Wolfowitz test looks at the data across the entire range, whereas the Kolmogorov-
Smirnov test looks at the maximum difference between the distributions. If there are only one 
or two outliers, the Kolmogorov-Smirnov may mistakenly state that the two distributions are 
different.
Wilcoxon signed rank test

The Wilcoxon signed rank test is appropriate in the same cases that a paired t-test would be 
used; it is the nonparametric version of the paired t-test (see “Paired Comparisons,” p. 29). It 
is based on the rank of the differences between each pair of observations in the dataset, and 
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tests the hypothesis that sum of the ranks is equal to zero under the assumption that the distri-
bution of ranks is symmetric about 0.
Paired sign test

The paired sign test, or two sample sign test, is useful in the same situations that a paired t-
test is used. It is another nonparametric version of the paired t-test. It tests the hypothesis that 
one of the paired variables is just as likely to be greater than the other variable as it is to be less 
than the other variable, without regard for the magnitude of the difference. Thus, it makes 
very few assumptions about the underlying distributions from which the data arise. If you feel 
that the differences between the two paired variables you are studying will be symmetric 
around some value, the Wilcoxon signed rank test is more powerful.
Spearman rank correlation coefficient

The Spearman rank correlation coefficient, sometimes referred to as Spearman’s rho, is an 
alternative to the usual correlation coefficient. Since it is based on the ranks of the data and 
not the data itself, it is resistant to outliers. It calculates a correlation coefficient based on the 
ranks of the values of two variables.The null hypothesis tested by Spearman’s rho is that the 
two variables are independent of each other, against an alternative hypothesis that the rank of 
a variable is correlated with the rank of another variable. Spearman’s rho ranges in value from 
–1 (indicating high ranks of one variable occur with low ranks of the other variable) through 
0 (indicating no correlation between the variables) to +1 (indicating high ranks of one variable 
occur with high ranks of the other variable).
Kendall’s rank correlation coefficient

Kendall’s tau is an alternative to Spearman’s rho and is useful in the same situations as Spear-
man’s rho. In general, the interpretation of these two statistics results in similar conclusions 
about the data. Kendall’s tau also ranges from –1 through 0 to +1.
Kruskal-Wallis test

The Kruskal-Wallis test is a nonparametric equivalent of a one-way analysis of variance by 
ranks, i.e., it tests the null hypothesis that three or more groups all come from the same distri-
bution. It is basically calculated as a regular , but uses the ranks of the data and is there-
fore resistant to outliers. Along with the test statistic, StatView displays a table including the 
mean rank for each of the groups to aid you in determining which group tends to have larger 
values than the others.
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Friedman test

The Friedman test is a two-way analysis of variance by ranks for matched samples. It is a spe-
cial case of a nonparametric two-way  in which, for each of several groups (usually 
called blocks), there are a number of observations, each representing the response for that 
group to a particular treatment. It tests the hypothesis that the effects of the treatments are the 
same against the hypothesis that at least one of the treatments has an effect different from the 
others. Like most of the other nonparametric tests, it is based on ranks and is therefore resis-
tant to outliers.
Dialog box settings

When you create or edit nonparametric results, you set the analysis parameters in this dialog 
box:

There are ten nonparametric tests to choose from in this dialog box. There are no further 
parameters for any of these tests except the One Sample Sign Test, for which you specify the 
hypothesized value around which you believe the values are centered. For paired and unpaired 
two groups, you must choose a test:

If you are editing nonparametric results by selecting a result and clicking Edit Analysis, you 
will not always be able to switch from one particular test to another. For example, you will not 
be able to switch to an unpaired two group test from a paired two group test if you have spec-
ified variables which the unpaired test cannot use (i.e., a second continuous variable).
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Data requirements

The nonparametric statistics are divided into five groups. Each group requires a different data 
organization as described below. For an introduction to dataset organization, see “Dataset 
structure,” p. 49 of Using StatView.

Data for Mann-Whitney, Kolmogorov-Smirnov, and Wald-Wolfowitz tests must be organized 
in the same manner as for unpaired comparisons analysis. Please see “Data requirements,” 
p. 39, for a complete discussion of the required data organization. In addition, there are exer-
cises for both the Mann-Whitney U and Kolmogorov-Smirnov tests (see “Exercises,” p. 125). 
Data for the Kruskal-Wallis test must be organized in the same manner as for factorial analysis 
of variance experiments. Please see “Data requirements,” p. 90, for a complete discussion of 
the required data organization. In addition, see the exercise “Kruskal-Wallis test,” p. 128.

Data for the Friedman test must be entered so that each column contains information on a 
single sample (or treatment). Each row contains the response of a particular group for the 
treatment. The dataset will contains as many columns as there are different samples (or treat-
ments) and as many rows as there are responses for the treatment. See the exercise, “Friedman 
test,” p. 128.

Nonparametric test Requirements Additional variables
One Sample Sign one continuous variable Each additional variable creates a new analysis.
Mann-Whitney U, 
Kolmogorov-Smirnov, 
Wald-Wolfowitz Runs 

one continuous variable and one 
nominal variable with two levels

Each additional nominal and/or continuous variable creates 
a new analysis for each nominal/continuous pair.

Wilcoxon Signed Rank, 
Paired Sign, Spearman 
Rank Correlation, 
Kendall Rank 
Correlation

two continuous variables Each additional continuous variable creates a new analysis 
for each pair. 

Kruskal-Wallis one nominal variable with more 
than two levels and one continuous 
variable 

Each additional nominal and/or continuous variable creates 
a new analysis for each nominal/continuous pair.

Friedman three or more continuous variables Each additional variable is added to the existing analysis.

Variable browser buttons

Add To generate nonparametric statistics, select the variable(s) that you wish to analyze and click 
Add. 

Split By When you assign one or more split-by variable to a nonparametric analysis, results for each cell 
in the split-by variable(s) are displayed in separate tables or plots.
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Results 

For explanation of the results, please see the preceding “Discussion,” p. 119.

Note that some of the tests above show a correction for ties. Ties occur when two observations 
have the same value. Nonparametric tests assume that no two values are the same. In some 
tests, StatView is able to make a correction for the presence of ties; where it cannot, a warning 
message is produced if ties are present.

One Sample sign test Table containing the number of observations above, below and equal to the hypothesized value, 
the p value for the analysis.

Mann-Whitney U test Table containing the U and U prime statistics, tied and untied z values and p values, and the 
number of ties.
Table containing the count, sum and mean of the rankings for each group in the analysis.

Kolmogorov-Smirnov 
test

Table containing the degrees of freedom, the number of observations in each group, the 
maximum difference between groups, and the chi-square statistic and p value for the analysis.

Wald-Wolfowitz Runs 
test

Table containing the number of runs in the combined groups, the number of observations in 
each group, the mean and standard deviation used in the z value, and the z value and the 
p value for the difference between groups.

Wilcoxon Signed Rank 
test

Table containing the number of differences between pairs, and tied and untied z values and 
p values, and the number of ties.
Table containing the count, sum and mean of the rankings for each group in the analysis.

Paired Sign test Table containing the number of differences above, below and equal to 0 and the p value for 
the analysis.

Spearman Rank 
Correlation

Table containing the sum of squared differences and the Rho (with and without correction for 
ties) for the groups, the tied and untied z values and p values, and the number of ties in each 
group.

Kendall Rank 
Correlation

Table containing the sum of squared differences and the tau (with and without correction for 
ties) for the groups, the tied and untied z values and p values, and the number of ties in each 
group.

Kruskal-Wallis test Table containing the degrees of freedom, number of groups and ties, and the H and p values, 
with and without correction for ties.
Table containing the count, sum and mean of the rankings for each group in the analysis.

Friedman test Table containing the degrees of freedom, number of groups and ties, and the chi-square and 
p value, with and without correction for ties.
Table containing the count, sum and mean of the rankings for each group in the analysis.
Templates

The following templates provide nonparametric results. 

Nonparametrics Friedman Friedman test and rank info tables.
Kendall Correlation Kendall correlation test table. 
Kolmogorov Smirnov Kolmogorov Smirnov test table. 
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Kruskal Wallis Kruskal Wallis test and rank info tables. 
Mann Whitney Mann Whitney U test and rank info tables. 
One Sample Sign Test One sample sign test table.
Paired Sign Paired sign test table. 
Spearman Correlation Spearman correlation table. 
Wald Wolfowitz Wald Wolfowitz runs test table. 
Wilcoxon Signed Rank Wilcoxon signed rank test and rank info tables. 
Exercises

One sample sign test

In this exercise you will perform a one sample sign test using data from blood lipid screenings 
of medical students. You are concerned with one variable here: Cholesterol. You will find out 
if the cholesterol level of the students differs significantly from 190, a point above which cho-
lesterol levels may be unhealthy. You will test the null hypothesis that the value for cholesterol 
is 190. If you reject the null hypothesis, you can conclude that student cholesterol levels differ 
significantly from 190.

• Open Lipid Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser, select Nonparametrics and click Create Analysis

• Enter “190” as hypothesized value and click OK to accept the other settings

• In the variable browser, select Cholesterol and click Add

The variable name appears highlighted with an X usage marker next to it indicating you have 
assigned a continuous variable to the analysis. The analysis calculates and this table appears in 
the view.

You cannot reject the null hypothesis. The p value is large, and there are roughly the same 
number of observations above and below the hypothesized value of 190.
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One-Sample Sign Test for Cholesterol
Hypothesized Value: 190
Mann-Whitney U test 

In this exercise you perform a Mann-Whitney U test using census data for 506 housing tracts 
in the Boston area. You will examine two groups of housing tracts, those near the Charles 
River and those farther away from it. You will find out whether median housing prices vary 
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depending on how far houses are located from the river. This is the nonparametric equivalent 
of the unpaired t-test exercise (“Exercise,” p. 41). You may wish to compare results between 
the two tests.

• Open Boston Housing Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser, select Nonparametrics and click Create Analysis 

• Choose Unpaired two group and click OK
(Leave Mann-Whitney selected for the test)

• In the variable browser, select Median Value and click Add

• In the variable browser, select Charles and click Add

These results indicate a difference in price between houses near and far from the Charles 
River. The mean rank for housing near the river is much higher than that for housing far from 
it. Though the unpaired t-test produced the same conclusion, it could have been fooled had 
there been significant outliers. The unpaired t-test, since it compares means, can be dramati-
cally influenced by a few outliers. A nonparametric test, however, deals only with the rankings 
of the observations and cannot be affected by outliers.
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Wilcoxon signed rank test 

In this exercise you perform a Wilcoxon Signed Rank test using data from blood lipid screen-
ings of medical students. You will determine whether initial triglyceride levels are different 
from those measured in the same subjects after three years. (This is the nonparametric equiva-
lent of the exercise, “Paired t-test,” p. 34. You may wish to compare results between the two 
tests.)

• Open Lipid Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser, select Nonparametrics and click Create Analysis 

• Choose Paired two group and click OK
(Leave Wilcoxon Signed Rank selected)

• In the variable browser, select Triglycerides and Trig-3 yrs and click Add
Control-click (Windows) or Command-click (Macintosh) to select several nonadjacent 
variables
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There is no significant difference in triglyceride levels between the initial measurements and 
those made three years later because the p values are very large and the mean ranks are quite 
close in value.
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Kendall rank correlation 

In this exercise you perform a Kendall rank correlation. The dataset consists of different west-
ern cities rated by nine criteria. You will discover whether there is a relationship between two 
of the variables, Climate&Terrain and Housing. For Climate&Terrain, the higher the score, 
the better. For Housing, the lower the score the better. 

• Open Western States Rated Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser, select Nonparametrics and click Create Analysis 

• Choose Paired two group, select Kendall rank correlation for the test, and click OK

• In the variable browser, select Climate&Terrain and Housing and click Add

The low Tau in these results shows a low correlation between Climate&Terrain and Housing. 
Compare these results to those in the Correlation chapter; see “Exercise,” p. 48.
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Kruskal-Wallis test 

In this exercise you perform a Kruskal-Wallis test using data on weight, gas tank size, turning 
circle, horsepower and engine displacement for 116 cars from different countries. You will 
determine whether some countries tend to produce larger or smaller cars than other countries.

• Open Car Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser, select Nonparametrics and click Create Analysis 

• Select Kruskal-Wallis test and click OK. Two table placeholders appear in the view.

• In the variable browser, select Weight and Country and click Add
Control-click (Windows) or Command-click (Macintosh) to select several nonadjacent 
variables at once

An X usage marker indicates that Weight is assigned as a continuous variable; a G marker 
indicates that Country is assigned as a grouping variable.

The small p values indicate that there is a difference in weight depending on the country of 
origin. The mean rank for the group Other is the lowest, and the rank for cars made in the 
 is the highest.
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Friedman test 

In this exercise you perform a Friedman test using data from a wine tasting in which fifteen 
people rated six red wines. Each wine was rated using criteria commonly used to judge wine 
quality. The totals for each judge and wine were calculated. You will determine whether there 
is a difference in the quality of the wines as determined by the judges. The judges are the 
blocks; the brand of wine is the treatment.

• Open Wine Tasting Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser, select Nonparametrics and click Create Analysis 

• Select Friedman test and click OK

• In the variable browser, select all the continuous variables and click Add
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The large chi-square value indicates that the judges rated the wines differently. Examining the 
Rank Info table shows the order in which the wines were ranked.
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Factor analysis reduces a large number of correlated variables to a smaller, more manageable 
number of factors. A factor is a linear combination of related variables that can take the place 
of the original variables in further analysis. The structure of the factors (the variables repre-
sented by each factor) is the most important information resulting from a factor analysis. The 
number of factors and sufficient dimensionality is also important from a theoretical stand-
point, but StatView handles those for you.

Factor analysis is useful when you have many correlated measurements among the experimen-
tal units (subjects, plants, etc.) and want to concentrate on a smaller number of values than 
the number of measurements at hand; or you want to learn about the interrelationships 
among variables. This technique is known as dimensionality reduction. Consider a study of 
the anatomy of a species of bird, for which you record 100 measurements (beak length, beak 
width, weight, length of body, length of tail, etc.). It is reasonable to assume that the measure-
ments will be correlated with each other. A factor analysis can help you understand which 
variables are related to each other, as well as provide a means for you to analyze fewer variables 
than the original 100.
Discussion

Data input

You can apply factor analysis to two types of data: raw data and a correlation matrix. Raw data 
occurs in standard row and column format (variables in columns, observations in rows). More 
observations than variables are required in the dataset. Correlation matrix data requires a 
Pearson correlation matrix, which has to be determined from a single pool of subjects rather 
than from different samples of subjects. You need to know the number of cases used to deter-
mine the matrix; StatView uses it for multivariate significance tests performed on the data. 
StatView uses only the values in the lower left of the correlation matrix. (The part of the cor-
relation matrix below the diagonal is a mirror image of the part above the diagonal.) Thus, 
you may use either a square correlation matrix (such as one created using the Correlation anal-
ysis) or a lower left correlation matrix as input. Note that if your input is a correlation matrix, 
make sure that all rows in the dataset are included. If you have excluded any rows, make sure 
you do not add the corresponding column to the analysis.
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To calculate the factor scores, that is, the values of each of the factors for each of the observa-
tions in the data, you must perform the analysis using raw data.
Factor extraction methods

Four factor extraction methods are available in StatView: principal components analysis, Har-
ris image analysis, Kaiser image analysis and iterated principal axis.

Principal components analysis
The principal components analysis performs a simple eigenvalue-eigenvector analysis of the 
correlation matrix in its original form. (Eigenvalues, sometimes called characteristic roots, 
latent roots or just roots, are a mathematical function of a matrix, and are used in many 
mathematical and statistical techniques.) Principal components analysis is a “classical” tech-
nique, often appropriate if your dataset represents a random sample of observations, and the 
variables you choose are a fairly complete collection of those that are of interest to you. If you 
are not sure which technique is most appropriate for your data, rely on principal components 
analysis.

Image analysis
Image analysis is focused more on the sampling of variables than the sampling of subjects. If 
you can think of the variables in your data as a sample of variables from a potentially large 
(possibly immeasurable) universe of variables, an image analysis may be more suitable than 
principal components. Image analysis techniques tend to extract more factors than non-image 
analysis methods. They factor a modification of the original correlation matrix, the image 
variance covariance matrix. Due to the large number of factors that generally define an image 
factor solution, the final rotated solution usually has a large number of zero loadings. How-
ever, the non-zero loadings are not always as large as those of the more traditional factor ana-
lytic model. Two types of image analysis are available in StatView: Harris and Kaiser. The 
Harris technique appeared in the original literature of factor analysis. Kaiser’s technique is a 
modification that produces a factor pattern whose interpretation can be carried out similar to 
the more traditional principal components technique.

Iterated principal axis
Iterated principal axis factor extraction is a modification of the principal components tech-
nique. It uses the information from the initial principal components extraction to improve the 
quality of the factor solution. It assumes that the initial number of factors determined by the 
principal components technique is the correct one, and finds a set of factors that most fully 
explain the original correlation matrix. To do this, it replaces the diagonal entries of the matrix 
(by definition equal to 1) with an estimate of the communality of each variable (a measure of 
how closely it relates to the estimated factor solution). It then recalculates the communalities, 
and continues to factor the adjusted matrix until the communalities no longer change. With 
this technique, you must choose between three methods for estimating the initial communal-
ities.
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SMC uses the squared multiple correlation of the variable with all the other variables. Off-
Diagonal uses the largest correlation between the variable and any other single variable. 1 sim-
ply starts the process with the original correlation matrix. The iterated principal axis method 
is appropriate if you are certain that your data can be very well explained with a small number 
of factors. Due to its iterative nature, it requires more computing time than the other meth-
ods.
Factor loadings

The factor extraction method you choose depends on the nature of your data and the ques-
tions you want to answer. The results of a factor analysis are summarized by a primary pattern 
matrix. For each factor, the entries in this matrix represent the coefficients (often called load-
ings) of the linear combination of the original variables that define that factor. A rescaled ver-
sion of this matrix, the oblique solution reference structure matrix, is displayed in StatView.
Rotations

The coefficients initially produced by a factor extraction method are difficult to interpret 
because their magnitude varies widely. To get around this, you transform the factor pattern 
matrix by one or more transformations or rotations. The rotation helps you see the structure 
of the matrix more clearly by transforming it so that, for a given factor, as many variables as 
possible have either large coefficients or coefficients near zero. You can identify which vari-
ables make up a large part of the factor (the large coefficients) and which variables are not very 
important in that factor. You can then use your knowledge of the dataset to assign meanings 
to the factors that were extracted. You can experiment with different rotations before deciding 
which one helps you see the underlying structure of your data best.

For many datasets, determining the number of factors and identifying the important variables 
in them will satisfy your needs. You may want to go further and incorporate into other analy-
ses the insights into the structure of your data obtained through factor analysis. One easy way 
to do this is to save the factor scores and later plot or analyze them. For each factor extracted, 
every observation in your dataset has a factor score, provided that the raw data is available. 
This score is a measure of the magnitude of the variables underlying the factor in question for 
that observation. You can use the factor scores as you would use other variables to produce 
plots, compare groups, etc. Factor scores are artificially constructed from a number of differ-
ent variables so assumptions underlying many statistical procedures may not be met for these 
scores. Therefore, probability levels reported for hypothesis tests using factor scores should be 
judged with caution.
Number of factors to extract

An important decision in the extraction stage of your analysis is the number of factors to 
retain for further study. This number is usually a function of the eigenvalues. Your options are: 
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state the number of factors you wish to retain; choose the method default, which varies with 
each factor extraction technique; or specify the technique you want to use. The defaults for 
each extraction technique are described after the discussion of the available criteria. [delete “In 
all cases the number of factors extracted is at least two.”]

If you select a technique that depends on the data, there are three criteria used to determine 
the number of factors: roots greater than 1, root curve analysis and extraction of 75% of the 
variance. 

Roots greater than 1
The roots greater than 1 criterion retains as many factors as there are eigenvalues greater than 
or equal to 1. Since the sum of the eigenvalues of the correlation matrix is equal to the num-
ber of variables, the average value of an eigenvalue is 1. This criteria essentially retains all fac-
tors whose eigenvalues are “above average,” and tends to extract a larger number of factors 
than necessary.

Root curve
The root curve criterion is based on a plot of eigenvalues from largest to smallest. It looks for 
a point in this graph where there is a dramatic shift, i.e., one eigenvalue that is markedly 
smaller than the next largest one. The number of factors retained corresponds to the number 
of eigenvalues before this dramatic change. When you use this criterion, you also get a plot of 
the eigenvalues versus their ranks, called a scree plot, to help you assess the adequacy of the 
solution.

75% variance rule
The 75% variance criterion is determined by retaining factors until 75% of the original vari-
ance is explained by the factors retained. Since the eigenvalues are determined in order of 
decreasing magnitude, each eigenvalue accounts for less variance than the preceding one. 
When the sum of the proportionate contributions of the eigenvalues exceeds 0.75, factors are 
no longer retained in the final solution.

User specified
If you specify the number of factors to extract, it cannot exceed the number of variables. In 
practice, most useful factor solutions have a maximum number of factors less than half the 
number of variables.
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Method default
The default number of factors extracted for principal components is two or the number deter-
mined by the 75% variance rule, whichever is greater. The default method for the two image 
analysis models is Harris eigenvalues greater than 1. Harris eigenvalues are the eigenvalues of 
the image variance-covariance matrix. If you apply one of the three criteria discussed above in 
place of the default method, the criterion is applied to a modification of the Harris eigenval-
ues. If you enter a specified number of factors greater than that which might be determined by 
the image analysis default method, the number determined by the default will override. The 
default method for determining the number of factors with the iterated principal axis method 
is to use the number of eigenvalues greater than 1.
Transformation method

You can consider the initial factor solution as your final solution matrix, but it is often diffi-
cult to interpret the results of a factor analysis without further transformation. You can choose 
one of three orthogonal transformations to define a final solution: varimax, equamax and 
quartimax. An orthogonal transformation is one that retains a basic property of the initial fac-
tor solution, namely that the factors extracted are uncorrelated with each other. While this 
property is attractive from a mathematical point of view, it can make it difficult to see the 
underlying structure of your data.

StatView automatically applies an additional transformation, the orthotran transformation, to 
the orthogonal transformation you choose in order to make the underlying structure clearer. It 
does this by relaxing the requirement that the factors remain uncorrelated. If this does not 
improve the solution, it retains the original orthogonally transformed structure. When the 
orthotran procedure does perform an additional transformation, the resulting factor pattern is 
said to be oblique, i.e., the factors are not uncorrelated with each other.
Factor scores

If you have a non-singular correlation matrix, you can compute regression estimate factor 
score weights. This option is available only if you input raw data, since the factor scores are a 
function of the variable values for each observation in the dataset. Your factor scores are unro-
tated if you did not choose a transformation method. You have a choice of saving a trans-
formed solution as orthogonal or oblique factor scores. Orthogonal factor scores show zero 
intercorrelations; oblique scores are correlated. For more information on saving factors scores, 
see “Save factor scores,” p. 137.
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Dialog box settings

When you create or edit a factor analysis, you see this dialog box:

 
All the choices in the dialog box are discussed in greater detail in preceding pages. First you 
must specify the type of input data, raw data in row and column format, or a correlation 
matrix. If your input is a correlation matrix, the number of cases used to determine the corre-
lation matrix must be entered. 

You choose the factor extraction method from the pop-up menu. If you choose iterated prin-
cipal axis extraction method, you must also specify the initial communality estimate as  
(squared multiple correlations), off-diagonal, or 1 (see earlier “Discussion,” p. 131). You also 
choose the method for determining how many factors to extract, from the pop-up menu. 
More detail on these choices can be found in the earlier section “Number of factors to 
extract,” p. 133.

There are three transformation methods to choose from in addition to the automatic orthot-
ran transformation. They are varimax, equamax, and quartimax. You may also choose no 
transformation. If your input data is raw data, the checkboxes at the bottom of the dialog box 
let you save either factor scores or a correlation matrix.

Save a correlation matrix If you check save correlation matrix, the computed correlation 
matrix is saved to a new dataset titled Factor Analysis Correlation Matrix. The dataset will 
have as many columns and rows as variables assigned to the factor analysis. The names of each 
column are Cor “Variable name” where “Variable name” is the name of one of the assigned 
variables for the factor analysis.

Note that the correlation matrix dataset is a very special dataset with many features. The 
dataset is linked to the factor analysis. If you change the parameters of the analysis or any of 
the input data, the dataset will automatically update to reflect the new correlation matrix. If 
you close the view that contains the factor analysis, this correlation dataset will close as well. 
When the view is reopened, the correlation matrix dataset will automatically be recreated. 
Please note that because this dataset is linked to your analysis, it is a “read only” dataset; you 
can not change any value in the dataset (except the formatting) until you break the link 
between the dataset and the analysis. In addition, the variables in this dataset can only be used 
in the view which contains the factor analysis that it is linked to.

To sever the link between the dataset and the factor analysis, you need to choose Save As from 
the File menu and save the dataset under a different name. This will save on the disk a copy of 
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the correlation matrix as a normal dataset. You can then open this dataset as you would any 
other dataset. When you save a copy of the correlation matrix dataset to your disk, StatView 
automatically appends the letters “UE” to the beginning of the column names to indicate that 
these columns are now user entered.

Save factor scores This option is available only if you input raw data, as opposed to a correla-
tion matrix, since the factor scores are a function of the variable values for each observation in 
the dataset. Your factor scores are unrotated if you did not choose a transformation method. 
You can save a transformed solution as orthogonal or oblique factor scores. Orthogonal factor 
scores show zero intercorrelations; oblique scores are correlated.

The factor scores are appended to the end of the dataset to which the first specified variable 
belongs. They are assigned the names Obl 1, Obl 2, etc., or Orth 1, Orth 2, etc., depending 
on the type of scores saved. StatView identifies the source of these variables as analysis gener-
ated. They are dynamically linked to the factor analysis that created them. If you change the 
parameters of the analysis or any of the input data, the variables in the dataset automatically 
update. In addition, the variables are tied to the view that contains the analysis, not the 
dataset in which they appear. They will automatically be added to the dataset again when the 
view is reopened and the factor analysis recalculated. If you close the view that contains the 
factor analysis, the variables will be removed from the dataset. Note that one consequence of 
this is that if you plan to use an analysis generated factor scores in a formula, you need to open 
the view which contains the factor analysis in order for the formula to compute.

Since these variables are dynamic, if you generate a graph or statistic of these factor scores, 
these graphs or statistics will update when the analysis changes. If you plan to create new anal-
yses or graphs from the factor scores, such as a histogram or descriptive statistics, these results 
must be contained in the same view as the factor analysis.

To break the link between an analysis generated variable and the analysis, change its source to 
User Entered. This causes all ties to the analysis to be broken and the letters “UE” appended 
to the front of the variable name to indicate that it is now user entered. Any change to the fac-
tor analysis that created it will have no effect on the variable, and they will act just as any user-
entered variable would.
Data requirements

Factor analysis requires three or more continuous variables.

Variable browser buttons

Add To generate a factor analysis, select three or more continuous variable(s) and click Add. 
When you select a factor analysis result and assign additional variables, they are added to the 
existing analysis.

Split By When you assign one or more split-by variable to a factor analysis, results for each cell in the 
split-by variable(s) are displayed in separate tables and plots.
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Results

The following results are available for factor analysis. The Basic output is the default.

Basic output Summary table, eigenvalues, unrotated factors, communality summary, oblique solution primary 
pattern matrix, and oblique solution reference structure.

Supplemental output Correlation matrix, partial correlation matrix, eigenvectors, orthogonal transformation, primary 
intercorrelations, oblique factor score weights, orthogonal factor score weights.

Advanced output Variable sampling, variable complexity, proportionate variance contributions.
Plots Unrotated factor plot, orthogonal factor plot, oblique factor plot, scree plot.
Templates

The following templates provide factor analysis results. 

Factor Analysis Factor Analysis Plots Unrotated factor, oblique factor, orthogonal factor, and scree plots. 
Factor Analysis--Basic Factor analysis summary, eigenvalues, unrotated factors, communality 

summary, oblique solution primary pattern matrix, and oblique solution 
reference structure tables. 

Factor Analysis--
Complete

Factor analysis summary, eigenvalues, eigenvectors, unrotated factors, 
communality summary, oblique solution primary pattern matrix, and 
oblique solution reference structure, oblique score weights, orthogonal 
score weights, orthogonal solution, partial correlation matrix, primary 
intercorrelations, proportional variance contributions, sampling 
adequacy, unrotated factors, and variable complexity tables. Unrotated 
factor, oblique factor, orthogonal factor, and scree plots. 
Exercise

In this exercise you perform a factor analysis to find the factors that best explain variability in 
a correlation matrix of eight physical measurements.

• Open Eight Physical Variables Data from the Sample Data folder

• From the Analyze menu, select New View

• From the analysis browser under Factor Analysis, select Basic Output and click Create 
Analysis

• Enter 305 for # cases and click OK

• In the variable browser, select all the variables and click Add

Factor analysis summary The summary table notes the number of variables used in the anal-
ysis, the factor procedure used to determine the number of factors, the transformation proce-
dure and the number of factor scores defined. It also includes Bartlett’s chi-square test; a 
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significant chi-square value suggests that the collection of coefficients in the correlation matrix 
differ from 0 and most likely do not occur by chance. 

Eigenvalues The eigenvalues are presented in an order that corresponds to their size. Typi-
cally, there are as many eigenvalues as there are variables, and the sum of the eigenvalues 
equals the sum of the diagonal elements of the matrix from which they are determined. The 
variance proportion is an estimate of the proportion of variance that the eigenvalue and its 
eigenvector account for when they are used to define a factor.

Usually, StatView divides the number of variables by two to determine an initial estimate of 
the number of eigenvalues (also an initial estimate of the number of factors). The many rules 
for determining the number of final factors are then applied to the eigenvalues. You may over-
ride the number of eigenvalues determined initially by entering a number of factors in the dia-
log box. The eigenvalues displayed are of no great value in the interpretation of the factor 
solution. They are displayed for completeness and for those who wish to address subjectively 
the number-of-factors question.

Unrotated factors Once the number of factors is determined, it is necessary to determine the 
correlation of each variable with each factor, a value typically referred to as a factor loading. 
Most modern-day factor analysts view this unrotated factor matrix as the initial step in deter-
mining a desirable factor solution matrix. The square of a loading represents the proportion of 
variance of the variable that can be predicted by the factor.
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Communality summary Computing the sum of the squared loadings by row results in a pro-
portion, the final communality estimate, that represents the total proportion of variance of 
the variable that can be predicted by the factors.

Prior to a factor analysis, the total proportion of variance of a variable is estimated by the 
squared multiple correlation () of the variable with all the other variables. The communal-
ity estimates and the  are reported in the communality summary table. Some analysts 
think of the  as the initial communality estimate, while others think of the largest off-
diagonal entry associated with the variable as the initial communality estimate. When a singu-
lar (determinant equal to 0) correlation matrix is analyzed, the initial communality estimate is 
assumed to be 0.

You can see from this communality summary table that approximately 82 percent of the vari-
ation in height is predictable in a linear regression equation using the other seven variables. 
This conclusion is derived from the  of height with all the other variables. When two fac-
tors are used to predict height, approximately 88% of the variation is predictable, an improve-
ment of approximately 6%.

Oblique solution primary pattern matrix When determining an oblique solution, StatView 
uses an algorithm that simply takes a given orthogonal solution and releases the restriction of 
orthogonality. The algorithm, the orthotran solution, always defines a simple structure solu-
tion that is good as or better than the associated orthogonal simple structure solution.

There are two types of oblique solutions: a primary pattern solution and a reference structure 
solution. These two are quite similar; indeed, one is a column rescaling of the other. The pat-
tern solution defines loadings that are regression coefficients for predicting the standard score 
of a variable in terms of the defined factors. The reference structure solution defines loadings 
that are correlations. Both solutions have good simple structure in that the high loadings are 
high, and the low loadings are near zero.

Oblique solution reference structure When comparing a primary pattern solution to a refer-
ence structure solution, it is immediately apparent that the large loadings are larger in the pri-
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mary pattern solution. Sometimes these primary pattern values become larger than 1, simply 
because they are regression weights. Regardless of whether you use a primary pattern or refer-
ence structure solution, the conclusions should be the same. For this data, it is clear that the 
first four variables are associated with the first factor and not associated with the second factor. 
Using similar logic, it is apparent that the second four variables are associated with the second 
factor. To name the factors, you choose a name that represents the essence of the variables 
loading on it. The first factor could be named bone structure, the second factor could be 
named flesh factor.

For these data you would arrive at the same factor name if you used an orthogonal solution. Is 
it reasonable to assume that body weight or flesh is independent of bone structure? If you 
believe so, then you may be satisfied with an orthogonal solution. If, however, you assume 
that taller people are generally heavier and fleshier than shorter people, you will be satisfied 
with an oblique solution.
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Plots

StatView provides several plots associated with factor analysis. In this part of the exercise, you 
create two: one associated with the unrotated factor solution, and one associated with the 
oblique solution. Within any particular set of plots, all pairwise factor plots are presented.

• Make sure one of the previous results is selected

• In the analysis browser, select Unrotated Factor Plot and click Create Analysis

The plot of the unrotated solution allows you to make a quick judgment regarding the poten-
tial simple structure of the factor solution. For this data, two distinct clusters of points are 
apparent in the unrotated plot. An ideal factor solution for the variables would have one axis 
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passing through the cluster of variables 1 through 4 in the upper right quadrant, and the other 
axis passing through the other cluster. If the data were under-factored (which is not possible 
with the eight physical variables), you might see points scattered through all four quadrants 
with no definitive clusters of points. If the data were over-factored, you would see many 
points near the point of intersection of the two axes, and perhaps one or two points defining a 
cluster.

• In the analysis browser, select Oblique Factor Plot and click Create Analysis

The plot of the oblique solution shows the oblique axes, primary axes, passing through the 
clusters of points as they do for the eight physical variables. The plotted primary axes are not 
at right angles because they are correlated. In this example, the simple structure of the oblique 
solution is quite good; the primary axes pass directly through the clusters. When the orthogo-
nal solution passes axes through the clusters, the oblique solution and the orthogonal solution 
are identical and the factor intercorrelations are zero.
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Survival: Nonparametric 13
This is the first of two chapters regarding StatView’s survival analysis tools. This chapter intro-
duces survival analysis in general and goes on to discuss StatView’s Survival: Nonparametric 
analyses in particular. The second, “Survival: Regression,” p. 167, discusses the Survival: 
Regression analyses. 
Introduction to survival analysis

What is survival analysis?

Survival analysis is a suite of statistical techniques used to evaluate data consisting of the 
elapsed time between two events of interest. A typical example, on which the name is based, 
concerns the length of time that seriously ill patients survive. In such a case, the survival time 
is often measured from the initiation of treatment (i.e., the beginning of monitoring) and 
ends, typically, with death (the event). Some questions that may interest an investigator col-
lecting such data are:

1. What is the mean time from initiation of treatment to death?

2. What is the probability that a patient will survive five years after treatment begins?

3. Does the patient’s condition before commencement of treatment affect the length of sur-
vival time?

4. How do survival times after an experimental treatment compare with those for patients 
exposed to a standard treatment?

5. What factors, by lengthening or shortening the time from treatment to death, influence 
the success of the treatment?

Survival analysis methods are the statistical tools designed to answer these kinds of questions.

Survival analysis methods can be applied to a broad class of problems in engineering, econom-
ics, demography, and the social and natural sciences. In engineering, reliability studies are car-
ried out to evaluate how long certain components or systems function before they fail. In job-
mobility investigations, the length of time that an individual remains in a certain job is a pri-
mary focus. A study of fertility may wish to estimate factors which influence the time from 
menarche to first birth for a population of women. These different applications all use survival 
analysis techniques, although they may be given a name more appropriate to the topic under 
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study. Other names for survival analysis include failure-time analysis, reliability theory, and 
lifetime data analysis. It is important to note that the ideas of survival analysis can be applied 
to the study of any variable with non-negative values, not just those that arise from measure-
ments of elapsed time. For example, health care analysts are often concerned with the proper-
ties of the total costs associated with treating a specific disease in an individual. In this case the 
variable “cost” plays the role of the non-negative variable whose behavior you wish to explain 
in the analysis; observations which are minimum values of the cost of treating patients (per-
haps because their treatment is not complete) would be considered censored observations.
Survival and hazard functions

In addition to familiar statistical summaries for describing the properties of variables within a 
single population or comparing characteristics across populations, there are three closely 
related functions that play a special role in most survival analyses. The first is the survival 
function, usually denoted by S(t), which, for any specified time t, gives the probability of an 
individual’s survival at least to time t. In a population, S(t) then yields the proportion of the 
population that will survive beyond time t. Thus, if the survival variable T measures the time 
in years from diagnosis of a certain cancer until death, then S(5) is the probability of surviving 
five years or more. The survival function is closely related to the associated distribution func-
tion of T.

The hazard function provides an alternative way to convey the same information as a survival 
function, but it is particularly appealing because of its natural interpretation on a chronologi-
cal time scale. The hazard function, often denoted by λ(t), gives for any specified time t the 
instantaneous risk of failure at time t among individuals who have survived at least to time t. 
Note that, for a continuously monitored population, λ(t) is not the proportion of individuals 
who fail at time t; instead it measures the proportion among those individuals at risk at time t 
who fail at time t. Thus, the hazard function provides a way to look dynamically at how the 
risk of failure changes as time progresses. An increasing hazard function reflects increasing risk 
as time progresses and vice versa. A constant hazard function indicates that the risk of failure 
is unaffected by the length of time an individual has already survived. The cumulative hazard 
function, Λ(t), measures the cumulative risk to which an individual is exposed up to time t; it 
equals the negative of the logarithm of the survival function.

As suggested above, these three functions (the cumulative survival, hazard, and cumulative 
hazard functions) are closely related, as indicated by the following equality:

As a consequence of this relationship, if you know just one of these functions, you can infer 
the values of the other two.

S t( ) e
λ u( ) ud0

t∫–
e Λ t( )–= =
Regression models

As in many quantitative analyses, we are often most interested in relationships between vari-
ables; thus, in survival analysis, we may wish to determine which factors influence survival 
time. Typically, as in other statistical investigations, regression analysis is used to investigate 
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and quantify the effects of explanatory variables on an outcome of interest—here, survival 
time. In survival analysis two forms of regression analysis have proved useful. The first 
employs standard linear regression models in which survival time plays the role of the depen-
dent variable. Often, a transformed version of survival time (usually the logarithm of survival 
time) is used, leading to a linear model on the log time scale—the so-called accelerated failure 
time model. In this model, the effects of changes in explanatory variables are quantified in 
terms of the multiplicative effects of such changes on survival time. That is, if the dose of a 
treatment given to one individual is one unit greater than that given to another, the model 
measures whether the individual’s survival time is twice as long, three times as long, or half as 
long, and so on.

The second kind of model describes the way the hazard function is affected by changes in the 
explanatory variable. The popular proportional hazards model describes the effect of changes 
in explanatory variables in terms of the multiplicative effect on the hazard function. That is, 
in the example of the last paragraph, this model indicates whether the patient receiving the 
higher dose is subject to twice the hazard, three times the hazard, or half the hazard through-
out the subject’s monitoring period.
Parametric and nonparametric analyses

In statistical analyses, investigators often have considerable flexibility in how much structure 
they are willing to assume regarding the variables under study. For example, in describing the 
survival properties of a population of items under test in a reliability study, an investigator 
may wish to assume that the underlying hazard function is constant; that is, that the risk of 
failure for items on test is not influenced by the amount of time on test. This is equivalent to 
a parametric assumption that survival times are drawn from an exponential distribution. Sub-
sequently, the constant hazard can be estimated from survival times of a sample of items. 
Alternatively, the investigator may be unwilling to make such a strong assumption and, at 
least initially, leave the form of the hazard function unspecified. Based on survival data, a non-
parametric estimate of the cumulative hazard function and the associated survival function 
can then be calculated.
Censored observations

Collecting survival information on a sample of individuals often involves longitudinal follow-
up to monitor a subject’s failure status. Sometimes it is impossible to determine the exact time 
of failure, particularly in cases where a study ends before an individual has experienced the 
event. Such cases require specialized statistical techniques that allow one to use both complete 
observations and incomplete information simultaneously.

A censored observation is one for which only partial information is available on the survival 
time of an individual under study; for example, right censoring refers to the case where it is 
known only that a survival time exceeds a known value, . This kind of information will be 
available when we have monitored an individual for  time units and the individual still has 
not failed when observation ceases. For censored observations it is important that the dataset 
reflects whether an individual’s recorded information has been censored. Understanding the 
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patterns and properties of censoring and how these can influence your observations are crucial 
to the correct interpretation of survival data.
An example

An investigative team of clinicians, data managers and statisticians have organized a clinical 
trial of a new chemotherapy in the treatment of a certain form of lung cancer. Upon referral 
from oncologists and with informed consent, 300 patients recently diagnosed with lung can-
cer are randomly assigned either to the new treatment (at one of two doses) or to the current 
standard therapy, each group comprising 100 patients. The patients are carefully monitored 
for side effects and their health status is followed for two years after treatment or until the 
time of death. Data collection ends when the follow-up of all patients is completed. For each 
patient, the dates of diagnosis, initiation of treatment, and end of follow-up or death are 
recorded in a data file. For individuals whose length of follow-up was less than two years, the 
reason for cessation of monitoring—death, removal from study, etc.—is also recorded. Other 
relevant information is also collected in each case, including the stage of cancer at diagnosis, 
age of patient at diagnosis, and other clinical and demographic measurements.

After the data are collected, the team is eager to study the results of the trial. Initially they con-
sider the data obtained from the 100 patients assigned to receive the standard treatment. It is 
decided to measure the relevant survival variable as the time from diagnosis until death. In the 
dataset, these data are recorded in the event time variable. Using a Kaplan-Meier analysis, the 
investigators obtain an estimate of the survival function. For comparison, using a parametric 
regression model, they also fit a Weibull survival function to the data. By examining the 
results, the team is convinced that the Weibull model is inadequate, and notes that, for the 
standard therapy group, the Kaplan-Meier estimate of the survival function is similar to anal-
ogous curves based on historical data on the effects of the standard treatment. The latter com-
parison is helpful in ascertaining whether there might be any survival differences for 
individuals enrolled in the present trial as compared with past patients.

The Kaplan-Meier estimate (a nonparametric method) of the survival curves for the two 
experimental groups are plotted on the same graph as the standard group. The Kaplan-Meier 
estimate also allows rank tests to be used to compare the three survival curves. Among these, 
the logrank test is chosen. This test evaluates whether the observed differences among the sur-
vival curves can be attributed to chance variation or to actual differences among the three 
groups. 

If the hazard functions in the three groups are assumed to be proportional, the proportional 
hazards regression model can be used to quantify the relative hazard obtained by comparing 
the two new treatment groups to the standard group.

Before interpreting the results, the investigators use StatView to check the proportional haz-
ards assumption, by examining plots of estimates of the three hazard functions. For example, a 
graph of the log cumulative hazard functions for each group shows three approximately paral-
lel curves. These and other evaluations suggest that the proportional hazards assumption is 
reasonable. The regression analysis shows that the hazard function is reduced by about 20 per-
cent under treatment in the low-dose group, and 25 percent in the larger-dose group. The dif-
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ference between the two different doses of the new treatment could be due merely to chance 
variation.

With this important part of the analysis completed, the investigators now consider the role of 
other factors in survival and whether certain patient characteristics might be associated with 
treatment efficacy. First, basic patient characteristics are entered as covariates into the propor-
tional hazards model to investigate their influence on survival time and to examine whether 
compensation for these effects might improve the precision associated with the treatment 
group comparisons. It is discovered not only that younger patients survive longer, but also 
that the higher dosage is considerably more effective than the lower dosages. Specifically, the 
hazard is reduced in the younger patients with the high dose of the new treatment by 45 per-
cent compared with the standard treatment in patients of average age. Although the results are 
not definitive, this finding suggests further investigation of the appropriate dose level for the 
new treatment in younger patients.

Finally, information related to the causes of censoring is examined and the data are evaluated 
to determine whether specific patient characteristics are associated with the chance of being 
censored. This analysis helps the investigators assess their assumption that censoring is not 
associated with the risk of mortality.

Thus, a full analysis of survival data uses many of the options available in StatView. Effective 
use of the right combination of these tools is the key to appropriate analysis, interpretation, 
and reporting of survival data.
Nonparametric methods

In survival analysis, the time that elapses until the occurrence of an event of interest—hereaf-
ter referred to as the event time—is recorded for a sample of individuals from a defined popu-
lation. As indicated in “Introduction to survival analysis,” p. 143, some of these observations 
may be censored, because, for instance, the study may end before the event occurs for particu-
lar individuals. For such individuals, only a lower bound for the event time is known; that is, 
it is known only that they did not experience the event within a certain time interval. Having 
both uncensored (or complete) and censored (or incomplete) observations as data, an investi-
gator typically wants to study the characteristics of the survival and hazard functions 
(see“Introduction to survival analysis,” p. 143, for an explanation of these terms). 

Specifically, comparison of the survival and hazard functions across natural groups of individu-
als is often a key issue. What constitutes a natural group depends on the context in which the 
data are collected. In randomized clinical trials, the primary groups are usually the various 
treatment groups to which individuals are assigned. In observational studies, the groups might 
be determined by natural characteristics of the individuals, such as occupation or age, or may 
reflect some condition to which individuals have been exposed, such as a history of smoking. 
Since in these cases, group membership is not assigned at random (a person cannot be assigned 
a gender, for instance), comparisons of survival functions among such groups must be inter-
preted with caution.

In analyzing survival data, it may be appropriate to assume that the hazard function belongs 
to a family of equations of a simple mathematical form, the parameters of which are all 
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defined. The choice of an appropriate parametric family will depend on external information 
about the population’s survival properties. The data also help determine if a particular para-
metric model is appropriate. We return to this issue in the next chapter, “Survival: Regres-
sion,” p. 167, where we discuss methods for estimating and comparing survival functions that 
are based on parametric models.

As one alternative to strictly parametric models, in this chapter we consider ways to estimate 
and compare survival functions that are not based on any specific parametric model. Such pro-
cedures are referred to as nonparametric. These methods are valuable both when there is little, 
if any, a priori information on which to base the choice of a specific parametric model and for 
providing a benchmark estimate of the survival function (i.e., one requiring minimal assump-
tions about the data) that can be compared to estimates that emerge from specific parametric 
models.

Event times can be recorded on either continuous or discrete scales. (“Continuous” in this 
context should not be confused with the continuous data class used in StatView. As explained 
in “Data requirements,” p. 157, the event time variable must always be continuous, regardless 
of whether it is measured on a continuous or discrete scale.) For example, consider a case in 
which event times are recorded in days, even though it typically takes several months or years 
for the event to occur. For such cases, few, if any, individuals are likely to share exactly the 
same event time, and it would be appropriate to use a continuous scale. On the other hand, if 
event times are recorded only to the nearest month or year, it is probably more appropriate to 
treat the event times as discrete, because a relatively large proportion of individuals will share 
identical event times. For data recorded on a continuous scale, it is possible, in principle, to 
estimate the survival function parametrically over a continuous interval of time. With discrete 
data, however, the survival function can be estimated only at a few discrete time points. If it is 
determined that event times should be treated as discrete data, actuarial (also called life table) 
estimates of the survival function should be used.

A key assumption that underlies both the estimation and comparison of survival functions is 
that the causes of censoring of observations are not related to event times. For example, if fol-
low-up is terminated for some individuals—who thus become censored observations—
because their survival prognosis is poor (that is, the occurrence of their event is imminent), 
the methods described in this chapter, and throughout this manual, are inappropriate.
Discussion

The first concern when analyzing survival data should be to estimate the underlying survival 
function. Later, it may be valuable to compute separate survival function estimates for groups 
and/or strata of the population. Examination of the latter estimates can provide insight into 
causes of survival patterns and their variation across groups of interest. In particular, an esti-
mate of the survival function yields estimates both of the probability of surviving a set period 
of time—for example, one year, five years, etc.—and of the uncertainty associated with these 
estimates. Beyond characterizing the survival patterns for the population under study, these 
estimates are useful for establishing the prognosis of future individuals, and for comparison 
with other groups or populations.
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Understanding the event time variable

Before describing various estimates of the survival and related functions, it is important to say 
a little about the definition of the key variable in a survival analysis. This is the event time 
variable, which measures the time that elapses until the occurrence of the event of interest, or, 
in the case of censored observations, until the individual is no longer monitored. As indicated 
in “Data requirements,” p. 157, it is necessary to enter information that distinguishes among 
those individuals who are followed until the event occurred and those who were subject to 
censoring. Of more fundamental importance to the investigator is the need to define carefully 
both the origin of the event time (which may begin, for example, with the date of diagnosis, 
the date of randomization, the date of treatment initiation, etc.) and the endpoint of interest 
(for example, death from any cause, death from a specific cause, relapse, etc.). In addition, the 
investigator should consider the choice of the numerical scale for the event time variable. 
(Note that this issue is distinct from considerations surrounding the use of continuous and 
discrete scales, as discussed on p. 148.) In many cases, this may merely be the selection of a 
particular chronological scale such as days, weeks, or years. In other cases—for example, in the 
monitoring of machine failure patterns—an alternative to chronological time may be suitable. 
For cars, accumulated mileage until failure might be preferable to time since manufacture as 
the event time variable; for electronic components, the number of switches on or off until 
failure may be more relevant than time until failure.
Nonparametric survival function estimates

In a preliminary analysis of survival data, the investigator might begin by plotting a nonpara-
metric estimate of the survival function, S(t), against time. (As discussed in “Introduction to 
survival analysis,” p. 143, S(t) indicates the proportion of the population for whom, at time t, 
the event of interest has not yet occurred.) If the event times are treated as continuous, then it 
is conventional to use the Kaplan-Meier estimator of the function S(t). (Note that the 
Kaplan-Meier estimator is sometimes referred to as the product limit estimator.) The survival 
function generated by this estimator is a step function. As a step function, at the 
origin ( ) and it remains at that value until the first jump point, (i.e., event time) where 
it takes on a value less than 1, remains “flat” until the next jump point, and so on. The set of 
times at which changes is simply the set of uncensored event times in the dataset.

If the event time measurements are discrete, or if the dataset is very large, an actuarial estimate 
of the survival function may be used. In this method, the uncensored and censored event 
times are grouped into predefined intervals on the time axis, and the survival function is esti-
mated at the beginning of each interval.

Graphs of the estimated survival function can be embellished in several useful ways. For 
instance, symbols indicating observed event times or observed censoring times (or both) can 
be included on the graph. It is particularly useful to indicate where censoring occurred during 
follow-up or monitoring, which in turn could indicate nonrandom causes of censoring, par-
ticularly when estimated survival curves are compared across groups. 
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Hazard plots

While the cumulative survival function plot is useful in its own right, it is difficult to infer the 
form of the underlying hazard function directly from this graph. This task is made simpler by 
examining a variety of hazard plots. The first of these is the cumulative hazard plot, which 
graphs an estimate of the cumulative hazard function, Λ(t), against time t. This plot provides 
insight into the development of hazard over time; for example, changes in the rate at which 
the cumulative hazard function grows reflect whether the hazard function is increasing or 
decreasing. This kind of qualitative sense of the shape of the hazard function is enhanced by 
the ln cumulative hazard plot, which graphs an estimate of ln(Λ(t)) against the logarithm of 
time, ln(t). This plot is particularly useful for judging whether some of the parametric models 
of the chapter “Survival: Regression,” p. 167, adequately describe the survival properties 
reflected in the data. Specifically, if the event times are sampled from a Weibull distribution, 
the log cumulative hazard plot should produce points that lie approximately on a straight line; 
if the slope of the approximating line is close to 1, an exponential model may be appropriate.

With interval-grouped data, the hazard plot graphs the estimate of the hazard function, λ(t), 
against time, based on the actuarial estimate of the survival function. This plot allows a direct 
interpretation of how the risk of failure evolves over time.
Comparisons of survival functions

The detection of differences in survival patterns among groups of subjects is often a primary 
motivation for survival analysis. A first step to this end is the construction of separate estimates 
of the survival function for each distinct group. These might be plotted on different graphs, 
or, more usefully, on the same graph. These plots allow immediate comparison of estimated 
survival probabilities and observed censoring times. A next step is to assess whether observed 
differences in estimated survival functions might be due to chance variation alone; this can be 
achieved through a variety of tests to evaluate the equivalence of survival functions across 
groups.

Comparing survival functions across groups—rank tests
Statisticians have suggested various procedures to test the hypothesis that survival functions 
among groups are equal. One way to evaluate the equality of survival functions is as follows: 
First, consider each of the observed event times in turn; for each such time and each group, 
one can calculate how many individuals of the original dataset were at risk of failure (at each 
event time, some may have already failed or been censored, so these cases are no longer at 
risk). For each observed event time, the proportion of individuals at risk in each group is eval-
uated in comparison to the group membership of the individual who actually failed. For 
example, if at the early event times an active treatment group and a placebo group include 
roughly the same number of individuals at risk, but the observed events all belong to the pla-
cebo group, this would provide evidence that, initially, the risk of failure is higher in the pla-
cebo group. So, one way to compare survival functions among groups is to calculate these 
comparisons at each event time and then combine this information across all event times. Dif-
ferent test statistics are obtained according to how one weights the evidence obtained at dis-
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tinct event times. The different weighting schemes correspond to tests with different names, 
but all are generically referred to as rank tests, because they depend only on the ordering of 
the event times and not on the numerical values.

The most common of these tests is the logrank test (also known as the Mantel-Cox or Man-
tel-Haenszel test); it gives equal weight to all observations and is best suited to detecting dif-
ferences among survival curves for which the underlying hazard functions are proportional. 
(Such proportionality is usually indicated by parallel ln cumulative hazard plots for these 
groups. Another method to test this assumption is to plot the logarithm of the survival esti-
mate for one group against the logged estimate for the other group: the resulting plot should 
be close to a straight line through the origin.) An alternative weighting leads to the Breslow-
Gehan-Wilcoxon test, which gives greater weight to times with more observations in the risk 
set; it is, therefore, less sensitive than the logrank test to late events when few subjects remain 
in the study. If there are no censored observations, this test simplifies to the Wilcoxon test. 
Another generalization of the Wilcoxon test is the Tarone-Ware test, which gives a weighting 
between the logrank and Breslow-Gehan-Wilcoxon tests. A further variant is the Peto-Peto-
Wilcoxon procedure, which uses an estimate of the survival function for its weightings. 
Finally, there is the Harrington-Fleming family of tests, in which the weighting is controlled 
by a parameter ρ.

Usually, these test statistics provide very similar summaries of the evidence for or against the 
hypothesis that the survival functions of the various groups are equivalent, at least in datasets 
that are moderately large. The Harrington-Fleming test with ρ=0 is identical to the logrank 
test; with ρ=1, Harrington-Fleming is similar to the Peto-Peto-Wilcoxon test. In the Breslow-
Gehan-Wilcoxon test, the weighting depends on the censoring patterns in the dataset and so 
can lead to anomalous results if censoring is common and differs substantially across the 
groups.

Sometimes one group may be at lower risk early in the monitoring period, but at higher risk 
later. It is important to note that none of the tests described are effective at detecting this kind 
of difference. Use of these tests, therefore, should always be supplemented by visual compari-
son of the estimated survival curves for the various groups.

All of the tests for comparing groups can be replaced by analogous tests for trend among 
groups. This may be appropriate when there is a natural ordering associated with the groups 
(for example, in a case where groups are defined by varying dosage levels of a drug). Trend 
tests are intended to detect departures from the null hypothesis—i.e., that the survival func-
tions among groups are equivalent—in the direction of increasing or decreasing survival pro-
portions as one moves through the groups in the specified order. If the ordering of the groups 
can be quantified—for example, by a measure of dose—then the group variable that com-
prises these values can be used as a covariate with the regression methods in the chapter “Sur-
vival: Regression,” p. 167, to examine more closely the relationship between the covariate and 
survival.
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Dialog Box Settings

Survival: Nonparametric Methods dialog box
The settings in this dialog box control the computation and display of all results within the 
Survival: Nonparametric Methods header in the analysis browser. By default, this dialog box is 
accessed by clicking the Create Analysis button after choosing any result within the Survival: 
Nonparametric Methods header. If you prefer, the more choices version of this dialog box can 
be made the default by changing the setting of the Survival Analysis Preferences dialog box 
(see “Survival Analysis preferences,” p. 230 of Using StatView). The fewer choices dialog box 
also can be accessed by clicking the Fewer choices button in the more choices version of the 
Survival: Nonparametric Methods dialog box (see below).

Estimation method These radio buttons allow you to choose between two methods for com-
putation of the survival function. The Kaplan-Meier (Product-Limit) option calculates the 
survival function by the Kaplan-Meier method, and is the default. The Actuarial (Life Table) 
option calculates the survival function by the actuarial method. If the actuarial method is 
enabled, the Intervals options are enabled, and the Survival table: Sort by options (see below) 
are disabled.

Intervals These radio buttons and text field allow you to set the intervals used in computing 
the actuarial survival function. If the number option is chosen, the actuarial estimate is based 
on a specified number of evenly divided intervals, the number of which is set in the text field 
following the width option. If the width option is chosen, the estimate is based on evenly 
divided intervals of specified width. This width (in units of the event time variable) is set in 
the text field following this option. These radio buttons and text field are active only if the 
Actuarial (Life Table) estimation method is selected.

Survival plots show These checkboxes allow you to specify the data that are displayed on any 
cumulative survival plots that are created. If the Event times checkbox is enabled (the default), 
symbols denoting the occurrence of uncensored events are plotted on cumulative survival 
plots. If the Censor times checkbox is enabled, symbols denoting the occurrence of censored 
events are plotted on cumulative survival plots.

Tests Clicking this button opens the Rank Tests dialog box, described under “Rank Tests dia-
log box,” p. 156.
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More choices Clicking this button opens the more choices version of the Survival: Nonpara-
metric Methods dialog box. This dialog box is described immediately below.

More choices

Additional options are available in the More choices dialog box. This dialog box is accessed by 
clicking the More choices button in the fewer choices version of the Survival: Nonparametric 
Methods dialog box. If you prefer, this more choices version of the Survival: Nonparametric 
Methods dialog box can be made the default by changing the setting of the Survival Analysis 
Preferences dialog box (see“Survival Analysis preferences,” p. 230 of Using StatView).

Stratified graphs This pop-up menu allows you to specify how data from stratified analyses 
are displayed in graphs. If the Single graph with all strata option is chosen (the default), results 
for all strata are displayed in a single graph. If the Separate graph for each stratum option is 
chosen, results for each stratum are displayed in separate graphs.

Survival table: Columns This pop-up menu allows you to specify which columns are dis-
played in the computed survival table and saved to a dataset, if specified. There are three 
options available from this pop-up menu: Default, Complete and Specify….

The choice of contents of the survival table depends on whether the estimation method is 
Kaplan-Meier or actuarial. The following tables show which values will be included in the sur-
vival table if this pop-up menu is set to either Default or Complete.

Estimation method Default columns Additional columns for 
Complete

Kaplan-Meier Time
Status
Cumulative Survival
Cumulative Failure
Survival Standard Error
Cumulative Events
Cumulative Censored
Remain at risk

Case
Cumulative Survival Confidence Limits
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If the Specify… option is chosen from the Survival table: Columns menu, the Survival Col-
umns dialog box appears. This dialog box allows you to specify any combination of the col-
umns listed above that correspond to the chosen estimation method. See “Survival Columns 
dialog box,” p. 155.

Survival table: Create dataset Enable this checkbox to create a survival table dataset. The 
contents of this dataset are the columns specified by the Survival table: Columns pop-up 
menu. By default, this option is disabled.

Survival table: Conf. level This text field allows you to set the confidence level used to com-
pute the survival table confidence limits columns. These columns are: Cumulative Survival 
Confidence Limits for Kaplan-Meier estimates and Cumulative Survival Confidence Limits, 
Hazard Confidence Limits and Density Confidence Limits for actuarial estimates. The value 
entered here must be greater than 0 and less than 100. The default is 95 percent confidence 
limits. 

Survival table: Sort by This pop-up menu gives you a choice of methods to sort the contents 
of the survival table. If the Time option (the default) is chosen, the rows in the survival table 
will be sorted by event time, from smaller to larger values. If the Case option is chosen, the 
rows of the survival table will be sorted by the ordering of cases in the dataset that holds the 
event time variable. The Sort by pop-up menu is available only if the estimation method is 
Kaplan-Meier.

Tests This button opens the Rank Tests dialog box, described under “Rank Tests dialog box,” 
p. 156.

Fewer choices This button opens the fewer choices version of the Survival: Nonparametric 
Methods dialog box, described above.

Actuarial Interval Start
Interval End
Number Entered
Number Censored
Number Events
Effective Number at Risk
Conditional Probability of Event
Conditional Probability of Survival
Cumulative Survival
Cumulative Failure
Survival Standard Error

Interval Midpoint
Conditional Prob. Event Standard Error
Hazard
Hazard Standard Error
Density
Density Standard Error
Median Residual Lifetime
MRL Standard Error
Cumulative Survival Confidence Limits
Hazard Confidence Limits
Density Confidence Limits

Estimation method Default columns Additional columns for 
Complete
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Survival Columns dialog box
This dialog box is accessed by choosing the Specify option from the Survival table: Columns 
pop-up menu in the more choices version of the Survival: Nonparametric Methods dialog 
box.

Display in survival table (Kaplan-Meier/Actuarial) Items that are checked in this scrolling 
list will appear in the associated survival tables that appear in the view or that are saved to a 
dataset. An item is checked or unchecked by clicking in the box to the left of the item, or by 
selecting any combination of items, then clicking the Check/Uncheck button. Shift-click and 
Control-click (Windows) or Command-click (Macintosh) to select multiple items. 

The choices available in this scrolling list depend on whether the estimation method is 
Kaplan-Meier or actuarial. These choices are summarized above in the description of the Sur-
vival table: Columns pop-up menu in the more choices version of the Survival: Nonparamet-
ric Methods dialog box.

Check/Uncheck This button allows you to check or uncheck items selected in the Columns 
to display scrolling list. If any of the selected items are unchecked, clicking this button will 
check them. If all of the selected items are checked, the button name changes to Unchecked; 
clicking it unchecks the selected items. This button is disabled if no items in the scrolling list 
are selected.
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Rank Tests dialog box
This dialog box is accessed by clicking the Tests button in the Survival: Nonparametric Meth-
ods dialog box. The Compute trend versions and Display cell contributions checkboxes are 
enabled only when at least one of the rank tests is enabled.

Logrank (Mantel-Cox) Checking this box enables the logrank test. This test is sometimes 
called the Mantel-Cox or Mantel-Haenszel test.

Breslow-Gehan-Wilcoxon Checking this box enables the Breslow-Gehan-Wilcoxon test.

Tarone-Ware Checking this box enables the Tarone-Ware test.

Peto-Peto-Wilcoxon Checking this box enables the Peto-Peto-Wilcoxon test.

Harrington-Fleming Checking this box enables the Harrington-Fleming test. This automati-
cally enables the rho: text field.

rho This text field allows you to enter a value for rho, the weight parameter used to calculate 
the Harrington-Fleming test. You may enter any non-negative value. With rho=0, the Har-
rington-Fleming test is equivalent to the logrank test. With rho=1, it is almost identical to the 
Peto-Peto-Wilcoxon test. This field is active only when the Harrington-Fleming checkbox is 
enabled.

Compute trend versions Checking this box enables trend versions of the chosen rank tests. 
Trend versions of these tests check for linear trends in the ordering of means for the specified 
group levels. The ordering of group levels for the trend tests is explained below under Use 
numeric values when appropriate. Enabling the Compute trend versions checkbox activates 
the Use numeric values when appropriate checkbox, and inactivates the Display cell contribu-
tions checkbox. 

Use numeric values when appropriate When this checkbox is enabled, the numeric values (if 
present) in the group variable are used to order the group levels for the trend tests. This allows 
you to specify arbitrary (e.g., nonlinear) relationships among group levels. If Compute trend 
versions is checked and this checkbox is disabled, the case ordering of the group levels in the 
group variable (i.e., the order of the group levels in the dataset) is used for the trend tests.

Display cell contributions When this checkbox is enabled, separate tables are displayed for 
each of the selected rank tests, showing the contribution of each group or stratum level to an 
estimate of the overall chi-square statistic. This item is not available when the Compute trend 
versions checkbox is enabled.
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Data requirements

Nonparametric survival analyses require only one continuous variable, the event time variable. 
The rows of the event time variable have the times at which the event or censoring occurred 
for each subject. This is usually the time of death or failure for uncensored observations, or 
the censor time for censored observations. The event time variable can have any positive value.

In addition to the continuous variable, a nominal censor variable is necessary if any of the 
event times are censored. This variable indicates whether each subject is censored (incom-
plete) or uncensored (complete). When the censor variable is not specified, all cases are 
assumed to be uncensored. When specified, the censor variable can be assigned only particular 
values. Use Uncensored (data type: string or category) or 0 (data type: integer or real) in the 
censor variable to indicate that a particular event time is not censored. Use any non-zero 
numeric value, or Censored to indicate that a particular event time is censored. 

The Survival Analysis Preferences dialog box allows you to change this behavior so that 0 indi-
cates censored observations. See “Survival Analysis preferences,” p. 230 of Using StatView.

If there are treatment or study groups present in your data, these can be specified with an 
optional nominal variable, called the group variable. In general, separate survival estimates are 
calculated for each level of the group variable. Data from specified group levels are displayed 
in all graphs and are necessary for computation of any rank tests that are enabled.

In both the nonparametric and proportional hazards analyses, strata are specified with a nom-
inal variable, called the stratification variable. All cases with the same value of the stratification 
variable are assigned to the same stratum. For nonparametric models, a stratification variable 
affects analyses in much the same way as does the group variable: separate survival estimates 
are calculated for each level of the stratification variable. However, the key difference between 
the effect of the stratification and group variables is how they are used in rank tests. In rank 
tests, data are pooled across strata to compare survival functions among group levels. Thus, 
the group variable provides the levels that are compared in the rank tests, while the levels of 
the stratification variable affect the computation of the rank tests, are not the groups that are 
compared. Strata may thus be regarded as sources of variation that must be accounted for, but 
are not themselves of particular interest.

Below is an example of one dataset with all variables properly formatted and ready for use in a 
nonparametric analysis.
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The following table explains how to use the buttons in the variable browser to assign such 
variables to a nonparametric survival analysis.

If you routinely create analyses first, then assign variables, you will find that the analyses will 
begin computing as soon as you have specified the event time variable. This may be unduly 
time consuming, especially if you assign censor, group, and stratification variables in sequence 
after the event time variable. To avoid this, do one of the following: (1) assign variables first, 
then create your analyses; (2) always assign the event time variable after all other variables have 
been assigned; or (3) disable the Recalculate box in the view before adding variables, then 
enable it once variable assignment is complete. If you choose to assign variables before creat-
ing the analysis, you can configure the variable browser by deselecting all results in the view, 
then clicking on any item within the Survival: Nonparametric Methods header in the analysis 
browser.

Variable browser buttons

Time Select one event time variable (continuous), then click the Time button. Usage is indicated by a 
T in the variable browser.
A second continuous variable assigned with the Time button is used as a new event time 
variable. This creates a new analysis using all previously specified censor, group, stratification 
and split by variables.

Censor Select one censor variable (nominal), then click the Censor button. Acceptable values are 0 
(must be Type: Integer or Real), or Uncensored (Type: String or Category) for uncensored 
observations, and any other numeric value or Censored to indicate censored observations. Usage 
is indicated by a C in the variable browser. NOTE: The Survival Analysis Preferences dialog box 
allows you to change the meaning of values in the censor variable so that 0 indicates censored 
observations. See “Survival Analysis preferences,” p. 230 of Using StatView.
Each additional censor variable creates a new analysis using all other variables already 
specified.

Group Select one group variable (nominal), then click the Group button. This creates separate 
estimates of the survival function for each group level. The group variable provides the levels 
that are compared in the rank tests. Usage is indicated by a G in the variable browser. Each 
additional group variable creates a new analysis using all other variables already specified.

Strata Select one stratification variable (nominal), then click the Strata button. This creates separate 
estimates of the survival function for each stratum. Results for rank tests use data pooled 
across strata. Usage is indicated by the symbol # in the variable browser.

Split By When you assign one or more split-by variables (nominal) to a nonparametric survival analysis, 
results are displayed separately for each cell defined in the split-by variable(s). Usage is 
indicated by an S in the variable browser.
Each additional stratification variable creates a new analysis using all other variables already 
specified.
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Results 

Default Results

Default results are those created by selecting the Survival: Nonparametric Methods header in 
the analysis browser. They can also be selected individually by opening the Survival: Nonpara-
metric Methods header. 

Summary Table
This table is created by selecting Summary Table within the Survival: Nonparametric Meth-
ods header in the analysis browser.

Survival Statistics Table
This table is created by selecting Survival Statistics Table within the Survival: Nonparametric 
Methods header in the analysis browser.

# Obs Gives the total number of observations for which all variable specifications are complete.
# Events Gives the number of positive, uncensored event times.
# Censored Gives the number of censored event times.
% Censored Gives the percentage of valid observations in the event time variable that are censored.
# Missing Gives the number of observations with missing variable specifications.
# Invalid Gives the number of observations with invalid variable specifications, due, for instance, to 

negative values for the event time variable, or to uninterpretable values in the censor variable.
Other contents Labels to the left of each row are group and stratum levels as specified by the group and 

stratification variables.

Estimate Gives the estimated value of the cumulative survival function at the indicated percentile of the 
CDF for each group and stratum level, if specified. If estimation method is Kaplan-Meier, table 
also gives the estimate of the mean value of the cumulative survival function.

Standard Error Gives the standard error about the estimate of the cumulative survival function at the indicated 
percentile for each group and stratum level, if specified. If estimation method is Kaplan-Meier, 
table also gives the standard error about the estimated mean of the cumulative survival 
function.

Other contents Labels to the left of each row are the values of the estimated percentiles, corresponding to the 
first, second and third quartiles. Also gives the group and stratum names if specified.
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Cumulative Survival Plot
This graph is created by selecting Cumulative Survival Plot within the Survival: Nonparamet-
ric Methods header in the analysis browser.

Plotted lines These give the estimated value of the cumulative survival function. Each line represents the 
estimate for every level defined by the interaction of any specified group and stratification 
variables. If Single graph with all strata is enabled in the more choices version of the Survival: 
Nonparametric Methods dialog box, all strata and group levels appear in a single graph; 
otherwise, functions for each stratum appear on separate graphs.

Plotted points These optionally give the time and corresponding value of the cumulative survival function for 
censored and uncensored events. Display of uncensored and censored events is controlled by 
Survival plots show: checkboxes in the Survival: Nonparametric Methods dialog box.
Other Results
Survival Table
This table is created by selecting Survival Table within the Survival: Nonparametric Methods 
header in the analysis browser. Separate tables are created for each level of the group and strat-
ification variables. The columns included in this table vary with the estimation method used 
and the setting of other parameters in the Survival: Nonparametric Methods dialog box. See 
“Survival: Nonparametric Methods dialog box,” p. 152 and “More choices,” p. 153. 

The contents of this table can be saved to a dataset by enabling the Create dataset checkbox in 
the more choices version of the Survival: Nonparametric Methods dialog box. If this option is 
enabled, results from all strata and groups are saved to the same dataset.

Cumulative Hazard Plot
This graph is created by selecting Cumulative Hazard Plot within the Survival: Nonparamet-
ric Methods header in the analysis browser.

Plotted lines These give the estimated value of the cumulative hazard function. Different lines/symbols 
represent the estimates for every level defined by the interaction of any specified group and 
stratification variables. If Single graph with all strata is enabled in the more choices version of 
the Survival: Nonparametric Methods dialog box, then all strata and group levels appear in a 
single graph; otherwise, functions for each stratum appear on separate graphs.
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Ln Cumulative Hazard Plot
This graph is created by selecting Ln Cumulative Hazard Plot within the Survival: Nonpara-
metric Methods header in the analysis browser.

Hazard Plot
This graph is created by selecting Hazard Plot within the Additional Results subheader within 
the Survival: Nonparametric Methods header. It computes only if the estimation method is 
actuarial (the estimation method is specified in the Survival: Nonparametric Methods dialog 
box).

Density Plot
This graph is created by selecting Density Plot within the Additional Results subheader 
within the Survival: Nonparametric Methods header. It computes only if the estimation 
method is actuarial (specified in the Survival: Nonparametric Methods dialog box).

Censor Pattern Plot
This graph is created by selecting Censor Pattern Plot within the Additional Results sub-
header within the Survival: Nonparametric Methods header. It is also created if the Additional 
Results subheader is selected.

Plotted lines These give the estimated values of the natural log of the cumulative hazard as a function of the 
natural log of the event time variable. Different lines/symbols represent the estimates for every 
level defined by the interaction of any specified group and stratification variables. If Single 
graph with all strata is enabled in the more choices version of the Survival: Nonparametric 
Methods dialog box, all strata and group levels appear in a single graph; otherwise, functions 
for each stratum appear on separate graphs.

Plotted lines These give the estimated value of the hazard function. Different lines/symbols represent the 
hazard estimates for every level defined by the interaction of any specified group and 
stratification variables. If Single graph with all strata is enabled in the more choices version of 
the Survival: Nonparametric Methods dialog box, all strata and group levels appear in a single 
graph; otherwise, functions for each stratum appear on separate graphs.

Plotted lines These give the estimated value of the density function. Different lines/symbols represent the 
density estimates for every level defined by the interaction of any specified group and 
stratification variables. If Single graph with all strata is enabled in the more choices version of 
the Survival: Nonparametric Methods dialog box, all strata and group levels appear in a single 
graph; otherwise, functions for each stratum appear on separate graphs.

Plotted points These give the incidence of all censored events by event time. If Single graph with all strata is 
enabled in the more choices version of the Survival: Nonparametric Methods dialog box, censor 
patterns for all strata and group levels appear in a single graph; otherwise, censor patterns for 
each stratum appear in separate graphs.
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Event Pattern Plot
This graph is created by selecting Event Pattern Plot within the Additional Results subheader 
within the Survival: Nonparametric Methods header. It is also created if the Additional 
Results subheader is selected.

Rank Test Table
This table is created whenever any rank tests are enabled in the Rank Tests dialog box, which 
is accessed by clicking the Tests button in the Survival: Nonparametric Methods dialog box. 
Results from all enabled tests are displayed in a single table. 

Rank Test Cell Contributions Table
This table is created whenever the Display cell contributions checkbox is enabled in the Rank 
Tests dialog box. (This dialog box is accessed by clicking the Tests button in the Survival: 
Nonparametric Methods dialog box.) Separate cell contribution tables are created for each 
rank test enabled in the Rank Tests dialog box. Each table displays results for all strata and 
group levels. This table cannot be computed with trend versions of the rank tests.

Plotted points These give the incidence of all uncensored events by event time. If Single graph with all strata 
is enabled in the more choices version of the Survival: Nonparametric Methods dialog box, event 
patterns for all strata and group levels appear in a single graph; otherwise, event patterns for 
each stratum appear on separate graphs.

Chi-Square Gives the value of the chi-square statistic computed for each of the indicated tests.
DF Gives the degrees of freedom associated with the chi-square statistic computed for each of the 

indicated tests.
P-Value Gives the p value, or probability of Type I error, based on the chi-square value and the degrees 

of freedom for each of the indicated tests.
Other contents If more than one rank test is enabled, row labels give the names of the corresponding tests.

Sum Weighted Obs. Gives the sum of the weighted observed values for each cell defined by the interaction of the 
specified group and stratification variables.

Sum Weighted Exp. Gives the sum of the weighted expected values for each cell defined by the interaction of the 
specified group and stratification variables.

Contribution Gives the contribution of each cell to a conservative estimate of the overall chi-square statistic. 
Note that this estimate is not the same as the computed value of the overall chi-square statistic 
given in the Rank Test table.
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Templates

The following templates provide nonparametric survival analysis results. 

Survival Analyses Actuarial Analysis Survival summary, actuarial survival, and rank test tables; actuarial 
cumulative survival, density, hazard, and ln cumulative hazard plots.

Kaplan-Meier Analysis Survival, survival summary, and rank test tables; cumulative hazard 
plot, cumulative survival plot, and ln cumulative hazard plots. 
Exercise

In this exercise, you will use the Kaplan-Meier method and rank tests to evaluate differences 
in survival patterns among groups of subjects. Suppose that you must analyze data from a ran-
domized clinical trial that studied whether a certain treatment regimen administered to indi-
viduals suffering from a specific disease delayed the time until relapse. The dataset  
Survival Data in the Sample Data folder contains information on such a trial conducted by 
Embury et al. (1977) at Stanford University (cited in Miller, 1981).The investigators were 
concerned with the efficacy of maintenance therapy for acute myelogenous leukemia (). 
Initially, patients were treated by chemotherapy until remission. Then, these patients were 
randomized into two groups—a treatment group that received maintenance therapy and a 
control group that did not. Individuals in both groups were followed until they suffered a 
relapse, the event of interest in this example. The event time variable is defined as the length 
of time in remission, i.e., the time from entry into the study until relapse.

In this exercise, you will use the nonparametric procedures of this chapter to estimate the sur-
vival functions for both the therapy and control groups and compare survival properties across 
the groups.

• Open  Survival Data from the Sample Data folder

Scroll through the dataset to examine its contents. You will notice three variables: “Monitor 
time (weeks)” gives, for each patient, the elapsed time in weeks from entry into study until 
relapse or cessation of monitoring; “Censored?” is a binary variable with value 1 if the obser-
vation is censored or 0 if relapse was observed; and “Treatment” indicates whether each 
patient was in the control group or received maintenance therapy.

• Choose New View from the Analyze menu

• From the analysis browser, select Survival: Nonparametrics
(This is equivalent to selecting the default results: Summary Table, Survival Statistics, and 
Cumulative Survival Plot.) 

• Click Create Analysis 

The Survival: Nonparametric Methods dialog box now appears on the screen. Notice that 
Kaplan-Meier—the estimation method you want—is selected by default. However, because 
you want to test whether there is a significant difference between the control and maintenance 
therapy groups, you also want to create some rank tests.

• Click the Tests button
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• Check each of the five test checkboxes
(When the Harrington-Fleming checkbox is checked, you can select a value for rho; for 
this example, leave it at the default value of 0.5.)

• Click OK

• In the main dialog box, click OK 

Empty result placeholders now appear on screen. Each result has below it a note instructing 
you to add variables to the analysis using the variable browser. You need to enter the event 
time, censor, and group variables to this analysis before it will compute. 

Because the analysis will not compute until the event time variable is assigned, it is advisable 
to assign “Monitor time (weeks)” last to avoid computation after each variable assignment.

• In the variable browser, select Treatment and click Group

• Select Censored? and click Censor

• Select Monitor time (weeks) and click Time

A G usage marker indicates that Treatment is assigned as the grouping variable. Similarly, a C 
marker shows that Censored? is the censoring variable, and a T shows that Monitor time 
(weeks) is the time variable.

The summary table provides information on the number of patients (observations), observed 
deaths (events), and censored observations in each treatment group. Here we see that there are 
a total of 23 observations, of which 12 are in the control group and 11 are in the treatment 
group that received maintenance therapy. There is one censored observation in the control 
group, and four censored values in the maintenance therapy group.
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Now, scroll down to the Kaplan-Meier survival plot. This graph shows separate Kaplan-Meier 
estimates for each treatment group. It is immediately apparent that the estimated survival 
curve for the maintenance therapy group lies above the estimated survival function for the 
controls, suggesting that individuals receiving therapy take longer to relapse. 

Now let’s take a look at a cumulative hazard plot.

• Make sure at least one of the results is still selected

• From the analysis browser under Survival: Nonparametric Methods, select Cumulative 
Hazard Plot and click Create Analysis

The cumulative hazard plots for the two treatment groups show a pattern consistent with that 
in the cumulative survival plot. The cumulative hazard function for the control group is 
higher than that for the therapy group. Note that, for each group, the slope of the cumulative 
hazard plot becomes slightly steeper as time progresses, suggesting that the risk of relapses 
increases with time from entry into the study.

Now create the log cumulative hazard (or log minus log survival) plot.
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• Make sure at least one of the results is still selected

• From the analysis browser under Survival: Nonparametric Methods, select Ln Cumulative 
Hazard Plot and click Create Analysis

This graph provides some clues about the sort of parametric model (discussed in the next 
chapter, “Survival: Regression,” p. 167) you might wish to use to model these data. Given the 
small sample size, a straight line approximates the data for both groups reasonably well. This 
suggests that a Weibull model may be appropriate to describe the variation in survival times of 
these groups. Furthermore, the slopes of the approximating lines are somewhat greater than 1, 
which suggests that the exponential model (which is a special case of the Weibull) may fit less 
well than the general Weibull model. We return to these considerations in the discussion of 
parametric models in the next chapter.

Although you must be careful not to draw too many conclusions from these graphs, some sug-
gestive patterns do emerge. For example, the log cumulative hazard plots for the two groups 
are roughly parallel, indicating the underlying hazard functions are approximately propor-
tional. However, there is a hint that the log relative hazard for the two groups —as measured 
by the vertical distance between the two curves—decreases over time. This might indicate that 
the beneficial effects of maintenance therapy decline after about 23 to 25 weeks, although a 
substantial therapeutic effect persists through the end of the common monitoring period of 
40 weeks or so. Although there are not enough data to allow thorough examination of such 
conjectures, the analysis suggests valuable questions to be examined in a more definitive study.

Since the plots indicate that the hazard functions are approximately proportional, it is reason-
able to test the equality of the survival estimates from the two groups using the rank tests.

The rank tests table gives the  statistics for the requested tests, with their associated (two-
sided) p values. The results of these tests are qualitatively similar; each test suggests that the 
observed survival difference between the two groups may be real, although the comparisons 
are not statistically significant (at the 0.05 level) probably due to the small sample sizes.
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This is the second of two chapters regarding StatView’s survival analysis tools. The previous 
chapter, “Survival: Nonparametric,” p. 143, introduces survival analysis in general and goes 
on to discuss StatView’s Survival: Nonparametric analyses in particular. This chapter discusses 
the Survival: Regression analyses. 
Regression methods

In the previous chapter, “Survival: Nonparametric,” p. 143, we considered the use of nonpara-
metric methods for estimation of the survival function and for comparison of these estimates 
among specified groups of interest. For cases in which differences among groups can be quan-
tified—for example, by the dosage of a drug—or in which the relation between a variable and 
survival is of interest, it is natural to extend these techniques to regression models. An example 
of a variable—or covariate—that may be associated with survival is age at diagnosis of a cer-
tain disease.

Regression models are widely used with both continuous outcome variables (linear models) 
and outcome variables that are dichotomous or are counts (generalized linear models). For 
survival data that are subject to censoring as described in “Introduction to survival analysis,” 
p. 143, a useful regression model that uses time to event as the dependent variable, is the pro-
portional hazards model, sometimes called the Cox model because it was introduced by 
David Cox in 1972.

The proportional hazards regression model can be described as follows: Consider a covariate, 
denoted by Z. In the baseline group, defined by Z = 0, the hazard function is denoted by 

, but its shape is unspecified in the model. For general levels of the covariate Z, the 
usual regression assumption is that the hazard for such levels is the baseline hazard multiplied 
by an exponential function of Z; that is, 

.

With this assumption, note that the hazard for individuals with is  times the hazard 
in the baseline group for all values of t. In fact, the name proportional hazards model is derived 
from the fact that  is constant over time; this ensures that hazard functions at different lev-
els of the covariate are proportional, with the constant of proportionality dependent on the 
regression coefficient β and the difference in covariate values. The regression coefficient β is 
interpreted as the logarithm of the relative hazard between groups that differ in levels of Z by 

λ0 t( )

λ t Z;( ) λ0 t( )eβZ=

Z 1= eβ

eβ
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one unit; alternatively, the relative hazard induced by increasing Z by one unit is . Note 
that a positive regression coefficient β means that increases in the covariate Z are associated 
with increased hazard and thus with shortened expected event times. Conversely, a negative 
regression coefficient β indicates that increases in Z lead to a lower hazard and longer lifetimes.

In the chapter “Survival: Nonparametric,” p. 143, we discussed nonparametric methods for 
producing survival function estimates, based on data (possibly censored) sampled from a cer-
tain population, without using a priori assumptions regarding the shape of the “true” survival 
function for that population. Parametric models, by contrast, rely on the additional assump-
tion that we know an appropriate family of survival distributions for the population of inter-
est. Since each of the families that we wish to use to describe the survival function has one or 
two unknown parameters that must be estimated, this approach is referred to as parametric 
survival modeling. 

The disadvantage of parametric models is that distortion can be introduced into estimates of 
the survival function if the choice of a parametric family is not appropriate to the population 
under study. However, if our assumed parametric family provides an adequate description of 
the survival function, these estimates can be considerably more precise than those obtained 
from the nonparametric techniques of the chapter “Survival: Nonparametric,” p. 143.

In a fashion similar to that used for proportional hazards models, you can apply regression 
methods with a parametric model. In the case of a parametric model, variation in survival dis-
tributions across covariate groups are specified by a regression equation as in a proportional 
hazards model. However, unlike a proportional hazards model, a parametric model assumes 
prior knowledge of the survival distribution at all levels of the covariate, up to a finite number 
of unknown parameters; these functions are left unspecified in a proportional hazards model. 
For example, with an exponential parametric model, the hazard function is assumed to be 
constant for any value of the covariate, Z, with levels of the constant hazard function deter-
mined by the specific value of Z. Again, the benefit of this kind of parametric regression 
model is increased precision for estimates of regression coefficients; the disadvantage is that 
answers may be biased if your choice of a parametric family (in this case, the exponential 
model) is incorrect.

One consequence of the trade-off between parametric and nonparametric approaches is the 
need to carefully examine whether a parametric model adequately fits the observed data. We 
will elaborate on methods for achieving this in the following discussion.

eβ
Discussion

Proportional hazards model

In examining the results from fitting a proportional hazards regression model to survival data, 
we follow procedures similar to those used for more familiar regression models. It is important 
to understand how to interpret the reported estimates of model parameters, how to test 
hypotheses regarding these parameters, and how to assess the adequacy of the model.
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Parameter estimates in the proportional hazards model
Estimates of covariate coefficients, given by the vector , are interpreted as estimates of the 
log relative hazard associated with a unit increase in the associated covariate, holding all other 
covariates fixed. It follows that  gives the relative hazard for two groups that differ only in 
the relevant covariate, and then only by one unit. Thus, it is helpful to use a suitable choice of 
scale for the covariate so that a unit change provides a meaningful comparison. The relative 
hazard is constant over time, explicitly reflecting the proportional hazards assumption.

There is no explicit intercept term in a proportional hazards model. The role of the intercept 
is played by the baseline hazard function, , which describes the hazard for the group 
whose covariate values are all set to zero. Information on baseline survival properties is pro-
vided by the estimate of the baseline cumulative survival function, .

It is useful to examine various plots associated with the baseline estimate of the survival func-
tion, specifically a cumulative survival plot, a cumulative hazard plot, and a plot of the natural 
log of the cumulative hazard versus log time. The interpretation of these plots is analogous to 
the interpretation of the single group plots discussed in the chapter “Survival: Nonparamet-
ric,” p. 143. These plots can also be used to assess the plausibility of certain parametric models 
for the baseline hazard, and thus they may suggest the use of parametric regression models dis-
cussed under “Parametric models,” p. 171. 

Note that the survival and hazard functions for groups at all levels of the covariates are directly 
related by the proportional hazards assumption to the baseline versions of those functions. 
Specifically, the proportional hazards assumption entails that, whatever the value of the cova-
riates, the shape of the hazard function is the same, with changes only in absolute level. There-
fore, it is often easier to interpret results if the covariates are coded so that the baseline group 
represents a meaningful level of the covariates. For example, if patient age upon entry into a 
study is used as a covariate, it would be helpful to record age as the difference in age from a 
baseline value, such as 50 years old, rather than to record age on its original scale. If you were 
to use values of age in actual years, the baseline group would refer to individuals with age zero 
at the time of entry into the study, which would not provide a meaningful reference group.

β̂

eβ̂

λ0 t( )

S0
Stratified proportional hazard models

In many cases, the proportional hazards assumption is reasonable within certain groups of the 
population, referred to as strata, but not for purposes of comparing individuals from different 
strata. The model can be extended to accommodate such cross-strata comparisons by allowing 
the baseline hazard function to vary across strata. Then, the hazard function for the ith stra-
tum, specified by the model, is given by . Estimates of regression coefficients are 
interpreted just as in the unstratified case. Now, however, estimates of the baseline cumulative 
survival function (associated with ) are provided for each stratum.

λ0i t( )eβZ

λ0i
Significance tests and confidence intervals

Standard hypotheses of interest in the context of a proportional hazards regression model con-
cern the association of a specific covariate or group of covariates with survival. For example, in 
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a randomized clinical trial, a primary question is whether treatment is associated with longer 
survival. Such qualitative hypotheses are accommodated in the model by setting the relevant 
regression coefficients β to zero. As in linear regression models, the null hypothesis  
can be examined by any one of three procedures—the Wald test, the score test, and the likeli-
hood ratio test. These tests should yield similar results in large samples; in small samples, the 
likelihood ratio procedure is usually the method of choice.

Since relative hazard comparisons, as measured by , are easier to interpret, confidence inter-
vals are given for  for each covariate in the regression model.

β 0=

eβ

eβ
Residual plots

An important part of regression modeling is the assessment of how well the regression model 
fits the data. Typically, the goodness of fit of a proportional hazards model is examined with 
plots of residuals. 

A graph of so-called martingale residuals plots those residuals against the fitted value of the 
linear predictor (i.e., , which is the sum of the products of each covariate multiplied by 
the respective regression coefficient), for each case in the dataset. Similarly, the graph of devi-
ance residuals plots those residuals against the fitted value of the linear predictor and provides 
an alternative view of the goodness of fit of the entire model to the data. Residuals of this kind 
are analogous to residuals in linear regression, quantifying, for each data point, the difference 
between an observation and its predicted value based on the fitted model. StatView also allows 
you to save these residuals, as well as the score residuals, to a dataset. Once saved, residuals 
can also be graphed against covariates singly or against the event time variable.

Martingale, deviance, and score residuals
The values of martingale residuals lie between –∞ and 1. If the fitted model is adequate, the 
martingale residuals are uncorrelated with each other and have an average value of zero. 
Unlike residuals derived in linear models, however, martingale residuals are not symmetrically 
distributed about zero. Therefore, some care and experience is necessary in examining these 
plots. Another type of residuals, available only for proportional hazards models, are deviance 
residuals, which can span the entire range of real values and are much more symmetrically dis-
tributed about zero if the fitted model is adequate. For these reasons, plots of deviance residu-
als may be easier to interpret than plots of martingale residuals.

Unlike martingale and deviance residuals, score residuals are computed for each covariate—
thus, the score residual associated with a specific covariate directly reflects the adequacy of the 
model to describe the association of that particular covariate with the risk of failure. Score 
residuals tend to be closer to zero for censored observations; for uncensored cases, they repre-
sent the deviation of the observed covariate value from a weighted average of covariate values 
in the risk set at the observed failure time for that case.

β̂′Z
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Interpreting residuals
In general, these residual plots are interpreted very similarly to residual plots in simple linear 
regression analysis. First, the residual plot should be examined to see if there are unusually 
large values of the residuals for certain data points. These cases might be examined to deter-
mine whether they possess any unusual characteristics. Furthermore, it is often instructive to 
fit the regression model with such data points excluded, to assess the effect of these cases on 
estimated regression coefficients and relevant hypothesis tests. 

Second, unless you detect a systematic pattern of the residuals in these plots, you can assume 
that the model fits the data reasonably well. The appearance of certain patterns in residual 
plots does not always mean that the model is completely inappropriate, however; it may sug-
gest that slight modifications to the model may improve the fit. For example, in the case of a 
single covariate Z, curvature in the residual plot may indicate that it is preferable to use a 
transformed scale for Z or that one should include polynomial terms such as in the model. 
Similarly, clusters of large residuals for small values of suggest that the model might be 
inadequate when t is large or small. Patterns in residual plots can also indicate that the hazard 
functions are not proportional among all levels of a particular covariate, i.e., that the assump-
tion of proportional hazards is inappropriate. In such cases it can be worthwhile to stratify the 
model by the problematic covariate if this covariate is not of primary interest (i.e., if parame-
ter estimates for this covariate are unnecessary). Viewed in this way, stratification allows you to 
“get around” the proportional hazards assumption by stratifying the model on those variables 
for which the proportional hazards assumption does not hold. For a stratified model, the 
residuals from different strata are plotted with different symbols in the same graph. This 
allows you to evaluate the adequacy of the model within each stratum.

When several covariates have been included in the model, it is useful to save the residuals to a 
dataset so that they can be plotted against each covariate in turn, using bivariate plots. In 
addition, a plot of residuals against the case (row) number or identification number can be 
useful (for instance, for determining if there is a lack of fit for individuals entering the study at 
certain times). Finally, plotting the residuals against a covariate not included in the model is 
valuable for helping you determine whether you should add the covariate to the model. In 
particular, if a new covariate should be added to the model to improve the fit, residual plots 
against this covariate should display some pattern or correlation; absence of a pattern suggests 
that the new covariate will add little to the model’s ability to explain the observed failure pat-
terns in the data.

If the model accurately captures the covariate’s effect on failure, then the score residuals for 
that covariate should appear as a random pattern about zero. Note that if the covariate is an 
indicator variable associated with a discrete variable, such as gender, then the score residuals 
for that covariate against failure time will appear as two horizontal bands on either side of 
zero, with all score residuals for censored observations tending to be closer to zero.

Z2

β′Z
Parametric models

We now turn to the use of parametric models to describe both survival properties of a single 
population and the variation of these properties across levels of covariates. Since the way to fit 
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a single parametric population model in StatView is to create the appropriate parametric 
regression model with no covariates, we begin with such models.

StatView allows you to use various parametric families to describe survival functions either for 
an entire population or as part of a regression model. The choice of an appropriate model 
depends on prior knowledge of the survival process under investigation, useful interpretation 
of model parameters, and the model’s ability to adequately fit the observed data. Understand-
ing the basic properties of different parametric families is helpful for suggesting a reasonable 
initial choice of a parametric model.

Four parametric models are available in StatView; these are the exponential family, the 
Weibull family, the lognormal family, and the loglogistic family. An exponential distribution 
requires specification of a single parameter and has a constant hazard function. The other 
three families require two parameters to describe their properties and each possesses more flex-
ible hazard functions than does the exponential family. The Weibull hazard function is either 
strictly increasing, strictly decreasing, or constant. If the hazard is constant, then the Weibull 
reduces to an exponential model; that is, the exponential model is a special case of the Weibull 
family. Further possibilities are allowed in the other two families, the lognormal and the loglo-
gistic. In the lognormal family, the hazard function increases from 0 at to a maximum 
and then decreases towards 0 again as t becomes large. For the loglogistic model the hazard 
function either always decreases or resembles the lognormal in that it can increase to a maxi-
mum before declining back to zero for large t. 

Parametric regression models 
Each of the four parametric families mentioned above can be extended to account for the 
effects of covariates through use of a parametric regression model. It is standard in parametric 
models to use a model somewhat different from the proportional hazards model introduced in 
“Proportional hazards model,” p. 168, although, as discussed below, in some cases the models 
coincide. 

In particular, for each of the parametric models, it is possible to write the failure time random 
variable in the form , where the error variable W has mean zero and con-
forms to the distribution of the specific model under consideration. When covariates are 
present, this suggests the regression model 

, 

where Z is the vector of covariates, yielding a regression model that is linear in the logarithm of 
time to an event. For each of the four families, we can fit this regression model using standard 
parametric techniques.

These regression models—often referred to as accelerated failure time models—are log-linear 
in T, so the regression coefficients β have the following interpretation: If is the coefficient 
corresponding to the jth covariate , then a unit increase in  induces a multiplicative 
change of  in the time to failure, if all other covariates are fixed. That is, if is the ran-
dom variable measuring time to failure when , then 
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gives the time to failure at an arbitrary level of , again all other things being equal. Note 
that if the regression coefficient  is positive, increases in the covariate  reflect increases in 
the time to an event and therefore reflect increasing lifetimes. This is in contrast to propor-
tional hazards models, for which increasing values of covariates with positive coefficients 
imply decreasing lifetimes. 

For exponential and Weibull families, the accelerated failure time regression model accommo-
dates a different parameterization and interpretation, which are consistent with the formula-
tion of the proportional hazards model. We will refer to this alternative parameterization as 
the relative hazard parameterization, as contrasted with the log time parameterization that 
StatView uses for all parametric models. This relative hazard parameterization for Weibull and 
exponential families is as follows. For these families, using the model  
is equivalent to assuming that, for individuals with covariate value Z, the hazard function is 

, for a suitable choice of γ, the hazard function  takes either the exponential 
or Weibull form. Thus, the exponential and Weibull accelerated failure time regression models 
are special cases of the proportional hazards model. The difference in the parametric analyses 
is that they take advantage of a specified shape for the baseline hazard function, whereas this is 
left unspecified in the general version of the proportional hazards model. Note that in the rel-
ative hazard parameterization, the regression coefficients differ from those provided by the log 
time parameterization. Specifically, for a given covariate, the regression coefficients provided 
by the log time parameterization (β) equal the negatives of the relative hazard coefficients (γ) 
for exponential models, and, for Weibull models, the coefficients (β) equal the negatives of 
the relative hazard coefficients (γ) multiplied by the scale parameter (σ). In either case, the 
coefficients provided by the two alternative parameterizations will have different signs; this is 
because a covariate associated with increasing the time to failure T must consequently reduce 
the hazard or risk of failure and vice versa. To reiterate, StatView provides only the log time 
parameter estimates for Weibull and exponential models. The conversion given above, how-
ever, allows you to compute relative hazard estimates for comparison with fitted proportional 
hazards models. The Weibull family, including the exponential as a special case, is the only 
parametric family for which the accelerated failure time model and the proportional hazards 
model are consistent. For example, in the accelerated failure time model based on the loglogis-
tic or lognormal families, the hazard functions for different levels of the covariates are not pro-
portional.

Fitting a parametric survival family for a single population
In many preliminary data analyses, it will be valuable to fit a specific parametric family to sur-
vival data without adjusting for covariates. This is accomplished by fitting the appropriate 
regression model without adding any covariates. Thus, to model a sample of data assumed to 
be taken from a lognormal population, you would create the lognormal regression analysis 
without assigning any covariates with the variable browser.

Significance tests and confidence intervals
As discussed above, a parametric regression model is fit using standard parametric techniques. 
These methods yield estimates of the log time regression coefficients β and, if appropriate, 
estimates of the scale parameter necessary to fit the modeled distribution for the error term W 
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in the regression model. Significance tests for null hypotheses involving one or more of the 
regression coefficients are carried out in exactly the same fashion as for proportional hazards 
models. If requested, confidence intervals are given for coefficients , which describe the 
multiplicative effect on the time to event of a unit change in the corresponding covariate , 
if all other covariates are held fixed. Neither confidence intervals nor coefficient significance 
tests are available for stepwise models.

Plots for checking your models 
As for proportional hazards models, it is important to assess whether a parametric regression 
model adequately fits observed survival data. Specifically, you might determine that the addi-
tional assumption of a specific parametric model for the error term in the log-linear model is 
inappropriate after examination of the data.

In the single group situation, you can assess the selected parametric family in a variety of ways. 
First, it is informative to compare the fitted survival curve based on the parametric assump-
tion to the model-free Kaplan-Meier estimate discussed in the chapter “Survival: Nonpara-
metric,” p. 143. Discrepancies in these two estimates of the underlying cumulative survival 
function may indicate that the parametric model is inadequate and may suggest why the 
model fits poorly and thus indicate a more suitable choice of parametric family. If preferred, 
similar comparisons can be carried out using plots of the cumulative hazard or log cumulative 
hazard functions. In the case of the Weibull family, the log cumulative hazard plot against 
log(t) will be linear; this allows it to be easily compared with the same plot based on the 
Kaplan-Meier estimator. In the special case of an exponential model, the log cumulative haz-
ard plot should be both linear and have a slope of one. For example, if the Kaplan-Meier ver-
sion of the log cumulative hazard plot is roughly linear, but with a slope other than one, then 
an exponential model is inappropriate, although a Weibull model might be suitable.

As with proportional hazards models, you can estimate the baseline cumulative hazard plot as 
well as the regression coefficients for parametric regression models. This is a model-based esti-
mate of the survival function for the group in which all covariates are zero. As in the single 
group case, these plots, and their cumulative hazard counterparts, can be examined to investi-
gate the suitability of the parametric assumption in the accelerated failure time regression 
model.

To graphically check how well a parametric model describes observed survival data, it is help-
ful to create quantile plots. The idea of these plots is to compare the observed quantiles of the 
distribution of the data points with estimated quantiles based on the particular parametric 
model. Specifically, in the case of a single population (i.e., a model without covariates), the 
quantile plot graphs the parametric estimate of the quantiles against the observed values, the 
latter obtained from the Kaplan-Meier estimate of the survival function. If the parametric 
model is appropriate, the plotted points should lie, approximately, on a straight line with a 
slope equal to one. In the regression setting (i.e., for models with covariates), the same tech-
nique can be used but now applied to standardized residuals of the observed survival times in 
order to remove the effects of the covariates. Again, if the particular parametric family under-
lying the regression model is reasonable, the plotted points should be close to a straight line 
with a slope of one.

e
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StatView also allows you to create martingale residual plots and to save these residuals to a 
dataset. Again, martingale residuals can be investigated to expose unusually large residuals and 
can be saved and plotted against observed failure times, covariates included in the model, and 
covariates not included that are potential candidates to add to the model.
Dialog Box Settings

Survival: Regression Models dialog box
The settings in this dialog box control the computation and display of all results within the 
Survival: Regression Models header in the analysis browser. By default, this dialog box is 
accessed by clicking the Create Analysis button after choosing any result within the Survival: 
Regression Models header in the analysis browser. If you prefer, the more choices version of 
this dialog box can be made the default by changing the setting of the Survival Analysis Pref-
erences dialog box (see “Survival Analysis preferences,” p. 230 of Using StatView). The fewer 
choices version of this dialog box also can be accessed by clicking the Fewer choices button in 
the more choices version of the Survival: Regression Models dialog box.

Model This pop-up menu allows you choose among various regression models. The available 
models are: Proportional Hazards (the default), Exponential, Weibull, Lognormal and Loglo-
gistic.

Confidence level This text field allows you to set the confidence level used to compute the 
confidence intervals displayed in the Confidence Intervals Table. The default is 95 percent 
confidence limits. This option is inactive for stepwise models.

Survival plots show These checkboxes allow you to specify the data that are displayed on any 
cumulative survival plots that are created. If the Event times checkbox is enabled (the default), 
symbols indicating the occurrence of uncensored events are plotted on cumulative survival 
plots. If the Censor times checkbox is enabled, symbols indicating the occurrence of censored 
events are plotted on cumulative survival plots.

Add Kaplan-Meier estimates to baseline These checkboxes allow you to add the correspond-
ing Kaplan-Meier estimates to baseline regression model plots and tables. Enabling the Plots 
checkbox adds the Kaplan-Meier estimates to the Baseline Cumulative Survival Plot, Baseline 
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Cumulative Hazard Plot, and Baseline Ln Cumulative Hazard Plot. Enabling the Tables 
checkbox adds the Kaplan-Meier estimates of the cumulative survival, cumulative hazard, and 
the natural log of the cumulative hazard to the Baseline Survival Table. It also adds these 
quantities to the baseline survival dataset, if the Create baseline survival dataset checkbox is 
enabled in the more choices version of this dialog box.

Stepwise variable selection Checking this box enables forward stepwise variable selection. 
Checking this option is equivalent to choosing Forward from the Stepwise pop-up menu in 
the more choices version of the Survival: Regression Models dialog box. Furthermore, this 
checkbox is also enabled if Backward is chosen from the Stepwise pop-up menu in the more 
choices version of the Survival: Regression Models dialog box. For more control over stepwise 
model parameters, click the More Choices button. 

Tests If two or more covariates have already been specified, clicking this button opens the 
Joint Significance Tests dialog box; otherwise, a warning dialog box appears. The Joint Signif-
icance Tests dialog box is described under “Joint Significance Tests dialog box,” p. 179.

More choices Clicking this button opens the more choices version of the Survival: Regression 
Models dialog box. This dialog box is described immediately below.

More choices

Additional options are available in the More choices dialog box. By default, this dialog box is 
accessed by clicking the More choices button in the fewer choices version of the Survival: 
Regression Models dialog box. If you prefer, this more choices version of the Survival: Regres-
sion Models dialog box can be made the default by changing the setting of the Survival Anal-
ysis Preferences dialog box (see“Survival Analysis preferences,” p. 230 of Using StatView).

Stepwise This pop-up menu allows you to choose among standard (non-stepwise), forward 
selection, and backward selection stepwise regression models. If the Don’t use option is chosen 
(the default), the standard model is enabled. If the Forward option is chosen, a forward step-
wise model is enabled. If the Backward option is chosen, a backward stepwise model is 
enabled. If either stepwise option is enabled, the Enter p and Remove p text fields are acti-
vated. Either stepwise model deactivates the Confidence level and Tests items.

Enter p This text field allows you to set the p value that determines entry of specified covari-
ates in a stepwise model. The unentered covariate with the smallest p value below this critical 
value is entered into the model on the next step. This Enter p value must be between 0 and 1, 
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and less than or equal to the Remove p value. The default value is 0.05. This text field is active 
only after a stepwise model is enabled.

Remove p This text field allows you to set the p value that determines removal of specified 
covariates in a stepwise model. Except for forced covariates (which are never removed from a 
model) the covariate in the model with the largest p value greater than this critical value is 
removed from the model on the next step. This value may be any value greater than or equal 
to the Enter p value and less than 1. The default value is 0.05. This text field is active only 
after a stepwise model is enabled.

Add columns to dataset This pop-up menu allows you to save specific computed values to 
the dataset as analysis generated variables. All computed values are evaluated at the corre-
sponding values of the event time variable and all covariates in the model. 

If the None option is chosen (the default), no columns are saved to the dataset. The following 
table indicates those values saved to the dataset with the Default and Complete options 
enabled:

Note that all Kaplan-Meier estimates are computed as if there were no covariates in the 
model.

By choosing the Specify… option, the Survival Columns dialog box appears, allowing you to 
choose which columns to save to the dataset; see “Survival Columns dialog box,” p. 178. 

Create baseline survival dataset Checking this box creates a separate dataset with all of the 
computed values in the baseline survival table. The contents of this dataset are partially con-
trolled by the Add Kaplan-Meier estimates to baseline: Tables checkbox.

Tests If two or more covariates have already been specified, clicking this button opens the 
Joint Significance Tests dialog box; otherwise, a warning dialog box appear; see “Joint Signifi-
cance Tests dialog box,” p. 179.

Est. Pars. Clicking this button opens the Estimation Parameters dialog box; see “Estimation 
Parameters dialog box (proportional hazards),” p. 180 and “Estimation Parameters dialog box 
(parametric models),” p. 181.

Fewer choices Clicking this button opens the fewer choices version of the Survival: Regres-
sion Models dialog box, discussed above.

Default columns Additional columns for Complete

Regression estimate of the cumulative survival function
Regression estimate of the cumulative hazard function
Regression estimate of the natural log of the cumulative 
hazard function

KM estimate of the cumulative survival function
KM estimate of the cumulative hazard function
KM estimate of the natural log of the cumulative hazard 
function
Linear predictor of the regression estimate
Standard error of the linear predictor
Martingale residuals
Deviance residuals (proportional hazards models only)
Score residuals (proportional hazards models only)
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Survival Columns dialog box
This dialog box is accessed by choosing the Specify option from the Add columns to dataset 
pop-up menu in the more choices version of the Survival: Regression Models dialog box.

Add to dataset (Proportional Hazards/Parametric Models) Items that are checked in this 
scrolling list will appear in the dataset containing the event time variable. An item is checked 
or unchecked by clicking in the box to the left of the item, or by selecting any combination of 
items, then clicking the Check/Uncheck button. Shift-click and Control-click (Windows) or 
Command-click (Macintosh) to select multiple items.

Note that many of the items in this list are followed by “(KM),” which indicates the Kaplan-
Meier estimate of the preceding quantity. Those items with no parenthetical suffixes are esti-
mates of the type indicated in the Model pop-up menu in the Survival: Regression Models 
dialog box.

If the chosen regression model is proportional hazards, this scrolling list includes Deviance 
Residuals and Score Residuals. If the chosen regression model is one of the parametric models, 
deviance and score residuals are not available.

Check/Uncheck This button allows you to check or uncheck items selected in the Add to 
dataset (Proportional Hazards/Parametric Models) scrolling list. If any of the selected items 
are unchecked, clicking this button will check them. If all of the selected items are checked, 
the button name changes to Uncheck; clicking it unchecks the selected items. This button is 
disabled if no items in the scrolling list are selected.
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Joint Significance Tests dialog box
This dialog box is accessed by clicking the Tests button in either the fewer or more choices 
versions of the Survival: Regression Models dialog box. Important: this dialog box does not 
appear unless two or more covariates have already been specified. Also note that joint signifi-
cance tests are not computed for stepwise models.

Note that joint significance tests only evaluate whether combinations of covariates, or levels of 
nominal covariates, make a significant contribution to a particular regression model. If instead 
you are interested in testing for differences among covariate coefficients, or weighted combi-
nations of these coefficients, please see “How can I make comparisons among coefficients for 
linear hypotheses?,” p. 248 of Using StatView.

Tests to perform These checkboxes allow you to choose among any combination of Wald, 
Score and Likelihood ratio tests of the hypotheses appearing in the Subsets to test scrolling 
list.

Covariates This scrolling list shows all covariates (each preceded by a number) that have 
been previously specified using the variable browser. The covariates you select from this list are 
used to construct the joint significance tests. This list is inactive unless one or more of the 
Tests to perform checkboxes is enabled.

Test When this button is clicked, the covariates selected in the Covariates scrolling list are 
added as a defined subset to the Subsets to test scrolling list. If no covariates are selected, this 
button is inactive.

Subsets to test This scrolling list shows all defined combinations of covariates that are to be 
evaluated by the tests enabled with the Tests to perform checkboxes. If none of the tests is 
enabled, this list is inactive.

Remove Clicking this button removes the covariate subsets selected in the Subsets to test 
scrolling list. If no covariate subset is selected, this button is inactive.

To construct a subset to be evaluated by the selected tests, Control-click (Windows) or Com-
mand-click (Macintosh) those covariate(s) in the Covariates scrolling list whose joint signifi-
cance you wish to test, then click the Test button. The numbers preceding these covariates 
then appear on a single line in the Subsets to test scrolling list. Each line in the Subsets to test 
scrolling list represents a separate hypothesis that will be evaluated by the tests enabled with 
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the Tests to perform checkboxes. An example, showing that three different hypotheses have 
been defined, is illustrated below.

In this example, the three hypotheses that have been specified are in the Subsets to test scroll-
ing list. The first hypothesis tests the significance of excluding the covariate Gender from the 
model. It was specified by selecting “1: Gender” from the Covariates scrolling list, then click-
ing the Test button. The second hypothesis tests the significance of excluding both “Gender” 
and “Medication” from the model. It was specified by command-clicking on “1: Gender” and 
“4: Medication” from the Covariates scrolling list, then clicking the Test button. The third 
hypothesis tests the significance of excluding both “Smoking History” and “Alcohol Use” 
from the model. It was specified by shift-clicking on “2: Smoking History” and “3: Alcohol 
Use” from the Covariates scrolling list, then clicking the Test button. All three hypotheses will 
be evaluated with both the Wald and likelihood ratio tests.
Estimation Parameters dialog box (proportional hazards)
This dialog box is accessed by clicking the Est. Pars. button in the more choices version of the 
Survival: Regression Models dialog box. It appears only if Proportional Hazards is selected 
from the Model pop-up menu. If one of the parametric models is chosen, the parametric 
models version of this dialog box appears.

Initial coefficients This pop-up menu allows you to specify initial values for the model coef-
ficients before the iterative fitting process begins. If the Zero option is chosen (the default), all 
coefficients are initially set to 0. If the Specify… option is chosen and at least one covariate 
has already been specified, the Coefficient Initial Values dialog box appears; otherwise, a warn-
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ing dialog box appears. The Coefficient Initial Values dialog box allows you to set specific ini-
tial values for each regression coefficient; see “Coefficient Initial Values dialog box,” p. 182.

Convergence criterion This text field allows you to set a value for the iterative convergence 
criterion. If the relative change in the partial likelihood function between iteration steps is less 
than this value, the model-fitting process stops. You may enter any value greater than 0 and 
less than 1; the default value is 0.000001. Smaller values of this parameter result in the same 
number or more iterations as previous fits of the same data, while larger values result in the 
same number or fewer iterations.

Maximum iterations This text field allows you to set a value for the maximum number of 
iterations for the fitting process. The fitting process stops after this number of iterations, even 
if the convergence criterion has not been satisfied. You may enter any non-negative integer in 
this field. The default value is 25.

Important: if large values are entered for Maximum iterations, or very small values for Conver-
gence criterion, the time required to fit a model may increase significantly. We suggest that 
you edit these values with caution.

Tolerance This text field allows you to set a value for the sweep tolerance. When a “pivot” is 
less than this tolerance, the model-fitting process stops and an error message appears. The tol-
erance value is useful for detecting multicollinearity among independent variables. You may 
enter any value greater than 0 and less than 1. The default value is 0.0000000001 (i.e., 

). Higher tolerance values reduce the model’s tolerance of colinearity among indepen-
dent variables and make abortion of the fitting process more likely. We suggest you edit this 
value cautiously.

If you wish to see how well specific coefficients fit your data, you can specify coefficient values 
using the Specify… option in the Initial coefficients pop-up menu, then set Maximum itera-
tions to 0, then run the model.

10 10–
Estimation Parameters dialog box (parametric models)
This dialog box is accessed by clicking the Est. Pars. button in the More choices version of the 
Survival: Regression Models dialog box. It appears only if one of the four parametric models is 
selected from the Model pop-up menu. If Proportional Hazards is chosen from the Model 
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pop-up menu, the proportional hazards version of this dialog box appears (see “Estimation 
Parameters dialog box (proportional hazards),” p. 180). 

Initial coefficients This pop-up menu allows you to set the values for the model coefficients 
before the iterative fitting process begins. If the  option is chosen, all coefficients are ini-
tially set to their ordinary least squares estimates. If the Zero option is chosen (the default), all 
coefficients are initially set to 0. If the Specify… option is chosen and at least one covariate 
has already been specified, the Coefficient Initial Values dialog box appears; otherwise, a warn-
ing dialog box appears. The Coefficient Initial Values dialog box allows you to set specific ini-
tial values for each regression coefficient. This dialog box is described below.

Intercept This pop-up menu allows you to set a value for the model intercept term. If the Ini-
tial  option is chosen, the intercept is initially set to its ordinary least squares estimate. If 
the Initial option is chosen (the default), you may enter an initial value for the intercept in the 
text field following the pop-up menu. The default initial value is 0. If the Fixed option is cho-
sen, you may enter a fixed value for the intercept, which the fitting procedure will not change. 

Scale This pop-up menu allows you to set values for the model scale term. If the Initial  
option is chosen, the scale term is set to its ordinary least squares estimate. If the Initial option 
is chosen (the default), you may enter an initial value for the scale term in the text field follow-
ing the pop-up menu. The default initial value is 1. If the Fixed option is chosen, you may 
enter a fixed quantity for the scale term, which the fitting procedure will not change. This 
pop-up is inactive if the Model pop-up menu is set to Exponential.

Convergence criterion, Maximum iterations, and Tolerance These text fields all function 
identically to those in the proportional hazards version of this dialog box. For more informa-
tion about these parameters, see “Estimation Parameters dialog box (proportional hazards),” 
p. 180.

Don’t transform time variable Enabling this checkbox prevents the parametric fitting proce-
dure from log transforming the event time variable before fitting the model. This allows the 
use of previously log transformed event time variables in accelerated failure time models.
Coefficient Initial Values dialog box
This dialog box is accessed by choosing the Specify… option from the Initial coefficients: 
pop-up menu in the Estimation Parameters dialog box. Important: this dialog box does not 
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appear unless at least one covariate has already been specified; otherwise, a warning dialog box 
appears.

Covariates Coefficients This scrolling list shows all covariates (or in the case of nominal 
covariates, all except the last level of the covariate) that have been previously specified using 
the variable browser, as well as their initial values. To change the initial value of a covariate (or 
of a level of a nominal covariate), you must first select it from this scrolling list.

Coefficient initial value This text field allows you to edit the initial value of any covariate (or, 
in the case of nominal covariates, all except the last group level of the covariate) that has been 
previously specified using the variable browser. After selecting from the scrolling list the item 
whose initial value you wish to edit, enter the new value in this text field, then click the Spec-
ify button to change the initial value to the value you have entered.

Specify Clicking this button changes the initial value of the item selected in the scrolling list 
to the value that is in Coefficient initial value text field.

For nominal covariates, the coefficients associated with each group level should be thought of 
as values relative to the last group level specified in the covariate. This is a consequence of the 
convention used in StatView that the value of the coefficient for this last group level is 
always 0.

Because of this convention, we suggest the following: the group level with which you want the 
other group levels compared should be created last when you are formatting and entering your 
data. For example, if you wish to model the effect of a nominal covariate that has a control 
group and three treatment groups, then you probably want to compare the effect of the treat-
ments to the control. Therefore, when creating this nominal variable, you should use a cate-
gory that has Control as the last defined group level, as pictured below.
Data requirements

Except for the replacement of the group variable with the covariate variable(s), data organiza-
tion and variable types for survival analysis regression models are very similar to those for non-
parametric survival analyses. There are two major differences, however: The first is that among 
the regression models, only proportional hazards models accept a stratification variable. Strat-
ification variables are ignored by the parametric (Weibull, exponential, lognormal, and loglo-
gistic) regression models. The second difference, pertaining to the use of covariates in 
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regression models, in contrast to the use of the group variable in nonparametric analyses, is 
summarized in the next paragraph. For a discussion of event time and censor variables, please 
see“Data requirements,” p. 157.

As suggested above, survival analysis regression models require the specification of an event 
time variable and, in some cases, at least one covariate variable, hereafter referred to as a cova-
riate. (Specifically, proportional hazards models require at least one covariate, while the covari-
ate is optional in parametric models.) Like the group variable used in nonparametric survival 
analyses, the covariate may be used to indicate study or treatment groups in regression mod-
els. Unlike the group variable, however, covariates can be either nominal or continuous, and 
you may specify more than one covariate in a single model. Regression models also allow one 
or more covariates to be forced into stepwise models. 

The following picture shows a dataset with all variables properly formatted and ready for 
entry in a survival analysis regression model.

The following shows how to use the buttons in the variable browser to assign these variables 
to a survival regression model.

Variable browser buttons

Time Select one event time variable (continuous), then click the Time button. Usage is indicated by a 
T in the variable browser.
A second continuous variable assigned with the Time button is used as a new event time 
variable. This creates a new analysis using all previously specified censor, covariate, stratification 
and split by variables.

Censor Select one censor variable (nominal), then click the Censor button. Acceptable values are 0 
(must be Type: Integer or Real), or Uncensored (Type: String or Category) for uncensored 
observations, and any other numeric value or Censored to indicate censored observations. Usage 
is indicated by a C in the variable browser. NOTE: The Survival Analysis Preferences dialog box 
allows you to change the meaning of values in the censor variable so that 0 indicates censored 
observations. See “Survival Analysis preferences,” p. 230 of Using StatView for details.
Each additional censor variable creates a new analysis using all other variables already 
specified.

Covariate Select one or more covariates (nominal or continuous), then click the Covariate button. Usage is 
indicated by an X in the variable browser.
Each additional covariate is added to the analysis.
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If you routinely create analyses first, then assign variables, you will find that the analyses will 
begin computing as soon as you have specified an event time variable and, for proportional 
hazards models, a covariate. This may be unduly time consuming, especially if you must then 
assign additional covariates, censor, and stratification variables. To avoid this, do one of the 
following: (1) assign variables first, then create your analyses; (2) always assign the event time 
variable after all other variables have been assigned; or (3) disable the Recalculate box in the 
view before adding variables, then enable it once variable assignment is complete. If you 
choose to assign variables before creating the analysis, you can configure the variable browser 
by de-selecting all results in the view, then clicking on any item within the Survival: Regres-
sion Models header in the analysis browser.

Force Select one or more covariates (nominal or continuous), then click the Force button. Necessary 
only for forcing entry of a covariate into a stepwise model. If stepwise is not specified in the 
Survival: Regression Models dialog box, forced covariates are treated like any other covariate. 
Usage is indicated by an F in the variable browser.
Each additional forced covariate is added to the analysis.

Strata Select one stratification variable (nominal), then click the Strata button. The stratification 
variable, if specified, is used only by the proportional hazards regression model; it is ignored by 
the parametric regression models. Usage is indicated by the symbol # in the variable browser.
For proportional hazards models, each additional stratification variable creates a new 
proportional hazards analysis using all other variables already specified.

Split By When you assign one or more split-by variables (nominal) to a survival analysis regression 
model, results are displayed separately for each cell defined in the split-by variable(s). Usage is 
indicated by an S in the variable browser.
Results

Default Results

Default results are those created by selecting the Survival: Regression Models header in the 
analysis browser. They can also be selected individually by opening the Survival: Regression 
Models header.

Summary Table
This table is created by selecting the Summary Table item within the Survival: Regression 
Models header in the analysis browser.

# Obs Gives the total number of valid observations for which no variable specifications are missing.
# Events Gives the number of valid uncensored event times.
# Censored Gives the number of censored observations in the event time variable.
% Censored Gives the percentage of event times that are censored, relative to the total number of valid 

observations in the event time variable.
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Global Null Hypothesis Tests Table
This table is created by selecting the Summary Tables item within the Survival: Regression 
Models header in the analysis browser.

Stepwise Summary Table (stepwise only)
This table is produced whenever one of the two stepwise methods is enabled in the Survival: 
Regression Models dialog box. It does not require selection of the Summary Tables item 
within the Survival: Regression Models header in the analysis browser.

Model Coefficients Table
This table is created by selecting the Model Coefficients Table item within the Survival: 
Regression Models header in the analysis browser. Information for each continuous covariate 

# Missing Gives the number of observations with missing variable specifications.
# Invalid Gives the number of observations with invalid variable specifications, due, for instance, to 

negative values of the event time variable, or to uninterpretable values in the censor variable.
Other contents Labels to the left of each row are stratum names, if the stratification variable has been 

specified.

Chi-Square Gives the chi-square statistic computed for the indicated test. Evaluates the significance of 
simultaneous exclusion of all covariates from the model.

DF Gives the degrees of freedom for the associated chi-square statistic.
P-Value Gives the p value (the probability of rejecting a true null hypothesis) for the associated chi-

square statistic.
Other contents Labels to the left of each row indicate the tests that are computed.

P-to-Enter Gives the value entered in the Enter p text field in the more choices version of the Survival: 
Regression Models dialog box.

P-to-Remove Gives the value entered in the Remove p text field in the more choices version of the Survival: 
Regression Models dialog box.

Number of Steps Gives the total number of variable entry and removal steps required to satisfy the specified P-
to-Enter and P-to-Remove criteria.

Variables Entered Gives the total number of covariates (forced and unforced) in the model at the conclusion of 
the stepwise procedure.

Variables Forced Gives the number of covariates forced into the model using the Force button in the variable 
browser.
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occupies one row of this table; information for each nominal covariate occupies one row of 
the table plus one additional row for each covariate level.

Variables Not In Model Coefficients Table (stepwise only)
This table is produced only if one of the two stepwise methods is enabled in the Survival: 
Regression Models dialog box. It is created by selecting the Model Coefficients Table item 
within the Survival: Regression Models header in the analysis browser.

Baseline Cumulative Survival Plot
This graph is created by selecting the Cumulative Survival Plot item within the Survival: 
Regression Models header in the analysis browser. 

DF Gives the degrees of freedom associated with each continuous covariate, or with each level of 
each nominal covariate. For parametric models, also gives the degrees of freedom associated 
with the intercept and scale parameters.

Coef Gives the model estimate of the regression coefficient associated with each continuous covariate, 
or with each level of each nominal covariate. For parametric models, also gives the model 
estimate of the intercept and scale parameters.

Std Error Gives the estimates of the asymptotic standard error about each coefficient.
Coef/SE Gives the values of each coefficient divided by its standard error.
Chi-Square Gives the values of the chi-square statistic associated with the hypothesized exclusion of the 

individual continuous covariates or with each level of each nominal covariate.
P-Value (P-to-Remove 
if stepwise)

Gives the p value (probability of rejecting a true null hypothesis) for the associated chi-square 
statistic.

Exp(Coef) Gives the value of ecoef for each estimated coefficient. This quantity gives a more easily 
interpreted measure of the relative effect on the model of the individual coefficients than do 
the untransformed coefficients.

Other contents Row labels are the names of each covariate, or level for nominal covariates. 

P-to-Enter Gives the p value associated with any assigned covariates not entered in the model.

Plotted line(s) These give the estimated value of the baseline cumulative survival function for each specified 
stratum. 

Plotted points When present, these give the time and corresponding value of the baseline cumulative survival 
function for censored and uncensored events. Display of these events is controlled by Survival 
plots show checkboxes in the Survival: Regression Models dialog box. If Add Kaplan-Meier 
estimates to baseline: Plots is enabled in the Survival: Regression Models dialog box, plotted 
points also show the Kaplan-Meier estimate of the survival function. Separate plots are provided 
for each stratum in proportional hazards models.
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Other Results
Confidence Intervals Table
This table is created by selecting the Confidence Intervals Table item within the Survival: 
Regression Models header in the analysis browser. It is not computed if either of the stepwise 
methods is enabled in the Survival: Regression Models dialog box.

Baseline Survival Table
This table is created by selecting the Baseline Table item within the Survival: Regression Mod-
els header in the analysis browser. Separate tables are created for each specified stratum in pro-
portional hazards models.

Exp(Coef) Gives the value of ecoef for each estimated coefficient. 
<%> Lower Gives the lower confidence limit for the value ecoef for each estimated coefficient. The 

magnitude of the confidence interval is controlled by the Confidence level text field in the 
Survival: Regression Models dialog box. The default is 95 percent confidence limits.

<%> Upper Gives the upper confidence limit for the value ecoef for each estimated coefficient. The 
magnitude of the confidence interval is controlled by the Confidence level text field in the 
Survival: Regression Models dialog box. The default is 95 percent confidence limits.

Time Gives the uncensored event times.
Cumulative Survival Gives the values of the model estimate of the baseline cumulative survival function for the 

indicated event times.
Cumulative Survival 
(KM)

Gives the values of the Kaplan-Meier cumulative survival function for the indicated event times. 
Appears only if Add Kaplan-Meier estimates to baseline: Tables is enabled in the Survival: 
Regression Models dialog box.

Cumulative Hazard Gives the values of the model estimate of the baseline cumulative hazard function for the 
indicated event times.

Cumulative Hazard 
(KM)

Gives the values of the Kaplan-Meier cumulative hazard function for the indicated event times. 
Appears only if Add Kaplan-Meier estimates to baseline: Tables is enabled in the Survival: 
Regression Models dialog box.

Ln Cumulative Hazard Gives the values for the model estimate of the natural log of the baseline cumulative hazard 
function for the indicated event times.

Ln Cumulative Hazard 
(KM)

Gives the values of the Kaplan-Meier estimate of the natural log of the cumulative hazard 
function for the indicated event times. Appears only if Add Kaplan-Meier estimates to baseline: 
Tables is enabled in the Survival: Regression Models dialog box.
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Baseline Cumulative Hazard Plot
This graph is created by selecting the Cumulative Hazard Plot item within the Survival: 
Regression Models header in the analysis browser. 

Baseline Ln Cumulative Hazard Plot
This graph is created by selecting the Ln Cumulative Hazard Plot item within the Survival: 
Regression Models header in the analysis browser. 

Iteration History Table
This table is created by selecting Iteration History Table within the Additional Results sub-
header within the Survival: Regression Models header in the analysis browser. 

Coefficient Correlations Table
This table is created by selecting Coef Correlations Table within the Additional Results sub-
header within the Survival: Regression Models header in the analysis browser. 

Coefficient Covariances Table
This table is created by selecting Coef Covariances Table within the Additional Results sub-
header within the Survival: Regression Models header in the analysis browser. 

Plotted lines These give the estimated value of the baseline cumulative hazard function. If Add Kaplan-Meier 
estimates to baseline: Plots is enabled in the Survival: Regression Models dialog box, this graph 
also shows the Kaplan-Meier estimate of the cumulative hazard function. Separate plots are 
provided for each stratum specified in proportional hazards models.

Plotted lines These give the natural log of the estimated value of the baseline cumulative hazard function 
versus the natural log of the event time variable. If Add Kaplan-Meier estimates to baseline: 
Plots is enabled in the Survival: Regression Models dialog box, this graph also shows the Kaplan-
Meier estimate of the natural log of the cumulative hazard function. Separate plots are provided 
for each stratum specified in proportional hazards models.

Contents Shows the coefficient estimates for each continuous covariate, or each group level for nominal 
covariates, at each iteration of the fitting process. Also gives the estimates for the intercept and 
scale parameters for parametric models (scale parameter is excluded from exponential models). 
The log likelihood for the fit at each iteration is also given in the bottom row of the table.

Contents Gives the pairwise correlations between all the coefficients in the Model Coefficients Table.

Contents Gives the pairwise covariances between all the coefficients in the Model Coefficients Table.
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Martingale Residual Plot
This graph is created by selecting the Residual Plots item within the Additional Results sub-
header within the Survival: Regression Models header in the analysis browser. It is also created 
if the Additional Results subheader is selected. Separate graphs are created for each specified 
stratum in proportional hazards models.

Deviance Residual Plot
Available only for proportional hazards models, this graph is created by selecting the Residual 
Plots item within the Additional Results subheader within the Survival: Regression Models 
header in the analysis browser. It is also created if the Additional Results subheader is selected. 
Separate graphs are created for each specified stratum.

Quantile Plot
This graph is created by selecting Quantile Plot within the Additional Results subheader 
within the Survival: Parametric Models header in the analysis browser. It is also created if the 
Additional Results subheader is selected. Results are not computed for this plot if the model is 
proportional hazards.

Joint Significance Tests Table
This table is created by specifying one or more joint significance tests using the Joint Signifi-
cance Tests dialog box. One table is created for every subset of covariates specified in this dia-
log box. See “Joint Significance Tests dialog box,” p. 179. : Joint significance tests are not 
computed for stepwise models.

Plotted points These give the values of the martingale residuals on the vertical axis and the corresponding 
values of the linear predictor ( ) on the horizontal axis. 

Plotted points These give the values of the deviance residuals on the vertical axis and the corresponding value 
of the linear predictor ( ) on the horizontal axis. 

Plotted points On the vertical axis, points give the value of the estimated baseline inverse cumulative 
distribution function (CDF) evaluated at the distinct values of a Kaplan-Meier (KM) estimate of 
the CDF. These are plotted against the corresponding KM values on the horizontal axis. If there 
are no covariates in the model, the KM estimate is based on the observed times. If there are 
covariates in the model, the observed times are adjusted for the covariates using the estimated 
model coefficients and the KM estimate is based on these adjusted times. If the event times are 
drawn from the modeled distribution, the points should form a straight line.

Chi-Square Gives the value of the chi-square statistic for the indicated test of the specified hypothesis.
DF Gives the degrees of freedom for the indicated test of the specified hypothesis.

β'Z

β'Z
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P-Value Gives the p value (probability of rejecting a true null hypothesis) for the associated chi-square 
statistic and degrees of freedom.

Other contents If more than one test is enabled with the Tests to perform checkboxes in the Joint Significance 
Tests dialog box, the names of the enabled tests are given in the column to the left of the 
table. 
Templates

The following templates provide survival regression analysis results. 

Survival Analyses Cox (Prop. Hazards) 
Model

Confidence intervals, global null hypothesis tests, and model coefficients 
and survival summary tables; baseline cumulative hazard, baseline 
cumulative survival, baseline ln cumulative hazard, deviance residuals, 
and Martingale residuals plots.

Exponential Model Confidence intervals, global null hypothesis tests, model coefficients, and 
survival summary tables; baseline cumulative hazard, baseline 
cumulative survival, baseline ln cumulative hazard, quantile, and 
Martingale residuals plots.

Loglogistic Model Confidence intervals, global null hypothesis tests, model coefficients, and 
survival summary tables; baseline cumulative hazard, baseline 
cumulative survival, baseline ln cumulative hazard, quantile, and 
Martingale residuals plots.

Lognormal Model Confidence intervals, global null hypothesis tests, model coefficients, and 
survival summary tables; baseline cumulative hazard, baseline 
cumulative survival, baseline ln cumulative hazard, quantile, and 
Martingale residuals plots.

Weibull model Confidence intervals, global null hypothesis tests, model coefficients, and 
survival summary tables; baseline cumulative hazard, baseline 
cumulative survival, baseline ln cumulative hazard, quantile, and 
Martingale residuals plots.
Exercise

This exercise illustrates how to fit survival regression models. The data are from a prospective 
study of the occurrence of coronary events—usually heart attacks. Covariates that may influ-
ence the risk of a coronary event include smoking behavior, blood pressure history, and cho-
lesterol level. These data are from the Western Collaborative Group Study (described in 
Rosenman et al. (1975), among other places) of 3,154 male employees from ten California 
companies during 1960–1961. (The data we will analyze in this example are a randomly 
selected subsample of the complete dataset.) The original purpose of the study was to investi-
gate the effects of behavior type and smoking habits on heart disease. The researchers also col-
lected information on other possible risk factors that are not included in this dataset. 
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After recruitment, the study followed participants for nine years, although a few were lost to 
follow-up (i.e., censored) before the end of the study. The time variable of interest was the 
interval from entry into the study until the appearance, as determined by a medical expert, of 
coronary heart disease. The dataset  Data in the Sample Data folder contains event time 
and censor variables for 614 participants, as well as measurements of two covariates of inter-
est—smoking behavior at study entry (measured in the number of cigarettes smoked per day) 
and behavior type (a nominal variable with two levels, referred to as Type A and Type B). Indi-
viduals were classified into behavior types on the basis of an interview; in general terms, Type 
A behavior is characterized by aggressiveness and competitiveness, whereas Type B behavior is 
considered more relaxed and noncompetitive. In this subsample of the  data, events were 
observed in 60 individuals.

In this exercise, you will use both a proportional hazards regression model and a parametric 
accelerated failure time model to fit these failure time data.

• Open  Data from the Sample Data folder

The four variables include two covariates (Cigarettes and Personality Type), a censor variable 
(Censor), and the event time variable (Time), which consists of the number of days from 
entry into the study until the occurrence of either the event or censoring.

First we fit a proportional hazards model to the observed data, using Cigarettes as the only 
covariate.

• From the Analyze menu, select New View

• In the analysis browser, select Survival: Regression Models
(This is equivalent to selecting the default results: Summary Tables, Model Coefficients 
Table, and Cum. Survival Plot.)

• In the variable browser, select Time and click Time

• Select Censor and click Censor

• Select Cigarettes and click Covariate

• In the analysis browser, click Create Analysis

• Click OK to accept the default analysis parameters

This creates the default survival regression results: Survival Summary Table, Global Null 
Hypothesis Tests Table, the Model Coefficients Table, and the Baseline Cumulative Survival 
Plot. Scroll down to the Model Coefficients Table to see how cigarette consumption affects 
this model.

These results show an estimated regression coefficient of 0.016, indicating a relative hazard for 
a coronary event of  associated with an increase in cigarette consumption of 
one cigarette per day at study entry. This is not a particularly meaningful comparison since 
the covariate difference is so small; a single cigarette each day would not be expected to have a 
major effect. The relative hazard associated with a more substantial increase of, say, 20 ciga-

1 .016 .008 2.055 4.222 .0399 1.016

DF Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)

Cigarettes

Model Coefficients for Time
Censor Variable: Censor
Model: Proportional Hazards

e0.016 1.016=
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rettes (one pack) per day is immediately available from these results and is given by 
, indicating a 37.7 percent increase in hazard throughout the follow-up period.

• In the analysis browser under Survival: Regression Models, select Confidence Intervals 
Table and click Create Analysis

This table shows the information necessary to calculate the 95-percent confidence intervals 
about the relative hazard associates with consumption of one pack of cigarettes per day: 

. Note that the p value for testing the null hypothesis 
( ) that smoking consumption does not influence the risk of a coronary event is less 
than 0.05, indicating that observed differences in the rates of coronary events among individ-
uals with varying cigarette consumption are unlikely to have arisen by chance variation.

Now we expand the model to see if Personality Type adds any explanatory information. How-
ever, before you use Personality Type as a covariate in this model, it is important to determine 
whether the hazard functions for personality types A and B are, in fact, proportional. (Note 
that we have also assumed that hazards are proportional over the levels of smoking—later, we 
shall consider briefly the fit of our overall model.) To evaluate the proportionality assumption, 
you can assign Personality Type as a stratification variable to the present model.

• Make sure at least one of the results is still selected 

• In the variable browser, select Personality Type and click Strata

• In the analysis browser under Survival: Regression Models, select Ln Cum. Hazard Plot 
and click Create Analysis

With Personality Type used to stratify the model, the baseline hazard function is allowed to 
vary between the two behavior types, but the effects of cigarette smoking are assumed to be 
the same in both groups, as specified by the proportional hazards assumption. 

The regression coefficient for cigarette consumption is now 0.014. The following graph gives 
the ln cumulative baseline hazard plots for both personality types.

e20β̂ 1.377=

1.016 1.001 1.032

Exp(Coef) 95% Lower 95% Upper

Cigarettes

Confidence Intervals for Time
Censor Variable: Censor
Model: Proportional Hazards

1.00120 1.03220,( ) 1.020 1.877,( )=
H0:β 0=

1 .014 .008 1.763 3.109 .0779 1.014

DF Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)

Cigarettes

Model Coefficients for Time
Censor Variable: Censor
Stratification Variable: Personality Type
Model: Proportional Hazards
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This graph illustrates that these two curves are approximately parallel, suggesting that it is rea-
sonable to assume that the hazard functions for the two behavior types are proportional. This 
indicates that it would be appropriate to use Personality Type as a covariate. Note, however, 
that the observation with the smallest event time in the Type A group appears unusual; it 
might be worthwhile to eliminate this observation and refit the model to determine whether 
this particular observation has unduly influenced the model estimates.

Now that you know that the assumption of proportional hazards is reasonable, you can 
remove Personality Type as a stratification variable and reassign it as a covariate. 

• Make sure at least one of the results is still selected

• In the variable browser, select Personality Type and click Remove, then click Covariate

Note from the results in the model coefficients table that the relative hazard associated with a 
pack per day increase in cigarette consumption is now estimated to be , 
very similar to the estimate produced without Personality Type in the model; this indicates 
that adjustment for behavior type makes very little difference to the relationship between cig-
arette consumption and the risk of a coronary event. The relative hazard for coronary heart 
disease, comparing Type A and Type B individuals, is , with an associated 95-
percent confidence interval given by (1.094, 3.184). In this comparison, therefore, Type A 
individuals are estimated to have nearly twice the hazard of a coronary event than do Type B 
individuals.

Before turning to the analysis of the same covariates using a parametric accelerated failure 
time regression model, you should check whether the proportional hazards model adequately 
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1 .014 .008 1.783 3.178 .0746 1.014

1 .624 .273 2.290 5.244 .0220 1.866

DF Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)

Cigarettes

Personality Type: A

Model Coefficients for Time
Censor Variable: Censor
Model: Proportional Hazards

1.014 .999 1.029

1.866 1.094 3.184

Exp(Coef) 95% Lower 95% Upper

Cigarettes

Personality Type: A

Confidence Intervals for Time
Censor Variable: Censor
Model: Proportional Hazards

e20 0.014× 1.323=

e0.624 1.866=
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describes the effects of these two covariates (cigarette consumption and personality type) on 
coronary heart disease. Both the martingale and deviance residuals plotted against the linear 
predictor can help you evaluate the model.

• Make sure at least one of the results is still selected 

• In the analysis browser under Survival: Regression Models’ Additional Results subheading, 
select Residuals Plots and click Create Analysis

The graph of martingale residuals plots these residuals against the linear predictor—in this 
case, a linear combination of smoking consumption and the variable describing personality 
type. Martingale residuals are always negative for censored observations, which explains why 
most of the residuals in this plot are less than zero. Although these residuals have mean zero, 
you can see from the graph above that they are not symmetrically distributed about zero. In 
this example, where more than 90 percent of the observations are censored, both the martin-
gale and deviance residual plots are somewhat difficult to interpret because of the large num-
ber of negative residuals close to zero and the fact that heavy censoring of this kind means that 
it is inappropriate to assume that deviance residuals are normally distributed. Nevertheless, 
there is no noticeable pattern to either residual plot, which suggests that the linear part of the 
model assumption is reasonable. Note that one individual—with a linear predictor value close 
to 2—has an extreme combination of covariate values. Examination of the saved residuals 
indicates that this is case number 485 in the dataset, corresponding to a cigarette consump-
tion of 99 cigarettes per day. This suspiciously resembles a data entry code for a missing value; 
even if the reported value is accurate, it would be advisable to refit the models with this indi-
vidual deleted to determine its influence on the results.

Before we try to fit a parametric model of these data, we should examine the baseline ln 
cumulative hazard plot. 
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The points in this graph roughly approximate a straight line, which suggests that a Weibull 
model for the baseline hazard might adequately fit the behavior of these data. The slope of the 
approximating line is clearly different from 1, which indicates that the exponential model is 
not likely to fit the data as well as the Weibull model.

Finally, you should try using a Weibull regression model to describe the dependence of the 
event time variable on these same two covariates. 

• Click in the empty space of the view to deselect all results

• In the analysis browser under Survival: Regression Models, Control-click (Windows) or 
Command-click (Macintosh) to select Summary Tables, Model Coefficients Table, and 
Quantile Plot
(Quantile Plot is found under the Additional Results subheader.)

• In the variable browser, select Time and click Time

• Select Censor and click Censor

• Select Cigarettes and Personality Type and click Covariate

• In the analysis browser, click Create Analysis 

• In the dialog box: for Model, choose Weibull

• Click OK

• Select the resulting table and click Edit Display

• Choose 6 decimal places and click OK
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The coefficients reported here refer to the accelerated failure time model. Therefore, an 
increase of 20 cigarettes per day is estimated to reduce time to the event by a factor of 

, i.e., by approximately 17 percent. In other words, the time to an 
event for those individuals who smoke 20 cigarettes per day is estimated to be 17 percent 
shorter, on average, than for nonsmokers. This result is qualitatively consistent with the analy-
sis based on a proportional hazards regression model, which shows that increases in cigarette 
consumption are associated with higher hazards and shorter times to coronary events. A closer 
comparison of the two approaches is also possible with the above output. Recall from the 
“Discussion,” p. 168, that you can also give a Weibull regression model a relative hazard inter-
pretation. In particular, this alternative interpretation yields proportional hazards across levels 
of the covariates. The estimated log relative hazard is given by the value of the model coeffi-
cient from the Weibull fit, multiplied by -1, and then divided by the estimated scale parame-
ter (σ). In our example, this yields a log relative hazard for a unit increase in cigarette 
consumption given by (to three decimal places). For the personal-
ity types, the Weibull model gives a log relative hazard comparison between the two groups of 

, with Type A individuals having the higher hazard. These estimates 
are very close to those obtained above from the proportional hazards regression model. In 
passing, note that the scale parameter is estimated to be 0.666—indicating that the hazard is 
increasing—with an estimated standard error of 0.082. This strongly suggests that the true 
scale is significantly smaller than one, which indicates that the Weibull regression model pro-
vides a better fit to the data than the exponential version, as was also suggested by the ln 
cumulative hazard plot considered above.

Finally, the quantile plot provides a graphical means for assessing the appropriateness of the 
Weibull assumption for fitting this accelerated failure time model. 

The fact that the quantile plot closely approximates a straight line of slope 1 passing through 
the origin, suggests that the Weibull assumption is appropriate for these data.

1 .665753 .082351 8.084352 • • •

1 9.817419 .280208 35.036195 1227.534972 <.0001 18350.633294

1 -.009137 .005275 -1.732186 3.000467 .0832 .990905

1 -.419467 .188196 -2.228881 4.967911 .0258 .657397

DF Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)
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Personality Type: A

Model Coefficients for Time
Censor Variable: Censor
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Before concluding, you should be aware that the data on this cohort are considerably more 
extensive than reported here. Furthermore, the follow-up for heart disease mortality (as 
opposed to the mere incidence of a coronary event) continued beyond the time frame of the 
original study (a report on 22 years of follow-up is given in Ragland and Brand (1988)). Curi-
ously, this later analysis of the mortality data found no association between behavior type and 
heart disease mortality. Part of the explanation of the anomalous results between analysis of 
coronary events and mortality may be that behavior type is related to the chances of successful 
recovery from initial coronary events.




Logistic regression 15
Logistic regression is a modeling technique analogous to linear regression. It examines the 
relationship between an outcome (or dependent) variable with one or more independent vari-
ables. The primary difference from linear regression is that the dependent variable, rather than 
being continuous, is a nominal variable. In the most common case, the dependent variable is 
binary or dichotomous—that is, it has two possible values. However, the technique can also 
be employed for a polytomous (many-valued) nominal response variable. StatView can per-
form both dichotomous and polytomous logistic regression with one or more independent 
variables. 

Logistic regression methods can be applied in a wide variety of settings. In many biomedical 
examples a binary dependent variable might indicate whether an individual contracts a certain 
disease in a specified time period. Independent variables of interest might include smoking 
history, age, and alcohol consumption patterns for each individual. However, the methodol-
ogy extends to much broader settings where, for example, the outcome might be whether an 
individual voted Republican or Democratic in the last presidential election, and independent 
variables might include family income, marital status, gender, parental voting history, etc. 
Discussion

This discussion assumes familiarity with the analogous linear regression modeling technique 
and its assumptions, which are discussed in the chapter “Regression,” p. 51. If we use the sym-
bol Y to denote the dependent (or outcome or response) variable, the linear regression model 
discussed in that chapter is based on the assumption that

, (Eq. 15.1)

where  is read as “the conditional mean of Y given ” in the simplest case where 
there is only one independent (or explanatory or covariate) variable of interest. 

For logistic regression, the dependent variable assumes only two values—traditionally coded 
 and . Then, 

, (Eq. 15.2)

where  is the probability that  for any individual for whom . The linear 
model (Eq. 15.1 above) suffers from two problems. First, while its right side can potentially 
take any value, its left side—being a probability, as we see in Eq. 15.2—is constrained to lie 

E Y x1( ) b0 b1x1+=

E Y x1( ) x1

Y 1= Y 0=
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between 0 and 1. Second, interpreting the coefficients is somewhat less natural when the out-
come is binary, and as we will discuss later, the model cannot be applied directly to what are 
known as case-control or retrospective studies. 
Simple logistic regression model

Therefore, the logistic regression model instead predicts a nonlinear transformation of 

 (the left side of Eq. 15.1) from the independent variable: 

(Eq. 15.3)

Solving this equation for  (recall that exponentiation is the inverse of logarithm), we get 
the simple logistic regression model, which suffers from neither of the earlier problems: 

(Eq. 15.4)

Once the coefficients of the model  and  are known (or estimated), we can use this for-
mula to calculate the probability of a given response, say , for any specified value of the 
covariate . 

The nonlinear transformation we used is the log of the odds that , where odds refers to 
the probability that  divided by one minus the same probability, given : 

This is called the log odds of the dependent variable when , which the model 
assumes to change linearly with changes in , as seen in Eq. 15.3. This is the key linearity 
assumption of the logistic regression model, as there is no a priori reason why the risk or prob-
ability that the outcome variable  should vary with  in this way. Goodness-of-fit 
tests for the model provide one check for the validity of this assumption. 

Interpreting coefficients
To use and interpret a regression model effectively, it is crucial to understand the meaning of 
the model coefficients—  and  in Eq. 15.3. First, consider the intercept term, : this 
coefficient is simply the log odds associated with the outcome  for individuals whose 
independent variable . In other words, the coefficient  determines the baseline 
(i.e., ) probability that . Specifically, from Eq. 15.4:

Now, consider the slope coefficient, . Eq. 15.3 shows that this coefficient measures the 
change in the log odds that  (the log odds ratio) associated with a unit change in the 
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independent variable, . In other words,  provides a measure of the impact (or associa-
tion) of the variable  with the dependent variable Y. Specifically:

,

The fact that the odds ratio associated with a unit change in  does not depend on the level 
of  is due to the linearity assumption of the model. When the variable  is binary, e.g. 
gender, then the term  is simply the odds ratio relating the factor (such as gender) to the 
outcome and is usually estimated from a  contingency table.

The attraction of the odds ratio as a measure of association is twofold. First, in rare outcome 
settings (such as when  is small for all values of the independent variable, ) it approxi-
mates the relative risk (e.g., a relative risk of ten in a smoking/lung cancer study would indi-
cate that subjects who smoke are ten times more likely to develop lung cancer than subjects 
who don’t), which is easier to interpret. Second, the odds ratio can be calculated from case-
control study data, as we discuss under “Case-control studies,” p. 203, whereas other measures 
of association such as excess risk (for example, the absolute difference in risk of lung cancer, 
comparing smokers to nonsmokers) cannot. 

X1 b1
X1

Odds Ratio X1 x1 1+= X1 x1=compared to( ) e
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Multiple logistic regression models

Extending the simple logistic regression model (Eq. 15.3) to accommodate several indepen-
dent variables simultaneously is straightforward. With independent variables , 
we work with the following model:

(Eq. 15.5)

As in Eq. 15.4, we can solve this equation to express  in terms of the coefficients:

(Eq. 15.6)

The coefficients in the multiple logistic regression model have interpretations similar to the 
single independent variable case, except for one subtle but important difference. As for the 
case with one independent variable, the intercept coefficient  is the log odds associated 
with the outcome  for individuals whose covariate values are all zero; that is, 

. Again, from Eq. 15.6:

The slope coefficient associated with the jth independent variable ,  in Eq. 15.5, mea-
sures the change in the log odds that  associated with a unit increase in the indepen-
dent variable, , controlling for or holding fixed all other independent variables  for . 
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That is,  is equal to the log odds ratio associated with a unit increase in  with all other 
independent variables held at a fixed level. Specifically:

This odds ratio measures the strength of the relationship between the independent variable  
and the outcome Y, controlling for the potential confounding effects of all other independent 
variables in the model, at least to the extent that their impact is adequately represented by the 
linear assumption of the model (Eq. 15.5). 

bj Xj

Odds Ratio Xj xj 1+= Xj xj all other covariates held fixed=compared to( ) e
b1=

Xj
Assumptions

Fitting a logistic regression model to a set of data is appropriate only when all of the following 
conditions apply:

1. The independent variables are assumed to have a linear relationship with the log odds 
based on the probability  associated with the 
binary dependent variable as described by Eq. 15.5. In particular, as the value of any inde-
pendent variable increases, the probability that the dependent variable is coded as 1 must 
increase or decrease consistently. This is the “dose response” assumption of the model. Of 
course, the model also specifies the linearity of this response as measured on the log odds 
scale for the probability p. Note that more complex relationships can be modeled in logistic 
regression by including functions of the independent variables (for example, by including a 
formula variable ) as additional independent variables. Goodness-of-fit tests are useful 
for comparing the ability of different models to fit the observed data. 

2. All cases (the values of the dependent and independent variables) are assumed to be inde-
pendent of each other. When this is not true (for example, when observations are measured 
on the same subject over time), a logistic regression model could still be applied, but more 
sophisticated techniques than those available in StatView would be needed to estimate 
standard errors and p values associated with hypothesis tests.

3. It is assumed that, for a given set of values for the independent variables, the variation of 
the dependent variable Y (the pattern of observed 0s and 1s) is consistent with a random 
response with fixed probability p. In some cases, although the probability might vary with 
the independent variables according to the model given in Eq. 15.5, the variation in 
responses at any fixed value might be more than expected (this is known as extra-Binomial 
variation), or less than expected, such as when values of the outcome are identical at each 
set of specific covariate values.

As with any modeling procedure, the goal of logistic regression is to find the best-fitting, most 
parsimonious model that has a reasonable interpretation in the context of the example.

px1 x2 x3 …, , , P Y 1 x1 x2 x3 …, , ,=( )=

X1
2
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Estimating coefficients
Random samples
We assume that the observations arise from a simple random sample from some population, 
or at least a random sample at each of a specified set of fixed covariate values. The latter 
reflects the fact that the logistic regression model is a conditional model for the dependent 
variable given the independent variables (as is the linear regression model). In such cases, the 
model coefficients are estimated by the maximum likelihood technique. In the simple logistic 
model, Eq. 15.3, the likelihood function based on a set of n independent observations, 

, is given by:

Estimates of  and  are obtained by maximizing this function over all possible values of 
 and . The log of the likelihood function provides a relative measure of how adequately 

the independent variables explain the pattern of observed responses. A simple multiple of this 
function, , is given a special name—it is known as the deviance. Estimates of 
the standard deviation and consequently the standard error of the maximum likelihood esti-
mates of  and  can be computed from the likelihood function.

Case-control studies
In many settings, it can be expensive or impossible to obtain random samples of the depen-
dent variable, even at pre-specified values of the independent variables. For example, the 
dependent variable might describe whether an individual contracts a disease after exposure to 
an environmental agent in a situation where the disease could take decades to produce clini-
cally identifiable symptoms. Further, in many examples the overall frequency of  
responses may be so low that enormous random samples would be needed to obtain enough 
such outcomes to permit an effective analysis. For example, suppose you wished to investigate 
the propensity to use mental health services in a certain population where the overall fre-
quency of use in a given time period was less than 1%. To overcome these obstacles, an alter-
native sampling strategy is to sample separately a set of observations where  (cases) and 
a set of observations where  (controls). 

It can be shown that the maximum likelihood estimates of logistic regression model coeffi-
cients are still appropriate for such samples except for the intercept coefficient, . The estimate 
of the intercept should be ignored for case-control data since it reflects the extent to which 
cases are over- or under-sampled in data collection as compared to their natural frequency. In 
our mental health example, you could generate a case-control sample of an equal number of 
users (cases) and nonusers (controls); this 50% frequency of users and nonusers in the data, 
determined by the sampling, would be picked up in the estimate of the intercept coefficient 
but would not affect the estimates of slope coefficients . 
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Polytomous logistic regression models

In many situations the outcome variable Y may assume more than two distinct values. For 
example, if the outcome is an individual’s vote in an election, there may be three candidates 
(Democratic, Republican, and Independent). Polytomous logistic regression models are 
designed to extend the logistic regression model to such a setting. 

When dealing with polytomous outcome data it is important to distinguish whether the scale 
of Y is ordered or not. The voting example in the last paragraph has no natural ordering; the 
example where Y represents levels of agreement (strongly agree, agree, disagree, strongly dis-
agree) clearly possesses an apparent order. StatView assumes qualitative or unordered depen-
dent variables. Although this model can be applied to the ordered case, it does not take 
advantage of ordering. 

For simplicity, we describe the polytomous logistic regression model for the case where Y can 
fall into any of three levels and is coded 0, 1, or 2. Note that the coding does not indicate 
ordering in the relevant levels of Y. With independent variables , the polyto-
mous logistic regression model is described by two equations, analogous to Eq. 15.5:

(Eq. 15.7)

The coefficients of both these equations have similar interpretations to those in the dichoto-
mous case. For example,  is the log odds ratio associated with a unit increase in , hold-
ing all other covariates fixed, when comparing individuals whose outcome variable is either 

 or  (that is, we ignore individuals for whom ). Thus the coefficient  
measures the impact of changes in  on the probability that , given that Y is either 0 
or 1.

Similarly,  is the analogous log odds ratio when comparing individuals whose outcome 
variable is either  or . Comparisons of individuals with Y restricted to  
or  can also be derived by taking differences of the coefficients in Eq. 15.7. For exam-
ple, the log odds ratio for comparing  to , associated with a unit increase in , 
holding all other covariates fixed, is simply .
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Dialog box settings

When you create or edit a logistic regression analysis, a dialog box asks whether to include 
partial correlations and confidence intervals to the model correlation table, and it offers a 
chance to control the number of fitting iterations. To accept the default choices (no partial 
correlations or confidence intervals, and at most 30 iterations) for an analysis, simply click 
OK. 
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R (partial correlation coefficient) You can choose whether to compute R, an approximate 
measure of the partial correlation coefficient for each design variable and logit level. 

Confidence intervals You can choose whether to compute the upper and lower confidence 
intervals for the percentage level you specify. No confidence intervals are computed by 
default, but if you check the box on, the default level is 95%. Type a different number in the 
text box to specify a different level. 

Maximum iterations By default, StatView iterates until the maximum likelihood tolerance 
(convergence criterion) is reached, in a maximum of 30 iterations. However, you may specify 
a different limit for the number of fitting iterations for the model. 
Data requirements

StatView can perform logistic regression with unlimited independent variables. The depen-
dent variable must be nominal with two or more levels (up to 32,000). The dependent vari-
able can have any type, as long as its class is nominal. The independent variable(s) can be 
continuous or nominal. 

If you clone logistic regression results by Control-Shift-clicking (Windows) or Command-
Shift-clicking (Macintosh) the Independent button of the variable browser, the existing inde-
pendent variables are replaced with the new independent variables. Cloning with a new 
Dependent variable produces a new analysis with the same independent variables. 

Variable browser buttons

Independent Select one or more continuous or nominal variables that are the independent variable for the 
model and click the Independent button. 
Additional independent variables are added to the existing model. 

Dependent Select the nominal variable that is the dependent variable for the model and click the 
Dependent button. The variable can have two levels or more, up to a limit of 32,000 levels. 
Additional Dependent variables create additional analyses. 

Split By When you assign one or more split-by variables to any logistic regression analysis, results for 
each cell in the split-by variable(s) are displayed in separate tables. 
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Nominal data coding

StatView uses the first level of a nominal variable as the reference level—the level against 
which other levels are compared. For a nominal with a numeric type (real, integer, long inte-
ger, currency, or date/time), levels are sorted from smallest to greatest. For a nominal with 
type string, levels are sorted alphanumerically (such as 1, 11, 2, 22, A, B, C). For a nominal 
with type category, levels are sorted according to their order in the category definition. Gener-
ally, the easiest (and most computationally efficient) choice is a category variable whose levels 
are defined in order so that the desired reference level is the first level. (If you need to change 
the order of levels in an existing category variable, see “How can I reorder category variables?,” 
p. 238 of Using StatView.) 

For example, a model with a category dependent variable with levels “No disease” and “Dis-
ease,” in that order, and a category independent variable with groups A, B, C, D, and E, in 
that order, would have a coefficients table like this: 

Suppose we instead used a string variable with the values “No disease” and “Disease.” When 
alphabetized, “Disease” comes before “No disease” and consequently will be the outcome 
against which other outcomes are compared. Also suppose we used a numeric grouping vari-
able with the order reversed, e.g., A=5, B=4, C=3, D=2, E=1, so that the E or 1 group is now 
the reference level. Our results would be completely different, because levels of the variables 
would be compared in different combinations. 

Note that some programs, such as , , and , pick the last level rather than the first 
as the reference level. Therefore, when comparing results from several programs, you must be 
careful to code your nominal variables as needed to get the results you intend from each pro-
gram. 

-2 .251 .743 -3 .028 9.171 .0025 .105

.577 .866 .666 .444 .5052 1.781

.605 .792 .764 .584 .4449 1.831

1.414 .766 1.846 3.409 .0649 4.113

1.638 .782 2.094 4.386 .0362 5.146

Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)

Disease: constant

     Group: B

     Group: C

     Group: D

     Group: E

Logistic Model Coefficients Table for Outcome

.613 .244 2.518 6.339 .0118 1.846

.224 .306 .733 .537 .4637 1.251

1.033 .366 2.824 7.975 .0047 2.810

1.061 .507 2.092 4.376 .0365 2.889

1.638 .782 2.094 4.386 .0362 5.146

Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)

No disease: constant

     Group Integer: 2

     Group Integer: 3

     Group Integer: 4

     Group Integer: 5

Logistic Model Coefficients Table for Outcome String
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Results

For explanation of the results, please see the preceding “Discussion,” p. 199. The summary 
and coefficients tables are the default output. See “Nominal data coding,” p. 206, for details 
on how to control which quantities are compared. 

For further options on plotting scattergrams with fitted simple regression lines see “Bivariate 
Plots,” p. 221.

Logistic Summary Table containing count, number missing, number of response levels in the dependent variable, 
number of fit parameters in the model, log likelihood, intercept log likelihood, and R2. 

Model Coefficients Table containing the coefficient for each designed variable and logit in the model, along with its 
standard error, the ratio of the coefficient to its standard error, the Wald chi-square statistic, 
the type 1 error probability, R, relative likelihood, and optional upper and lower bounds for the 
confidence limit (if chosen). 

Whole Model Fit Table containing the degrees of freedom, chi-squared statistic, and p value for the Pearson, 
Deviance, and Likelihood Ratio tests. 

Logistic Likelihood 
Ratio Tests

Table containing the degrees of freedom, G likelihood ratio statistic, and p value associated with 
excluding each independent variable from the model. 

Classification Table Table containing the predicted and observed outcome categorizations based on their 
probabilities. 

Iteration History Table displaying the coefficients used in successive iterations (until the convergence criterion is 
reached) for each design variable for each level of the logit. The final row shows the log of the 
likelihood estimate for the model at each iteration. 
Templates

The following templates provide regression results. 

Regression Logistic Regression Logistic Summary table and Model Coefficients table with 95% 
confidence intervals. 
Exercises

Simple logistic regression

The first example is based on a very simple dataset relating coffee consumption to incidence 
of pancreatic cancer, as described in MacMahon et al. (1981). These data arose from a case-
control study, and for this illustration we will use the data for male subjects. Case Outcome is 
a binary category variable recording whether each individual represents a case (pancreatic can-
cer) or a control (no cancer). Daily Coffee is a continuous variable recording how much coffee 
each individual drinks: 0 for none, 1.5 for 1–2 cups per day, 3.5 for 3–4 cups per day, or 5.5 
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for 5 or more cups per day. Any Coffee converts Daily Coffee to a binary category variable 
(either no coffee or some coffee) with a dynamic formula: 

if "Daily Coffee"=0
then "No coffee"
else "Some coffee"

We can create a frequency table to see an overview of the data:

• Open the file Coffee and Pancreatic Cancer from the Sample Data folder

• Copy the Daily Coffee variable and Paste it into the Input column

• From the Class pop-up menu for Daily Coffee.2 (the new copy of the variable), select 
Nominal
(We need a nominal version of the variable for the contingency table, but we want to keep 
the original continuous variable for a logistic regression model.)

• From the Analyze menu, select New View

• From the analysis browser under Contingency Table, select Observed Frequencies and 
click Create Analysis (or double-click Observed Frequencies)

• Click OK to accept the default parameters

• From the variable browser, select Case Outcome and Daily Coffee.2 and click Add

First we will perform a very simple regression analysis to examine the association between cof-
fee drinking and the incidence of pancreatic cancer. We want to see whether coffee consumers 
tend to be more likely than expected to get the disease. To do this we’ll use the dichotomous 
independent variable Any Coffee, which ignores the level of coffee consumption amongst 
drinkers. 

• Click in the blank area of the view to deselect the frequency table

• In the analysis browser under Logistic regression, select Summary Table, Model Coeffi-
cients, and Likelihood Ratio, and then click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent items

• In the Logistic Regression dialog box, check the 95% confidence interval option (turn it 
on) and click OK

• From the variable browser, select Case Outcome and click Dependent

• From the variable browser, select Any Coffee and click Independent

3 2 119 7 4 8 2 307

9 9 4 5 3 6 0 216

4 1 213 127 142 523

0.0 1.5 3.5 5.5 Totals

No pancreatic cancer

Pancreatic cancer

Totals

Observed Frequencies for Case Outcome, Daily Coffee.2

523

0

2

2

-350.862

-354.559

.010

Count

# Missing

# Response Levels

# Fit Parameters

Log Likelihood

Intercept Log Likelihood

R Squared

Logistic Summary Table for Case Outcome
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r

The summary table reports the number of observations, the number of possible outcomes 
(two), and details regarding the maximized log likelihood function. 

The model being fit here is given in Eq. 15.3, where the independent variable  is dichoto-
mous and measures whether an individual consumes any coffee ( ) or not 
( ). A unit increase in  represents the difference between coffee consumers 
and abstainers, and the estimated odds ratio comparing these two groups is given by

. 

The coefficients table also provides the 95% confidence interval for this odds ratio, namely, 

.

The p value for testing the null hypothesis ( ) that coffee consumption is unre-
lated to incidence of pancreatic cancer is 0.0112. This is known as the Wald test, and it is a 
test of the relationship between an independent and dependent variables based on the size of 

 in relation to the standard error of this estimate. The p value is 0.0065 for the likelihood 
ratio test, which compares the likelihood or deviance of the fitted model including Any Cof-
fee as an independent variable with that of a model that does not include it. Both tests suggest 
some influence of coffee consumption in pancreatic cancer occurrence. 

Note that, since these data arise from a case-control study, the estimated intercept coefficient 
should be ignored. In fact, , reflecting the frequency of pancreatic 
cancer cases amongst coffee abstainers in the dataset ( ), as designated by the 
sampling design, and not the frequency of cases in the population.

Since the variable Any Coffee is a simple dichotomous explanatory variable, the logistic 
model, in this case, does not take advantage of any linear assumption. The results above can 
thus be directly obtained from the standard  frequency table relating Any Coffee to Case 
Outcome, which we can create by adopting variable assignments from the logistic regression 
analysis:

• Make sure at least one of the Logistic Regression results is selected (has black handles)

• From the analysis browser under Contingency Table, select Observed Frequencies and 
click Create Analysis (or double-click Observed Frequencies)

• Click OK

1 7.393 .0065

DF Chi-Square P-Value

Any Coffee

Logistic Likelihood Ratio Tests Table for Case Outcome

-1 .269 .377 -3 .362 11.303 .0008 - .115 .281 .134 .589

.984 .388 2.535 6.426 .0112 .079 2.676 1.250 5.730

Coef Std. Error Coef/SE Chi-Square P-Value R Exp(Coef) 95% Lower 95% Uppe

Pancreatic cancer: constant

     Any Coffee: Some coffee

Logistic Model Coefficients Table for Case Outcome

X1
X1 Some coffee=

X1 No coffee= X1

e
b1
ˆ

e0.984 2.676= =

e0.984 1.96 0.388×( )– e0.984 1.96 0.388×( )+,( ) 1.250 5.730,( )=

H0:b1 0=

b̂1

eb̂0 1 eb̂0+( )⁄ 0.219=
9 41⁄ 0.220=

2 2×

3 2 9 4 1

275 207 482

307 216 523

No pancreatic cancer Pancreatic cancer Totals

No coffee

Some coffee

Totals

Observed Frequencies for Any Coffee, Case Outcome
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Note that the estimated odds ratio comparing pancreatic cancer incidence among coffee con-
sumers and abstainers can be calculated from this table as 

We now turn to the analysis of a more complex, ordinal variable, Daily Coffee, which takes 
the level of an individual’s daily coffee consumption into account. Since this variable is ordinal 
and assumes several levels (four), its class is set as continuous. Therefore, the logistic model 
now invokes a linearity assumption and the results obtained cannot be calculated simply from 
the observed frequencies table on p. 208. To fit the simple logistic model given by Eq. 15.3, 
where the independent variable  now stands for Daily Coffee, we clone the analysis with a 
different independent variable:

• Make sure at least one of the Logistic Regression results is selected (has black handles)

• In the variable browser, select Daily Coffee and Control-Shift-click (Windows) or Com-
mand-Shift-click (Macintosh) the Independent button

The following results are obtained:

As before, the odds ratio associated with a unit increase in Daily Coffee is given by 
. Recalling the scale of Daily Coffee, it may be more useful to consider the 

odds ratio associated with an increase of 1–2 or 1.5 units (comparing nondrinkers to those 
who drink 1–2 cups/day) or 2 units (comparing those who drink 1–2 cups/day to those who 
drink 3–4 cups/day, or those who drink 3–4 cups/day to those who drink 5 or more cups/day; 
the latter two odds ratio comparisons are assumed equivalent by this logistic regression 
model). (You could compare these results to those substituting Daily Coffee.2, the nominal 
version of the variable.) 

For increases of 1.5 or 2 units in Daily Coffee, the relevant odds ratios are obtained from the 
output as  and , respectively. 

We can easily obtain a Whole Model Fit Table and Logistic Classification Table:

• Make sure that at least one of the results is still selected (has black handles)

32 207×
9 275×--------------------- 2.676=

X1
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-354.163

-354.559

.001

Count

# Missing

# Response Levels

# Fit Parameters

Log Likelihood

Intercept Log Likelihood

R Squared

Logistic Summary Table for Case Outcome

- .479 .169 -2 .832 8.019 .0046 .619 .445 .863

.043 .048 .889 .791 .3738 1.044 .950 1.148

Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef) 95% Lower 95% Upper

Pancreatic cancer : constant

     Daily Coffee

Logistic Model Coefficients Table for Case Outcome

1 .791 .3737

DF Chi-Square P-Value

Daily Coffee

Logistic Likelihood Ratio Tests Table for Case Outcome

e0.043 1.044=

e1.5 0.043× 1.067= e2 0.043× 1.090=
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• In the analysis browser under Logistic Regression, select Whole Model Fit Table and Logis-
tic Classification Table and click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent items 

Two measures of goodness-of-fit are provided, based on Pearson or deviance residuals. Since 
this dataset contains information on individuals who fall into only four possible independent 
variable values (0 cups/day, 1–2 cups/day, etc.), both goodness-of-fit statistics are based on 
comparing the fit of the current logistic model to the so-called saturated model that allows the 
probability that the outcome variable  to vary arbitrarily over all distinct levels of the 
independent variables. The two p values for the goodness-of-fit tests are sufficiently small, 
0.0395 and 0.0329 respectively, to suggest that the logistic model in terms of the continuous 
variable Daily Coffee does not fit the data adequately.

Comparing the maximized log likelihoods seen in the summary tables (–350.862 for the 
model with Any Coffee, and –354.163 for the model with Daily Coffee) suggests that the 
data is better described by the Any Coffee model, which allows the risk of pancreatic cancer to 
be higher for coffee drinkers but not to vary with the amount of coffee consumed per day. 
However, the noticeable lack of a dose response in the Daily Coffee model casts substantial 
doubt on the biological plausibility of the apparent relationship between coffee drinking and 
the incidence of pancreatic cancer. 

Finally, we consider the Logistic Classification Table. The results here are the same as they 
would be for the model with Any Coffee. In both models, the predicted binary outcomes 
given in the table are obtained by calculating for each observation the estimated response 
probability  from Eq. 15.4, with the relevant estimated parameter values,  and , sub-
stituted. For a given case, the predicted outcome is 1 if  and 0 otherwise. The value 
0.5 is often called the prior probability that an observation has the response . In many 
settings, a different prior probability might be more appropriate. Here, all observations have 
predicted value 0, in part because about 59% (i.e., ) of the data are controls with 

. In this case, the apparent association of coffee drinking with the incidence of pancre-
atic cancer is not sufficiently strong to raise any predicted probability that  above 0.5. 
The predicted responses would change somewhat with the choice of a different prior, but it is 
important to note that the overall rate of correct classification (here 58.7%) is not a measure 
of goodness-of-fit but a reflection of residual variation—variation in the dependent variable 
that remains after accounting for coffee drinking behavior. In this regard, note that a substan-
tial number of coffee drinkers are controls. 

2 6.462 .0395

2 6.828 .0329

1 .791 .3737

DF Chi-Square P-Value

Pearson

Deviance

Likelihood Ratio

Logistic Whole Model Fit Table for Case Outcome

Y 1=

307 0 100.00%

216 0 0.00%

58.70%

Predicted No pancreatic cancer Predicted Pancreatic cancer Percent Correct

Observed No pancreatic cancer

Observed Pancreatic cancer

Overall

Logistic Classification Table for Case Outcome

p̂x b̂0 b̂1
p̂x 0.5>

Y 1=

307 523⁄
Y 0=

Y 1=
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Multiple logistic regression 

Our next example illustrates the use of several independent variables in a logistic regression 
model. The data arise from a randomly selected subset of 614 participants in the Western Col-
laborative Group study, described in Rosenman et al. (1975) among others. Individual obser-
vations correspond to male employees selected from ten California companies during the 
years 1960–61. At recruitment, covariates such as smoking practices and behavior type were 
measured for each participant. Subsequently, each study subject was followed for up to nine 
years to determine whether an individual had a coronary heart disease () event as deter-
mined by a medical expert. 

• Open WCGS Data from the Sample Data folder

Cigarettes gives the reported number of cigarettes smoked per day at recruitment. Personality 
Type gives a measure of personality type as assessed by interview; this is a nominal variable 
where Type A is considered more aggressive and competitive, and Type B is considered more 
relaxed and noncompetitive. Censor takes the value 1 if the participant was not subject to cor-
onary heart disease throughout follow up and 0 otherwise. (Censor is not used here but is rel-
evant to a survival analysis of this dataset; see “Exercise,” p. 191 in the “Survival: Regression” 
chapter.) Finally, Time measures the number of days from entry into the study until occur-
rence of heart disease or end of follow up, whichever occurs first. 

First, we create a new variable,  Outcome, that recodes the  event cases as 1 and the 
no  event cases as 0. 

• From the Manage menu, select Formula

• Specify this formula and click Compute:

1 – Censor

• Rename the variable:  Outcome

• Change its Type from Real to Integer

• Change its Class from Continuous to Nominal

Now we analyze the data:

• From the Analyze menu, select New View

• In the analysis browser under Logistic regression, select Summary Table, Model Coeffi-
cients, and Likelihood Ratio, and then click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent items

• Check the 95% confidence interval option and click OK
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• In the variable browser, select Cigarettes and click Independent

• In the variable browser, select  Outcome and click Dependent

The coefficient table shows an estimated logistic regression coefficient for “Cigarettes” of 
0.017, indicating an odds ratio for  of  associated with an increase in con-
sumption of one cigarette per day at study entry. This is not a particularly useful risk group 
comparison since a single extra cigarette smoked per day would not be expected to increase an 
individual’s risk substantially. The estimated odds ratio associated with an increase of 20 ciga-
rettes per day is easy to compute from the information provided as , 
yielding an approximate increase in risk of 40%.

Now we add the second independent variable Personality Type to see whether this provides 
any additional explanatory information.

• Be sure at least one of the results is still selected (has black handles)

• In the variable browser, select Personality Type and click Independent
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1 3.840 .0501

DF Chi-Square P-Value

Cigarettes

Logistic Likelihood Ratio Tests Table for CHD Outcome

-2 .459 .189 -12.994 168.845 <.0001 .086 .059 .124

.017 .009 2.005 4.021 .0449 1.017 1.000 1.035

Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef) 95% Lower 95% Upper
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     Cigarettes

Logistic Model Coefficients Table for CHD Outcome

e0.017 1.017=

e20 0.017× 1.405=
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1 2.935 .0867

1 5.035 .0248

DF Chi-Square P-Value

Cigarettes

Personality Type

Logistic Likelihood Ratio Tests Table for CHD Outcome

-2 .157 .223 -9 .679 93.685 <.0001 .116 .075 .179

.015 .009 1.746 3.048 .0808 1.015 .998 1.032

- .629 .286 -2 .202 4.848 .0277 .533 .304 .933

Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef) 95% Lower 95% Upper

1: constant

     Cigarettes

     Personality Type: B

Logistic Model Coefficients Table for CHD Outcome
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Note that the estimated odds ratio associated with a pack per day increase in cigarette con-
sumption is now ; the similarity of this estimate to the one obtained from 
the model that only included “Cigarettes” indicates that there is little confounding effect of 
Personality Type on our understanding of the relationship between cigarette consumption and 
 incidence. In other words, the apparent association of cigarette consumption and  in 
the first model is not “explained away” on the basis of individuals’ personality types. The odds 
ratio for CHD associated with being Type A as against Type B, controlling for cigarette con-
sumption, is estimated to be , with an associated 95% confidence interval of 

. It is usually preferable to describe the odds ratio in 
terms of how much greater the risk is in the higher risk group (here, Type A) rather than the 
other way around. (To learn how to code your data to get the comparisons you want, see 
“Nominal data coding,” p. 206.)

Further analyses of this dataset in the “Survival: Regression” chapter incorporate the Time 
variable. See the “Exercises,” p. 207. 

e20 0.015× 1.350=

e 0.629– 0.533=
1.072 3.289,( ) 0.933 1– 0.304 1–,( )=
Polytomous logistic regression 

This exercise illustrates how to fit a polytomous logistic regression model. The data are from a 
prospective study of the findings of a colonoscopy screening study on individuals considered 
to be at high risk of colon cancer, from Grossman, et al. (1989). The purpose of the study was 
to determine the role of past history—for example, a history of previous colon lesions, a fam-
ily history of cancer, age, etc.—in predicting the findings of a current colonoscopy. The cases 
considered here correspond to 406 individuals who had adenoma findings in previous colon 
examinations and who are therefore considered to be at high risk of a subsequent significant 
finding. 

• Open Colonoscopy from the Sample Data folder

The dependent variable Finding assumes three levels: 2 corresponds to a significant finding on 
the screening, namely a large tubular adenoma (>1 cm in diameter) or an advanced neoplasm; 
1, to a finding of small tubular adenoma, and 0, to a negative examination. The independent 
variable of interest is age at the time of screening. Age ranged from 30–39 years (coded as 35) 
to 70 years and older (coded as 75). 

• From the Analyze menu, select New View

• In the analysis browser under Logistic regression, select Summary Table, Model Coeffi-
cients, and Likelihood Ratio, and then click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent items

• Check the 95% confidence interval option and click OK

• From the variable browser, select Finding and click Dependent

• From the variable browser, select Age and click Independent
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The Logistic Model Coefficients Table gives an estimate of age effects on colonoscopy findings 
in terms of a unit or one-year increase in age. We can calculate the odds ratio associated with a 
20-year increase when comparing the chances of a small adenoma (1) against a negative find-
ing (0) as . We can calculate the 95% confidence interval for that odds 
ratio as . Similarly, the odds ratio for an increase of 20 
years of age in comparing the chances of a large adenoma or neoplasm (2) versus a negative 
finding (0) would be . However, the odds ratio associated with the 20-
year age increase when comparing major (2) to minor (1) findings is only 

.

We can assess the statistical significance of age in these pairwise comparisons by examining the 
two p values given in the Logistic Model Coefficients Table. However, the overall effect of age 
on the colonoscopy outcome is best assessed by the likelihood ratio test with two degrees of 
freedom, which yields a p value that is less than 0.001. 

In summary, it appears that age is strongly related to the chances of a positive findings on a 
colonoscopy screening examination. Given a positive finding, however, increased age is only 
moderately associated with an increased chance of a significant finding as against a less major 
adenoma. 
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Logistic Summary Table for Finding

-3 .911 .810 -4 .828 23.310 <.0001 .020 .004 .098

.045 .013 3.570 12.742 .0004 1.046 1.021 1.073

-6 .771 1.415 -4 .784 22.890 <.0001 .001 7.157E-5 .018

.074 .021 3.483 12.130 .0005 1.077 1.033 1.123

Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef) 95% Lower 95% Upper

1 : constant

     Age

2 : constant

     Age

Logistic Model Coefficients Table for Finding

e20 0.045× 2.460=
1.02120 1.07320,( ) 1.515 4.093,( )=

e20 0.074× 4.393=

e20 0.074 0.045–( )× 1.786=

2 24.936 <.0001

DF Chi-Square P-Value

Age

Logistic Likelihood Ratio Tests Table for Finding
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
Univariate Plots 16
Univariate plots show the distribution of a variable in a plot with a single numeric axis, the Y 
axis. Each observation is plotted along the horizontal axis in the sequence the data appears in 
the dataset. You can display the observations as points in a scattergram, as points connected by 
lines in a line chart, or as bars in a bar chart. You can plot multiple variables in a single 
univariate plot and use split-by variables to distinguish different groups within the variables. 
You can also add reference lines to show the variable’s mean plus or minus one or more stan-
dard errors or standard deviations as well as a specified confidence interval. Univariate charts 
with standard deviation reference lines are identical to individual measurement quality control 
charts. 

If you are using split-by variables you can specify whether to display a separate line for each 
group or a single line for all groups. This choice is in the Line Plot dialog box (described 
below), accessible through the Create Analysis button, or by clicking Edit Analysis when the 
entire graph is selected. If a univariate line plot displays information on several groups, the 
plot shows separate lines for each group or one line for all groups. To change this setting, click 
on one of the points to select just the plot, and click the Edit Display button. You see this dia-
log box:

By default there are no values displayed on the horizontal axis, but you can optionally choose 
to display observation numbers on this axis. The observation number ranges from one to n, 
where n is the number of non-missing, non-excluded values in the variable. The first such 
value has observation number 1, the second observation number 2, etc. For other modifica-
tions you can make to this graph, see “Customizing results,” p. 179 of Using StatView.
Dialog box settings

When you create a univariate plot or edit it using the Edit Analysis button, you see the dialog 
box below. You can add lines for the mean, standard deviations, standard error and confidence 
intervals.
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If you choose to display lines at the mean, you must also display lines around the mean at a 
specified standard error, standard deviation, or confidence interval. The option at the bottom 
of the dialog box determines how these lines appear when you assign a split-by variable.

There is an additional setting for univariate plots, found in a separate dialog box. By default, 
the horizontal axis has no ticks or values displayed on the axis. You choose to add an axis 
whose value ranges from 0 to the count of values for the variable displayed. Select the horizon-
tal axis by clicking on it. Click Edit Display and the Ordinal Axis dialog box appears:

Click the checkbox to show ticks and values and click OK. To preview the change first, click 
the Show button. You cannot modify other aspects of this axis.
Data requirements

Univariate plots can be generated for one or more continuous or nominal variables.

Variable browser buttons

Add To generate a univariate plot, select one or more variables and click Add.
Each additional variable assigned is added to the same plot. 

Split By The cells of any nominal variable(s) assigned using the Split By button appear in the legend.
Results

The default univariate plot is a scattergram.

Scattergram Shows observations as points. Lines indicating the mean, standard deviations, standard error and 
confidence intervals can be added to the plot with Edit Analysis.
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Line Chart Shows observations as points connected by lines. Lines indicating the mean, standard deviations, 
standard error and confidence intervals can be added to the plot with Edit Analysis.

Bar Chart Shows observations as bars. Lines indicating the mean, standard deviations, standard error and 
confidence intervals can be added to the plot with Edit Analysis.
Templates

The following templates provide univariate plots. 

Graphs Univariate Bar Chart Univariate bar chart for continuous variable and optional Split By 
variable. 

Univariate Line Chart Univariate line chart for continuous variable and optional Split By 
variable. 

Univariate Scattergram Univariate scattergram for continuous variable and optional Split By 
variable. 
Exercise

In this exercise you create a univariate scattergram to examine the distribution of car weights. 
The dataset you will use has measurements of weight, gas tank size, turning circle, horsepower 
and engine displacement for 116 cars from different countries. 

• Open Car Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser under Univariate Plots, select Scattergram and click Create Analysis 

If you did not wish to display additional information you would click OK without checking 
any other options. For this example you will add a line at the mean as well as at one standard 
deviation above and below the mean.

• Check Display lines and click OK

• In the variable browser, select Weight and click Add 
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The graph displays the individual observations of each car’s weight along with lines indicating 
the variable mean and values at plus and minus one standard deviation. Visual inspection 
shows that approximately 50 cars fall outside plus or minus one standard deviation of the 
mean.

This dataset also includes a nominal variable identifying the manufacturing country for each 
car. We can use this variable to split the observations into different groups.

• Make sure the graph is still selected

• In the variable browser, select Country and click Split By

The three different countries, Japan, Other, and , are distinguished by different plotting 
symbols. You can see that most of the  cars are heavier than average. 

You can display this information as a line chart or bar chart by choosing the appropriate graph 
from the analysis browser. You can also draw different mean and standard deviation lines for 
each group rather than for the entire variable by clicking the Edit Analysis button and chang-
ing that parameter in the dialog box.

Observations
1500

2000

2500

3000

3500

4000

4500
W

ei
gh

t

USA

Other

Japan

Univariate Scattergram
Split By: Country

Mean

+1 SD

-1 SD




Bivariate Plots 17
A bivariate plot graphs the relationship between two variables, X and Y. It can display the 
observations as points with or without connecting lines. 

In a bivariate plot each individual observation  is plotted against  for , the 
number of observations of X and Y. You can plot multiple variable pairs in a bivariate plot and 
use split-by variables to distinguish different groups. You can also use nominal variables in a 
bivariate plot to construct a point graph that distinguishes the measurements of the groups of 
a nominal variable. 

You can add a simple regression line to the bivariate plot with or without confidence bands 
around the mean and slope of the regression line. Cubic spline, lowess, and supersmoother 
fits are also available for bivariate plots. You can plot different subgroups of your data by add-
ing a split-by variable, displaying a single fitted line for the entire graph or displaying separate 
lines for each subgroup. You can plot more than one pair of variables on a single graph and 
display fitted lines for each. 

Edit Display lets you modify the structure and appearance of bivariate plots; see “Customizing 
results,” p. 179 of Using StatView.

Yi Xi i 1 to n=
Fitted lines

StatView offers four curve fits for bivariate plots: cubic spline, lowess smoother, super-
smoother, and regression (with or without confidence bands). We discuss each separately 
below, after demonstrating how the various types of fitted lines work in StatView and offering 
some general cautions. In this discussion, we’ll look at the various ways of fitting curves to a 
plot of weight against height from the Lipid Data. 
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Split-by variables
You can plot different subgroups of your data by adding a split-by variable, displaying a single 
fitted line for the entire graph or displaying separate lines for each subgroup. 

Multiple variables
You can plot more than one pair of variables on a single graph. StatView always displays sepa-
rate fitted lines for each pair. 

Watch out for dissimilar scales
When combining several variable pairings in a single graph, you should beware of misleading 
distortions caused by differing scales among the variables. For example, in the plot above, two 
Y variables (original weight and weight after three years) can be combined in a single plot 
because they measure the same individuals on the same scale, and showing them together 
helps us compare the regression line slopes. However, if we include age on the x axis as well, 
the dissimilar scales cause all the points for each variable to be squeezed together in thin 
bands:
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This plot is misleading, because it makes it look like height and weight have strong relation-
ships and steep slopes. You can tell from the equations shown below the graph that the fit 
actually accounts for relatively little variance and the slopes are not especially steep, but you 
shouldn’t count on your readers looking that closely. If variables have dissimilar scales, you 
should graph each pair of variables separately. 

Less is more
Avoid cramming too much information into a single graph. For example, the second plot of 
weight against height split by gender on p. 222 allows us to compare height-weight relation-
ships between men and women, and it suggests that men are heavier than women of the same 
height and also that taller men are proportionally heavier than women—neither of which are 
surprising, since men generally have broader builds than women. The plot of Weight and 
Weight-3yr by height on p. 222 lets us compare the height-weight relationships for subjects at 
the outset of a medical study and again after three years. While the subjects as a whole seem to 
have lost a slight amount of weight, the relationship between height and weight seems to be 
about the same. However, the following plot, which attempts to compare initial and third-
year weights between men and women, attempts too much. Even with different plotting sym-
bols and line types, this plot is difficult to interpret: 
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Linear regression

A regression line is a simple description of the relationship between Y and X having the gen-
eral form

,

where b is the intercept (where the line crosses the Y axis at ), and m is the slope 
(change in Y divided by change in X). The exact equation for the line and the value of  
(which tells how much of the variance is accounted for by the model) are shown at the bottom 
of the graph. 

You can add confidence bands for the mean and/or the slope:

A bivariate plot with a regression line is an excellent graph to use in conjunction with regres-
sion analysis to check visually how well a model fits the data.The Regression analysis also 
offers a regression plot, but that plot is limited to one independent and one dependent vari-
able. The Bivariate Plot analysis offers more flexibility. You can combine more than one inde-
pendent (X) and dependent (Y) variable in a single plot, with separate regression lines for each 
X-Y pairing. You can also plot subgroups of your data by adding a split-by variable, displaying 
either a single fitted line for all the points or separate lines for each subgroup of points.

Keep in mind that a scattergram with regression lines is just a scattergram with fitted lines. If 
you need to see summary information, an  table, residuals, or other such information 
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you must perform a regression analysis. For more information, see the chapter “Regression,” 
p. 51. 
Smoothing bivariate plots

Researchers often find it useful to add other types of fitted curves to bivariate plots. StatView 
offers three forms of smoothing: cubic spline, lowess, and supersmoother. 

Reasons for smoothing a graph are many. Sometimes a fitted curve is useful for reducing dis-
traction from “noise” or random error in a plot and getting an idea of which nonlinear models 
might be effective for prediction. Sometimes the goal is to emphasize the shape in a plot, so 
that the graph is more effective as a presentation tool. Other times, smoothing is used to help 
interpolate values falling between a dataset’s cracks. 

Most smoothers work by estimating an “average” value for y a few x values at a time, such as 
the first four points, then estimating again for second through fifth points, then the third 
through sixth points, etc. (Here, “average” does not necessarily refer to the arithmetic mean 
but rather to whichever estimation method is being used.) The points being included in each 
calculation are called the window, and the number of points included at a time is the window 
width. A wider window produces a “smoother,” stiffer curve. A narrower window produces a 
looser curve that clings more tightly to the data points. 

StatView’s cubic spline smoother uses a window width of four points. Lowess uses the propor-
tion of the dataset you specify. Supersmoother calculates its own variable window width by 
examining local slopes and variances at different regions along the x axis. 

Researchers usually find a smoother curve easier to interpret and describe—for example, one 
might observe from a downward-sloping linear regression, “As the dose of medication 
increases from 0 to 60 mg, the blood pressure drops.” However, a looser fit sacrifices less 
detail—for example, from a lowess curve with a low tension setting one might observe, 
“Doses between 0 and 5 mg have negligible effect, while doses from 5 to 50 mg cause a steady 
decrease in blood pressure, after which the effectiveness of the drug reaches a plateau; doses 
above 60mg are toxic.” 

Keep in mind that a smoothing is just a simplification of your data; it may or may not make 
any sense in the context of the phenomena you are studying. The type of smoothing you 
choose, the parameters you set, and the way you interpret the graph should all take into 
account what your data mean, what your goal is in smoothing the graph, and what you learn 
from other methods of analyzing the data. 

Lowess
A more robust smoothing procedure than simple linear regression is locally weighted regres-
sion known as lowess (LOcally WEighted Scatterplot Smoother). StatView offers a least-
squares fit for lowess curves. For details on how lowess is computed, see Cleveland (1981); 
simply looking at a few plots will give you an intuitive understanding of the procedure. 
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A tension parameter between 1 and 100% controls how tightly the curve follows the data. 
The value you specify determines how many of the graph’s points are included in the window 
for each computation. A higher tension (e.g., 80) produces a tighter, straighter curve; a lower 
tension (e.g., 20) produces a looser curve more strongly influenced by nearby data points. You 
should choose a tension high enough to produce a smooth curve but low enough to convey 
the shape of the data accurately. The default is 66. 

No matter what your goals in smoothing a bivariate plot, you would be well advised to start 
with a lowess smoothing of your data, so that you don’t overlook any patterns that might be 
obscured by linear regression or the other smoothers. Notice how the lowess fit of weight by 
height calls attention to an S-shape in the data. Another advantage of lowess is its robustness 
to outliers. 

Supersmoother
Supersmoother is a smoothing method designed to vary its own tension locally to suit the 
data. In areas of greater curvature or smaller variance, it uses less smoothing; in areas of lesser 
curvature or greater variance, it uses more smoothing. In this way, the supersmoother seeks to 
reveal the underlying relationship between x and y values in “signal-noise” data—data where y 
values are thought to be some function of x plus random error. Supersmoother uses a local 
cross-validation technique to determine how much smoothing (the span of the smoother) is 
needed in each region along the x axis. 
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Supersmoother is especially effective for hiding the noise in y values that are thought to be 
some function of the x values. For example, below is a supersmoother fit for data generated by 
a formula as  plus uniform random noise. Notice that the curve’s shape is 
quite close to that of the underlying function itself (from a formula without noise). 

Cubic spline
Cubic spline smoothing fits a series of cubic (third-order) polynomials to fit a moving window 
of data, four points at a time. These polynomials are connected to produce a smooth curve 
passing through each of the actual data points whenever possible. 

Because the Weight by Height plot has multiple Y values for some values at X, it isn’t possible 
for cubic spline to connect all points. 
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Cubic spline fits are useful for interpolating values between data points, since they usually 
connect the actual data points. (Other smoothing methods convey the shape of the plot with-
out necessarily coinciding with any measured values.) For that very reason, however, cubic 
splines are only useful when you believe your data measurements contain little or no error, 
since large amounts of scatter from the “true” values would unduly influence the shape of the 
curve and cause it to be misleading. 

Consider how well this spline fitting of just four points chosen at random (using Random 
Criteria, discussed under “Criteria pop-up menu,” p. 128 of Using StatView) along the func-
tion  approximates the actual curve above: y x3 πx( )sin=
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Inclusion criteria: 10% Rows Included from supersmoother
Dialog box settings

When you create a bivariate plot or edit it using the Edit Analysis button, you see the dialog 
box below. 

Display lines You can optionally add one of four types of fitted lines to your graph; for a dis-
cussion, see “Fitted lines,” p. 221. For lowess, specify the percentage of the dataset (between 1 
and 100) to include in each window. The default is 66%. 

If you display regression lines, you can also specify a confidence level and show confidence 
bands for the mean of Y as predicted by the regression for a given value of X. You can also 
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show confidence bands for the slope of the regression line. The default is 95% confidence, but 
you can specify a different percentage. 

When split, show lines for When the graph is split by one or more nominal variable(s), val-
ues for each group of subgroup of the data are shown by different plotting symbols, colors, or 
fill patterns. You can choose fitted lines (regression, cubic spline, lowess, or supersmoother) 
that are computed and drawn separately for each (sub)group or a single fitted line for all the 
data. For graphs with more than one X-Y variable pair, fitted lines are always computed and 
drawn separately for each pair; this option only applies to split-by variables. 
Data requirements

Bivariate plots can be generated for one or more continuous or nominal X variables vs. one or 
more continuous or nominal Y variables. Fitted lines are only available for plots of continuous 
variables. 

If there is a single X variable and more than one Y variable, each Y variable is plotted against 
the X variable. The same rule applies if there is a single Y variable and more than one X vari-
able. If multiple X and Y variables are plotted, the first X assigned is plotted against the first Y, 
the second X against the second Y, and so on.

Variable browser buttons

X Variable Select one or more variables and click X Variable.
Additional variables are added to the same plot. 

Y Variable Select one or more variables and click Y Variable. 
Additional variables are added to the same plot.

Split By The groups of any nominal variable(s) assigned using the Split By button appear in the legend. 
Results

The default plot is a scattergram.

Scattergram Shows one point for each X-Y pair. Regression lines, confidence bands, and equations, or cubic 
spline, lowess, or supersmoother fits may be added for the entire plot or for each group of a split-
by variable. 

Line Chart Shows one point for each X-Y pair. The points are connected by lines. Regression lines, confidence 
bands, and equations, or cubic spline, lowess, or supersmoother fits may be added. 
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Templates

The following templates provide bivariate plots. 

Graphs Bivariate Line Chart Line chart for continuous X and Y variables and optional split-by 
variable. 

Bivariate Line Chart 
(Groups)

Line chart for nominal X and continuous Y variables and optional split-
by variable. 

Bivariate Regression 
Plot

Scattergram with regression line and equation for continuous X and Y 
variables and optional split-by variable. If you assign a split-by 
variable, you get separate regression lines for each group. 

Bivariate Scattergram Scattergram for continuous X and Y variables and optional split-by 
variable. 

Bivariate Scattergram 
(Groups)

Scattergram for nominal X and continuous Y variables and optional 
split-by variable. 

Cubic Spline Fit Scattergram with cubic spline fit for continuous X and Y variables and 
an optional split-by variable. If you assign a split-by variable, you get 
separate fitted lines for each group. 

Lowess Curve Fit Scattergram with lowess curve fit (tension=66%) for continuous X and 
Y variables and an optional split-by variable. If you assign a split-by 
variable, you get separate fitted lines for each group. 

Scatter Matrix 3x3 3x3 matrix of scattergrams, with one scattergram for each X-Y pairing 
of continuous variables. 

Scatter Matrix 4x4 w 
Histograms

4x4 matrix of scattergrams, with one scattergram for each X-Y pairing 
of continuous variables; diagonal cells have histograms with normal 
curves. 

Scatter w Histograms Scattergram for continuous variables; has histograms with normal curves 
along top and right sides. 

Supersmoother Curve 
Fit

Scattergram with supersmoother fit for continuous X and Y variables 
and an optional split-by variable. If you assign a split-by variable, you 
get separate fitted lines for each group. 
Exercises

Bivariate scattergram

The dataset used in this chapter’s discussions, Lipid Data, records blood lipid levels and other 
cardiovascular risk factors measured for medical students when they were freshmen and again 
when they were seniors. In this exercise you examine the relationship between freshmen’s cho-
lesterol counts and those taken three years later, after they had received instruction on reduc-
ing cholesterol through dieting. You will also examine whether this relationship is the same for 
male and female students. 



17 Bivariate Plots Exercises 
• Open Lipid Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis 

• Click OK to accept the default parameter settings

• In the variable browser, select Cholesterol and click X Variable 

• Select Chol-3yrs and click Y Variable

The dataset includes a nominal variable which identifies the gender of the student. We can use 
this variable to split the observations into the different groups.

• In the variable browser, select Gender and click Split By 

The male and female observations are distinguished by different plotting symbols, colors, or 
fill patterns, depending on your Graph Preferences. 
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Linear regression

To determine whether a different relationship exists between the cholesterol levels for males 
and females we can calculate a simple regression and add the fitted line to the graph.

• Click Edit Analysis 

We have the option of displaying a single line for all observations or calculating a different 
regression for each group. We want separate lines for each group, so we can compare males 
and females. 

• Choose Regression lines

• Choose Each group separately and click OK
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Notice that the equation for each line as well as the  values are added to the bottom of the 
graph. You can see there is a slight difference between males and females. The difference is not 
significant, which you can see if you add confidence bands for the mean (Click Edit Analysis 
to see the dialog box). If we showed the regression line for all groups together there would be 
only a single regression line and the simple regression would be calculated using all the data.
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R2
Bivariate plot with nominal data

Bivariate plots can have nominal as well as continuous variables assigned to the X or Y axis. 
When assigning a nominal variable, you can construct a graph to compare the different distri-
butions of the data in each of the nominal variable’s groups. The previous example showed a 
difference between the cholesterol reduction in male and female students. We can use the 
bivariate plot to examine the differences between the weights of the male and female students.

• Make sure that Lipid Data is still open

• If any results are still selected, click in the empty area of the view window to turn the selec-
tion off

• In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis

• Click OK to accept the default analysis parameters

• In the variable browser, select Gender and click X Variable

• Select Weight and click Y Variable 



17 Bivariate Plots Exercises 
As you might expect, weights for female students are less than those of male students. 
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Next we will examine time series data from Neter, Wasserman, and Whitmore (1988). Beer 
Sales records monthly sales of beer in hectoliters, along with the average high and low temper-
atures in the region, over a period of five years. First, let’s use a cubic spline to see how beer 
sales change over time. 

• Open Beer Sales from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis 

• Click OK to accept the default parameters

• In the variable browser, select Month and click X Variable 

• Select Beer Sales (Hl) and click Y Variable

It is hard to see much of anything in this plot. Adding a cubic spline is often helpful for visu-
alizing patterns in time series data. 

• Make sure the graph is still selected

• Click Edit Analysis

• Choose Cubic spline and click OK
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Now we can see that the sales follow a pretty clear seasonal pattern each year. However, we can 
still make this plot easier to read. Many researchers find it helpful to make plots of time series 
data several times wider than they are tall, especially when the data are periodic with several 
cycles. For monthly data, they prefer axis ticks at each year. 

• Click and drag the selection handles on the right axis to the right to make the graph wider

• Select the X-axis and click Edit Display

• Specify bounds of 0 and 61 for From and To

• Specify 12 for Major interval width

• Click OK

Notice how the cubic spline curve guides your eye and makes a seasonal trend apparent. We 
can easily see that beer sales are at their lowest each January, and they tend to rise steadily from 
winter to summer, dropping again in the autumn. 

Having discovered a seasonal pattern to beer sales, we might want to look for a relationship 
between beer sales and temperatures. Do people buy more beer when the weather is hotter? 
Let’s clone this cubic spline plot for high and low temperatures. 

• Make sure the graph is still selected

• In the variable browser, select both High temp (C) and Low temp (C)
Shift-click or click and drag to select several adjacent variables.

• Control-Shift-click (Windows) or Command-Shift-click (Macintosh) the Y Variable but-
ton 
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Next, adjust the size and axis settings for the graph the same way you did on the last plot. You 
might also want to use the Draw Palette to choose special plotting symbols, as we did. 
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Lowess fit

Beer sales certainly do seem to follow the same pattern as temperatures do over time. Can we 
use the temperatures to predict beer sales? Lowess would be a good way to start looking for a 
relationship. 

• Click in the blank area of the view to make sure nothing is selected

• In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis 

• Choose Lowess and click OK

• In the variable browser, select High temp (C) and click X Variable

• Select Beer Sales (Hl) and click Y Variable

• Select Low temp (C) and Control-Shift-click (Windows) or Command-Shift-click (Mac-
intosh) the X Variable button

These lowess curves suggest that temperatures might indeed be a good predictor for beer sales. 
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Supersmoother

Time series data are often so “jaggy” that it is difficult to detect patterns in the data. Smooth-
ing methods such as supersmoother can simplify the plot. 

• In the view window, select the plot of Beer sales (Hl) by Month

• Click Edit Analysis

• Choose Supersmoother and click OK
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Cell plots graph means or sums of variables and can show the variability around means. They 
are useful for showing the side by side comparison of continuous variables measured for each 
of several nominal groups.

When your data fall into groups, it is common to question whether some factor affects the 
groups in the same way or affects each group differently. You may know that the means of the 
two groups are different, but you also want to know the effect of one or more additional fac-
tors on the relationship. Cell plots present a set of lines, bars or points so you can visually 
compare variable to variable and group to group. This is extremely useful in conjunction with 
any statistic that tests differences among groups, such as  and t-tests.

As an example, suppose you have two nominal variables A and B, and a continuous variable Y. 
You may know that the mean of Y is different for different levels of A or of B, but the question 
remains whether there is any interaction effect, i.e., whether the relationship among the 
means for the different levels of A is affected by the level of B and vice versa. In a cell line plot 
with A on the axis and B in the legend, the lines will show you whether this interaction is 
present or not: if not, the lines will have the same pattern for each level of B; if so, the lines 
will show different patterns depending on the levels of B. 

Cell plots can depict data as bar charts (often referred to as side-by-side bar charts), line 
charts, or point charts. You can choose which graphing variable appears on the horizontal axis 
and which appears in the legend. If you are examining means, you have the option of adding 
error bars. Edit Display lets you modify the structural appearance of cell line plots; see “Cus-
tomizing results,” p. 179 of Using StatView. 
Dialog box settings

When you create a cell plot or edit it using the Edit Analysis button, you see the dialog box 
below. Cell plots have two simple statistics associated with them—sums and means. You 
choose which to graph for the variables you select. If you select means, you can also specify 
whether to display error bars. These choices are found in the Cell Plot dialog box:
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If you want to show error bars, you must choose Means at the top of the dialog box; you can-
not use error bars with Sums. If you show error bars, they can represent a specified number of 
standard errors, a specified number of standard deviations, or confidence intervals at a speci-
fied level. When you display error bars but they do not show in a particular cell, it is because 
there is only one observation in that cell.

There is an additional setting for cell line charts, found in a separate dialog box. For plots with 
more than one variable, you can eliminate the lines that connect points from different vari-
ables. Select only the plot (not the entire graph) by clicking on a point or line. Click the Edit 
Display button and the Cell Line Plot dialog box appears:

Uncheck the option to turn it off and click OK. To preview the change first, click Show.
Data requirements

Cell plots can be generated for one or more continuous variables. Nominal grouping variables 
are optional.

Variable browser buttons

Add To generate a cell plot, select one or more continuous variables and click Add. The groups of 
any nominal variable assigned using the Add button appear on the horizontal axis. 
Each additional continuous variable assigned is added to the same plot. Each additional nominal 
variable assigned creates new cells which are shown on the horizontal axis.

Split By The cells of any nominal variable(s) assigned using the Split By button appear in the legend.
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Results

For explanation of the plots, please see the preceding discussion. The default plot is a line 
chart.

Point Chart Shows the means or sums of the cells or variables as points. Error bars can be displayed for means.
Line Chart Shows the means or sums of the cells or variables as points connected by lines. Error bars can be 

displayed for means.
Bar Chart Shows the means or sums of the cells or variables as bars. Error bars can be displayed for means.
Templates

The following templates provide cell plots. 

Graphs Cell Bar Chart Cell bar chart for continuous measurement variable, nominal variable 
for the horizontal axis, and optional Split By variable for the legend. 

Cell Line Chart Cell line chart for continuous measurement variable, nominal variable 
for the horizontal axis, and optional Split By variable for the legend. 

Cell Point Chart Cell point chart for continuous measurement variable, nominal variable 
for the horizontal axis, and optional Split By variable for the legend. 
Exercises

The dataset you will use in this exercise contains measurements of gas tank size for 116 cars of 
various types from different countries. You will compare the average size of gas tanks for each 
country of manufacture as well as see whether the type of car affects gas tank size. 

• Open Car Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser under Cell Plots, select Bar chart and click Create Analysis 

• Click OK to accept the default parameters

• In the variable browser, select Gas Tank Size and click Add
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The bar represents the mean size of all 116 gas tanks. We want to compare size for both coun-
try of origin (Japan, Other and ) and type of car (Small, Sporty, Compact, Medium and 
Large). The groups of any nominal variable assigned to the cell plot using the Add button 
appear on the horizontal axis. The groups of any nominal variable assigned to the cell plot 
using the Split By button appear in the legend, and appear side-by-side within the other 
groups in the bar chart. Whether to add a nominal variable or split by a nominal variable 
depends on which factor you wish to emphasize in the graph. In this exercise, we are primarily 
interested in how the type of car affects the size of the gas tank in a particular country.

• In the variable browser, select Country and click Add 

• In the variable browser, select Type and click Split By 

Now you can see for each country of manufacture how the type of car affects the gas tank size. 
You can also see how the pattern of the effect of type on gas tank size varies from country to 
country. If you were interested in examining gas tank size with the roles of country and type 
reversed, you would construct the cell bar chart differently.

• In the variable browser, select Type and Country and click Remove

You will now assign these variables in a different order.

• Select Type and click Add

The horizontal axis has five different tick marks, one for each group, with a single bar repre-
senting the means of the gas tanks sizes for each type of car.

• Select Country and click Split By 
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Now you can see for each type of car how the country of manufacture affects gas tank size. 
You can also see how the pattern of the effect of country on gas tank size varies from type to 
type. 

By choosing a line chart you can display the different groups as lines with different symbols as 
opposed to side-by-side bars. 

• Make sure the bar chart is still selected

• In the analysis browser under Cell Plots, select Line Chart and click Create Analysis

Point charts are similar to line charts except they display the value of the mean as a single 
point as opposed to a line. Points are not connected with lines and points for a split cell are 
displayed side-by-side instead of stacked. They are most useful when you are displaying error 
bars as well.

• Click in the empty space of the view to deselect all results

• In the analysis browser, select Point Chart and click Create Analysis 

• Check Show error bars, choose standard deviation, and click OK
(Accept the default setting of 1 standard deviation.)

• In the variable browser, select Weight and Type and click Add 
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These examples have compared different groups, but you can also use cell plots to compare 
the means or sums of different variables. To do that you would use the Add button to assign 
the continuous variables to the cell plot. A bar or point appears for each assigned variable.
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
Box Plots 19
A box plot is a graph for displaying the 10th, 25th, 50th, 75th and 90th percentiles of a vari-
able. You can use box plots to compare variable distributions, or to see the distribution of a 
single variable. Each box plot is composed of five horizontal lines that display the 10th, 25th, 
50th, 75th and 90th percentiles of a variable. All values for the variable above the 90th per-
centile and below the 10th percentile are plotted separately, so box plots are especially useful 
for displaying outliers.

The box plot allows you a great deal of flexibility, comparing not only the distribution of an 
entire variable or variables but also comparing the distributions of groups defined by nominal 
variables. In addition, you can plot the outliers and display notched box plots that represent a 
95% confidence interval around the median in addition to the percentiles. Edit Display lets 
you modify the appearance of box plots; see “Customizing results,” p. 179 of Using StatView. 
Dialog box settings

Box plots have no analysis parameters, but you can choose whether to display notches repre-
senting a 95% confidence interval for the median. Select the interior of the plot and click Edit 
Display to display the Box Plot dialog box.
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Data requirements

Box plots can be generated for one or more continuous variables. Nominal grouping variables 
are optional.

Variable browser buttons

Add To generate a box plot, select one or more continuous variables and click Add. The groups of 
any nominal variable assigned using the Add button appear on the horizontal axis.
Each additional continuous variable assigned is added to the same plot. Each additional nominal 
variable assigned creates new cells which are shown on the horizontal axis.

Split By The cells of any nominal variable(s) assigned using the Split By button appear in the legend.
Results

For explanation of the plots, please see the preceding discussion. 

Box Plot Shows the 10th, 25th, 50th (median), 75th and 90th percentiles of a variable. Values above the 90th 
and below the 10th percentile are plotted as points.

Notched Box Plot Shows the same information as a Box Plot with the addition of a notch showing the 95% confidence 
interval around the median.
Templates

The following template provides box plots. 

Graphs Box Plot Box plot for continuous measurement variable, nominal variable for the 
horizontal axis, and optional Split By variable for the legend. 
Exercises

The data used in the following exercises comes from medical students. Blood lipid levels and 
other cardiovascular risk factors are evaluated in students as freshmen and later as seniors. In 
these exercises you examine the distribution of several of the lipid measurements. You will also 
see if there are any differences between the distributions for males and females.

• Open Lipid Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser, select Box Plot and click Create Analysis

• In the variable browser, select Cholesterol and Chol-3yrs and click Add
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The box plot allows you to compare the distributions of these variables. Box plots work simi-
larly to cell plots discussed above. You can group boxes along the horizontal axis as well as 
using the legend to distinguish groups. To examine whether the distributions compare for 
males and females:

• In the variables browser, select Gender and click Split By

The male and female groups appear next to each other so you can compare their distributions. 
You could just as easily add nominal variables which would break the groups out along the 
horizontal axis by using the Add rather than the Split By button.
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
Compare Percentile Plots 20
A compare percentiles plot allows you to compare the distributions of two groups of one or 
more continuous variables. It graphs 19 corresponding percentiles of one group set against 
another group. The percentiles graphed are the 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 
90, 95, 96, 97, 98, and 99th percentiles. 

If either group has less than fifty values, not all percentiles can be calculated, so the plot dis-
plays as many percentiles as can be computed. The plot is designed to compare two groups 
only, so the assigned nominal variable can contain only two groups. 
Dialog box settings

When you create a compare percentiles plot or edit it using the Edit Analysis button, you see 
the dialog box below. The first setting makes the axis lengths equal. The second displays a 
diagonal line to makes it easier to see if the percentiles for the two groups are similar. If iden-
tical, they would lie exactly on this line. Both options are checked (turned on) by default:
Data requirements

Compare percentile plots are generated using one nominal variable with two groups only and 
one or more continuous variables.

Variable browser buttons

Add To generate a compare percentiles plot, select a nominal variable with two groups only and one 
or more continuous variables and click Add. 
Each additional variable assigned is added to the same plot. 

Split By The cells of any nominal variable(s) assigned using the Split By button appear in the legend.
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Results

For explanation of the plot, please see the preceding discussion. 

Compare 
Percentiles Plot

Shows nineteen percentiles of one group on the vertical axis against the corresponding percentiles of 
another group on the horizontal axis. 
Templates

The following templates provide percentile results. 

Descriptive Statistics Percentiles Percentiles summary table and plot for continuous variable.
Graphs Compare Percentiles Compare Percentiles plot for continuous variable and two-level nominal 

variable. 
Exercise

The data used in the following exercise comes from medical students. Blood lipid levels and 
other cardiovascular risk factors are evaluated in students as freshmen and later as seniors. In 
the following exercises you will compare the distribution of cholesterol values for male and 
female freshmen.

• Open Lipid Data from the Sample Data folder

• From the Analyze menu, select New View

• In the analysis browser, select Compare Percentiles and click Create Analysis 

You have two options which help you analyze the information displayed in the graph. You can 
make axes the same size in order to produce a square graph. You can also display a reference 
line which fits the line X = Y. If the distributions of both variables is equal, all points fall on 
this X = Y line.

• Leave both options selected and click OK

• In the variable browser, select Gender and Cholesterol and click Add
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent variables
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The 1st, 2nd, 98th, and 99th percentiles are missing in this chart; recall that not all percen-
tiles can be calculated when a group has fewer than fifty values, as is the case with females. The 
point in the lower left hand corner of the graph is the 3rd percentile of females plotted against 
the third percentile of males. The point at the upper right hand corner is the 97th percentile 
of females plotted against the 97th percentile of males. At the 50th percentile the cholesterol 
values are almost exactly equal—the value lies almost directly on the X = Y line. Below the 
50th percentile, the female cholesterol count is higher than the male at every percentile. How-
ever, between the 50th and 80th percentiles the male cholesterol count is higher than the 
female count. At the upper extreme, the 90th to the 97th percentiles, the females once again 
exceed the males.
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QC Subgroup Measurements 21
This chapter, the first of five regarding StatView’s quality control tools, introduces quality 
control and statistical process control () in general and then goes on to discuss QC Sub-
group Measurements methods in particular. Subsequent chapters discuss StatView’s other QC 
methods: “QC Individual Measurements,” p. 277, “QC P/NP,” p. 287, “QC C/U,” p. 299, 
and “Pareto Analysis,” p. 309. 
Introduction to SPC

Industries employ processes to manufacture products. Laboratory technicians use a process to 
sample blood. Educators employ processes to educate students. Baseball players employ a pro-
cess when they swing at a pitched ball. In all of these cases, a process may be regarded as any 
series of actions that produces a measurable result. In each case, we can use data about the 
results of a process (be these results widgets, student test scores or whether a swatted ball is a 
hit or an out) to infer important characteristics about the process itself.
What is statistical process control?

Statistical process control () concerns itself with particular statistical characteristics of pro-
cesses. Whether  is used to analyze measurements or attributes of items, the goal of most 
 analyses is to evaluate whether a process matches the statistical definition of being in con-
trol. Understanding the statistical concept of control is the key to understanding much of 
what quality control statistics are all about. 
When is a process in control?

What does it mean for a process to be in control? In the context of  statistics, an in control 
process is one that produces items that vary within the limits proscribed by a particular statis-
tical distribution. Though the distribution that is used depends on the particular process con-
trol statistic (see the “Discussion” sections in each chapter), it is the distributions that provide 
the basis for computation of control limits. If the data conform to the assumptions embodied 
in these distributions, then an in control process, according to statistical theory, will only very 
rarely violate (exceed) the computed control limits. It stands to reason, then, that the most 
likely cause of a violation of these limits is that the data do not match the assumptions of the 
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statistics. Violations usually indicate that items produced do not come from the distribution 
that the particular  statistic assumes. 

There are several reasons why data may not conform to the distribution assumed by a particu-
lar  statistic. Among the most common reasons are: 1) the process inherently is not well-
modeled by the distribution assumed in the chosen QC statistic, and 2) the process is well-
modeled by the distribution assumed in the chosen QC statistic, but factors presently in the 
process cause the items produced to deviate from their expected distribution. This distinction 
is rather subtle but very important. A violation due to reason 1 suggests that the process is 
behaving properly, but the analyst is not using the correct distribution to model it. Violations 
due to reason 2 imply that the analyst is using the appropriate model of the process, but the 
process itself is not behaving properly (i.e., the process is out of control). 

Clearly, the analyst must try to distinguish between these 2 possible causes of violations. To 
determine if the violation is due to reason 1, the QC analyst should re-examine the data and 
the process to make sure that she is using the correct  statistic and to be certain that the 
process can be modeled by any  statistic. This generally means that the analyst must evalu-
ate whether the data deviate significantly from a particular distribution. After confirming that 
the violation is not due to reason 1, the analyst usually concludes that the cause of the viola-
tion is reason 2. Violations due to reason 2 are due to assignable causes. The task of bringing 
the process under control then becomes that of isolating and then eliminating any assignable 
causes.

Suppose, for instance, that a technician in a chemistry lab is pipetting a culture medium into 
petri dishes (this is a process). Measurements of the amounts of medium in each petri dish are 
the measurements of items produced. At some point the technician replaces the tip of the 
pipette. Because not all pipet tips are identical, the new pipet tip will deliver either more or 
less medium than did the original tip. The process has therefore changed. If the process has 
changed substantially (i.e., the new pipet tip is significantly larger or smaller than the origi-
nal), then the measurements will very likely violate the control limits. In this case, changing to 
a new pipet tip is the assignable cause that causes measurements to violate the control limits. 
After changing to a new pipet tip, the technician is sampling from a different distribution, one 
with a different mean and probably a different variance than that sampled from the original 
pipet tip. The result is an out of control process.
Process control vs. process capability

Up to this point, we have only discussed process control. The concept of control is always 
defined in statistical, rather than absolute terms. As mentioned above, if a process is in con-
trol, that means only that the process produces items that vary within the limits proscribed by 
a particular statistical distribution. Control is not equivalent to repeatability or precision. For 
instance, measurements from an in control process can vary quite substantially as long as they 
do not depart from the expectations based on a particular statistical distribution (i.e., the vari-
ance for an in control process can be arbitrarily large, and thus not very precise).

By contrast, the related concept of process capability does place absolute bounds on the range 
of acceptable variation in a process. To say that a process is capable means that it is both in 
control and that a high percentage of the items it produces are within certain specification 
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limits. Specification limits are the upper and lower acceptable values for measurements of the 
items produced by a process: items with measurements above or below these limits are 
rejected. What constitutes criteria of acceptability could be determined, for instance, by engi-
neers who require that a part match certain specifications to function properly, or by the 
demands of the marketplace, which require that products meet certain standards of, say, dura-
bility or performance.

In fact, it is quite possible that a process that produces items well within specification limits 
may be out of control and therefore not capable. Below is an example of an individual mea-
surement chart for a process that is out of control, even though the items it produces are 
within the specification limits (the latter indicated by the heavy black lines). Along with show-
ing two observations beyond the upper control limit (points labeled 1), these data show other 
violations of control as well (indicated by all points labeled with numbers; see “Tests for spe-
cial causes and custom tests,” p. 289).

Conversely, a process that is in control may be producing items that are not within specifica-
tion limits, as illustrated in the individual measurement chart below. In this case, there are two 
measurements (observations 12 and 20) that are beyond the lower specification limit, yet 
these are still well within the control limits.

These examples highlight the relationship between the concepts of process control and process 
capability. These characteristics of processes must be examined separately and in sequence. 
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First, you must establish that the process is in control; then you can determine whether or not 
the process is capable. Obviously, statistical process control involves much than simply pro-
ducing items within specification limits. Processes also must be statistically well-behaved. 

Why examine process control and process capability?
Why is it necessary to make the distinction between process control and process capability? 
The most important reason is also the most pragmatic: the steps taken to remedy an out of 
control process generally differ from those used to remedy an in control process with poor 
capability (i.e., the process yields unacceptably few items within specification limits).

For example, when the QC analyst recognizes that a process is out of control, she must 
attempt to trace the cause to a specific source of systematic variability (i.e., an assignable, or 
special cause) and to eliminate this cause. (The explanations given for each of the eight tests 
for special causes are of particular help when initiating such an investigation. See“Tests for 
special causes and custom tests,” p. 289.) Examples of systematic causes of variation are: 
trends in operator fatigue, systematic occurrence of impurities in manufacturing materials, 
drift in the adjustment of manufacturing devices and production of items by different opera-
tors. 

When, however, the QC analyst finds that an in control process is not very capable, she uses a 
different strategy to correct the problem. Low capability generally has one or both of two 
causes: 1) the process is not centered on the target value (the optimal value set by specifica-
tions), or 2) there is too much random variability in the process. The first cause is generally 
the easiest to fix: simply adjust the process (often the machinery used) to produce items closer 
to the specification target. The second cause is generally more difficult to trace and often more 
costly to fix. There are many potential causes of random variability within manufacturing pro-
cesses, but it is precisely because the variation appears random that such causes are so hard to 
identify (keep in mind that known causes of variation are, by definition, non-random). One 
common cause of random variability is worn production machinery, which, in some cases, 
can be remedied only by replacement or costly reconditioning.

Now, we consider the application of StatView’s  statistics to a real life problem.
An example

The Acme Fastener Company has begun to manufacture bolts. The important properties of a 
bolt are its length, its diameter, whether it has any nicks or scratches on the threads, and 
whether it has any discolorations.

The first thing Acme wants to do is establish that their production process is in control. In the 
language of , they want to be sure that what is governing the inevitable variations in length 
and diameter of their bolts is a constant-cause system, not assignable causes. Putting it 
another way, they want to be sure that the variation in length and diameter of their bolts is 
random and centered around a mean—that it follows a normal distribution—rather than 
being due to non-random causes such as variation among machines or production by different 
operators. At this point, they are not primarily concerned with whether the lengths and diam-
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eters of the bolts are within the desired specification limits. They are mainly concerned with 
describing the pattern of variation in length and diameter.

They begin by developing control charts. They produce one series of control charts for length, 
and one for diameter. We will concentrate on the diameter charts, but what we say about 
them will apply equally well to the length charts.

As a result of reading textbooks on , Acme decides that they should measure and record the 
diameters of four bolts every half hour. In other words each subgroup will consist of measure-
ments of diameters from four bolts. 

They will plot Xbar (sample mean), S (sample standard deviation) and  (cumulative 
sum) charts. That is, each point on the Xbar chart will be the mean of the four diameter mea-
surements for a subgroup, and each point on the S chart will be the standard deviation of the 
four diameter measurements for a subgroup. The  chart plots cumulative sums and is 
used to complement the information in the Xbar chart. To generate their charts, the QC ana-
lysts at Acme simply choose among the QC Subgroup Measurements items in the StatView 
analysis browser.

They measure diameters of bolts from 30 subgroups, and they use these data to establish an 
upper control limit (), a lower control limit (), and center line for the Xbar and S 
charts. They find that they have to make a few adjustments in their lathes, and that they have 
to correct the techniques of several operators, but soon their process is in control. Although 
the adjustments took some time, they were able to easily recreate the same analyses; with Stat-
View’s template feature, all they need to do is save the view and then they can rerun the same 
analyses whenever they get new data.

Now the Acme management wants to know if the bolt diameters adequately meet specifica-
tions. Long before production ever began, Acme held meetings with design and production 
engineers, marketing and customer support personnel to establish specification limits for their 
bolt diameter measurements. These limits are intended to enforce production of bolts that 
meet market requirements, without resulting in excessive rejection of bolts and a process that 
is too costly to implement. Using these specification limits, Acme will now determine if the 
bolt production process is capable, i.e., does it produce bolts that meet specifications?

Using the capability analysis supplied within QC Subgroup Measurements, Acme finds that 
all of their capability indices are well above 1.33. This means that only a very tiny percentage 
of bolts have diameters that do not fall within the specification limits. Acme is quite satisfied 
with this result.

They quickly realize, however, that they will be spending a lot of time on their  analyses if 
they continue to analyze every dimension and property of their bolts. There is an alternative. 
A less labor-intensive measure of process control is p/np analysis. This analysis allows Acme 
simply to count the number of unacceptable bolts, and use these counts to evaluate whether 
or not the process is in control. 

The big advantage of p/np analyses is that you can use any rejection data, regardless of the 
causes of the rejections. So, using p/np analyses, Acme can analyze the entire process by essen-
tially pooling data from a number of observations and measurements. Suppose, for instance, 
Acme uses the following criteria for rejection of any bolt:
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1. if more than one scratch on a thread, reject bolt; 

2. if more than one nick on a thread, reject bolt; 

3. if more than two discolorations, reject bolt;

4. if bolt diameter greater than  millimeters or less than  millimeters reject bolt;

5. if bolt length greater than  millimeters or less than , reject bolt.

Using a p chart from StatView, Acme plots the fraction of nonconforming items (i.e., rejected 
bolts) per subgroup (each subgroup comprises a subsample of bolts produced in an hour). 
Since the values from the various subgroups are expected to follow a particular statistical dis-
tribution, the p chart can plot control limits based on this distribution (or some approxima-
tion of it). As it turns out, none of the subgroup proportions is beyond the control limits, so 
Acme concludes that the process is in control.

To make it easier to move bolts to and from the inspection station, Acme now wants to put 
the bolts in boxes, each containing 100 bolts. Since it is much easier to record the number of 
defective (nonconforming) bolts per box, rather than keep a running count of all of the defec-
tive bolts, Acme shifts to using c/u analyses. The c/u statistics analyze the numbers of noncon-
formities per inspection unit (in this case, the number of defective bolts per box). Acme 
chooses to use u charts, which plot the average number of nonconformities per inspection 
unit for each subgroup. 

Having standardized on u charts for all of their preliminary  analyses, Acme creates a u 
chart template that uses a preset value of u. This preset value is based on Acme’s production 
history; using this historical value allows Acme management to see immediately if the num-
ber of defects per inspection unit has significantly improved or declined relative to the histori-
cal average.

Acme also uses Pareto charts in association with their u charts. Though the u charts do a good 
job of tracking the number of nonconformities of a particular type, it is also essential that 
Acme knows the relative frequencies of the various types of nonconformities; this information 
is concisely summarized in Pareto charts. If Acme sees that almost all of their defective items 
are attributable to just one or two types of defects, then they probably shouldn’t spend much 
time trying to improve the incidence of other types of defects. This is just one of the ways that 
Pareto charts can help QC analysts and process engineers decide which problems are most 
worthy of their attention.

As you can see, a complete quality improvement program can involve a variety of the  anal-
yses available in StatView. Effective use of all of these analyses is the key to improving quality. 
Each is appropriate under specific circumstances. In overview, the measurement analyses 
(individual and subgroup analyses) provide very specific information about the results of a 
process. These analyses focus on one measurement at a time (e.g., bolt diameter) and are of 
great utility when trying to track down specific assignable causes. Attribute analyses (e.g., 
counts of defective bolts) provide less specific information about a process (e.g., bolts can be 
defective for any number of reasons), but can be used effectively as a less labor-intensive 
means to monitor a process once it is under control. Finally, Pareto charts can be used effec-
tively to identify the most problematic sources of defects in a process. Far from mutually 
exclusive, these analyses should be regarded as complementary when trying to establish a com-
plete approach to quality improvement.

Du Dl

Lu Ll
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Subgroup measurements

In statistical process control, measurements of items resulting from a process and sampled in 
natural subgroups are analyzed with subgroup measurement statistics. What constitutes a nat-
ural subgroup depends on the context in which the data are collected. In some cases, sub-
groups could be blocks of time (e.g., days) or they could represent partitions of items from 
different sources (e.g., different machine operators). For background on the application of 
subgroup analyses, when to use them and advice on sampling procedures, see the “Discus-
sion,” p. 257, and any standard text, e.g., Grant and Leavenworth (1988).

Another requirement of analyses in this and the next chapter (“QC Individual Measure-
ments,” p. 277) is that the measurements analyzed must be expressed on a continuous scale. 
Examples of such continuous measurements are length, weight, velocity or brightness. In gen-
eral terms, a continuous measurement is any quantity that can (in theory) take on any value 
within a particular interval. Another way to think of continuous measurements is that they are 
not discrete. Values such as Blue, Red, and Yellow, the colors of balloons, are discrete values; 
values such as 2.3, 2.4, 1.9, the lengths in centimeters of rivets, are continuous.

Both subgroup and individual measurement analyses are based on similar statistical assump-
tion. They differ in the way in which parameters (such as σ) can be estimated for the two 
types of data organization.
Discussion

When performing subgroup or individual measurement analyses, usually the primary concern 
of the QC analyst is to evaluate process control and capability (see the preceding “Introduc-
tion to SPC,” p. 251, for an explanation of these terms). Control charts are the primary tools 
of the QC analyst in evaluating process control; capability indices are the most commonly 
used metrics for the evaluation of process capability.

What are the statistical assumptions that allow useful application of control charts and capa-
bility indices? The central assumption is that the quantities plotted are from a normal (i.e., 
Gaussian) distribution. Some implications of this assumption are discussed in the sections 
that follow.
Xbar (subgroup mean) charts

In analysis of subgroup measurements, the QC analyst might begin by plotting an Xbar along 
with an R or an S chart (see below). Conventionally, these charts are considered together 
because they provide complementary information about process variation. 

The Xbar chart provides information about variation among subgroup means. Specifically, Xbar 
charts plot the means of the measurements from each of a series of subgroups. Should at least 
one of the means be very different from the others, it may be that the process is out of control. 
To help the analyst evaluate whether a particular subgroup mean is especially high or low, the 
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Xbar chart shows lines indicating the control limits for the process mean. These control limits 
define the range of values within which the means should fall for a process that is in control.

How are these control limits determined? This is largely a matter of judgment and experience. 
The analyst sets the parameters for calculation of the control limits so that subgroup means 
beyond these limits are relatively unlikely if the process is in control. By convention, these 
limits are based on the 3-sigma rule; in statistical terms, this rule means that the upper and 
lower control limits are placed 3 estimated standard deviations above and below the expected 
value of the mean (or center line) for each subgroup. Formulas for these computations are in 
“Algorithms,” p. 433.

As suggested above, Xbar charts require that the means from the subgroups are normally dis-
tributed. This requirement is not as restrictive as it might seem. In fact, there is a statistical 
maxim known as the Central Limit Theorem, which predicts that the means from subgroups 
should be normally distributed even when the measurements in these subgroups are not. 
(This is true as long as all subgroups are drawn from the same population.) For this reason, 
subgroup Xbar charts often can be used when individual measurement charts (I charts) can-
not.

Considerations when setting k-sigma 
The statistical interpretation of 3-sigma limits is that there is a probability of 0.0027 (i.e., 
about 3 times out of 1,000) that any individual subgroup mean will exceed these limits.It is 
important to recognize that this is not equivalent to the probability that any subgroup mean 
in a Xbar chart will exceed the control limits. A conservative estimate of that probability when 
using 3-sigma control limits is 0.0027 times the number of subgroups. For a chart with 20 
subgroups plotted with 3-sigma limits, the probability that at least one subgroup mean will 
exceed the control limits (assuming that the means are normally distributed) is 

.

This highlights a potential problem with the unexamined use of 3-sigma control limits within 
all control charts, especially when plotting results from many subgroups. The problem is that 
the probability of a false out of control signal increases as you add more subgroups. (A false 
out of control signal is one that is not due to any assignable cause, but just happens by 
chance.) Suppose, for instance, you always chart 50 subgroups on your Xbar charts, and you 
want the probability of a false out of control signal to be no more than 0.05. This means that 
the probability of exceeding the control limits would be  for each individ-
ual subgroup mean. If you do all of the necessary calculations, you will find that you should 
use control limits based on 3.29 times sigma to achieve this probability. Though this doesn’t 
seem like much of a difference, using 3.0 as the sigma multiplier instead of 3.29 actually 
increases the probability of false out of control signals nearly 2.7 fold! This demonstrates one 
important reason why the user has control over the sigma multiplier for all  analyses in 
StatView. 

0.0027 20× 0.054=

0.05 50⁄ 0.001=
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R (subgroup range) charts

The Xbar chart tells only part of the story about process control. Many QC analysts create R 
(range) charts along with their Xbar charts, because the R chart provides information about 
the magnitude of variation among measurements within subgroups, information that is also 
essential for evaluating process control.

Why do QC analysts need such a measure of variation within subgroups? The reason is that if 
variation within subgroups differs substantially among subgroups, then it is unlikely that the 
causes of these differences are random, i.e., the process is probably out of control.

As suggested by its name, an R chart plots the range of the measurements from each subgroup 
for a series of subgroups. (Range is defined as the absolute value of the difference between the 
high and low measurements in each subgroup.) As with Xbar charts, R charts also plot 
expected values (center lines) and control limits for the ranges from each subgroup. “Algo-
rithms,” p. 433, gives the formulas for these computations. The cautions regarding the unex-
amined application of 3-sigma control limits in Xbar charts pertain to R charts as well.

Since the range is based only on two values, it is a fairly rough estimate of the variation among 
measurements within a subgroup. The popularity of this chart is probably due to the relative 
ease with which subgroup ranges can be computed by hand. 
S (subgroup standard deviation) charts 

Many analysts now prefer the S (standard deviation) chart over the R chart, because subgroup 
standard deviations usually provide a more accurate estimate of variation within subgroups. 
Should you wish to create an S chart whenever you create an Xbar chart, you may find it easi-
est to create a template that combines these two results.

S charts plot the standard deviation of the measurements within each subgroup for each of a 
series of subgroups. As with Xbar and R charts, S charts also plot the expected value (center 
line) and the control limits for the standard deviation from each subgroup. Since these 
expected values and control limits are based on theoretical distributions of standard deviations 
from normal populations, you should examine your data carefully to evaluate the assumption 
of normality.
Tests for special causes

Tests for special causes are intended to detect particular sorts of non-random patterns in Xbar, 
I, p/np and c/u results, any one of which might indicate that the process is out of control. Due 
to conventions in how the tests are calculated, both the standard and custom tests are only 
available when subgroups are of equal size.

The standard suite of tests in StatView is a refinement by Nelson (1984, 1985) of the original 
Western Electric rules (Western Electric, 1956). With the exception of rule 1, none of these 
tests should be assumed to have well-determined probabilities for false signals. It should be 
kept in mind, however, that the greater the number of tests used simultaneously, the greater 
the probability of a false signal for any given chart.
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Accordingly, Nelson (1985) recommends that combinations of the standard tests should be 
applied judiciously. In particular, tests 1–4 compose a good suite for detection of many com-
mon assignable causes, while tests 5–8 generally should be left for more advanced diagnoses of 
specific problems.

As mentioned previously, all 8 of the standard tests are also applicable to I charts (see the next 
chapter, “QC Individual Measurements,” p. 277). Tests 1–4 are usually applicable to p/np and 
c/u charts as well; for more information, see the chapters, “QC P/NP,” p. 287, and “QC C/
U,” p. 299.

Standard tests for special causes
Below are the descriptions and interpretations for each of the eight standard tests for special 
causes. Note that these tests refer to zones A, B and C in control charts. These zones are 
defined as bands of constant width where zone A is between 2 and 3 sigmas above and below 
the center line, zone B is between 1 and 2 sigmas above and below the center line, and zone C 
is between 0 and 1 sigma above and below the center line. 

1. 1 point beyond zone A detects a shift in the process mean, µ, an increase in the estimated 
standard deviation, σ, or a single aberration. 

2. 9 consecutive points above or below center line detects a shift in the process mean. 

3. 6 consecutive increasing or decreasing points detects a trend or drift in the process mean. 

4. 14 consecutive alternating points detects systematic alternating effects, such as alternating 
use of different machines, operators or materials.

5. 2 of 3 consecutive points in zone A or beyond detects a shift in the process mean, or an 
increase in the standard deviation. The 2 points must be in the same A band (i.e., above or 
below the center line).

6. 4 of 5 consecutive points in zone B or beyond detects a shift in the process mean. The 4 
points must be in the same B band (i.e., above or below the center line).

7. 15 consecutive points in zone C detects stratification of subgroups when the observations 
in a single subgroup come from various sources with different means. The points must be 
on both sides of the mean. 

8. 8 consecutive points outside zones C detects stratification of subgroups when the observa-
tions in one subgroup come from a single source, but subgroups come from different 
sources with different means. The points must be on both sides of the mean.

Custom tests for special causes
Some users may find that their work requires modifications of the parameters that are used in 
defining the standard suite of special causes tests. For instance, you may prefer rule 5 to be 
defined as “3 of 4 consecutive points beyond 2 sigma.” StatView allows you to customize the 
parameters used to define these tests.

All eight of the custom tests for special causes have the same logical structure as the standard 
tests. Their difference from the standard tests is that the custom tests let you define the num-



21 QC Subgroup Measurements Discussion 
ber of points used in the calculation of a violation and define critical values with arbitrary 
multiples of sigma rather than with zones about the center line.

If you commonly reuse the same suite of custom tests, you may find it easiest to create an 
analysis with your custom suite of tests and then save this analysis as a template. You can then 
use this template for all subsequent analyses.
CUSUM (cumulative sum) charts

Another important, though less frequently used tool for evaluating process control is the 
 (mulative ) chart, sometimes referred to as a  (Cumulative Sum Control 
Chart). When used with the  (Fast Initial Response) option, some experts prefer it to Xbar 
charts for detecting particular types of out of control processes (Ryan, 1989).

Each  chart plots two cumulative sums. These are the high ( )and low ( ) sums 
of the standardized deviates of subgroup means from the process mean. An increase in the 
High sum indicates an increase in the process mean; an increase in the Low sum indicates a 
decrease in the process mean. Should either of these sums exceed the  control limit (h), 
the process is out of control.

Enabling the  (Fast Initial Response) option generally increases the sensitivity of  to 
shifts in the process mean, without unduly increasing the probability of false out of control 
signals. In fact, for detecting shifts in the process mean,   generally outperforms 
Xbar charts (Ryan, 1989). It should be noted, however, that  analyses generally are not 
sensitive to other sorts of assignable causes, such as those that increase variation among or 
within subgroups. Therefore, you should use  analyses in conjunction with Xbar and R 
or S charts whenever you cannot exclude other sources of variation.

SHi SLi
Capability indices

Once you have established that a process is in control, you can generate a table of capability 
indices. These indices measure how well a stable process meets specifications. Maximization of 
process capability is an ongoing effort and is often regarded as the ultimate goal of any quality 
improvement program.

StatView offers a variety of capability indices, each appropriate and useful in particular cir-
cumstances. In general, these indices tell you different things about the distribution of your 
measurements relative to specifications. If you require a single capability index, , is 
favored when a target value is specified, while  generally is preferred when it is not. For-
mulas for these indices are in “Algorithms,” p. 433.

While capability standards vary widely among applications and processes, conventionally, a 
 index of 1.33 is regarded as the minimum acceptable value in manufacturing. Assuming 

that the measurements are normally distributed (an assumption that is central to the proper 
application of capability indices), a  index of 1.33 implies that, on average, only 6 items 
out of 100,000 are beyond specification limits.

Cpm
Cpk

Cpk

Cpk
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Unacceptable capability values can be due to two causes. Either the measurements are not 
centered relative to the specifications, and/or there is excessive variability among measure-
ments. If the centering index, k, is close to 0, the measurements are well centered relative to 
specifications. In such a case, an unacceptable capability index is probably due to excessive 
variation, which is reflected in a high value of σ relative to the range of the specification limits.
Dialog box settings

QC Subgroup Measurements dialog box
The settings in this dialog box apply to all subgroup measurement analyses. Some analyses 
have additional parameters that are set in dialog boxes accessed by clicking Specify buttons.

Base sigma on This pop-up menu allows you to set a calculation method or a value for 
sigma, the estimate of the process standard deviation. The default calculation method of σ is 
based on subgroup standard deviations, i.e., it is the square root of a weighted average of the 
subgroup variances. Alternately, σ may be computed from subgroup ranges, in accordance 
with the formula shown in “QC Subgroup Measurements,” p. 473, by choosing subgroup 
ranges. A third alternative is that you can specify a value for σ by choosing Specify and enter-
ing a value in the text field.

Base control limits on This pop-up menu allows you to specify the values for k or alpha that 
are used to compute  and . By default, control limits are computed with k-sigma (the 
default value of k is 3). Alternately, you can base the control limits on alpha. The default value 
of alpha is 0.002; it is the Type I error probability of exceeding the control limits if the process 
is in control. (If you use other values of alpha, please see the note on alpha-based calculation 
of the range, p. 475.) It is important to note that k and alpha are mutually exclusive: only one 
can be used for any analysis. If you want to set the control limits directly as constants or as 
variables taken from a dataset, click on the Lines button (see “QC Line Parameters dialog 
box,” p. 266).

Special causes tests to perform This pop-up menu allows you to perform either the standard 
tests for special causes or the custom tests. When None is chosen (the default) the Tests button 
is dimmed and no tests will be performed. If you choose Standard or Custom, the Tests but-
ton is activated. See “Tests,” p. 263, “Tests for Special Causes dialog box,” p. 263, and “Cus-
tom Tests dialog box,” p. 264, for more information.
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Display zones in Xbar charts When enabled, this checkbox causes display of zones A, B, and 
C in Xbar control charts. It is important to note that zones can be displayed only when sub-
group sizes are equal. By default, this option is disabled.

Tests If Standard is chosen from the Special causes tests to perform pop-up menu, this button 
opens the Tests for Special Causes dialog box. If Custom is chosen from Special causes tests to 
perform, this button opens the Custom Tests dialog box. These dialog boxes are described 
under “Tests for Special Causes dialog box,” p. 263, and “Custom Tests dialog box,” p. 264.

CUSUM This button opens the  Parameters dialog box; see “CUSUM Parameters 
dialog box,” p. 264. Note that  results are displayed only if you create a  result 
from the analysis browser.

Lines This button opens the QC Line Parameters dialog box, which allows you to set values 
for the center line,  and  for all control charts. See “QC Line Parameters dialog box,” 
p. 266. 

CAPA This button opens the  Parameters dialog box; see “CAPA Parameters dialog 
box,” p. 267
Tests for Special Causes dialog box

With Standard chosen from Special causes tests to perform, this dialog box appears when you 
click the Tests button in the QC Subgroup Measurements or QC Individual Measurements 
dialog boxes. A modified version of this dialog box showing only tests 1–4 appears when you 
click the Tests button in the QC P/NP or QC C/U dialog boxes. 

Among subgroup measurement analyses, the settings in this dialog box apply only to Xbar 
charts. The same tests are available for I charts in individual measurement analyses. Tests 1–4 
are available for p, np, c and u charts. See the following chapters, “QC Individual Measure-
ments,” p. 277, “QC P/NP,” p. 287, and “QC C/U,” p. 299.

Checking the box before each test activates that test. By default, all tests are checked. 

Show definitions table When this checkbox is enabled, the active tests and their definitions 
are listed in a results table in the view. By default, this setting is disabled.

Tables show violations only When this checkbox is enabled, results tables show results only 
for those subgroups that violate the special causes tests. By default, this setting is disabled.

None Clicking this button disables all eight of the tests.
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All Clicking this button enables all eight of the tests.
Custom Tests dialog box

With Custom chosen from Special causes tests to perform, this dialog box appears when you 
click the Tests button in the QC Subgroup Measurements or QC Individual Measurements 
dialog boxes. A modified version of this dialog box showing only tests 1–4 appears when you 
click the Tests button in the QC P/NP or QC C/U dialog boxes.

As with the standard tests for special causes, the settings for the custom tests apply only to 
Xbar charts among the subgroup measurement analyses. The same tests are also available for I 
charts in individual measurement analyses. Tests 1–4 are available for p, np, c and u charts. See 
the following chapters, “QC Individual Measurements,” p. 277, “QC P/NP,” p. 287, and 
“QC C/U,” p. 299.

The text boxes in this dialog box allow you to specify both the number of points and the crit-
ical number of sigmas used to define each test. The default values are those for the standard 
tests for special causes. All text fields for numbers of points must be given positive integer val-
ues; those for multiples of sigma can take any positive real values. 

All other settings in this dialog box work just like those in the Tests for Special Causes dialog 
box, above.
CUSUM Parameters dialog box

The  Parameters dialog box appears when you click the  button in the QC Sub-
group Measurements or QC Individual Measurements dialog boxes.
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The options you choose in this dialog box establish the parameters for a  analysis. 
However, no results are displayed unless you choose a  result from the analysis browser. 
If you want to do a  analysis on individual measurements, choose a  result under 
QC Individual Measurements in the analysis browser.

Mean shift This text field allows you to enter the mean shift, in standard units, that you wish 
to detect with the  procedure. For instance, enter 1.5 if you want to detect a mean shift 
of 1.5 standard deviations. The default value is 1.

Control limit This text field allows you to specify h, the  out of control threshold. The 
default value of h without  enabled is 4; with , the default is 5. 

Charts show violations If you enable this checkbox, charts will display an H symbol next to 
points that violate the upper control limit and an L symbol next to those that violate the lower 
control limit. By default, this option is enabled.

Tables show violations only If you enable this checkbox, the  results table will display 
information only for those observations/subgroups which are beyond the upper or lower con-
trol limits. If not checked, these tables will display information for all subgroups. By default, 
this option is disabled.

Invert lower sum If you enable this checkbox, then  is displayed as the negative of  as 
described in “Algorithms,” p. 433. By default, this option is enabled.

Specify process mean This checkbox and associated text field allow you to specify a value for 
the process mean used in the  calculations. If not checked (the default), the calculated 
value of the process mean is used. 

Use  This checkbox allows you to enable . With  enabled, values of  and  are 
set to h/2 both initially and following a violation (i.e., when either value exceeds h). When not 
checked (the default), values of  and  are set to 0 initially, and are not reset following a 
violation. This option cannot be used with the On violation radio buttons.

On violation These radio buttons allow you to choose what  does after a violation 
occurs. The Do Nothing option (the default) leaves the values of  and  unchanged. 
The Reset option changes these to the initial value. Note that enabling  is equivalent to 
choosing Reset and an initial value of h/2.

Initial value This text field allows you to specify the initial value of  and  if either On 
violation: radio button is enabled. If On violation: Reset is enabled, the value in this text field 
is also the reset value.

SLi SLi
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QC Line Parameters dialog box 

The QC Line Parameters dialog box appears when you click the Lines button in the QC Sub-
group Measurements, QC Individual Measurements, QC P/NP or QC C/U dialog boxes.

This dialog box permits you to specify constants or variables for center lines, s and s on 
all control charts.

In the following options, if you select Variable, you cannot then edit the corresponding text 
box, because variables can be specified only in the Variables dialog box. For this reason, names 
of variables in these text boxes are dimmed.

Chart Use this pop-up menu to select the particular control chart to which you want to apply 
the options in this dialog box. It is important to note that the line parameters for one chart do 
not carry over to the other charts when you change the Chart pop-up. If this dialog box is 
accessed through the QC Subgroup Measurements dialog box, the pop-up shows Xbar Chart, 
R Chart and S Chart. If accessed through the QC Individual Measurements dialog box, the 
pop-up shows I Chart and MR Chart. If accessed through the QC P/NP dialog box, the pop-
up shows P Chart and NP Chart. If accessed through the QC C/U dialog box, the pop-up 
shows C Chart and U Chart.

Center line This pop-up menu and associated text field allow you to calculate or to assign a 
constant or a variable for the center line or the currently selected chart. A constant is any 
numerical value you enter. If you choose to assign a variable, you get the Variables dialog box, 
explained under “Variables dialog box,” p. 267.

UCL, LCL These pop-up menus and associated text fields allow you to calculate or to assign 
constants or variables for the control limits. By default, these values are calculated from the 
data, as indicated by the Calculated choice. You also have a choice for how to assign a constant 
or a variable to these lines. When (abs) follows constant or variable, the values used are the 
actual values of the constant or of the cases in the variable. For choices in which (rel) follows 
Constant or Variable, the values are measured relative to the center line, with positive values 
measured above the center line, and negative values measured below. 

Cancel This This button returns all settings to their previous values for the current chart 
selected in the Chart pop-up menu. It has no effect on the settings for any other charts that 
have been edited since clicking the Lines button.



21 QC Subgroup Measurements Dialog box settings 
Cancel All This button returns all settings to their previous values for all charts that have 
been edited since clicking the Lines button.
Variables dialog box 
If you choose variables for any of the line specifications, you will get the Variables dialog box. 
This dialog box has a format and function that is very similar to the variable browser. 

Data This pop-up menu enables you to select the dataset from which the variables are cho-
sen. It gives you access to open datasets, or allows you to open a closed dataset. Normally, the 
dataset you choose here will be different from the one that is used for the analysis itself.

Order This pop-up menu allows you to select between dataset, alphabetical, class and usage 
orderings of the variables that appear in the scrolling list. This option only affects the order of 
variables in the scrolling list; it has no effect on which variables appear in this list. 

Choose a variable This scrolling list allows you to choose a variable from those contained in 
the selected dataset. Either double-click on the variable, or select a variable and click Use to 
assign that variable to a line. Note that if there are n subgroups in the analyzed data, only the 
first n rows in any line variable are used. 
CAPA Parameters dialog box 

The  Parameters dialog box appears when you click the  button in the QC Subgroup 
Measurements or QC Individual Measurements dialog boxes.
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The capability analysis table is displayed in the view only if one or both of the Display check-
boxes is enabled. When either Display checkbox is enabled, the OK button is not activated 
unless one or more specification parameters are entered.

Basic  statistics This checkbox allows you to display, in the capability analysis table, the 
various  indices and the centering index, k. These values will be computed only if the 
appropriate specifications are entered.

% outside ,  This checkbox allows you to display in the capability analysis table the 
percentage of observations outside the  and . These values are computed only if the 
specification parameters are entered.

 Enabling this checkbox requires you to specify a value for the  (upper specification 
limit) in the text box. You must specify either  or  to compute a capability index. The 
value of  must be greater than the Target and the .

 Enabling this checkbox requires you to specify a value for the  (lower specification 
limit) in the text box. You must specify either  or  to compute a capability index. The 
value of  must be less than the Target and the . 

Target Enabling this checkbox requires you to specify a value for the specification target in 
the text box. This value is required only for computation of . The value for the Target 
must be between those for the  and the .

When only  or  is entered, all calculated minima are the quantities computed for the 
limit that is specified, i.e., the unspecified limit is ignored. See “Capability analyses,” p. 476 
for more on computation of capability indices.

Cp

Cpm
Data requirements

QC subgroup measurement analyses require one continuous and one nominal variable. These 
are referred to as the measurement and subgroup variables, respectively. The measurement 
variable has the measurements that are the object of analysis, e.g., bolt lengths. The subgroup 
variable indicates the subgroup from which each measurement is taken, as pictured below.
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Please note the following when assigning variables to these analyses:

1. The number of measurements is determined by the total number of included cases (rows) 
in the measurement variable. 

2. Subgroup sizes are determined by the number of cases with a particular value of the sub-
group variable. 

3. The ordering of subgroups in any subgroup measurement result is determined by the 
alpha-numeric values within the subgroup variable.

If all of your subgroups have the same number of measurements, you can probably use a for-
mula to generate the values of the subgroup variable. This will save you repetitive and poten-
tially inaccurate typing of subgroup names. For instructions, see “How can I generate 
subgroup and labeling variables?,” p. 242 of Using StatView.

Variable browser buttons

Add Select one measurement variable (continuous), and one subgroup variable (nominal), then click 
the Add button.
Each additional measurement variable creates a new analysis using the original subgroup 
variable. Each additional subgroup variable creates a new analysis using the original 
measurement variable.

Split By When you assign one or more split-by variables (nominal) to a subgroup measurement analysis, 
results are displayed separately for each cell defined by the split-by variable(s).
Results

Xbar Statistics results

Xbar charts can be plotted as line, point, needle, or bar plots. You make this choice in the 
analysis browser. The default result is a line chart.
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When the Tables show violations only option is checked in the Tests for Special Causes or 
Custom Tests dialog boxes, this table shows results only from those subgroups that violate one 
or more of the chosen tests.

Xbar charts Plotted points Give the mean for each subgroup.
Center, UCL and LCL 
lines

Center line gives the mean of all measurements (the process mean, µ), 
or the value specified in the Lines dialog box. UCL and LCL lines give 
the upper and lower control limits about the mean for each subgroup, 
or the values specified in the Lines dialog box.

Xbar table Count Gives the number of measurements in each subgroup.
Mean Gives the mean from each subgroup.
Center Gives the mean of all measurements (the process mean, µ), or the 

value specified in the Lines dialog box.
UCL, LCL Gives the upper and lower control limits about the mean for each 

subgroup, or the values specified in the Lines dialog box.
Other contents Labels to the left of each row are subgroup names as specified by the 

subgroup variable. Numbers to the right of each row are the numbers 
of any violated special causes tests that are currently enabled.
Special Causes Definitions table

This is a rather unusual result table because it displays no computed results. These definitions 
are displayed mainly to aid the interpretation of violations that appear on control charts. This 
table is displayed only if Show definitions table is enabled in the Tests for Special Causes or 
Custom Tests dialog box.

Contents Gives the definitions for those tests enabled in either the Tests for Special Causes or the Custom 
Tests dialog box, depending on which is chosen from the Special causes tests to perform pop-up 
menu. 
R Statistics results

R charts can be plotted as line, point, needle, or bar plots, depending upon which items are 
selected in the analysis browser. The default graph is a line chart. Both the center line and the 
control limits for R charts will vary among subgroups if subgroup sizes vary

R charts Plotted points Give the range for each subgroup.
Center, UCL and LCL 
lines

Center line gives the predicted value of the range for each subgroup, or 
the value specified in the Lines dialog box. UCL and LCL lines give the 
upper and lower control limits about the range for each subgroup, or 
the values specified in the Lines dialog box.
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R table Count Gives the number of measurements in each subgroup.
Range Gives the range for each subgroup.
Center Gives the predicted value of the range for each subgroup, or the value 

specified in the Lines dialog box.
UCL, LCL Gives the upper and lower control limits about the range for each 

subgroup, or the values specified in the Lines dialog box.
Other contents Labels to the left of each row are subgroup names as specified by the 

subgroup variable. 
S Statistics results

S charts can be plotted as line, point, needle, or bar plots, depending upon which items are 
selected in the analysis browser. The default graph is a line chart. Both the center line and the 
control limits for S charts will vary among subgroups if subgroup sizes vary. 

S chart Plotted points Give the standard deviation for each subgroup.
Center, UCL and LCL 
lines

Center line gives the predicted value of the standard deviation for each 
subgroup, or the value specified in the Lines dialog box. UCL and LCL 
lines give the upper and lower control limits about the standard 
deviation for each subgroup, or the values specified in the Lines dialog 
box.

S table Count Gives the number of measurements in each subgroup.
Std. Dev. Gives the standard deviation for each subgroup.
Center Gives the predicted value of the standard deviation for each subgroup, 

or the value specified in the Lines dialog box.
UCL, LCL Give the upper and lower control limits about the standard deviation 

for each subgroup, or the values specified in the Lines dialog box.
Other contents Labels to the left of each row are subgroup names as specified by the 

subgroup variable. 
CUSUM Statistics results

 charts can be plotted as line, point, needle, or bar plots. These are available within the 
 Statistics heading in the analysis browser. When the Tables show violations only 
option is checked in the  Parameters dialog box, this table shows results only from 
those subgroups with values of  or  that exceed the control limits. 

CUSUM chart Plotted points Give the high and low cumulative sums for each subgroup. These are 
keyed in the legend.

Center line Gives the zero cumulative sum.
Upper and lower 
broken lines

Give the control limits for the SHi (high sum) and SLi (lower sum). If 
the Invert lower sum option is disabled in the CUSUM Parameters dialog 
box, the upper line gives the control limit for both sums. 

SHi SLi
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CUSUM table Count Gives the number of measurements in each subgroup.
z Gives the standardized deviate of each subgroup mean from the process 

mean.
SH, SL Gives the values of SHi and SLi for each subgroup. If the Invert lower 

sum option is disabled in the CUSUM Parameters dialog box, SLi is 
positive.

Other contents Labels to the left of each row are subgroup names as specified by the 
subgroup variable. H or L appear to the right of any row for which SHi 
or SLi exceeds the control limit.
CAPA table

The capability analysis table is displayed in the view only if specification parameters are 
entered in the  Parameters dialog box.

Cp, Cpm, CPU, CPL, 
Cpk

Give the values for the various capability indices.

k Gives the process centering index.
% > USL, % < LSL Give the percentage of observations above USL and below LSL.
Norm % > USL, 
% < LSL

Give the percentage of observations from a normal population (mean=µ, standard 
deviation=σ), that are above the USL and below LSL.
Summary Table

The summary table shows the following.

K sigma Gives the sigma multiplier that is used to determine control limits. A missing value ( . ) 
indicates that alpha, rather than k-sigma, is used to compute control limits.

Alpha Gives alpha, the Type I probability of exceeding the control limits. A missing value ( . ) 
indicates that k-sigma, rather than alpha, is used to compute control limits.

Sigma Gives the estimate of sigma as specified in the QC Subgroup Measurements dialog box.
Xbar Center Gives the value of µ, the process mean.
R Center, S Center Give weighted estimates of the process range and standard deviation, respectively. A missing 

value ( . ) indicates that subgroup sizes are unequal; see R and S results tables instead.
# Groups, # Obs, # 
Missing

Give number of subgroups, included rows, and missing cases, if any, in the analysis.
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Templates

The following templates provide QC subgroup measurement analyses. 

QC Analyses Subgroup 
Measurements Analysis

Box plot; Xbar and S line charts with 3-sigma control limits; FIR CUSUM 
line chart; summary table; histogram with normal curve; and 
descriptive statistics with notes on interpretation. 

Xbar & R Charts Xbar and R line charts with 3-sigma control limits; summary table. 
Xbar & S Charts, 
Specify Lines

Xbar and S line charts with control limits given by continuous variables 
you specify; and summary table.

Xbar, S & CUSUM 
Charts

Xbar and S line charts with 3-sigma control limits; FIR CUSUM line 
chart; and summary table. 
Exercise

Suppose that you are in charge of the quality control effort at a bicycle manufacturer that spe-
cializes in limited production frames. The most popular model your company produces is a 
day touring model called the “Arribe!”, which is a racing-style frame for weekend warriors. 
This is the product that we will analyze in this example. 

The seat tube angle of a bicycle frame can dramatically affect the finished bicycle’s handling 
characteristics. This is the angle formed by the intersection of the tube that holds the seat post 
(the seat tube) with the top horizontal frame tube (the top tube). Typically, a small seat tube 
angle (less than 72˚) endows the frame with forgiving (soft) handling characteristics. Weekend 
warriors want frames that are responsive and quick; they prefer frames with steep seat tube 
angles (c. 74˚). The “Arribe!” is manufactured with these specifications in mind.

In this exercise, we will use the subgroup measurement statistics to see if the frame manufac-
turing process is in control and capable.

• Open Tube Angle Data from the Sample Data folder

Scroll through the dataset to examine its contents. You’ll notice that for each of ten days (two 
work weeks), a technician measured and recorded the seat tube angles from all ten frames pro-
duced in the shop.

• Select New View from the Analyze menu

• (Optional) In the analysis browser under Show, choose Quality Control

• In the analysis browser under QC Subgroup Measurements, select Xbar Statistics, S Statis-
tics, and  Statistics
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent results.

• Click Create Analysis
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• For Special causes tests to perform, choose Standard

• Click 

• Check Use  and click OK

• Click OK

This creates empty Xbar, S and  charts in the view.

• In the variable browser, select “Seat tube angles” and “Date” and click Add

The Seat tube angles variable is the measurement variable; it appears in the variable browser 
with an X usage marker. The Date variable is the subgroup variable; it appears with a G usage 
marker. The analysis calculates and the three completed results appear in the view. 

The Xbar line chart that appears at the top of the view indicates that the overall mean of the 
seat tube angles for the frames in this sample is 74.04 degrees. Because the sample size in each 
subgroup is the same (10), the control limits (74.12 and 73.96 for the  and , respec-
tively) are constant across subgroups. Since there are no test labels next to any of the plotted 
points, we know these data violate none of the tests for special causes.

Scroll down the view to the S and  charts. The S chart shows that the estimates of the 
subgroup standard deviations are above average from 3/15–3/17, then decline on 3/18 to 
below average values from 3/19–3/23 (the 2 day gap in the sequence is a weekend), then 
increase from 3/24–3/26. All of these estimates of variation within subgroups are well within 
the control limits. Corroborating what was indicated in the Xbar chart, the  chart does 
not show any indications of a shift in the process mean. From all available evidence, this pro-
cess appears to be in control.

73.96

73.98

7 4

74.02

74.04

74.06

74.08

74.1

74.12

74.14

M
ea

n 
of

 S
ea

t t
ub

e 
an

gl
es

03
/1

5

03
/1

6

03
/1

7

03
/1

8

03
/1

9

03
/2

2

03
/2

3

03
/2

4

03
/2

5

03
/2

6

Date

Xbar Line Chart
Control Limits: 3 Sigma

Center = 74.044

UCL = 74.124

LCL = 73.964



21 QC Subgroup Measurements Exercise 
The next step is to see if the process is capable, i.e., is it producing frames within specification 
limits? You will now create a capability analysis to answer this question.

• Click one of the results to select it

• Click Edit Analysis (the button at the top of the view)

• Click  

• In the  Parameters dialog box, check all the boxes (turn all the options on)

• Specify 74.3, 73.7 and 74 for the , , and Target values and click OK
(These values are derived from an independent engineering analysis of the variation in seat 
tube angle that yields acceptable performance characteristics.)
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• Click OK

The somewhat low values for ,  and  may not be acceptable. Assuming that the 
data are normally distributed, approximately 12 frames out every 10,000 will have seat tube 
angles greater than the specification limits (Norm % >  = 0.124). Since the value of k is 
not close to 0 and since  is appreciably greater than , the relatively low values of the 
capability indices are due, at least in part, to the fact that the process mean (see Xbar chart) is 
somewhat greater than the specification target value (i.e., the data are not centered relative to 
specifications). Though these results do not suggest drastic revision of the production process, 
the production manager may want to check the alignment of the frame jig and perhaps adjust 
it slightly.
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This chapter, the second of five regarding StatView’s quality control tools, discusses QC Indi-
vidual Measurements methods. For a general introduction to quality control, see the previous 
chapter, “QC Subgroup Measurements,” p. 251. Subsequent chapters discuss StatView’s other 
QC methods: “QC P/NP,” p. 287, “QC C/U,” p. 299, and “Pareto Analysis,” p. 309. 
Discussion

As with subgroup measurement analyses, individual measurement analyses are used to evalu-
ate whether a process that produces items with continuous measurements is in control and 
capable. Unlike the analyses in the previous chapter, “QC Subgroup Measurements,” p. 251, 
individual measurements analyses require that measurements are not grouped with other mea-
surements. Put another way, each subgroup has only a single measurement. Criteria for decid-
ing when to use individual measurements are discussed in standard texts such as Ryan (1989). 

Most of the considerations reviewed in the discussion of subgroup measurement statistics per-
tain also to individual measurement statistics. Individual measurement statistics require that 
the measurements be normally distributed. With the help of StatView’s formula capabilities, 
you can perform analyses to help you decide when your data are not normally distributed. 
These techniques are summarized in “Normality Test,” p. 233 of Using StatView.

The main differences between individual and subgroup measurement statistics are due to dif-
ferences in how certain key parameters are estimated. Because there is no within subgroup 
variation for individual measurement analyses, the methods used to estimate process variation 
(embodied in the parameter sigma) are different from those used in subgroup measurement 
analyses. Furthermore, the lack of subgroups means that there can be no range or standard 
deviation charts for individual measurements. In individual measurement analyses, these sub-
group charts are replaced by the moving range chart.
I (individual measurement) charts

In a QC analysis of individual measurements, an I chart together with an MR chart is often 
the focus of inspection. As with Xbar and R or S charts, I and MR charts are often considered 
together because they provide complementary information about process variation. 
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The I chart is essentially the individual measurement equivalent of the Xbar chart: it provides 
information about variation among measurements. If there are large differences among mea-
surements, the process might be out of control. As with any control chart, the I chart also 
shows lines indicating the control limits and the center line for the process. 

Statistically, the control limits in I charts are based on the same assumptions and are calcu-
lated in the same way as control limits for Xbar charts. Accordingly, the interpretations and 
cautions mentioned in the discussion of Xbar charts apply to I charts as well. For more infor-
mation, please read “Xbar (subgroup mean) charts,” p. 257.
MR (moving range) charts

As noted above, QC analysts often create MR charts along with their I charts. The MR chart 
provides additional information about the magnitude of variation among measurements in a 
sample. As such, MR charts take the place in individual measurement analyses of R or S charts 
in subgroup measurement analyses. 

As suggested by its name, an MR chart plots the moving range among measurements in a 
sample. The moving range is defined as the absolute value of the difference between mini-
mum and maximum values of measurements in a sequence. Typically, this difference is 
between consecutive measurements (range span = 2), though other range spans can be used as 
well. MR charts also plot the expected value (center line) and control limits for the moving 
ranges among measurements.
Tests for special causes

Both the standard and the custom tests for special causes for I charts are identical in definition 
and interpretation to those applied to Xbar analyses; see “Tests for special causes,” p. 259. 

If you are involved in clinical , you probably use a variation of the Westgard rules (West-
gard and Barry, 1986). With the exception of the  Westgard rule, these can be easily coded 
as custom tests as follows:

1. The  rule is equivalent to test 1 with a 3 sigma setting.

2. The  rule is equivalent to test 5 with 2 of 2 consecutive points beyond 2 sigma.

3. The  rule is equivalent to test 6 with 4 of 4 consecutive points beyond 1 sigma.

4. The  rule is equivalent to test 2 with 10 consecutive points.

If you would also like to check the  rule, we suggest that you use the following dataset for-
mula for a nominal string variable:

if Range("Measurement variable", OnlyIncludedRows) > 4 * "sigma"
then "violation"
else .

Construct this formula using the value of sigma from the individual measurements summary 
table. When computed, this formula returns “violation” if the range of the measurement vari-
able exceeds 4 times the estimate of sigma.

R4s

13s

22s

41s

10xbar

R4s



22 QC Individual Measurements Dialog box settings 
CUSUM charts

The individual measurement  procedure is identical to that used for subgroup measure-
ments with one exception: the sums plotted for individual measurements are the cumulative 
sums of the adjusted standardized deviate of each measurement (rather than subgroup means) 
from the process mean. (For more information, please see“CUSUM (cumulative sum) 
charts,” p. 261.) In general, most experts recommend that  analyses be applied in con-
junction with I and MR charts for the broadest detection of assignable causes.
Capability indices

The capability indices for individual measurements are computed just as they are for sub-
group measurements. Please read “Capability indices,” p. 261 for more information regarding 
the application of these indices.
Dialog box settings

QC Individual Measurements dialog box
The settings in this dialog box apply to all individual measurement analyses. Some analyses 
have additional parameters that are set by clicking the Specify buttons in this dialog box.

Base sigma on This pop-up menu allows you to set a calculation method or a value for 
sigma, the estimate of the standard deviation. If calculated, sigma can be based on the stan-
dard deviation of all the measurements (overall standard deviation, the default) or on the aver-
age moving range (average MR), as described in “Sigma,” p. 477. Alternately, you can assign a 
value to sigma by choosing specify.

Base control limits on This item functions identically to the pop-up menu of the same name 
in the QC Subgroup Measurements dialog box. For more information, please see “QC Sub-
group Measurements dialog box,” p. 262.
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Range span This text field allows you to specify the value of rs (range span), which is the 
number of cases used in calculating moving ranges (see “MR analyses,” p. 477). The default 
value is 2.

Special causes tests to perform This item functions identically to the pop-up menu of the 
same name in the QC Subgroup Measurements dialog box. For more information, please see 
“QC Subgroup Measurements dialog box,” p. 262.

Display zones in I charts When enabled, this checkbox causes display of zones A, B, and C 
in I control charts. By default, this option is disabled.

All the Specify buttons and the dialog boxes they access are identical to the corresponding 
items in the QC Subgroup Measurements dialog box. See “QC Subgroup Measurements dia-
log box,” p. 262.
Data requirements

Individual measurement analyses require one continuous and, optionally, one nominal vari-
able. These are referred to as the measurement and labeling variables, respectively. The mea-
surement variable holds the measurements that are the object of analysis, e.g., bolt diameter. 
The optional labeling variable is used to identify the measurement data, as pictured here:

The following conventions apply to variable use in all individual measurement analyses:

1. The number of observations is equal to the total number of included cases in the measure-
ment variable. 

2.  The ordering of cases in any QC individual measurement result is determined by the 
order of the measurements in the dataset.

Variable browser buttons

Add Select one measurement variable (continuous) and, optionally, one labeling variable (nominal), 
then click the Add button.
Each additional measurement variable creates a new analysis using the original labeling 
variable. Each additional labeling variable creates a new analysis using the original 
measurement variable.

Split By When you assign one or more split-by variables (nominal) to an individual measurement 
analysis, results are displayed separately for each cell defined by the split-by variable(s).
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Results 

I Statistics results

I charts can be plotted as line, point, needle, or bar plots. You make this choice in the analysis 
browser. The default graph is a line chart.

When the Tables show violations only option is checked in the Tests for Special Causes or 
Custom Tests dialog boxes, this table shows results only from those measurements that violate 
one or more of the chosen tests.

I chart Plotted points Give the value for each measurement.
Center, UCL and LCL 
lines

Center line gives the mean of all measurements (the process mean, µ), 
or the value specified in the Lines dialog box. UCL and LCL lines give 
the upper and lower control limits about the process mean, or the 
values specified in the Lines dialog box.

I table Obs Gives the value of each measurement.
Center Gives the mean of all measurements (the process mean, µ), or the 

value specified in the Lines dialog box.
UCL, LCL Gives the upper and lower control limits about the process mean, or 

the values specified in the Lines dialog box.
Other contents Labels to the left of each row are case numbers or measurement names 

as specified by the labeling variable. Numbers to the right of each row 
are those of any violated special causes tests that are currently 
enabled.
Special Causes Definitions tables

This table is identical to the corresponding table available within subgroup measurements. 
Please see “Special Causes Definitions table,” p. 270.
MR Statistics results

MR charts can be plotted as line, point, needle, or bar plots, depending upon which items are 
selected in the analysis browser. The default graph is a line chart.

MR chart Plotted points Give the value for each moving range.
Center, UCL and LCL 
lines

Center line gives the average moving range, or the value specified in 
the Lines dialog box. UCL and LCL lines give the upper and lower 
control limits about the average moving range, or the values specified 
in the Lines dialog box.
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MR table Mov. Range Gives the value for MRi as defined in “MR analyses,” p. 477. With 
range span = 3, for instance, the first 2 values in this table are 
missing.

Center Gives the average moving range, or the value specified in the Lines 
dialog box.

UCL, LCL Gives the upper and lower control limits about the average moving 
range, or the values specified in the Lines dialog box.

Other contents Labels to the left of each row are case numbers or measurement names 
as specified by the labeling variable.
CUSUM Statistics results

 charts and tables for individual measurements are identical to those created with sub-
group measurements with the following exceptions: individual measurement  charts 
and tables show the value of the range span in their titles, and individual measurement  
tables do not have a Count column. Please see “CUSUM Statistics results,” p. 271, for more 
information.
CAPA results

The individual measurement Capability Analysis results table is identical to that created for 
subgroup measurements, except that the individual measurement table shows the value of the 
range span in its title. Please see “CAPA results,” p. 282, for more information.
Summary table

The summary table shows the following. 

K sigma Gives the sigma multiplier that is used to determine control limits. A missing value ( . ) 
indicates that alpha, rather than k-sigma, is used to compute control limits.

Alpha Gives alpha, the Type I probability of exceeding the control limits. A missing value ( . ) 
indicates that k-sigma, rather than alpha, is used to compute control limits.

Sigma Gives the estimate of sigma as specified in the QC Individual Measurements dialog box.
Xbar Gives the value of µ, the process mean.
MRbar Gives the average of the moving ranges.
# Obs, # Missing Give number of included rows and missing cases in the analysis.
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Templates

The following templates provide QC individual measurement analyses. 

QC Analyses Ind & Moving Range 
Charts

I and MR line charts with 3-sigma control limits; and summary table. 

Ind & MR Charts with 
Westgard

I and MR line charts with 3-sigma control limits; and summary table 
with Westgard rules. 

Ind & MR Charts, 
Specify Lines

I and MR line charts with control limits given by continuous variables 
you specify; and summary table. 

Ind Measurements 
Analysis

I and MR line charts with 3-sigma control limits; FIR CUSUM line chart; 
summary table; histogram with normal curve; and descriptive statistics 
with notes on interpretation. 

Ind, MR & CUSUM 
Charts

I and MR line charts with 3-sigma control limits; FIR CUSUM line chart; 
and summary table. 
Exercise

Previously, you completed an exercise to evaluate whether a bicycle frame manufacturing pro-
cess was in control and capable, with respect to the seat tube angle measurement (see “Exer-
cise,” p. 273). You might recall that although the process appeared to be in control, the 
capability analysis indicated that the process was not as capable as it could be. In response to 
your findings, the production manager made a slight adjustment to the frame jig in an 
attempt to bring the seat tube angles closer to their target value of 74˚. In this exercise, you 
will use individual measurement analyses to see if the process, after adjustments, is still in con-
trol.

• Open Tube Angle Data Post Adj from the Sample Data folder

These are data only from the day following the adjustments to the frame jig. The seat tube 
angle from one frame was measured each hour. 

• Select New View from the Analyze menu

• In the analysis browser under QC Individual Measurements, select I Statistics, MR Statis-
tics, and  Statistics and click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent items

• For Special causes tests to perform, select Standard

• Check Display zones in I charts

• Click  

• In the  Parameters dialog, check Use  and click OK

• Click OK

This creates empty I, MR and  charts in the view.

• In the variable browser, select Seat tube angles and Time and click Add
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The Seat tube angles variable is the measurement variable; it appears in the variable browser 
with an X usage marker. The Time variable is the labeling variable; it appears with a G usage 
marker. The analysis calculates and the three completed results appear in the view.

The I chart at the top of the view gives no indication that the process is out of control. 
Though the 3 and 4 PM measurements are farther from the mean than the other measure-
ments, all are still well within the control limits. Since no test numbers appear in the plot, we 
know there are no violations of the tests for special causes.
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On the other hand, a quick look at the MR chart (pictured above with the  chart) sug-
gests that the process might be out of control. In particular, the moving range for the 4 PM 
measurement (which is the difference between the 3 and 4 PM measurements) is slightly 
beyond the . Since the I and  charts do not suggest a shift in the process mean, this 
could indicate an increase in variation.

After you relay this information to the production manager, he finds that one of the clamps 
on the frame jig is not as tight as it could be. Though it is difficult to tell from the data when 
the problem began, the I chart suggests that the clamp might have come loose between 2 and 
3 PM. Luckily, even though the process might have been out of control, the frames produced 
in the late afternoon are still within specification limits. 
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This chapter, the third of five regarding StatView’s quality control tools, discusses QC p/np 
analyses. For a general introduction to quality control, see the preceding chapter, “QC Sub-
group Measurements,” p. 251. Other chapters discussing StatView’s QC methods are “QC 
Individual Measurements,” p. 277, “QC C/U,” p. 299, and “Pareto Analysis,” p. 309. 
Discussion

Because it is not always possible, practical or desirable to evaluate measurements from items, 
QC analysts sometimes gather and analyze data based on item attributes. An attribute typi-
cally is some descriptive characteristic of items, rather than a measurement. Typically, these 
attribute data are in the form of counts of items with particular characteristics.

The most common types of count data for the purposes of quality control are tallies of obser-
vations that do not meet the criteria of acceptability, e.g., numbers of nonconforming (i.e., 
defective) items, or numbers of nonconformities (i.e., defects) per item from a larger sample 
of items. While both p/np and c/u analyses are used to analyze attribute data, they have differ-
ent applications: p/np statistics are used to analyze numbers or proportions of nonconforming 
items; the next chapter, “QC C/U,” p. 299 discusses c/u statistics used to analyze data on the 
numbers of nonconformities per inspection unit from a sample of inspection units.

In p/np analyses, the data for individual items can have only one of two values, typically defec-
tive/not defective. Accordingly, these data follow a binomial distribution. 

Although the form of the data is different, p/np analyses, like analyses based on continuous 
measurements, rely heavily on control charts. Accordingly, the interpretation of p/np control 
limits is very similar to that for measurement charts. It should be unlikely that, due simply to 
random effects, points will lie beyond control limits. Therefore, points beyond control limits 
are attributed to assignable causes, and require corrective action.

By convention, most p/np charts use 3-sigma limits. Unfortunately, these limits often do not 
approximate the intended probabilities of the binomial distribution. This is because the nor-
mal approximation limits (i.e., those based on k-sigma) are symmetrical and the binomial dis-
tribution is not. A rule of thumb for minimum subgroup size when using k-sigma limits is: if 

 is the number of items in a subgroup, and p is the proportion of nonconforming items 
over all subgroups, then both  and  should be greater than 5. See Ryan (1989) 
ni

nip ni 1 p–( )
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for details. Because the data available often do not meet these requirements, many analysts 
prefer control limits based on alpha rather than those based on multiples of sigma.

Typically, analysis of attribute data in a quality improvement program is carried out for a 
number of reasons (Grant and Leavenworth, 1988), among them:

1. To quantify the average of and the variation in the proportion of nonconforming items 
produced by a process over time.

2. To discover an increase in the number of nonconforming items so that the process can be 
corrected. 

3. To discover a decrease in the number of nonconforming items, which can indicate relaxed 
inspection standards or point to causes of quality improvement which could be integrated 
into the process. 

4. To suggest places for the use of measurement charts to diagnose quality problems.

Arguably, reason 3 is one of the more important motivations of any quality improvement pro-
gram. In many cases, however, p cannot fall below the 3-sigma lower control limit, because 
this limit is 0 (StatView sets the  to 0 whenever its computed value is ≤ 0). In fact, the 3-
sigma  will be 0 whenever  (Ryan, 1989). 

Accordingly, if it is important to detect a significant decrease in the number of nonconforming 
items, you might have better results if you base the control limits on alpha, rather than on k-
sigma. Since control limits based on alpha are derived from cumulative probabilities of the 
binomial distribution, they are asymmetrical, with the lower tail being shorter than the upper 
tail. For practical purposes, this means that the alpha-based lower control limit often will be 
greater than 0 when a comparable k-sigma lower control limit would be less than 0. Since no 
subgroup can have fewer than 0 nonconforming items, the alpha-based control limits improve 
the chances of detecting a significant decrease in the number of nonconforming items.

p 9 9 ni+( )⁄<
p (proportion defective) charts

In an  analysis of counts of nonconforming items, a p chart is a good place to start. The p 
chart summarizes how the proportion of nonconforming items per subgroup compares 
among subgroups. If there are large differences among subgroups in the proportion of non-
conforming items, the process might be out of control. As with any control chart, the p chart 
also shows lines indicating the control limits and the center line for the process. 

Statistically, the control limits and center lines in p and np charts are based on estimates of the 
expected patterns of variation in a sample of binomial observations. As noted above, due to 
the asymmetry of this distribution, the interpretations of k-sigma and alpha-based control 
limits differ substantially.
np (number defective) charts

The np chart summarizes how the number (rather than the proportion) of nonconforming 
items per subgroup varies among subgroups. The np chart is often used with the p chart 
whenever the number of items sampled is constant among subgroups, or the actual number of 
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nonconforming items per subgroup is of special interest. Along with the number of noncon-
forming items, np charts show the usual lines indicating the control limits and the center line 
for the process. 

Most analysts recommend np charts only when sample sizes are constant among subgroups. 
As mentioned above, the statistical bases of calculations for the center line and control limits 
for np charts are the same as those for p charts. However, because np charts plot center lines 
corresponding to expected numbers, rather than proportions, center lines in np charts will vary 
among subgroups with differing sample sizes.
Tests for special causes and custom tests

Of the eight tests for special causes used with Xbar and I charts, only the first four are applica-
ble to p and np charts (Nelson, 1984). Below are the descriptions and interpretations for each 
of the four standard tests for special causes as applied to p and np charts. 

Note that these tests refer to zones A, B and C. These zones are defined as bands of constant 
width where Zone A is between 2 and 3 sigmas above and below the center line, Zone B is 
between 1 and 2 sigmas above and below the center line, and Zone C is between 0 and 1 
sigma above and below the center line. Due to the requirement that zones be of constant 
width, tests for special causes can be performed only on data for which all subgroups are of 
equal size.

1. 1 point beyond zone A detects a shift in the proportion of nonconforming items, p, an 
increase in the estimated standard deviation in the production of defects, or a single aber-
rant subgroup. 

2. 9 consecutive points above or below center line detects a shift in the proportion of non-
conforming items. 

3. 6 consecutive increasing or decreasing points detects a trend or drift in the proportion of 
nonconforming items.

4. 14 consecutive alternating points detects systematic alternating effects, such as alternating 
use of different machines, operators or materials.

It should be kept in mind that a positive result for any of the four tests could be caused by 
changes in inspection standards that have nothing to do with the process, per se. Therefore, 
standardization and uniform application of criteria for the identification of nonconforming 
items are critical to the effective application of these tests.

As is true for measurement analyses, the four custom tests for special causes in p/np analyses 
have the same logical structure as the standard tests. Their difference from the standard tests is 
that the custom tests give the you the ability to define the number of points involved in the 
calculation of a violation and they allow you to define critical values with arbitrary multiples 
of sigma rather than with zones about the center line.
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Dialog box settings

QC P/NP dialog box 
Base control limits on This item functions identically to the pop-up menu of the same name 
in the QC Subgroup Measurements dialog box. For more information, please see “QC Sub-
group Measurements dialog box,” p. 262.

Specify p This checkbox and associated text field allow you to specify a value for p, the pro-
portion of nonconforming items over all subgroups. If no value is specified (the default), p is 
calculated from the data.

Special causes tests to perform This item functions identically to the pop-up menu of the 
same name in the QC Subgroup Measurements dialog box. For more information, please see 
“QC Subgroup Measurements dialog box,” p. 262.

Display zones in charts When enabled, this checkbox causes display of zones A, B, and C in 
p and np control charts. It is important to note that zones can be displayed only when sub-
group sizes are equal. By default, this option is disabled.

All the Specify buttons and the dialog boxes they access are identical to the corresponding 
items in the QC Subgroup Measurements dialog box. See “QC Subgroup Measurements dia-
log box,” p. 262.
Data requirements

Data for p/np analyses can be in one of two formats. All p/np analyses require one continuous 
variable, referred to as the nonconformity variable. At least one other variable is also required. 
If your data are in format 1, then a nominal variable called the subgroup variable is required. 
If your data are in format 2, another continuous variable called the item count variable is 
required.

1. If your data are in format 1, every row has the data for a single item inspected. The non-
conformity variable indicates whether each item is conforming (value=0) or nonconform-
ing (value=1). The subgroup variable indicates the subgroup from which each item is 
taken. If, for instance, the values in one row for the nonconformity and subgroup variables 
are 1 and 3 pm, then this indicates a nonconforming item from the 3 pm subgroup. In 
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another row, values of 0 and 11 am indicate a conforming item from the 11 am subgroup.

2. In the second format, each row has data for a number of items inspected. In this case the 
nonconformity variable is a count of numbers of nonconforming items. The item count 
variable is the total number of items inspected for each number of nonconforming items. 
The subgroup variable is optional; it indicates the subgroup from which each number of 
nonconforming items is taken. If, for instance, the values in one row of the nonconformity, 
item count and subgroup variables are 14, 205 and March 3, then there are 14 noncon-
forming items out of 205 items inspected from the March 3 subgroup.

To summarize, if the nonconformity variable indicates whether each item is or is not a non-
conforming item (i.e., it is in binomial form, with all values either 0 or 1) then you must use a 
subgroup variable and you cannot use an item count variable. This is format 1. If, however, 
the nonconformity variable is a count of nonconforming items, then you must use an item 
count variable; you can, but are not required to use a subgroup variable. This is format 2.

If all of your subgroups are represented with the same number of rows, you can probably use a 
formula to generate the values of the subgroup variable. This will save you repetitive and 
potentially inaccurate typing of subgroup names. See “How can I generate subgroup and 
labeling variables?,” p. 242 of Using StatView.
Format 1

In Format 1, the number of cases is equal to the total number of items in the entire sample. 
Subgroup sizes are determined by the number of cases in each subgroup. The ordering of sub-
groups on the cell axis is determined by the alpha-numeric value of the subgroup variable. 

Variable browser buttons

Add Select one nonconformity variable (continuous) and one subgroup variable (nominal), then click 
Add. 
Each additional nonconformity variable creates a new analysis using the original subgroup and 
item count variables. Each additional subgroup variable creates a new analysis using the 
original nonconformity and item count variables.

Item Count No variables should be specified with the Item Count button.
Split By When you assign one or more split-by variables (nominal) to a p/np analysis, results are 

displayed separately for each cell defined by the split-by variable(s).
Format 2

In Format 2, the number of cases must always be less than or equal to the total number of 
items inspected. In lieu of the optional subgroup variable, each case in the dataset is a separate 
subgroup, and subgroup sizes are the item counts for each row. If a subgroup name appears in 
more than one row of the dataset, nonconformity counts and item counts are summed for all 
rows having that subgroup name. The ordering of subgroups in any p/np result is determined 
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either by the ordering of cases in the dataset, or by the alpha-numeric value of the optional 
subgroup variable.

When using Format 2, p/np analyses exclude all cases for which the value of the nonconfor-
mity variable divided by the item count variable is greater than 1. If no item count variable is 
assigned, Format 1 is assumed, and any cases for which the value of the nonconformity vari-
able is greater than 1 are excluded.

Variable browser buttons

Add Select one nonconformity variable (continuous) and, optionally, a subgroup variable (nominal), 
then click Add.
Each additional nonconformity variable creates a new analysis using the original subgroup and 
item count variables. Each additional subgroup variable creates a new analysis using the 
original nonconformity and item count variables.

Item Count Select an item count variable (continuous), then click the Item Count button.
Each additional item count variable creates a new analysis using the original nonconformity and 
subgroup variables.

Split By When you assign one or more split-by variables (nominal) to a p/np analysis, results are 
displayed separately for each cell defined by the split-by variable(s).
Results

p results

A p chart can be plotted as a line, point, needle, or bar plot. The choice is made in the analysis 
browser. The default graph is a line chart.

Since the center line is the overall proportion of nonconforming items across all subgroups, it 
is a constant. The  and , however, depend upon subgroup sample sizes and so might 
vary from subgroup to subgroup. These limits are wider for subgroups with fewer observa-
tions (see “p analyses,” p. 478).

When the Tables show violations only option is checked in the Tests for Special Causes or 
Custom Tests dialog boxes, this table shows results only from those subgroups that violate one 
or more of the chosen tests.

P chart Plotted points Give proportion of nonconforming items for each subgroup.
Center, UCL and LCL 
lines

Center line gives the overall proportion of nonconforming items, or the 
value specified in the Lines dialog box. UCL and LCL give the upper and 
lower control limits about the average proportion of nonconforming 
items, or the values specified in the Lines dialog box.
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P table Item Count Gives the number of items in each subgroup.
Proportion Gives the fraction of sampled items that do not conform for each 

subgroup.
Center Gives the overall proportion of nonconforming items, or the value 

specified in the Lines dialog box.
UCL, LCL Gives the upper and lower control limits about the overall proportion 

of nonconforming items, or the values specified in the Lines dialog box.
Other contents Labels to the left of each row are either row numbers or the subgroup 

names specified by the subgroup variable. Numbers to the right of each 
row are the numbers of any violated special causes tests that are 
currently enabled.
np results

An np chart can be plotted as a line, point, needle, or bar plot. The choice is made in the anal-
ysis browser. The default graph is a line chart.

In contrast to p charts, the center line, as well as the  and the  for np charts can all vary 
among subgroups depending on the number of items in each subgroup. 

When the Tables show violations only option is checked in the Tests for Special Causes or 
Custom Tests dialog boxes, this table shows results only from those subgroups that violate one 
or more of the chosen tests.

NP chart Plotted points Give the number of nonconforming items for each subgroup.
Center, UCL and LCL 
lines

Center line gives the expected number of nonconforming items for each 
subgroup, or the value specified in the Lines dialog box. UCL and LCL 
lines give the upper and lower control limits about the expected 
number of nonconforming items, or the values specified in the Lines 
dialog box.

NP table Item Count Gives the number of items in each subgroup.
Number Gives the number of nonconforming items for each subgroup.
Center Gives the expected number of nonconforming items for each subgroup, 

or the values specified in the Lines dialog box.
UCL, LCL Gives the upper and lower control limits about the expected number of 

nonconforming items, or the values specified in the Lines dialog box.
Other contents Labels to the left of each row are either row numbers or the subgroup 

names specified by the subgroup variable. Numbers to the right of each 
row are the numbers of any violated special causes tests that are 
currently enabled.
Special Causes Definitions table

This table displays no computed results. These definitions are displayed mainly to aid the 
interpretation of violations that appear on control charts. The contents of this table are dis-
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played only if Show definitions table is checked in the Tests for Special Causes or Custom 
Tests dialog boxes.

Contents Gives the definitions for those tests enabled in either the Tests for Special Causes or the Custom 
Tests dialog box, depending on which is chosen from the Special causes tests to perform pop-up 
menu. 
Summary table

The summary table shows the following. 

K sigma Gives the sigma multiplier that is used to determine control limits. A missing value ( . ) 
indicates that alpha, rather than k-sigma, is used to compute control limits.

Alpha Gives alpha, the Type I probability of exceeding the control limits. A missing value ( . ) 
indicates that k-sigma, rather than alpha, is used to compute control limits.

P Gives P, the overall proportion of nonconforming items across all subgroups, or the value 
specified in the QC P/NP dialog box.

Num Groups, Total 
Item Count, Num 
Missing

Give number of subgroups, items, and missing cases, if any, in the analysis.
Templates

The following templates provide QC p/np analyses. 

QC Analyses P NP, 3 Sigma, 
Format 1

For format 1 data, P and NP line charts with 3-sigma control limits; 
summary table. 

P NP, 3 Sigma, 
Format 2

For format 2 data, P and NP line charts with 3-sigma control limits; 
summary table.

P NP, Alpha, Format 1 For format 1 data, P and NP line charts with alpha=0.0027 control 
limits; summary table.

P NP, Alpha, Format 2 For format 2 data, P and NP line charts with alpha=0.0027 control 
limits; summary table.
Exercise 

Exercises in previous chapters evaluate whether a bicycle frame manufacturing process is in 
control and capable, with respect to the seat tube angle measurement. Sometimes, though, it 
just isn’t practical to measure and analyze every single characteristic of an item to see if a pro-
cess is in control. Instead, it is often more cost-effective to simply evaluate whether an item is 
defective or not and to use this information to evaluate process control.
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In this exercise, you will analyze this sort of data recorded from frame tubes prior to assembly. 
Frame tubes need to be meticulously filed, mitered and sanded before they are joined (usually 
brazed) into a complete frame. The tube ends are then inspected to assure that they fit 
together properly. Rather than base your analyses on each of the measures that affect whether 
tubes fit together, you will analyze a single characteristic, specifically whether each individual 
tube is defective (i.e., is a nonconforming item) or not.

• Open Tube Defects Data from the Sample Data folder

These are data for frame tubes prepared over a 10 week period. Over this period, between 88 
and 105 frame tubes per week were prepared and inspected. The Nonconformity? variable 
codes whether each frame tube inspected is defective (scored as 1) or not (scored as 0).

• Select New View from the Analyze menu

• In the analysis browser under QC P/NP’s P Statistics subheader, select Line Chart and 
Results Table
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent results

• Click Create Analysis

• Click OK to accept the default analysis parameters

This creates an empty p line chart and results table in the view.

• In the variable browser, select Nonconformity? and Week and click Add

Nonconformity? appears in the variable browser with an X usage marker; the subgroup vari-
able Week appears with a G usage marker. The analysis calculates and the two completed 
results appear in the view.

The center line of the p chart at the top of the view indicates that 7.5% of all tubes inspected 
are nonconforming (defective). This is not a huge number, but it definitely leaves room for 
improvement.

One thing to check before proceeding is whether k-sigma gives a reasonable estimate of the 
control limits. According to our rule of thumb for using the normal approximation (see the 
“Discussion,” p. 287), no subgroup should have fewer than  items. A quick 
look at the p results table shows that the fewest number of items sampled is 88 in week 3, 
which is well above the suggested minimum.
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On the other hand, we see from this table that there were not enough tubes inspected in any 
week to give an  > 0 when using 3-sigma limits (the minimum is ; 
see the “Discussion,” p. 287). This means that there is no way to see if, for instance, the 
improvement seen in week 7 is significant: there can be no proportions <  when  is 0. 
This is important, because if the decline in defective items seen in week 7 is significant, you 
would like to identify the assignable cause for that improvement and incorporate it into the 
tube preparation process.

You can get a better estimate of the actual binomial probability for the week 7 result if you 
create a p chart using alpha-based, rather than sigma-based, control limits. Let’s suppose that 
you want the probability of an out of control signal to be about equal to that from 3-sigma 
limits. 3-sigma limits are equivalent to a Type I error probability of approximately 0.0027 for 
each subgroup. Therefore, you will recompute the analysis with control limits based on an 
alpha of 0.0027.

• Click either the p line chart or the p results table to select it

• Click the Edit Analysis button at the top of the view

• Select alpha from the Base control limits on pop-up menu, then specify 0.0027 for its 
value

• Click OK

These results show that the decline in defective items seen in week 7 is slightly below the  
for that week. You can therefore conclude that there were assignable causes at work in week 7. 
Unlike assignable causes identified in measurement analyses, those below the  in p/np anal-
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yses are desirable because they indicate a significant decline in the production of nonconform-
ing items. These results suggest that you should thoroughly investigate the production process 
in week 7, try to identify any assignable causes that could account for the improvement and 
take steps to integrate these causes into the production process.
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This chapter, the fourth of five regarding StatView’s quality control tools, discusses QC c/u 
analyses. For a general introduction to quality control, see the preceding chapter, “QC Sub-
group Measurements,” p. 251. Other chapters discussing StatView’s QC methods are “QC 
Individual Measurements,” p. 277, “QC P/NP,” p. 287, and “Pareto Analysis,” p. 309. 
Discussion

Like p/np analyses, c/u analyses are also used to analyze item attributes. Unlike p/np statistics, 
c/u statistics are used to analyze counts of some attribute from items (or inspection units) in a 
sample, where the attribute is a particular thing, usually a kind of defect, e.g., numbers of bub-
bles in glass beakers, or numbers of scratches on polished mirrors. It is also appropriate to use 
c/u statistics in situations where the inspection unit is, say, a box of items, so long as there is 
very nearly the same number of items in each inspection unit.

As with the other analyses already described, c/u analyses use control charts for evaluating 
whether or not a process is in control. Control limits are computed such that points that lie 
beyond them are attributed to assignable causes which should either be eliminated from the 
process if the point is > , or incorporated into the process if the point is < . 

Like the binomial distribution for p/np charts, the Poisson distribution on which c/u charts are 
based is asymmetrical. Conventionally, the normal approximation to the Poisson that is 
implied by using k-sigma control limits is considered adequate only when the mean count per 
inspection unit (u) is greater than 5 (Ryan, 1989). Furthermore, for the 3-sigma  to be 
greater than 0, the average number of nonconformities per subgroup ( ) must be greater 
than or equal to 9. Therefore, it may be more appropriate in many situations to use alpha-
based control limits rather than k-sigma limits.

Occasionally, QC analysts use c/u charts to analyze combined counts of different types of non-
conformities. In general, this is not appropriate because the resulting distribution often is not 
approximated by the Poisson. Even when counts of the individual nonconformities each come 
from a Poisson distribution, the combined counts generally will not (Ryan, 1989).

niu



 24 QC C/U Discussion
c (count of defects) charts

When analyzing the number of nonconformities from individual inspection units, it is con-
ventional to use a c chart. The c chart summarizes how the total number of nonconformities 
varies among subgroups. When there is only a single inspection unit per subgroup, the plotted 
points in this chart are equivalent to the number of nonconformities per inspection unit. If a 
few subgroups have many more or far fewer nonconformities than others, this may indicate 
that the process is out of control. 

As with any control chart, the c chart also shows lines indicating the control limits and the 
center line for the process. Because the center lines in c charts correspond to expected counts 
of nonconformities from each subgroup, center lines will vary among subgroups that com-
prise different numbers of inspection units.

Statistically, the control limits and center lines in c and u charts are based on estimates of the 
expected patterns of variation from samples taken from a Poisson distribution. As noted 
above, due to the asymmetry of the Poisson, the limits predicted by k-sigma and alpha-based 
estimates can differ substantially.
u (average number of defects) charts

If the number of inspection units is not constant among subgroups, a u chart probably should 
be used along with or instead of a c chart. The u chart summarizes how, for each subgroup, the 
average of the number of nonconformities per inspection unit (rather than the total number 
of nonconformities) compares for all subgroups.

Like other control charts, u charts show the usual lines indicating the control limits and the 
center line for the process. As mentioned above, the statistical bases of the center line and the 
control limits for u charts are the same as those for c charts. However, because u charts plot 
center lines corresponding to expected averages per inspection unit, rather than expected total 
counts, center lines in u charts do not vary among subgroups, even when they have different 
sample sizes.
Tests for special causes and custom tests

Below are the descriptions and interpretations for each of the four tests for special causes as 
applied to c and u charts. As with p/np charts, only the first four of the eight tests for special 
causes are applicable. 

Note that these tests refer to zones A, B, and C. These zones are defined as bands of constant 
width where Zone A is between 2 and 3 sigmas above and below the center line, Zone B is 
between 1 and 2 sigmas above and below the center line, and Zone C is between 0 and 1 
sigma above and below the center line. 

1. 1 point beyond zone A detects a shift in the average number of nonconformities per 
inspection unit, u, an increase in the estimated standard deviation in the production of 
nonconformities, or a single aberrant subgroup. 

2. 9 consecutive points above or below center line detects a shift in the average number of 
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nonconformities per inspection unit. 

3. 6 consecutive increasing or decreasing points detects a trend or drift in the average num-
ber of nonconformities per inspection unit.

4. 14 consecutive alternating points detects systematic alternating effects, such as alternating 
use of different machines, operators, or materials.

As with p/np charts, a positive result for any of the four tests could be caused by changes in 
inspection standards that have nothing to do with the process, per se. Therefore, standardiza-
tion and uniform application of criteria for the identification of nonconformities are critical 
to the effective application of these analyses.

The four custom tests for special causes have the same logical structure as the standard tests. 
Their difference from the standard tests is that the custom tests give the you the ability to 
define the number of points involved in the calculation of a violation and they allow you to 
define critical values with arbitrary multiples of sigma rather than with zones about the center 
line.
Dialog box settings

QC C/U dialog box 
Base control limits on This item functions identically to the pop-up menu of the same name 
in the QC Subgroup Measurements dialog box. For more information, please see “QC Sub-
group Measurements dialog box,” p. 262.

Specify u This checkbox and associated text field allow you to specify a value for u, the aver-
age number of nonconformities per inspection unit for the process. If no value is specified 
(the default), u is calculated from the data.

Special causes tests to perform This item functions identically to the pop-up menu of the 
same name in the QC Subgroup Measurements dialog box.For more information, please see 
“QC Subgroup Measurements dialog box,” p. 262.

Display zones in charts When enabled, this checkbox causes display of zones A, B, and C in 
c and u control charts. It is important to note that zones can be displayed only when subgroup 
sizes are equal. By default, this option is disabled.
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All the Specify buttons and the dialog boxes they access are identical to the corresponding 
items in the QC Subgroup Measurements dialog box. See “QC Subgroup Measurements dia-
log box,” p. 262.
Data requirements

All QC c/u analyses require only one continuous variable, referred to as the nonconformity 
variable. Optionally, these analyses may accept either or both a nominal variable and another 
continuous variable, the latter specified using the Unit Count button. These variables are 
called the subgroup and unit count variables, respectively. An example dataset with all 3 vari-
ables is pictured below.

For each row in the dataset, the nonconformity variable gives a number of nonconformities. If 
no unit count variable is specified, then the value in the nonconformity variable is assumed to 
be for a single inspection unit. If the unit count variable is specified, then the value in the 
nonconformity variable is the number of nonconformities for the number of inspection units 
in the unit count variable. If no subgroup variable is specified, then each row is assumed to be 
from a different subgroup. If a subgroup variable is specified, then counts from the noncon-
formity and unit count variables are summed for all cases with the same value of the subgroup 
variable.

If all of your subgroups have the same number of measurements, you can probably use a for-
mula to generate the values of the subgroup variable. This will save you from repetitive and 
potentially less accurate typing. See “How can I generate subgroup and labeling variables?,” 
p. 242 of Using StatView.

Variable browser buttons

Add Select one nonconformity variable (continuous) and, optionally, a subgroup variable (nominal). 
Then click the Add button.
Each additional nonconformity variable creates a new analysis using the original subgroup and 
unit count variables. Each additional subgroup variable creates a new analysis using the original 
nonconformity and unit count variables.
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Because two of the three data variables are optional, there are four distinct scenarios that 
determine how the variables are interpreted in any c/u analysis:

1. Only the nonconformity variable is specified. In this scenario, the number of cases equals 
the number of subgroups which equals the number of inspection units, i.e., there is one 
inspection unit per subgroup.

2. Only the nonconformity and the subgroup variables are specified. In this scenario, each 
case is a separate inspection unit, and the number  of inspection units in each subgroup 
is determined by the number of cases with the same value of the subgroup variable.

3. Only the nonconformity and unit count variables are specified. In this scenario, each case 
represents the totals from a subgroup, with the unit count variable indicating the number 

 of inspection units in each subgroup.

4. The nonconformity, subgroup and unit count variables are all specified. In this scenario, 
the number  of inspection units in each subgroup is the sum of the values for the unit 
count variable for each level of the subgroup variable. The number of cases in the dataset 
does not correspond necessarily to either the number of inspection units or the number of 
subgroups.

Unit Count Optionally, you can select a unit count variable (continuous), then click the Unit Count button.
Each additional unit count variable creates a new analysis using the original nonconformity and 
subgroup variables.

Split By When you assign one or more split-by variables (nominal) to a c/u analysis, results are 
displayed separately for each cell defined by the split-by variable(s).

ni

ni

ni
Results

c results

A c chart can be plotted as a line, point, needle, or bar plot. The choice is made in the analysis 
browser. The default graph is a line chart. For c charts the center line,  and  vary among 
subgroups of different sizes.

When the Tables show violations only option is checked in the Tests for Special Causes or 
Custom Tests dialog boxes, this table shows results only from those subgroups that violate one 
or more of the chosen tests.

C chart Plotted points Give the number of nonconformities for each subgroup.
Center, UCL and LCL 
lines

Center line gives the expected number of nonconformities from each 
subgroup, or the value specified in the Lines dialog box. UCL and LCL 
lines give the upper and lower control limits about the expected 
number of nonconformities, or the values specified in the Lines dialog 
box.
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C table Unit Count Gives the number of inspection units in each subgroup.
Count Gives the number of nonconformities in each subgroup.
Center Gives the expected number of nonconformities for each subgroup, or 

the value specified in the Lines dialog box.
UCL, LCL Gives the upper and lower control limits about the expected number of 

nonconformities, or the values specified in the Lines dialog box.
Other contents Labels to the left of each row are either row numbers or the subgroup 

names specified by the subgroup variable. Numbers to the right of rows 
are those of any violated special causes tests that are currently 
enabled.
u results

A u chart can be plotted as a line, point, needle, or bar plot. The choice is made in the analysis 
browser. The default graph is a line chart. Unlike c charts, for u charts only the  and , 
but not the center line, vary with the number of items in each subgroup.

When the Tables show violations only option is checked in the Tests for Special Causes or 
Custom Tests dialog boxes, this table will show data only from those subgroups that violate 
one or more of the chosen tests.

U chart Plotted points Give the average number of nonconformities per inspection unit for 
each subgroup.

Center, UCL and LCL 
lines

Center line gives the expected number of nonconformities per inspection 
unit for each subgroup, or the value specified in the Lines dialog box. 
UCL and LCL lines give the upper and lower control limits about the 
expected number of nonconformities per inspection unit, or the values 
specified in the Lines dialog box.

U table Unit Count Gives the number of inspection units in each subgroup.
Count/Unit Gives the number of nonconformities per inspection unit in each 

subgroup.
Center Gives the expected number of nonconformities per inspection unit for 

each subgroup, or the value specified in the Lines dialog box.
UCL, LCL Gives the upper and lower control limits about the expected number of 

nonconformities per inspection unit, or the values specified in the Lines 
dialog box.

Other contents Labels to the left of each row are either row numbers or the subgroup 
names specified by the subgroup variable. Numbers to the right of rows 
are those of any violated special causes tests that are currently 
enabled.
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Special Causes Definitions table

This table displays no computed results. These definitions are displayed mainly to aid the 
interpretation of violations that appear on control charts. This table is displayed only if Show 
definitions table is checked in the Tests for Special Causes or Custom Tests dialog boxes.

Contents Gives the definitions for those tests enabled in either the Tests for Special Causes or the Custom 
Tests dialog box, depending on which is chosen from the Special causes tests to perform pop-up 
menu. 
Summary Table

The summary table shows the following. 

K sigma Gives the sigma multiplier that is used to determine control limits. A missing value ( . ) 
indicates that alpha, rather than k-sigma, is used to compute control limits.

Alpha Gives alpha, the Type I probability of exceeding the control limits. A missing value ( . ) 
indicates that k-sigma, rather than alpha, is used to compute control limits.

U Gives u, the average number of nonconformities per inspection unit across all subgroups, or the 
value specified in the QC C/U dialog box.

Num Groups, Total 
Unit Count, Num 
Missing

Give the number of subgroups, inspection units, and missing cases, if any, in the analysis.
Templates

The following templates provide QC c/u analyses. 

QC Analyses C/U, 3 Sigma Limits C and U line charts with 3 sigma control limits; summary table. 
C/U, Alpha Limits C and U line charts with alpha=.003 control limits; summary table. 
Exercise

Previously, you analyzed the proportion of nonconforming (defective) frame tubes from the 
tube preparation process (see “Exercise,” p. 294). This is one way of using an item attribute to 
evaluate process control. Of course, individual items (or inspection units) always have more 
than a single attribute. For instance, none of the frame tubes inspected was perfect, i.e., each 
one had at least a few imperfections, such as stray file marks, a few burrs or an imperfectly 
mitered butting surface. Data such as these can also be useful for evaluating process control.

In this exercise, you will use c/u statistics to analyze the most common type of defect, the 
number of stray file marks per frame tube, to see if the filing process is in control. 

• Open File Mark Data from the Sample Data folder
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These are data for the same frame tubes that were analyzed earlier. Rather than show data 
from individual tubes, these data are summary counts for the total number of file marks for all 
of the tubes inspected in a given week.

• Select New View from the Analyze menu

• In the analysis browser under QC C/U, select C Statistics and U Statistics and click Create 
Analysis

• Click OK to accept the default parameters

The empty c and u line charts appear in the view.

• In the variable browser, select Stray file marks and Week and click Add
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent variables

• Select # tubes inspected and click Unit Count 

Stray file marks appears in the variable browser with an X usage marker; the variable Week 
appears with a G usage marker and # tubes inspected appears with a C usage marker. The 
analysis calculates and the two completed results appear in the view.

The c line chart that appears at the top of the view plots the total number of nonconformities 
and their associated control limits for each week. Though there is no statistical reason why 
you should not look at the data in this way, the fact that each week has a different value of the 
center line (owing to the different numbers of inspection units in each week) makes this a 
rather difficult chart to read. Instead, consider the u chart just below it:
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Since the data plotted are the average numbers of nonconformities per inspection unit for 
each week, the center line is constant. This means that the plotted values from week to week 
can be compared directly to one another.

The u chart gives you some insight into stray file marks as a potential criterion of defective-
ness. Recall (from “Exercise,” p. 305) that there were significantly fewer defective tubes pre-
pared in week 7. The u chart above is consistent with this, showing for week 7 a fairly low 
average number of stray file marks per tube. It also shows, however, that the average number 
of stray file marks per tube is even lower for week 8, a value that is below the  for the pro-
cess. In tandem with the p/np results, this chart suggests that it would be worthwhile to take a 
closer look at any assignable causes in both weeks 7 and 8, and to try to integrate these into 
the process.
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Pareto Analysis 25
This chapter, the last of five regarding StatView’s quality control tools, discusses Pareto analy-
ses. For a general introduction to quality control, see the preceding chapter, “QC Subgroup 
Measurements,” p. 251. Other chapters discussing StatView’s QC methods are “QC Individ-
ual Measurements,” p. 277, “QC P/NP,” p. 287, and “QC C/U,” p. 299. 
Discussion

In quality control work, sometimes very simple summaries of data can be very valuable. Pareto 
charts are a case in point. Frequently, Pareto analyses are used to create an easily interpretable 
summary that can be used to make decisions about where effort should go to improve product 
quality. A Pareto analysis is simply a frequency distribution of types of defects, with the order-
ing of the defects determined by their frequency (ordered most to least frequent). 

Since types of defects are ordered on a Pareto chart from most to least frequent, identifying 
the most prevalent types of defects is a simple matter: they are the ones on the left of the 
graph. Since particular types of defects often are closely related to specific procedures or treat-
ments in the manufacturing process, the Pareto chart gives a good indication of where in the 
process to concentrate the quality improvement effort.
Dialog box settings
Counts/Percents These radio buttons allow the user to display in the Pareto chart either 
counts or percentage frequencies for each type of defect.
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Cumulative curve If this checkbox is enabled (the default), the Pareto chart will plot a curve 
charting the cumulative frequency of observations across the types of defects.

Counts If this checkbox is enabled (the default), the Pareto table will display counts for each 
type of defect.

Percents  If this checkbox is enabled, the Pareto table will display the percentage of observa-
tions attributable to each type of defect. By default, this option is not checked.

Cumulative counts  If this checkbox is enabled (the default), the Pareto table will display the 
cumulative sum of observations attributable to the types of defects, from most to least fre-
quent.

Cumulative percents  If this checkbox is enabled, the Pareto table will display the cumulative 
percentage of observations attributable to the types of defects, from most to least frequent. By 
default, this option is not checked.
Data requirements

Pareto analyses require one nominal variable (the defect type variable) and, optionally, a con-
tinuous variable (the defect count variable).

If the defect count variable is not specified, each row in the dataset is tabulated as a single 
defect of the type indicated in the defect type variable. The total number of rows in the 
dataset is then equal to the total number of defects observed. An example of such data is pic-
tured below.

If specified, the values of the defect count variable are summed for all rows with a particular 
value for the defect type variable. An example dataset with both variables is pictured below.
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Variable browser buttons

Add Select one defect type variable (nominal) and, optionally, one defect count variable (continuous). 
Then click the Add button.
Each additional defect type variable creates a new analysis using the original defect count 
variable. Each additional defect count variable creates a new analysis using the original defect 
type variable.

Split By When you assign one or more split-by variables (nominal) to a Pareto analysis, results are 
displayed separately for each cell defined by the split-by variable(s).
Results

Pareto charts and tables show the following. 

Pareto chart Plotted bars Give the incidence (as counts or percentages) of each defect type.
Cumulative curve Gives the cumulative sum or percentage of defects attributable to the 

defect types, summed from most to least frequent.
Pareto table Count Gives the number of defects attributable to each defect type.

Percent Gives the proportion of all defects attributable to each defect type.
Cum Count Gives the cumulative sum of the number of defects attributable to each 

defect type, summed from most to least frequent.
Cum Percent Gives the cumulative proportion of all defects attributable to each 

defect type, summed from most to least frequent.
Other contents Labels to the left of each row are specified by the defect type variable.
Templates

The following template provides Pareto results. 

QC Analyses Pareto Chart & Table Pareto chart and table. 
Exercise

In previous chapters (see “Exercise,” p. 294, and “Exercise,” p. 305), you analyzed defect 
attribute data to evaluate whether the frame tube manufacturing process is in control. Along 
the way, however, these analyses suggested that some assignable causes may have been at work 
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in weeks 7 and 8. In this exercise, you will use Pareto analysis to look at the differences in the 
frequencies of types of tube defects between weeks 7 and 8. This information can help you 
diagnose the assignable causes of the p/np and c/u results.

Inspection of prepared frame tubes typically reveals five common types of defects: stray file 
marks, vise marks, oval cross-section, metal burrs and poor mitering. Of course, these defects 
are not necessarily equivalent. It may be acceptable for a tube to have fifteen or more relatively 
superficial file marks, but only the most minor of mitering defects. 

You will use the information from the Pareto analysis to see if the pattern of defects is the 
same for weeks 7 and 8.

• Open Types of Defects Data from the Sample Data folder

This dataset has two variables, one with a random sample of 1000 nonconformities recorded 
from all frames in week 7 (Week 7 defects), the other with the corresponding data from 
week 8 (Week 8 defects).

• Select New View from the Analyze menu

• In the analysis browser under Pareto Analysis, select Pareto Chart and Results Table

• Click Create Analysis

• Uncheck Cumulative counts

• Check Percents

• Click OK

The empty Pareto chart and results table now appear in the view.

• In the variable browser, select Week 7 defects and Week 8 defects and click Add

This generates two analyses with the same parameters, one for Week 7 defects, the other for 
Week 8 defects.
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These charts and tables make clear that the relatively innocuous defects, like stray file marks 
and metal burrs, occur with higher relative frequency in week 7 than in week 8, while poor 
mitering, a quite serious defect, has a higher relative frequency in week 8 than in week 7. 
These results suggest that whatever changes to the process in week 8 that caused the favorable 
decline in stray file marks and burrs could be correlated with an increase in mitering defects. If 
this is so, it may be wise to try to incorporate into the process whatever assignable causes 
appeared in week 7, and to exclude those that appeared in week 8.

Certainly, you cannot conclude from the Pareto charts alone what the differences are between 
the processes in the two weeks. The differences between week 7 and week 8 could, for 
instance, have a very simple basis: a frame technician in week 8 may spend more time on filing 
and other finish work at the expense of time spent on mitering the tubes. This is just one of 
many possibilities. The Pareto analysis can only give you a better idea of where to look for the 
sources of defects. Neither it, nor any other QC statistic can be a substitute for first-hand 
knowledge of the production process.
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StatView’s Formula, Recode, Series, and Random Numbers commands let you create, manip-
ulate, and transform data. Various Criteria commands let you control which data are used for 
analyses. All these features share a common mathematical expression language as well as a 
large set of operations, relations, date/time functions, text functions, and numerical functions. 
This reference chapter discusses that expression language and introduces each of the opera-
tions, relations, and functions. 

This chapter does not discuss the Formula, Recode, Series, and Random Numbers commands 
themselves. If these are unfamiliar, please consult the chapter “Managing data,” p. 107 of 
Using StatView. 
Overview

The section “Introduction,” p. 317, discusses general concepts: working with variable types 
and formats, rules about arguments and syntax, how formulas and criteria are evaluated, and 
special discussions of the date/time and text functions.

Subsequent sections detail the various types of functions. A table on the next page lists which 
functions are discussed in each section. The function types are those seen in function browsers 
(the scrolling function lists seen in many of StatView’s data management windows). You may 
also view function lists in alphabetical order. 

A complete index appears at the back of the book. 

Section Function type Functions discussed

“Operators,” p. 332 Mathematical +, –, *, /, (), ^, **, unary +, unary –
“Sets, intervals, and 
ranges,” p. 336

Special Purpose { }, (:), [:], (:], [:), <, <=, >=, >
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“Relations and logical 
operators,” p. 338

Logical <, <=, =, >=, >, <>, NOT, AND, ElementOf, IS, ISNOT, OR, XOR, 
false, if…then…else, IsMissing, IsRowExcluded, IsRowIncluded, NOT, 
true

“Functions,” p. 347 Date/Time Date, DateDifference, Day, DayOfWeek, DayOfYear, Hour, Minute, Month, 
Now, Second, Time, Weekday, WeekOfYear, Year

Mathematical Abs, Average, AverageIgnoreMissing, Ceil, Combinations, CumProduct, 
CumSum, CumSumSquares, Difference, Div, DotProduct, e, Erf, Factorial, 
Floor, Lag, Ln, Log, LogB, Mod, MovingAverage, Norm, Percentages, 
Permutations, Pi, Remainder, Round, Sqrt, Sum, SumIgnoreMissing, Trunc

Probabilities ProbBinomial, ProbChiSquare, ProbF, ProbNormal, Probt, 
ReturnChiSquare, ReturnF, ReturnNormal, ReturnT

Random Numbers RandomBeta, RandomBinomial, RandomChiSquare, RandomExponential, 
RandomF, RandomGamma, RandomGaussian, RandomNormal, 
RandomPoisson, RandomT, RandomUniform, RandomUniformInteger

Series BinomialCoeffs, CubicSeries, ExponentialSeries, FibonacciSeries, 
GeometricSeries, LinearSeries, QuadraticSeries, QuarticSeries, RowNumber

Special Purpose ChooseArg, VariableElement
Statistical BoxCox, CoeffOfVariation, Correlation, Count, Covariance, GeometricMean, 

Groups, HarmonicMean, LogOdds, MAD, Maximum, Mean, Median, 
Minimum, Mode, NumberMissing, NumberOfRows, OneGroupChiSquare, 
Percentile, Range, Rank, StandardDeviation, StandardError, 
StandardScores, SumOfColumn, SumOfSquares, TrimmedMean, Variance

Text Concat, Find, Len, Substring
Trigonometric ArcCos, ArcCosh, ArcCot, ArcCsc, ArcSec, ArcSin, ArcSinh, ArcTan, ArcTanh, 

Cos, Cosh, Cot, Csc, DegToRad, RadToDeg, Sec, Sin, Sinh, Tan, Tanh
Examples in this chapter

If you try examples shown in this chapter, your results may look a little different from ours, 
because we choose variable attributes that make the effects of each formula easier to see at a 
glance. We often:

1. set decimal places to 0 (or as few as necessary)

2. close the attribute pane, or scroll it down to show summary statistics

3. increase or decrease the width of columns

Usually we keep the default type and format: real and free format fixed. 

For instance, our example for division looks like this:
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But if you changed A÷3’s type to integer, the results would look different. And if you didn’t 
change the decimal places for A and B, didn’t make the columns narrower, and didn’t close the 
attribute pane, the whole window would look different: 

Date/time formatting varies according to system software and international configuration. 
Examples in this manual use a variety of formats. 

Finally, be aware that StatView does calculations in the fullest precision of the machine you 
are using, and results can differ slightly between platforms. 

Warning!
To make dataset illustrations easy to read, we often name our variables by actual formula defi-
nitions, such as “A+B.” We do this so that you can easily identify what each column demon-
strates. In practice, though, you should not give variables names that match existing function 
names or category level names. If you have ambiguous expressions, StatView may not interpret 
your formulas quite the way you intend. Always give your variables unique, meaningful names. 
All function names appear in the table of contents. 
Introduction

This section is a general introduction to StatView’s expression language, which you may use in 
the following areas of StatView:

• The Recode command in the Manage menu (see “Recode data,” p. 117 of Using StatView) 
lets you convert the values of an existing variable to nominal values and lets you change 
missing values in a variable to some new value. It relies on mathematical and statistical 
functions, which are discussed in the “Functions” section. 

• The Series command in the Manage menu (see “Series,” p. 121 of Using StatView) lets you 
generate new variables containing special types of series. Series functions are discussed in 
the “Functions” section. 

• The Random Numbers command in the Manage menu (see “Random numbers,” p. 123 
of Using StatView) lets you generate new variables with random data from various distribu-
tions. Random Numbers functions are discussed in the section “Functions,” p. 347. 

• The Create Criteria and Edit/Apply Criteria commands in the Manage menu (see “Create 
criteria,” p. 124 and “Edit/Apply Criteria,” p. 129 of Using StatView) and items in the Cri-
teria pop-up menu in the dataset window let you use logical expressions to determine 
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whether rows are included in statistical and graphical analyses. Criteria rely on functions 
discussed in “Sets, intervals, and ranges,” p. 336, and “Relations and logical operators,” 
p. 338.

• The Formula command in the Manage menu (see “Formula,” p. 109 of Using StatView) is 
the most flexible tool for creating and transforming data. Nearly all of StatView’s expres-
sion language is found in the Formula window. 
Variable types and formats

StatView works with seven types of variables. Numeric data types are real, integer, and long 
integer. Most of StatView’s functions are intended for manipulating these numeric types. 
Numeric data also have text representations, and these representations can be manipulated 
with text functions; see “Text functions,” p. 331.

Text data types are string and category. StatView provides several text functions for manipulat-
ing string data; see “Text functions,” p. 331.

Date/time and currency data have both numeric content and text representation, and they can 
be manipulated with both numeric functions and text functions. Also, StatView provides a 
special set of functions for handling date/time data; see “Date and time functions,” p. 330. 

Below, we discuss how variable types are handled for the numeric functions that comprise 
most of the StatView expression language. Text and date/time functions—and their handling 
of various data types—are discussed separately in the subsequent sections,“Text functions,” 
p. 331, and “Date and time functions,” p. 330. For details on setting and changing data 
attributes, see “Variable attributes,” p. 73 of Using StatView. 

Real
Most of StatView’s functions are numeric. They expect numeric arguments and produce 
numeric results with type real. 

Numeric functions automatically convert all numeric arguments to real numbers before doing 
any computations. Since type real accepts the greatest range of numbers and allows the great-
est precision in calculations, this conversion has no harmful consequences. However, if you 
change variables produced by formulas to types other than real, you may be surprised by some 
of the consequences. See the discussions of each data type, below. 

You may also use text functions to manipulate character representations of real data; see “Text 
functions,” p. 331.

Integer and long integer
Integers are whole numbers (no digits after the decimal), so changing results to integer can 
make them appear “wrong.” Real numbers are rounded up or down to the nearest integer 
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when you change to type integer. Also, real numbers that exceed the limits of integers or long 
integers are converted to missing values:

In this dataset, variables B and C have been set to be A in their formulas, but we also changed 
their types, so out of range values are missing and fractional values are rounded:

The text functions can be used to manipulate character representations of integer and long 
integer variables; see “Text functions,” p. 331.

String 
String variables can be manipulated with StatView’s text functions, ChooseArg, Concat, Find, 
Len, and Substring. These are discussed in “Text functions,” p. 331. 

If you convert numeric function results to string, the current format’s character representation 
is copied exactly. This is seen below in variable D, which began as a real variable (with the 
default three decimal places) set by a formula to be the same as A. 

If you convert string results to numeric, or if you use a formula to set a variable equal to a 
string variable, the values are changed to missing, except those values that happen to be valid 
numeric values. This is seen in variable F, which is set by formula to be the same as E but has 
the default type, real:

32767– integers 32767≤ ≤
2147483647– long integers 2147483647≤ ≤
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Similarly, if you convert string to currency or date/time, only those values that happen to be 
valid in the new type are kept, and all others are missing. 

Category 
Category variables may be manipulated with text functions (see “Text functions,” p. 331), 
relations, and logical operators (see “Relations and logical operators,” p. 338). Category vari-
ables are introduced in “Categories,” p. 80 of Using StatView.

Using category variables with numeric functions works in one of two ways, depending on 
whether you first create the variable and then change its type to category, or you first set its 
type to category and then create its values: 

1. If you first create a variable and then change it from real to category, it is given initial group 
names that are “Group for” and the character representation of the numbers in their origi-
nal numeric format. This is seen below in B, which was first set to the formula A and then 
changed from real (and the default three decimal places) to category. 

2. If you first set a variable to category and then create its values with a formula, values are 
mapped onto group names according to the underlying integer “indices” of the group 
names. This is seen below in variable C. Our category definition has groups “Small,” 
“Medium,” and “Large,” so values 1, 2, and 3 are changed to those groups, respectively; 
1.5 is rounded to 2 and changed to “Medium,” and all other values are missing. 

Currency 
Currency data are numeric data with special formatting options. See the Format pop-up 
menu in the attribute pane for choices available. 

In every other regard, currency data are the same as real data. The numeric content of cur-
rency variables can be manipulated with numeric functions according to the same rules 
described above for type real. Below, G is set by formula to A, and then changed to have type 
currency and Japanese yen format. While the numbers look different, they behave the same. 
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You may use text functions to manipulate character representations of currency data. 

Date/Time
Date/time data are numeric data with special formatting options. Special functions for work-
ing with date/time values are discussed separately in the section “Date and time functions.” 
(The exact formats available may vary according to your installation of system software; see 
the Format pop-up menu in the attribute pane for choices available to you.) 

Date/time data keep time by counting the number of seconds elapsed since midnight of 1 Jan-
uary 1904. Their numeric contents are positive integers ranging from 1 to 4,294,967,295, 
inclusive. Any values outside this range are replaced with missing values, and any fractional 
parts are discarded. (If you attempt to enter an invalid date in a date/time data cell, you get an 
error message.) Within these limitations, you may apply numeric functions as you see fit. 

Be sure you understand what you’re asking formulas to do. This bizarre formula is perfectly 
valid, although it may not be meaningful to divide dates by seven seconds and then add four 
seconds: 

"Some times"/7 + 4

You may also use text functions to manipulate character representations of date/time data; see 
“Text functions,” p. 331. 
Casewise and columnwise operations

For each function, we specify its direction of operation: whether the function works horizon-
tally or vertically—casewise or columnwise. When functions work columnwise, we specify 
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whether they produce the same result for every row or whether results differ from row to row. 
(Some terms: A case is a horizontal row of data. A variable is a vertical column of data. A sin-
gle case of a single numeric variable is a number, or constant. A number you specify—such as 
7—is also a constant.)

Casewise
Many functions operate horizontally on a casewise basis, producing a separate result for each 
case of the new variable based on the values in that case of the variable(s) specified as argu-
ment(s) to the function. For example, adding two variables produces a new variable, which is 
a column of sums for each row. Here, the variable A+B is produced by adding across A and B 
once for each row: 

A+B

Casewise operations are “refreshed” between rows. That is, StatView adds –4 and 5 on row 1, 
records its answer of 1 in the new variable, and starts “fresh” for row 2 by adding –3 and –2. 
(It does not carry the answer from the previous row into the new operation—that is, it does 
not add –4, 5, –3, and –2 to get its answer for row 2.) 

Columnwise
Other functions operate vertically on a columnwise basis. Columnwise functions work with 
all the values (and the length) of a column to compute a new column result. Columnwise 
functions do not “refresh” between rows. 

That new variable may be a single answer repeated down a column. An example of this is 
Mean, which computes the mean of the variable you specify, basing its computations upon all 
cases (rows) of that variable: 

Mean(A, AllRows)

Or, that variable may be a variable of different numbers. An example of this is CumSum, 
which adds each value to the next, recording its “sum in progress” down the new variable:

CumSum(A)
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What this means…
A casewise function is always evaluated across rows, and a result in one row does not depend 
on a result in a previous row. If a value in one row of an argument variable changes, only that 
row of the formula variable is recomputed. 

A columnwise function is one that is evaluated downwards, where results are related to results 
in the rows above, or where the same result fills every row of the column. A columnwise func-
tion must be calculated all at once, and it must be recalculated if any value in an argument 
variable changes. 

An important rule: columnwise functions do not accept any expressions or other functions as 
arguments. You may, however, combine casewise and columnwise functions in an expression, 
and you may nest columnwise functions inside casewise functions. For example, you may 
multiply (casewise) two sums (columnwise):

SumOfColumn(A, AllRows) * SumOfColumn(B, AllRows)

And you may nest columnwise and casewise functions inside other casewise functions:

Sum(Mean(A, AllRows), StandardDeviation(A, AllRows)

But you may not put an expression or function inside a columnwise function:

SumOfColumn(A*B, AllRows)

CumProduct(Mean(D, AllRows))

(We occasionally use strike-through text to show formulas that would produce errors.)

If you need to combine functions that do not work together, you can set an intermediate vari-
able to the result of one function, and then apply the other function to that variable, e.g.:

A*B
SumOfColumn(C)

Mean(D, AllRows)
CumProduct(E)
Arguments

StatView functions are applied to the arguments you specify. The argument is the object of 
the action. In the formula A+7, + is the function and A and 7 are the arguments of the func-
tion. StatView represents arguments—things you must specify—with question marks. 
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Placeholders
In this manual, we use more meaningful placeholders for arguments than the question marks 
you see in the program. For example, we say that var – var2 does casewise subtraction of var2 
from var. Usually we indicate with these placeholders what sort of argument is expected:

Commas
Many functions take several arguments. For example, the RandomNormal(mean, stdev) func-
tion generates a series of random numbers from the normal distribution with the mean given 
by the first argument and the standard deviation given by the second:

RandomNormal(1.5, 3.0)

A comma separates the arguments. However, many international number formats use comma 
for the decimal character, so StatView must use a different character to separate arguments. 
For example, French Canadian numeric formatting uses commas for decimals and semi-
colons between arguments: 

RandomNormal(1,5; 3,0)

StatView adapts automatically to the numeric formatting you specify in the Regional Settings 
(Windows) or Numbers (Macintosh) control panel. If you have difficulty opening a dataset 
created on a foreign system, make sure any formulas use separator characters appropriate to 
your configuration. 

Variables and constants
Most StatView functions work with variables and constants alike as columns. StatView usu-
ally interprets a constant as being a column filled all the way down with that number. For 
example, you could specify A+7, which is interpreted as “the column of numbers stored in 
variable A plus a column of sevens.” In simpler terms, think of it as “in each row, add the 
value of A and the value 7.” 

Placeholder What you should supply in its place

var, var2, … variables such as A or Weight—usually constants are also acceptable
value, value2, … constant values—numbers, or a date/time values, or text strings
n, m, r, …. constants—usually integers
x, y, z, a, b, … constants—usually real numbers
p a probability or percentage—a number between 0 and 1, or perhaps a variable containing such 

numbers
text a text value (a string constant) or perhaps a variable containing text values
date a date/time variable or a date/time value in quotation marks and formatted to match any format 

in the format pop-up menu
expr any valid expression—any complete combination of functions, relations, and arguments that can be 

evaluated, such as “Log(A)+7” or “Log(A)>7” or “Log(A)>7 AND Sin(B)=0”
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Quotation marks
Any variable name or string value that contains spaces or special characters should be enclosed 
in quotation marks. Also use quotation marks with any variable name or constant value that is 
the same as a function or operator name. For example, if you want the constant string value 
“e” instead of the constant 2.718…, use quotation marks. If you use the buttons and browsers 
in the formula and criteria editing windows, most of the quotation marks you need are pro-
vided automatically. 

The following is valid:

if "Turning Circle" > 40
then "very large"
else "typical"

But this would cause problems:

if Turning Circle > 40
then very large
else typical

A quoted single word is always interpreted as a string value, even if the word is a function or 
variable name. Quote single words (such as “Weight” or “e”) with caution! 

Expressions
In many cases an argument can also be a longer expression. For example, ?+? means that you 
can specify a variable or constant in place of each question mark:

A+7

However, you could also replace each question mark with a larger expression:

A*B + C*8

Row inclusion
Many columnwise functions have a final argument that controls which rows of the column 
are used for computations. For example, Mean(A, AllRows) computes the mean of the vari-
able A, including all rows of A in its computations. 

AllRows is the default setting for all such functions—you don’t even need to type it, because 
StatView types it for you automatically when you double-click Mean in the function browser 
or when you begin typing Mean and it finishes the typing for you. 
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If, however, you have included or excluded certain rows, you may want to restrict computa-
tions to those rows you’ve chosen to include, or to those you’ve chosen to exclude. You may do 
so by replacing the default AllRows argument with OnlyIncludedRows or OnlyExcluded-
Rows. 

Row numbers are dimmed in the dataset window for all rows that are excluded, whether by 
criteria or by manual exclusion. Here we see the results of three Mean formulas, one with each 
row inclusion argument, when rows 4 and 5 are excluded:

Mean(A, AllRows)

Mean(A, OnlyExcludedRows)

Mean(A, OnlyIncludedRows)

How do you include and exclude rows? By using criteria, by double-clicking row numbers in 
the dataset, or by selecting rows and using the Include and Exclude commands in the Manage 
menu. These are discussed in detail under Include and exclude rows [p. 108] and “Create cri-
teria,” p. 124 of Using StatView. 

Missing values
Missing values in a variable usually propagate themselves into the new variables created by for-
mulas—cases having missing values in any of the variables listed as arguments to the function 
usually get a missing value as a result for that row. In a few cases, a single missing value causes 
missing values for every result of a function. 

Missing values propagate missing values for most logical evaluations (except those using , 
, and IsMissing), and any evaluation of missing in a criterion results in row exclusion. 

For each function, we specify how missing values affect computations. 

Several functions are provided specifically to handle missing values: , , IsMissing, Aver-
ageIgnoreMissing, NumberMissing, and SumIgnoreMissing. 
Order of operations

StatView obeys the rules of algebra in evaluating expressions. Operations are performed in this 
order:

1. Functions without arguments, such as RowNumber

2. NOT, unary minus (negative), and unary plus (positive)

3. Functions with arguments, such as Log(?)

4. Exponentiation

5. Multiplication and division
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6. Addition and subtraction

7. Comparisons

8. Logical conjunctions

9. Parentheses

Since parentheses are evaluated last, you can use parentheses to override the normal order of 
operations. This causes anything inside parentheses to be evaluated before it is “used” by any 
other operation. 

For example, multiplication is usually performed before addition: 

1+3*4
=1+12
=13

But if we group 1+3 inside parentheses, the addition is performed first, because the multipli-
cation step *4 must wait for the contents of the parentheses:

(1+3)*4
=4*4
=16

If more than one set of parentheses are used, expressions are evaluated “inside” first:

(1+(3*4))*4
=(1+12)*4
=13*4
=52

A more complicated example lets us show every possible step in the hierarchy of operations. 

NOT (RowNumber*Log(C) = B^A–4) AND B+C/D < A

Result is a dynamic variable with the formula shown above. On row 1, the formula is evalu-
ated in this sequence of steps:

Step Explanation

NOT (RowNumber*Log(C) = B^A–4) AND B+C/D < A
=NOT (1*Log(C) = B^A–4) AND B+C/D < A RowNumber=1
=NOT (1*0 = B^A–4) AND B+C/D < A Log(C)=0
(NOT would ordinarily be executed in this step, but it has 
to wait for its argument, and parentheses are last in the 
order of operations.) 
=NOT (1*0 = 0.0016–4) AND B+C/D < A B^A=0.0016
=NOT (0= 0.0016–4) AND B+0.2 < A 1*0=0, C/D=0.2
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Similarly, on row 3:

Left to right evaluation
Exponentiation is performed right to left, meaning that X^Y^Z is interpreted as X^(Y^Z). All 
other operations of equal precedence are performed from left to right. If you need to force 
right-to-left evaluation, use parentheses. 

In many cases, the results would be the same right-to-left as left-to-right, but there are excep-
tions. For example, this series of logical evaluations yields opposite results when parentheses 
change the sequence (1 is true and 0 is false):

1 OR 1 AND 0
1 AND 0
0

1 OR (1 AND 0)
1 OR 0
1

Another example is when multiplying and dividing with zero. Here, if we use parentheses to 
evaluate right to left, we get division by zero, which is undefined, and the result is a missing 
value:

1/3*0
.333*0
0

1/(3*0)
1/0
.

=NOT (0 = –3.9984) AND 5.2< A 0.0016–4=–3.9984, B+0.2=5.2
=NOT (0) AND 0 0=–3.9984 is false; 5.2<–4 is false (1 is true, 0 is false)
=1 AND 0 “NOT false” is true. (The parentheses are finally done, 

leaving NOT and AND to be evaluated. NOT takes 
precedence over AND.)

=0 “true AND false” is false

Step Explanation

NOT (RowNumber*Log(C) = B^A–4) AND B+C/D < A
=NOT (3*Log(C) = B^A–4) AND B+C/D < A RowNumber=3
=NOT (3*0.477= B^A–4) AND B+C/D < A Log(C)=0.477
=NOT (3*0.477 = 0.0016–4) AND B+C/D < A B^A=1024
=NOT (1.431= 1024–4) AND B+0.75 < A 3*0.477=1.431 C/D=0.75
=NOT (1.431= 1020) AND 4.75< A 1024–4=1020, B+0.75=4.75
=NOT (0) AND 1 1.431=1020 is false; 4.75<5 is true
=1 AND 1 “NOT false” is true
=1 “true AND true” is true
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When in doubt, use parentheses to be sure operations are performed in the order you want. 
Remarks

You can embed remarks or comments in formulas to document what the formula does. Sim-
ply begin your remark with a forward slash and an asterisk (/*) and end it with an asterisk and 
a forward slash (*/). You can also begin it with left parenthesis and asterisk and end it with 
asterisk and right parenthesis. For example, 

/* recode Country into foreign or domestic */
/* 3 March 1996 */
if Country ElementOf {Japan, Other}

then "foreign" /* this groups all imports under "foreign" */
else if Country=USA

then "domestic" (* this groups all American cars under "domestic" *)
else "XXX"

/* the else expression flags any rows that don't match Japan, Other, or USA
with "XXX" in case I missed something in my dataset */

A remark may be several lines long. StatView ignores any characters it finds in between the /* 
and */ strings, even if they are valid expressions. You may place a comment anywhere in a for-
mula where a space could be, except inside a pair of parentheses. For example, you cannot 
place a comment inside the argument list for the function Mean:

Mean(A, OnlyIncludedRows/* in case criteria are used */)
Static and dynamic formulas

You can create variables with two different types of formulas: static formulas and dynamic for-
mulas. Variables with static formulas are computed once from the current state of the dataset 
and only updated if you reopen the formula dialog and click Compute. Variables with 
dynamic formulas are computed from the current state of the dataset, and they are updated 
whenever any changes are made to the dataset that affect the variable. 

For example, suppose you create both a dynamic variable and a static variable with the same 
formula:

A+B
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Then you realize that the first two values in A are wrong—they should be positive. You correct 
those values, and the dynamic variable updates. The static variable does not. 

Formula and Recode create dynamic variables by default. Series and Random Numbers create 
static variables by default (for more information, see the chapter “Managing data,” p. 107 of 
Using StatView). To switch any variable from one to the other, use the Source pop-up menu in 
the variable attribute pane. 
Date and time functions

StatView provides a set of functions designed for manipulating date/time values in the Grego-
rian calendar. The date/time functions are: Date(?, ?, ?) [p. 369], DateDifference(?, ?, ?) 
[p. 370], Day(?) [p. 371], DayOfWeek(?) [p. 372], DayOfYear(?) [p. 372], Hour(?) [p. 382], 
Minute(?) [p. 389], Month(?) [p. 391], Now [p. 393], Second(?) [p. 419], Time(?, ?, ?) 
[p. 427], Weekday(?) [p. 430], WeekOfYear(?) [p. 431], and Year(?) [p. 431].

Date/time data measure time by counting the number of seconds elapsed since midnight of 
1 January 1904, C.E. The numeric contents of date/time variables are positive integers rang-
ing from 1 to 4,294,967,295, inclusive. Any values outside this range are replaced with miss-
ing values, and any fractional parts are discarded. Within these limitations, you may apply any 
numeric functions you see fit. 

Date/time variables have special formatting options for translating numbers of seconds into 
recognizable dates and times. StatView provides a set of functions designed specifically for 
working with date and time values. These functions properly interpret 60 seconds as a 
minute, 60 minutes as an hour, 24 hours as a day, etc. 

It is important to understand how date and time values are interpreted and displayed. See 
Type [p. 73] and “Format,” p. 79 of Using StatView. 

Formats
The formats available to you in the Format pop-up menu of the variable attribute pane will 
vary according to your system and international configuration. For example, if you choose the 
French Canadian date and time formats, you see the Format choices shown at the left. If you 
choose the default U.S. formats, you see the choices shown at the right. 
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Changing data types
Converting date/time variables to type integer or long integer risks loss of data. For example, 
4,294,967,295 is too large a number to be stored as integer or long integer, so it is replaced 
with a missing value. Switching back to date/time variables does not recover the value from 
missing (but you can Undo the conversion). 

Converting date/time values to type category risks loss of data, also. Category variables are 
limited to 255 levels, so if you have more than 255 different values in a date/time variable, 
you will lose data. 

Converting to types string, currency, and real is safe. 

Arguments
When specifying a date/time value as an argument to a function, you may write the value in 
any format you see in your Format pop-up menu. The formats illustrated above and the exam-
ples in this manual may not be valid. Always enclose date/time values in quotation marks. 

Direction
All date and time functions are casewise—they are evaluated separately for each case. 
Text functions

StatView provides a set of functions designed for manipulating text values. These functions 
are mostly useful with text variables—those with type string and category. Their behavior with 
text values is straightforward. StatView’s text functions are Concat, Find, Len, and Substring. 
ChooseArg is a special purpose function that is also useful with text variables. 
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Informative variables
StatView formulas and criteria may only be based on nominal and continuous variables, so if 
you want to manipulate informative string variables, you must first change their class to nom-
inal. 

Numeric formats
Text functions may also be used to manipulate numeric variables—those with type real, inte-
ger, long integer, currency, and date/time. Text results are based on the current character rep-
resentation for the numeric variable, as set by that variable’s current format. 

For instance, C is a string variable given by the formula A. Since A has free format fixed and 
one decimal place, C also shows free-formatted numbers with one decimal place:

Changing data types
All formulas produce variables with type real by default. In most cases you will want to change 
text function results to have type string or category. 

Direction
All text functions are casewise—they are evaluated separately for each row. 
Operators

Most of StatView’s operators appear in the keypad area of the Formula window. You may also 
type them by hand. Operators are used with numeric variables. 
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?+?

The plus sign does casewise (horizontal) addition of variables and constants. That is, for each 
case, the values from each column are added to produce a value for that case in the new col-
umn. Missing values propagate further missing values when added:

A + B

A + B + 7

You can also use Sum, which accepts multiple variable or constant arguments; Sum(A,B,C,7) 
is equivalent to A+B+C+7. SumIgnoreMissing is the same, except that missing values are 
ignored unless a row is missing in every variable. 

For columnwise (vertical) addition, see SumOfColumn(?, AllRows) [p. 424] or CumSum(?) 
[p. 368]. 
?–?

The minus sign does casewise subtraction of variables or constants. Missing values propagate 
further missing values when subtracted: 

A – B

A – B – 3

You can also use Sum with negative arguments, e.g., Sum(A, –B, –C); see Sum(?, …) [p. 423]. 
For columnwise subtraction (subtracting a previous case from each case all the way down a 
column, etc.), see Difference(?, 1, 1) [p. 373]. 
?*? or ? ?

The asterisk does casewise multiplication of variables or constants. You can also list two adja-
cent arguments for multiplication—this is like the ab notation for a*b. Missing values propa-
gate further missing values when multiplied. 

A*B

A(–1)
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For columnwise multiplication, use CumProduct, which multiplies all the cases of a variable 
and returns the product “in progress” down the rows of a new variable; see CumProduct(?) 
[p. 367].
?/?

The slash sign does casewise division of variables or constants. Missing values and division by 
zero propagate missing values. 

A/B

A÷3

A/B has a missing value on row 5 because division by zero is undefined. 
?^? or ?**?

The caret ^ and double asterisk ** signs do casewise exponentiation. To raise one argument (a 
variable or constant) to the power of another, link them with either symbol. Missing values 
propagate missing values. 

A^B

You can compute the reciprocal of a power by using a negative exponent. The second row 
above illustrates this: 

You can compute the nth root of an argument by raising it to the power 1/n. For example, you 
can compute the square root of A by computing A^(1/2), or the cube root with A^(1/3), etc. 
Square roots are also built-in with Sqrt(?) [p. 420]. 

3–( ) 2– 1

3–( )2------------- 1
9
---= =
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+?

The plus sign + before an argument does casewise unary addition. This is a “positive” sign. Its 
argument may be a variable, a constant, or another function. Missing values are unchanged. 

+A

+B

The “positive” function does not make negative values positive. What, then, does it do? It sim-
ply allows you to include an explicit positive sign so that formulas are easier to read. You 
might want to include explicit positives in a case like this: 

(–Debits)*12/((+Credits)*12)

Use absolute value if you need to convert negative values to positive values; see Abs(?) 
[p. 348]. 
–?

The minus sign – before an argument does casewise unary subtraction. This is a “negative” 
sign. Its argument may be a variable, a constant, or another function. Missing values are 
unchanged. 

–A

–B

The negative of a positive value is negative, but the negative of a negative value is positive. 
Zero is without sign. 

Since StatView can ignore missing values with addition but not subtraction, you might com-
bine SumIgnoreMissing (see SumIgnoreMissing(?, …) [p. 424]) and unary subtraction: 

SumIgnoreMissing(A, –B, –C, –D)



 26 Formulas Sets, intervals, and ranges
(?)

Parentheses are used to show grouping and control order of evaluation. (Order of operations 
[p. 326] discusses this in detail.) If you want to override the normal order of operation, use 
parentheses to group quantities to be evaluated first. For example:

If more than one set of parentheses are used, expressions are evaluated “inside” first:

Parentheses are also used to delimit arguments for many functions, e.g., log(A) or cos(B). 
Don’t worry about typing these parentheses; StatView does it for you when you select func-
tions from the list or the keypad. 

A formula definition using parentheses might look like this: 

Log(A)*(B–C)

In this example, the first set of parentheses delimits the argument for the log function (Stat-
View inserts these automatically when you click the log button). The second set forces Stat-
View to subtract B and C before multiplying by the log; without parentheses, the 
multiplication would be performed before the subtraction (and after the log).

1 3 4×+ 13=
1 3+( ) 4× 16=

1 3 4×( )+( ) 4× 1 12+( ) 4× 13 4× 52== =
Sets, intervals, and ranges

Set, interval, and range functions may be used with both numeric and text data. They are usu-
ally used to define criteria or to define conditional transformation formulas. 
{…}

Braces create a set containing the elements you list. Its arguments should be values. 

For example, Car Data in the Sample Data folder has a nominal variable Type whose values 
are Small, Sporty, Compact, Medium, and Large. Suppose you only wanted to work with 
those cars that belong to the Compact, Medium, or Large categories. You could create this cri-
terion: 

Type ElementOf {Compact, Medium, Large}

Or, you might use set membership as a test inside if…then to control how a transformation is 
done:

if Type ElementOf {Compact, Medium, Large}
then Weight*"Turning Circle"/Mean("Turning Circle", AllRows)
else Weight

See if ? then ? else ? [p. 341] and the relation ? ElementOf ? [p. 345].
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(?:?), [?:?], (?:?], [?:?)

You can indicate numeric intervals in StatView by using colons and grouping marks. Use a 
colon to separate two endpoint numbers. Use parentheses to indicate an open interval and 
brackets to indicate a closed interval. You may describe an interval that is half open (open on 
one end and closed on the other) by using a parenthesis on the open end and a bracket on the 
closed end. 

What do we mean by “open” and “closed”? An open endpoint is one where you want the val-
ues that are strictly greater than or less than but not equal to your endpoint. A closed endpoint 
is one where you want the endpoint included. 

Such ranges are useful for testing whether a variable’s values belong to a range you specify. 
Suppose, for instance, you have body temperature readings and want to transform those that 
are greater than or equal to 36.5˚ but strictly less than 38˚ Celsius to their Fahrenheit equiva-
lents. You might use a formula like this: 

if Temperature ElementOf [36.5:38)
then Temperature*9/5 + 32
else .

See if ? then ? else ? [p. 341] and the relation ? ElementOf ? [p. 345].

Expr Interval

(1:3) 1 < x < 3
[1:3) 1 ≤ x < 3
(1:3] 1 < x ≤ 3
[1:3] 1 ≤ x ≤ 3
<?, >?

A relation sign followed by an argument returns a range. You may type<= or =< for “less than 
or equal to,” and you may type >= or => for “greater than or equal to.” 

Expr Range

< n (–∞, n)
> n (n, –∞)
<= n (–∞, n]
>= n [n, ∞)
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The range notation is mostly useful in combination with set notation (braces) for criteria; see 
{…} [p. 336] and “Create criteria,” p. 124 of Using StatView.

Suppose you have angle measurements and want to study only those cases whose angles are 
strictly greater than pi radians. You could create a criterion:

Angles ElementOf {>pi}

Or, if you wanted the cases whose angles are strictly outside the range between plus and minus 
pi radians, you could create this criterion: 

Angles ElementOf {<–pi, >+pi}

Other ways of writing this criterion include:

Abs(Angles) > pi

Angles <–pi OR Angles > pi

Or, you may prefer to use the graphic interface built into the Criteria dialog box: 
Relations and logical operators

StatView’s relations and logical operators can be used with Formula and Criteria. The result of 
any logical expression is an evaluation “true” or “false.” They can be used with both text and 
numeric data. For text data, comparisons such as “less than” and “greater than” mean “before” 
and “after” in  order, which is how text values are compared. 

Relations and logical operators work somewhat differently with formulas than with criteria. 
Formulas create Boolean (true/false) variables, and Criteria create inclusion conditions. For 
more information about formulas and criteria, see the chapter “Managing data,” p. 107 of 
Using StatView. 

Formulas
With Formula, you use logical expressions to create new Boolean variables; these variables 
contain ones for those cases where the expression evaluates to true, zeros where it evaluates to 
false, and missing values (. if numeric, blank if string) where either side of the expression is 
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missing. (See ? IS ? [p. 346], ? ISNOT ? [p. 347], and IsMissing(?) [p. 343] for special han-
dling of missing values.) You can use if…then…else formulas to recode variables; see if ? then 
? else ? [p. 341]. 

With Formula, you may place variables, constants, or expressions on either side of the rela-
tion. Following are some valid formulas: 

A < 7

8 Log(A) >= B + C

91 = A

A < –7 OR A > +8

B > –3 AND B < 5

if B>=A AND (B>1 OR B<–3)
then "This"
else "That"

Criteria
If you are creating or editing criteria, cases where the comparison evaluates to true are 
included (or selected, if you click the Select button). Cases where the comparison evaluates to 
false or missing are excluded and their row numbers are dimmed in the dataset window. See ? 
IS ? [p. 346], ? ISNOT ? [p. 347], and IsMissing(?) [p. 343] for special handling of missing 
values. 

With Criteria, the first argument (the left side of the comparison) must be a variable. The sec-
ond argument (the right side of the comparison) may be a variable, a constant, or some larger 
expression. Following are some valid criteria:

A < 7

A = 91

A < –7 OR A >=+7

B >= –3 AND B < 3

B>=A AND (B>1 OR B<–1)

Truth tables
The tables below use formulas to show the results of all possible comparisons of positive, neg-
ative, zero, and missing values. The same expressions used for criteria would result in formula 
rows with trues (1) being included and formula rows with falses (0) or missings ( . ) excluded. 
 and  handle missing values differently than = and ≠ do; see ? IS ? [p. 346] and ? 
ISNOT ? [p. 347]. 
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Remember, negative numbers of greater magnitude are less than negative numbers of lesser 
magnitude, e.g., –4 is less than –3. If you want to compare magnitude without regard to sign, 
use Abs for absolute values. All comparisons return missing values ( . ) if either or both argu-
ments are missing. 
?<?

A “less than” comparison uses the < symbol and returns true (1) if the first argument is strictly 
less than the second argument. “Less than” returns false (0) if the first argument is equal to or 
greater than the second argument. Missing values propagate missing values. Logical expres-
sions are evaluated casewise. 
?<=?

A “less than or equal to” comparison uses the <= or =< symbols and returns true (1) if the first 
argument is less than or equal to the second argument. “Less than or equal to” returns false (0) 
if the first argument is strictly greater than the second argument. Missing values propagate 
missing values. Logical expressions are evaluated casewise. 
?=?

An “equal to” comparison uses the = symbol and returns true (1) if the first argument is 
exactly equal to the second argument. “Equal to” returns false (0) if the first argument is less 
or greater than the second argument. Missing values propagate missing values. Logical expres-
sions are evaluated casewise. 



26 Formulas Relations and logical operators 
You may not specify missing ( . ) as an argument to =, e.g.:

if A=.
then "unknown"
else "recorded"

To check for missing values, either use IS or IsMissing:

if IsMissing(A)
then "unknown"
else "recorded"

if A IS .
then "unknown"
else "recorded"

You can “fill in” missing values in one variable with values from another variable by using a 
formula such as this (see NOT(?) [p. 345]):

If NOT IsMissing(A)
then A
else B
?>=?

A “greater than or equal to” comparison uses the >= or => symbols and returns true (1) if the 
first argument is greater than or equal to the second argument. “Greater than or equal to” 
returns false (0) if the first argument is strictly less than the second argument. Missing values 
propagate missing values. Logical expressions are evaluated casewise. 
?>?

A “greater than” comparison uses the > symbol and returns true (1) if the first argument is 
strictly greater than the second argument. “Greater than” returns false (0) if the first argument 
is equal to or less than the second argument. Missing values propagate missing values. Logical 
expressions are evaluated casewise. 
?<>?

A “not equal to” comparison uses the <> symbol and returns true (1) if the first argument is 
less or greater than the second argument. “Not equal to” returns false (0) if the first argument 
is exactly equal to the second argument. Missing values propagate missing values. Logical 
expressions are evaluated casewise. 
if ? then ? else ?

If expr then expr2 else expr3 clauses do conditional formulas. The “if expr” phrase usually uses 
a logical expression such as 
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if Weight > 150

or 

if Weight>150 AND Gender=male

For rows whose result of the If… test is true (1), the “then expr2” phrase

then "Typical"

or

then Age*Log(Cholesterol)

sets the value of the new variable on that row. When the “if…” test evaluates to false (0), the 
“else…” phrase

else "Low"

or

else Age + Cholesterol^2

sets the value on that row. 

When the “if…” test evaluates to missing, the result is missing. Therefore, you may want to 
consider using functions designed for missing values, such as IsMissing(?) [p. 343], ? IS ? 
[p. 346], and ? ISNOT ? [p. 347]. Logical expressions are evaluated casewise. 

Following are some examples. This transformation creates pre- and post-retirement categories 
based on 65 as retirement age (don’t forget to change the formula variable to type string):

if Age<65
then "Working age"
else "Retirement age"

This transformation assigns every third row to a different group. It does so by testing whether 
the row number divides evenly by 3 (see Mod(?, ?) [p. 390]):

if Mod(RowNumber, 3)=0
then "Group3"
else if Mod(RowNumber, 3)=2

then "Group2"
else "Group1"
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You can use if…then…else to recode continuous variables into nominal groups. This formula 
recodes a continuous variable, Age, into a nominal variable with string values. The final else… 
statement puts any “leftover” cases that haven’t yet been assigned into the group “teenager.” 

if Age<5
then "toddler"
else if Age<13

then "child"
else "teenager"

A better, safer way to recode variables is to specify exactly what should go in the last group 
(teenager) and then set any “leftover” cases to a value such as “ZZZ.” After computing the 
variable, either look at a frequency distribution summary table or sort on the variable and 
look for any ZZZ values. If you find any, you might need to fix your formula. 

if Age<5
then "toddler"
else if Age<13

then "child"
else if Age<20

then "teenager"
else "ZZZ"
IsMissing(?)

IsMissing(var) returns true (1) for every case that is missing in the variable you specify. IsMiss-
ing returns false (0) for all other cases. Logical expressions are evaluated casewise. 

IsMissing(A)

Above, we see that the missing value in the third row for A puts a 1 (true) in the second col-
umn; all other cases are nonmissing and therefore 0 (false). 

IsMissing is useful for Criteria when you don’t want to exclude rows with missing values on 
your test variable. Suppose you want to exclude cases with extreme weight values, but you 
don’t want to exclude cases where Weight is missing:

Weight<300 OR IsMissing(Weight)
IsRowExcluded

IsRowExcluded returns true (1) for every case that is currently excluded in the dataset. 
IsRowExcluded returns false (0) for any row that is currently included. IsRowExcluded takes 
no arguments. Logical expressions are evaluated casewise. 
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IsRowExcluded

Inclusion and exclusion are the combined effect of any criteria in effect and any manual 
Include and Exclude commands. Excluded rows’ numbers are dimmed (grayed) in the dataset 
window. 

IsRowExcluded is the complement of IsRowIncluded, p. 344. 
IsRowIncluded

IsRowIncluded returns true (1) for every case that is currently included in the dataset. IsRow-
Included returns false (0) for any row that is currently excluded. IsRowIncluded takes no 
arguments. Logical expressions are evaluated casewise. 

IsRowIncluded

Inclusion and exclusion are the combined effect of any criteria in effect and any manual 
Include and Exclude commands. Excluded rows’ numbers are dimmed (grayed) in the dataset 
window. 

You might want to use IsRowIncluded or IsRowExcluded to record an inclusion or exclusion 
you create by hand. Remember, besides using criteria, you can select rows and use the Include 
and Exclude commands in the Manage menu. Also, you may double-click any row number to 
toggle the row between included and excluded. 

Suppose, for example, you first use a criterion Gender=male and then double-click certain 
individual cases whose Weight measurements were extremely low or extremely high. Some-
times this is more efficient than putting together complex criteria. Now, you can record this 
combination of activities for future use with IsRowIncluded or IsRowExcluded. For example, 
you might set a variable “Typical cases” to IsRowIncluded or a variable “Outliers” to IsRowEx-
cluded. You’ll probably want to set the variable to be a static formula (or change it to user 
entered after computing). 

See also IsRowExcluded [p. 343] for the complement of IsRowIncluded.
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NOT(?)

The logical operator  reverses true/false values. (expr) returns true (1) if the expression 
evaluates to false, false (0) if the expression evaluates to true, and missing (. or blank string) if 
the expression evaluates to missing. Logical expressions are evaluated casewise.
false

The operator “false” returns the value false (0) for every case. False takes no arguments. Logi-
cal expressions are evaluated casewise. 
true

The operator “true” returns the value true (1) for every case. True takes no arguments. Any 
nonzero, nonmissing value is interpreted as true. Logical expressions are evaluated casewise. 
? AND ?

The logical conjunction  does intersection. Two expressions joined with  return true 
(1) if the expressions on both sides are both true; they return false (0) if either or both sides are 
false. Missing values on either side propagate missing values. Logical expressions are evaluated 
casewise. 
? ElementOf ?

A var ElementOf set or a var ElementOf interval comparison returns true (1) when values of 
the var are members of the set or interval you specify and false (0) when they are not. The first 
argument should be a variable, and the second argument should be either a set or a range. 
Missing values propagate missing values. Logical expressions are evaluated casewise. 

A ElementOf {1,2,3}

ElementOf is especially useful when recoding nominal data, such as this example with Car 
Data (see if ? then ? else ? [p. 341]):

if Country ElementOf {Japan, Other}
then "foreign"
else if Country=USA

then "domestic"
else "XXX"
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We use the final else “XXX” to double-check that Country has no other values that could 
incorrectly be recoded to domestic. A quick glance at Maximum in the variable attribute pane 
confirms that the new variable has no rows with XXX, so we know no other Country values 
were present.

ElementOf is also useful for criteria based on nominal data. This criterion would include only 
those rows with values Japan and Other, and rows with USA (or missing values, if there were 
any) would be excluded:

Country ElementOf {Japan, Other}

A set is either a range or a list of elements separated by commas and enclosed by “{” and “}.” 
An interval is a pair of endpoints separated by a colon “:” and enclosed in parentheses “ ( ) ” 
or brackets “ [ ] ” as discussed in “Sets, intervals, and ranges,” p. 336. 
? IS ?

An  comparison is an “equal to” comparison that also considers two missing values to be 
equal to each other.  returns true (1) if the first expression is equal to the second argument or 
if both expressions are missing.  returns false (0) if the arguments are unequal or if only one 
expression is missing.  is useful with nominal data. Logical expressions are evaluated case-
wise. 

Ordinarily, a missing value on either side of a relation causes that case to be missing, because, 
for example, two unreported ages or weights or names cannot be assumed to be equal (or 
unequal) just because they were both unrecorded. StatView provides  and  for those 
situations in which missing values can be considered to “match.” 

You might want to use  rather than = when setting a variable according to the values of more 
than one other variable, as below. We might expect the first formula to produce values of true 
for rows 3 and 4 (where X=3) and row 1 (where Y=4). Why do we get missing on row 1? 
Because X is missing on row 1, the first if… test (see if ? then ? else ? [p. 341]) has already eval-
uated that row to be missing. The second formula uses  and gets the desired result: row 1 is 
also true. 

if X=3 
then 1
else if Y=4

then 1
else 0

if X IS 3 
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then 1
else if Y=4

then 1
else 0
? ISNOT ?

An  comparison is a “not equal to” comparison that considers two missing values to be 
equal.  returns true (1) if the first expression is strictly less or greater than the second 
expression.  returns false (0) if both expressions are exactly equal or both expressions are 
missing.  is useful with nominal data. Logical expressions are evaluated casewise. 

Ordinarily, a missing value on either side of a relation causes that case to be missing, because, 
for example, two unreported ages or weights or names cannot be assumed to be equal (or 
unequal) just because they were both unrecorded. StatView provides  and  for those 
situations in which missing values can be considered to “match.” 

You might want to use  rather than ≠ in situations like the example shown for ? IS ? 
[p. 346]. 
? OR ?

The logical conjunction  does union. Two expressions joined with  return true (1) if 
either or both expressions are true; they return false (0) if both expressions are false; and they 
return missing values (. or blank strings) if one is false and the other missing, or if both are 
missing. Logical expressions are evaluated casewise. 
? XOR ?

The logical conjunction  does exclusive or. Two expressions joined with  return true 
(1) if one is true and the other false; they return false (0) if both are true or both are false; and 
they return missing values (. or blank strings) if either or both are missing. Logical expressions 
are evaluated casewise. 
Functions

StatView provides an array of date/time functions for working with date/time date; text func-
tions for manipulating text data and character representations of numeric data; mathematical, 
statistical, probabilistic, and trigonometric functions for generating and transforming data; 
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and random data and series functions for generating data. Functions appear in alphabetical 
order. 
Abs(?)

Abs(var) returns the casewise absolute value of the variable you specify. Missing values are 
unchanged. 

Abs(A)

Abs(A+B)

Absolute value is often written with vertical bars. Absolute value is defined by:

Casually, absolute value removes negative signs from the quantity it contains, but it does so 
after evaluating the quantity inside. In the example below, the first case for Abs(A+B) is evalu-
ated , not .

Absolute values are often used for studying “absolute magnitude”—that is, you want to know 
how large some numbers are, but you don’t care whether the numbers are negative or positive. 
For example, you might want to work with absolute residuals from a regression. Absolute val-
ues are also useful with functions that require non-negative arguments. For instance, you may 
want to examine the square root of a variable. Square roots, however, are undefined for nega-
tive numbers, so you must first apply the absolute value then the square root, e.g., 
Sqrt(Abs(A)). Otherwise, missing values result. 

Researchers often use a Likert scale, where multiple-choice answers indicate a range of 
response, such as 1–5 being a scale from “strongly agree” to “strongly disagree.” Other ques-
tions might reverse the scale, so that the survey doesn’t seem to encourage one opinion over 
another. To reverse scores from one direction to the other, take the absolute difference 
between the score and the maximum, and add one. For example, to flip 1–5 to 5–1, use this 
formula:

1 + Abs(Likert–5)

x x for all x 0≥=
x for all x 0<–=

4– 5+ 1 1= = 4– 5+ 4 5+ 9= =
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Grouping parentheses are allowed both inside and outside the absolute value argument, e.g., 
(A–Abs(B–C)

 
and Abs(A–(B–C)); see (?) [p. 336]. StatView asks you to correct any mistakes 

you make before it will compute any formula. 
ArcCos(?)

ArcCos(var) returns the arccosine in radians of a variable or constant. Missing values propa-
gate missing values. The function works casewise. 

ArcCos(Cosine)

Arccosine is often denoted by , because it is the inverse function of the cosine func-
tion. The arccosine of x is any angle whose cosine is x. Since cosine is a periodic function, 
many angles have any given cosine, so arccosine is usually understood to mean the “principal 
value” for a given cosine, which is by convention the angle falling between 0 and π having that 
cosine. A graph of arccosine against cosine shows this relationship. 

ArcCos returns angles expressed in radians. You can convert radians to degrees with RadTo-
Deg(?) [p. 405]. You may specify the value π with Pi [p. 400]. 
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ArcCosh(?)

ArcCosh(var) returns the hyperbolic arccosine of a variable or constant. Missing values propa-
gate missing values. The function works casewise. 

ArcCosh(Cosh)
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Hyperbolic arccosine is often denoted by , because it is the inverse function of the 
cosh function. If , then . As hyperbolic functions are constructed 
from exponential functions and exponents inverse to logs, inverse hyperbolic cosine has a log-
arithmic expression: 

where  and the plus in ± is used for the principal value. (Either value for ArcCosh would 
be valid; just as ArcCos takes its preferred “principal value” from the interval between 0 and π, 
so ArcCosh takes its principal value from the result of the plus sign rather than the minus 
sign.) Graphs of cosh and arccosh echo their exponential and logarithmic meanings and show 
the effects of the principal value convention:
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ArcCot(?)

ArcCot(var) returns the arccotangent in radians of a variable or constant. Missing values prop-
agate missing values. The function works casewise. 

ArcCot(Cotangent)
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Arccotangent is often denoted by , because it is the inverse function of the cotangent 
function. The arccotangent of x is any angle whose cotangent is x. Since cotangent is a peri-
odic function, many angles have any given cotangent, so arccotangent is usually understood to 
mean the “principal value” for a given cotangent, which is by convention the angle falling 
between –π/2 and π/2 having that cotangent. A graph of arccotangent against cotangent 
shows this relationship. 

ArcCot returns angles expressed in radians. You can convert radians to degrees with RadTo-
Deg(?) [p. 405]. You may specify the value π with Pi [p. 400].
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ArcCsc(?)

ArcCsc(var) returns the arccosecant in radians of a variable or constant. Missing values propa-
gate missing values. The function works casewise. 

ArcCsc(Cosecant)
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Arccosecant is often denoted by , because it is the inverse function of the cosecant 
function. The arccosecant of x is any angle whose cosecant is x. Since cosecant is a periodic 
function, many angles have any given cosecant, so arccosecant is usually understood to mean 
the “principal value” for a given cosecant, which is by convention the angle falling between 

 and π/2 having that cosecant. A graph of arccosecant against cosecant shows this rela-
tionship. 

ArcCsc returns angles expressed in radians. You can convert radians to degrees with RadTo-
Deg(?) [p. 405]. You may specify the value π with Pi [p. 400]. 
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ArcSec(?)

ArcSec(var) returns the arcsecant in radians of a variable or constant. Missing values propagate 
missing values. The function works casewise. 

ArcSec(Secant)
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Arcsecant is often denoted by , because it is the inverse function of the secant function. 
The arcsecant of x is any angle whose secant is x. Since secant is a periodic function, many 
angles have any given secant, so arcsecant is usually understood to mean the “principal value” 
for a given secant, which is by convention the angle falling between 0 and π having that 
secant. A graph of arcsecant against secant shows this relationship. 

ArcSec returns angles expressed in radians.You can convert radians to degrees with RadTo-
Deg(?) [p. 405]. You may specify the value π with Pi [p. 400]. 
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ArcSin(?)

ArcSin(var) returns the arcsine in radians of a variable or constant. Missing values propagate 
missing values. The function works casewise. 

ArcSin(Sine)
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Arcsine is often denoted by , because it is the inverse function of the sine function. The 
arcsine of x is any angle whose sine is x. Since sine is a periodic function, many angles have 
any given sine, so arcsine is usually understood to mean the “principal value” for a given sine, 
which is by convention the angle falling between  and +π/2 having that sine. A graph of 
arcsine against sine shows this relationship. 

ArcSin returns angles expressed in radians. You can convert radians to degrees with RadTo-
Deg(?) [p. 405]. You may specify the value π with Pi [p. 400]. 
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ArcSinh(?)

ArcSinh(var) returns the hyperbolic arcsine of a variable or constant. Missing values propagate 
missing values. The function works casewise. 

ArcSinh(Sinh(x))

Hyperbolic arcsine is often denoted by , because it is the inverse function of the sinh 
function. More precisely, if , then . As hyperbolic functions are con-
structed from exponential functions and exponents inverse to logs, inverse hyperbolic sine has 
a logarithmic expression: 

Graphs of sinh and arcsinh echo their exponential and logarithmic meanings:

xsinh–1

xsinh y= ysinh–1 x=

xsinh–1 x x2 1++( )ln=
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ArcTan(?)

ArcTan(var) returns the arctangent in radians of a variable or constant. Missing values propa-
gate missing values. The function works casewise. 

ArcTan(Tangent)

Arctangent is often denoted by , because it is the inverse function of the tangent func-
tion. The arctangent of x is any angle whose tangent is x. Since tangent is a periodic function, 
many angles have any given tangent, so arctangent is usually understood to mean the “princi-
pal value” for a given tangent, which is by convention the angle falling between  and 

 having that tangent. A graph of arctangent against tangent shows this relationship. 
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ArcTan returns angles expressed in radians. You can convert radians to degrees with RadTo-
Deg(?) [p. 405]. You may specify the value π with Pi [p. 400].
ArcTanh(?)

ArcTanh(var) returns the hyperbolic arctangent of a variable or constant. Missing values prop-
agate missing values. The function works casewise. 

ArcTanh(Tanh(x))

Hyperbolic arctangent is often denoted by , because it is the inverse function of the 
tanh function. If , then . As hyperbolic functions are constructed 
from exponential functions and exponents inverse to logs, inverse hyperbolic functions have a 
logarithmic expression: 

 

where |x| <1. 

Graphs of tanh and arctanh echo their exponential and logarithmic meanings:
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Average(?, …)

Average(var, var2, …) computes the casewise average of the values in the variables you specify. 
Missing values propagate missing values. The function works casewise. 

Average(Quiz, Homework, Test)
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Average is the sum of all values, divided by the number of values. The average, like the mean, 
is a measure of central tendency of a set of observations. If you record students’ grades for a 
series of assignments, tests, and quizzes in a series of variables (columns), you might use the 
Average function to compute the average score for each student for the school term. 

Average also accepts constants as arguments. If you specify only constants, the result is a vari-
able filled with a single answer, e.g., Average(3,1,8) produces a column of 4s. You might also 
specify several variables and one number. For instance, you might average the students’ scores 
with a single “high” score as a way of adding grace points to their final scores: 

Average(Quiz, Homework, Test, 95)

Average is a casewise (horizontal) function. If you want a columnwise average, use Mean(?, 
AllRows) [p. 388]. If one or more of the variables has missing values and you want an average 
computed for every case using as many values as are present, use AverageIgnoreMissing(?, …) 
[p. 357]. 
AverageIgnoreMissing(?, …)

AverageIgnoreMissing(var, var2, …) computes the casewise average of the nonmissing values 
in the variables you specify. That is, for each row, AverageIgnoreMissing adds the nonmissing 
values of the variables (or constants) you specify, and then divides by the number of values 
that were nonmissing. If every variable being averaged is missing, a missing value results. By 
contrast, the Average function returns a missing value whenever any value on that case was 
missing. The function works casewise. 

AverageIgnoreMissing(Quiz, Homework, Test)

Compare the AveScore results obtained here using AverageIgnoreMissing with those in the 
Average example, above. Since BamBam had no score for the quiz (perhaps he was out sick 
that day), he got no final grade. Here, he gets a final grade computed from just his homework 
and test scores. 

Average(?, …) [p. 356] and AverageIgnoreMissing are casewise (horizontal) functions. If you 
want columnwise averages, use Mean(?, AllRows) [p. 388]. 
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BinomialCoeffs

BinomialCoeffs generates the series of binomial coefficients of order n–1, where n is the num-
ber of rows in the dataset. BinomialCoeffs takes no argument. The function works column-
wise; results differ from row to row. 

BinomialCoeffs

Binomial coefficients of order n are the coefficients of terms of x in the polynomial expansion 
of (1+x) to the nth power. Above we see the ten binomial coefficients of order 9. Specifically, 
the binomial coefficients are the results of the combinatorics in the following expansion:

The binomial coefficients of order n are the numbers in the (n+1)th row of Pascal’s triangle:

You can compute specific coefficients with the Combinations function. Don’t confuse bino-
mial coefficients with the binomial distribution, which is featured in ProbBinomial(?, ?, ?) 
[p. 401] and RandomBinomial(?, ?) [p. 406]. 

1 x+( )n n
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BoxCox(?, ?)

BoxCox(var, y) computes the Box-Cox transformation of order y of the variable you specify. 
The first argument must be a variable, and the second argument must be a constant. Missing 
values propagate missing values. BoxCox is a casewise transformation. 

BoxCox(Cholesterol, 2)
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The Box Cox transformation can be used to make certain nonlinear models linear. The value 
of the transformed variable is defined on each case as 

In the first row above, the order 2 Box-Cox transformation of cholesterol is calculated by 

xy 1–( )
y

------------------  where y 0≠,
xln  where y, 0=

1972 1–
2

-------------------- 38809 1–
2

------------------------ 38808
2

--------------- 19404= = =
Ceil(?)

Ceil(var) rounds values of the variable you specify to the next greater integer. Missing values 
propagate missing values. The function works casewise. 

Ceil(A)

The ceiling of any number is the next greater integer, regardless of the size of its fractional part 
and regardless of sign. Thus, the ceiling of –1.2 is –1, even though 0.2 is less than one-half, 
and even though the ceiling of +1.2 is 2. Remember, for negative numbers, “greater” and 
“lesser” can seem backwards: –1 is greater than –2. As do all computations, Ceil works with 
actual stored values rather than the way values are displayed. For example, the value –1.9 is 
displayed in a format with no decimal places as –2, but its ceiling is –1. 

Related functions are Round(?) [p. 416], Trunc(?) [p. 429], and Floor(?) [p. 380]; a detailed 
comparison of Round, Trunc, Floor, and Ceil is made in the discussion of Round. 
ChooseArg(?)

ChooseArg(var, value1, value2, value3, …) uses values in the index var to choose from the 
argument values you specify. The values you specify needn’t be unique. The values may be vari-
able names, in which case that variable’s value on a row is used as the new variable’s value. Text 
values must be enclosed in quotation marks. (Variable names containing spaces must also be 
enclosed in quotation marks.) The function works casewise. 

ChooseArg uses the values of the variable you specify as an index to the values you list. Choo-
seArg’s behavior varies according to variable type:

If the index variable is categorical and a row has the nth category name, that row in the new 
variable has the nth item in your replacement list. If the index var has more values than the 
number of replacement values you list, missing values result. 
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If the index variable is numeric (real, integer, long integer, currency, or date/time) each row’s 
value is rounded to the nearest integer n, and the new variable has the nth item in your 
replacement list. (Date/time values are converted to real numbers of seconds; see the discus-
sion of date/time functions for details.) If the index var has negative, zero, or missing values, 
or values that exceed the number of replacement values, missing values result. 

If the index variable is string, missing values result. 

ChooseArg(Country, "Foreign", "Foreign", "Domestic")

Above, we combine a three-level categorical variable to two levels. We join Japan (the first cat-
egory level) and Other (the second category level) in a single level by specifying “Foreign” as 
the new value for both. Notice that the variable browser in the Formula window shows the 
ordered values of categorical variables. If you click the triangle to the left of the variable’s 
name, you can easily determine what sequence your new, replacement values should take. 

If your variable is numeric and has fractional or negative values or a wide range, you may pre-
fer to use as indices ranks of the values rather than the values themselves:

ChooseArg(Rank(var, AllRows), value, value2, value3, …)

Don’t forget to change the formula variable to a type appropriate to the replacement values. 
CoeffOfVariation(?, AllRows)

CoeffOfVariation(var, AllRows) computes the coefficient of variation of the variable you spec-
ify; by default, calculations are based on AllRows, but you may instead specify OnlyIncluded-
Rows or OnlyExcludedRows as the second argument. Missing values are ignored. The 
function works columnwise and produces the same result for every row. 

CoeffOfVariation(A, AllRows)
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Coefficient of variation is a measure of relative variability. It is standard deviation divided by 
mean. If the mean is near zero, the quotient may tend to be large, even if the variation is not. 
Coefficient of variation is also shown in the summary pane. 

Related functions are Mean(?, AllRows) [p. 388] and StandardDeviation(?, AllRows) [p. 420]. 
Combinations(?, ?)

Combinations(n, r) computes the casewise unordered combinations of n objects taken r at a 
time, where n and r can be variables or constants. Cases with r greater than n, negative values, 
or missing values are missing. The function works casewise. 

Combinations(n, r)

Permutations(n, r)

Combinations(n, r) computes the number of r-object unordered subsets that can be taken 
from n objects, or

For example, Combination(5,3) on the second to last row is 10, which means that you could 
choose 10 distinct committees of 3 people from a group of 5 people: 

For ordered combinations, see Permutations(?, ?) [p. 399]. Both Combinations and Permuta-
tions rely on the use of factorials (such as n!), which can be computed individually with Facto-
rial(?) [p. 377]; factorials are defined in that entry. 

n
r 

  n!
r! n r–( )!----------------------=
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3!2!
---------- 120

6 2×------------ 10= = =
Concat(?)

Concat(text, text2, …) concatenates or combines the text strings you specify. Unless the results 
are numeric, you should change the resulting variable to have type string. The arguments text, 
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text2, etc., may be variables or constants; constants must be enclosed in quotation marks. 
(Variable names containing spaces must also be enclosed in quotation marks.) If you supply a 
variable as argument, Concat uses its exact values in the current format’s display. Changing 
formats can change results. The function works casewise. 

Concat(Country, " ", Type)

Concat can be used as an alternative to Groups(?, …) [p. 381] for merging two category vari-
ables into one. (Do not forget to change the type of the new variable to category.) Usually 
Concat is used with string variables, but other variable types also work. 
Correlation(?, ?, AllRows)

Correlation(var, var2, AllRows) computes the Pearson correlation coefficient of the two vari-
ables you specify; by default, it uses AllRows of the variables, but you may instead specify 
OnlyIncludedRows or OnlyExcludedRows as the third argument. Cases with missing values 
on either variable are excluded from calculations. The function works columnwise and pro-
duces the same result for every row. 

Correlation("Chol–3yrs", "LDL–3yrs", AllRows)

Pearson correlation measures the degree of linear relationship between two variables. A posi-
tive correlation means that as one variable increases, so does the other. A negative correlation 
means that as one increases, the other decreases, and vice versa. Correlations range from zero 
(no consistent relationship) to one (absolutely consistent relationship). However, correlation 
coefficients are meaningless unless you verify (with a scattergram, perhaps) that the relation-
ship is linear and the data are bivariate normal (that is, the points fall roughly in an ellipse). 

The high positive correlation (0.965) of cholesterol and low density lipoproteins () in 
Lipid Data shows that cholesterol and  increase and decrease together, and a scattergram 
confirms that the relationship is linear. However, the point cloud is not particularly elliptical. 



26 Formulas Functions 
You may use the Lag function to lag a variable and then correlate the variable against its lag to 
test autocorrelation (the degree to which values depend on preceding values, as might be the 
case with time series data). 

A related function is Covariance(?, ?, AllRows) [p. 365]. The correlation and covariance anal-
yses (see “Correlation and Covariance,” p. 43) provide additional statistics useful for assessing 
linear relationships. Also see the Spearman and Kendall rank order correlation analyses in 
“Nonparametrics,” p. 119. 
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Cos(?)

Cos(var) returns the cosine of a variable or constant. The angle measurements in var are 
assumed to be in radians. Missing values propagate missing values. The function works case-
wise. 

Cos(Radians)

Sines, cosines, and tangents relate angles to the coordinates of points in planes. The cosine of 
an angle in a right triangle is the ratio of the length of the leg adjacent to the angle to the 
length of the hypotenuse. 

If you have angles measured in degrees, you can convert them to radians with DegToRad(?) 
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may 
specify the value π with Pi [p. 400].
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Cosh(?)

Cosh(var) returns the hyperbolic cosine of a variable or constant. Missing values propagate 
missing values. The function works casewise. 

Cosh(x)

The hyperbolic trigonometric functions (sinh, cosh, and tanh, sometimes pronounced “sinch, 
cosh, and tanch”) are analogous to the trigonometric functions sine, cosine, and tangent. They 
are constructed from the functions  and  and bear a relationship to the unit hyperbola 
that is analogous to the trigonometric functions’ relationship to the unit circle. 

The hyperbolic cosine is defined by

and like cosine, cosh(x) has value 1 at . Cosh is defined for all real numbers and ranges 
from 1 to infinity. 

ex e x–

xcosh ex e x–+
2

-----------------=

x 0=
Cot(?)

Cot(var) returns the cotangent of a variable or constant. The angle measurements in var are 
assumed to be in radians. Missing values propagate missing values. The function works case-
wise. 

Cot(Radians)

The cotangent of an angle in a right triangle is the ratio of the length of the leg adjacent to the 
angle to the length of the leg opposite. Recall that the tangent of an angle in a right triangle is 
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the ratio of the length of the leg opposite the angle to the length of the leg adjacent. There-
fore, the cotangent is the reciprocal of the tangent:

Recall that tangents approach plus or minus infinity asymptotically as their arguments 
approach values π/2, 3π/2, etc., so cotangents converge to zero at these points and approach 
minus infinity as angles approach π, 2π, etc. Cotangents at these points are undefined, so Cot 
produces missing values. (On some platforms, differences in the numerics environments may 
produce extreme values rather than missing values.)

If you have angles measured in degrees, you can convert them to radians with DegToRad(?) 
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may 
specify the value π with Pi [p. 400]. 

xcot 1
xtan

----------=
Count(?, AllRows)

Count(var, AllRows) computes the number of nonmissing values (often represented as n in 
formulas for statistics) in a variable. By default, Count uses AllRows of the variable, but you 
may instead specify OnlyIncludedRows or OnlyExcludedRows as the second argument. The 
function works columnwise and produces the same result for every row. 

Count(A, AllRows)

Count is the number of cases in a variable minus the number of cases that have missing values 
( . ). Counts are also shown in the summary pane. Most statistics are computed from formulas 
that involve the count of cases in the variable(s) being analyzed. For instance, mean is defined 
as the sum of the nonmissing cases divided by the count. 

The Count function is useful for computing your own statistics. See examples shown in the 
discussions of Percentile, StandardDeviation, and Variance for some ideas. 

NumberOfRows [p. 394] gives the number of cases in a variable, whether missing or non-
missing. NumberMissing(?, AllRows) [p. 393] gives the number of missing values. Count(var, 
AllRows) and NumberMissing(var, AllRows) sum to NumberOfRows. 
Covariance(?, ?, AllRows)

Covariance(var, var2, AllRows) computes the covariance coefficient of the two variables you 
specify; by default, it uses AllRows of the variables, but you may instead specify OnlyInclud-
edRows or OnlyExcludedRows as the third argument. Cases with missing values on either 
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variable are excluded from calculations. The function works columnwise and produces the 
same result for every row. 

Covariance("Chol–3yrs", "LDL–3yrs", AllRows)

Covariance is a measure of joint variance that, like correlation, measures the degree of rela-
tionship between two variables. A positive covariance means as one variable increases, the 
other also increases; a negative covariance means as one increases, the other decreases. Covari-
ance of the variables X and Y is given by the formula

where  and  are values on each case, n is the count, and  and  are sample means.

Related functions are Variance(?, AllRows) [p. 430] and Correlation(?, ?, AllRows) [p. 362]. 
Also, the correlation and covariance analyses provide additional statistics useful for assessing 
linear relationships. 

xi µX–( ) yi µY–( )
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n

∑
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-----------------------------------------------------

xi yi µX µY
Csc(?)

Csc(var) returns the cosecant of a variable or constant. The angle measurements in var are 
assumed to be in radians. Missing values propagate missing values. The function works case-
wise. 

Csc(Radians)

The cosecant of an angle in a right triangle is the ratio of the length of the hypotenuse to the 
length of the leg opposite the angle. Recall that the sine of an angle in a right triangle is the 
ratio of the length of the leg opposite the angle to the length of the hypotenuse. Therefore, the 
cosecant is the reciprocal of the sine:

xcsc 1
xsin

----------=
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As the angle (Radians) approaches π and 2π (and so on), sine approaches zero, and thus cose-
cant approaches plus or minus infinity. Cosecant is undefined at these points, so Csc produces 
missing values. (On some platforms, differences in the numerics environments may produce 
extreme values rather than missing values.)

If you have angles measured in degrees, you can convert them to radians with DegToRad(?) 
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may 
specify the value π with Pi [p. 400].
CubicSeries(1, 0, 0, 1)
2 3
CubicSeries(a, b, c, d )  generates a series of values equal to , where x is 

one less than the row number. By default, the arguments are 1, 0, 0, 1, but you may specify 
any constants. The function works columnwise; results differ from row to row. 

CubicSeries(1, 0, 0, 1)

In each row i of the new variable, the quantity  is evaluated for 
, and that result is the value for the row. For example, the fourth row above is com-

puted by:

See also QuadraticSeries(1, 0, 1) [p. 404] and QuarticSeries(1, 0, 0, 0, 1) [p. 405]. 

a bx cx dx+ + +

a bx cx2 dx3+ + +
x i 1–=

1 0 3 0 32× 1 33×+ +×+ 1 0 0 27+ + + 28= =
CumProduct(?)

CumProduct(var) computes the cumulative product of all nonmissing values in a variable. On 
each row in the new variable is the “product in progress,” and the final row shows the cumula-
tive product based on all rows. Missing values are marked with missing values in the new vari-
able, but they do not affect the cumulative product. The function works columnwise; results 
differ from row to row. 

CumProduct(A)
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For the first case, the cumulative product is the first value, –1. Since –1*(–2)=2, the cumula-
tive product on the second case is 2. The third case is missing, and the cumulative product is 
marked by missing, but for the fourth case we resume where we left off: 2*3 is 6. On the final 
row, we see the final result. 

For casewise multiplication, use the asterisk (*), e.g., A*B; see ?*? or ? ? [p. 333]. 
CumSum(?)

CumSum(var) computes cumulative sums of all nonmissing values in a variable. Each row in 
the new variable shows the “sum in progress,” and the final row shows the cumulative sum of 
all rows. Missing values are marked with missing values in the new variable, but they do not 
affect the cumulative sum. The function works columnwise; results differ from row to row. 

CumSum(A)

For the first case, the cumulative sum is the first value, –1. Since –1 + –2 is –3, the second case 
is –3. The third row shows a missing value, since A is missing, but the sum-in-progress 
resumes in the fourth: –3 + 3 = 0. On the final row, we see the final cumulative sum result, so 
–1 + –2 + 3 + 2 + 3+ 4 + 5 + –6 + 7 is 15. 

For casewise addition, see ?+? [p. 333], Sum(?, …) [p. 423], or SumIgnoreMissing(?, …) 
[p. 424]. Sum adds values for each row on all the variables you specify. SumIgnoreMissing is 
the same except that missing values are ignored. Also see SumOfColumn(?, AllRows) 
[p. 424], which fills a new variable with a single sum. 
CumSumSquares(?)

CumSumSquares(var) computes cumulative sums of squares of all nonmissing values in a 
variable. On each row in the new variable is the sum of squares “in progress,” and the final 
row shows the cumulative sum of squares on all rows. Missing values are marked with missing 
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values in the new variable, but they do not affect the sum in progress. The function works col-
umnwise and produces the same result for every row.

CumSumSquares(A)

SumOfSquares(A, AllRows)

In the example above, the first row is simply  or 1. The second row is 
, the third is missing, the fourth is , etc. 

The last row of CumSSq, 153, is the final sum of squares. That final result is the Sum of 
Squares shown in the summary pane, and it fills all rows of the variable SSq, created with 
SumOfSquares; see SumOfSquares(?, AllRows) [p. 425]. 

1–( )2

1–( )2 2–( )2+ 5= 1–( )2 2–( )2 32+ + 14=
Date(?, ?, ?)

Date(year, month, day) returns the exact second at midnight of the year, month, and day you 
specify. Date is casewise. Notice that year comes first, then month, then day. The function 
works casewise. 

Date(Yr, Mo, Dy)

The example above shows how to use Date to combine year, month, and date values stored in 
separate columns. Data imported from other programs may have date/time values separated 
into several numeric-type columns, and Date puts those columns together into date/time val-
ues. (Don’t forget to change the type of the new variable to date/time and choose a format you 
like.)

Other programs store date values as text strings. You can use the Substring (p. 422) and Date 
(p. 369) functions to convert these to dates:

Date(1900+Substring(Text, 5, 2), Substring(Text, 1, 2), Substring(Text, 3, 2))
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Or, suppose you need to group date values together by month (see Year(?) [p. 431] and 
Month(?) [p. 391]):

Date(Year(mydates), Month(mydates), 1)

You may also build dates with formulas such as this one (see RowNumber [p. 417]):

Date(1970+RowNumber, RowNumber, RowNumber)

This example shows how invalid dates are reinterpreted. Consider the computations for row 
25, where month=25 carries a 2 into the years value:

year=1970+25, month=25, day=25

year=1970+25+2, month=1, day=25

year=1997, month=1, day=25

Carrying happens whenever the number of days is greater than the length of the current 
month (28, 29, 30, or 31), or whenever the number of months is greater than 12. 
DateDifference(?, ?, ?)

DateDifference(date1, date2, units) subtracts date1 from date2, in the time units specified 
(1=years, 2=months, 3=weeks, 4=days, 5=hours, 6=minutes, 7=seconds). The first two argu-
ments may be date/time variables or date values enclosed in quotation marks and the third 
argument must be a number 1, 2, 3, 4, 5, 6, or 7. The resulting variable has values that are a 
real number of the unit you specify in the third argument. The function works casewise. 

For example, suppose we want to know how long the Berlin Wall divided East and West Ber-
lin. We could do this a number of ways. First, we could enter variables for the day construc-
tion of the wall was completed, 17 Aug 1961, and for the day the Brandenburg Gate reopened 
in Berlin on 22 December 1989. Then, we could use the formula to make a third variable, yrs 
Berlin divided:

DateDifference("Gate opens", "Berlin Wall completed", 1)

Notice several things. The first two variables have type date/time and two different formats. 
The third variable counts a number of years and is not date/time but real. 

We could instead supply both date values as arguments directly: 
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DateDifference("Dec 22, 1989", "08/17/61", 1)

Many ways of typing a date are valid, but always enclose dates in quotation marks. This time, 
we list the earlier date first (for a negative difference) and set the third argument to 2 for 
months:

DateDifference("08/17/61", "Dec 22, 1989", 2)

Dynamic formulas fill only as many rows as already exist in the dataset, so we must insert a 
row: Control-click (Windows) or Command-click (Macintosh) the border between the vari-
able-name row and the empty data area. The answer found in the Difference variable, –340 
months, is negative because our formula specifies the earlier date first. 

Of course, you can also compute the differences between entire columns of dates:

DateDifference("Some dates", "Other Dates", 1)

DateDifference("Some dates", "Other Dates", 3)

DateDifference("Some dates", "Other Dates", 6)

Caution: StatView assumes a fixed month-length of the number of seconds in a year divided 
by twelve, but months actually have differing lengths. Therefore, DateDifference results in 
months (third argument 2) can be misleading. 
Day(?)

Day(date) returns the day number (1–31) of the date specified. The date argument may be a 
variable or constant. (Remember, all date/time values are an exact second of an exact day, and 
unspecified dates are assumed to be the current date.) The function works casewise. 

Day("Other dates")
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DayOfWeek(?)

DayOfWeek(date) returns an index indicating the day of the week (1=Sunday, 2=Monday, 
etc.) of the date specified. The date argument may be a variable or constant. (Remember, all 
date/time values are an exact second of an exact day, and unspecified dates are assumed to be 
the current date.) The function works casewise. 

DayOfWeek("Other dates")

If you want day names, change the variable to category, and edit the category to have levels 
Sunday, Monday, Tuesday, …, Saturday.

Weekday(?) [p. 430] is synonymous. 
DayOfYear(?)

DayOfYear(date) returns the number of the day of the year (1–366) of the date specified. The 
date argument may be a variable or constant. For example, 62 means that 3 March is the sixty-
second day of a non-leap year. The function works casewise. 

DayOfYear("Other dates")
DegToRad(?)

DegToRad(var) converts angle measurements in a variable (or a constant) from degrees to 
radians. Missing values propagate missing values. The function works casewise. 

DegToRad(Degrees)
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StatView’s trigonometric functions work with measurements in radians, so DegToRad conver-
sions are necessary if you ordinarily work with data measured in degrees. A circle has 360 
degrees or 2π radians (  radians). Above, Radians π is an informa-
tive variable entered by hand to make the Radians values easier to read. 

To convert radians back to degrees, use RadToDeg(?) [p. 405]. StatView’s trigonometric func-
tions are Sin(?) [p. 419], Cos(?) [p. 363], Tan(?) [p. 426], Sec(?) [p. 418], Csc(?) [p. 366], 
Cot(?) [p. 364], ArcSin(?) [p. 353], ArcCos(?) [p. 349], ArcTan(?) [p. 355], ArcSec(?) 
[p. 352], ArcCsc(?) [p. 351], and ArcCot(?) [p. 350]. 

2 3.1416…× 6.2832…=
Difference(?, 1, 1)

Difference(var, n, j) computes the difference between a variable var and its lag at n places, 
repeating that operation j times over. The argument n may be any integer, negative or positive; 
j must be a positive integer. The function works columnwise; results differ from row to row.

Difference(A, 1, 1)

Difference(A, 1, 2)

Difference(A, 2, 1)

Difference(A, 2, 2)

Difference(A, –1, 1)

Differencing is useful for removing additive trends from time series data. It is best defined by 
example. Consider the series A and its first and second lags. Difference(A,1,1) differences A by 
one cell, one time. This amounts to the casewise subtraction A – Lag(A,1): 1–. is missing in 
the first row, 2–1 is 1 in the second, 4–2 is 2, etc. 

Similarly, Difference(A,1,2) differences A by one cell, two times; in other words, it differences 
A by one cell, and then differences it by one cell again. This is the same as A – 2*Lag(A,1) + 
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Lag(A,2). Or to put it another way: if B is Diff(A, 1, 1), then Diff(A, 1, 2) is Diff(B, 1, 1). We 
also show the results of Difference(A,2,1), Difference(A,2,2), and Difference(A, –1, 1); notice 
how a negative n argument differences “up.” 

See Lag(?,1) [p. 382] if you need to do other transformations involving lagged variables. Also 
useful with time series data is MovingAverage(?, ?) [p. 391]. 
Div(?, ?)

Div(var, var2) does casewise division of var by var2 and returns the integer part of the quo-
tient. Both arguments can be variables or constants. Missing values or division by zero propa-
gate missing values. 

Div(A, B)

Div truncates a quotient to its integer part, discarding all digits after the decimal place. You 
could get the same result by using Trunc(A/B). For example in row 1, –12/5 is –2.4, so the 
result is –2. 

Mod(?, ?) [p. 390] and Remainder(?, ?) [p. 413] return the remainder after dividing. Mod and 
Remainder are synonymous for positive arguments; for negative arguments, they differ. See 
the discussions of each for details. 
DotProduct(?, ?)

DotProduct(var, var2) computes the dot product of the two vectors (variables) you specify. 
The result of any dot product is a constant, so the function returns a variable with the con-
stant on every row. Any row with a missing value for either variable is ignored. The function 
works columnwise and produces the same result for every row.

DotProduct(A, B)

The dot product (also called scalar product or inner product) is a linear algebra operation that 
reduces a horizontal (row) vector and a vertical (column) vector to a single constant by multi-
plying the first numbers of each vector, the second numbers of each vector, etc., and then add-
ing those products. One interesting property: if the dot product of two vectors is 0, then the 
two vectors are orthogonal, meaning that the lines connecting the points to the origin are per-
pendicular to each other in space. 

For example, consider the vectors (1, –2) and (6,3). These points represent lines from the ori-
gin (0,0). Their dot product is , so we know the vectors 1 6×( ) 2– 3×( )+ 6 6– 0= =
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are perpendicular. We could instead examine a graph: we transpose the data cells to place X 
coordinates in one column and Y coordinates in another, plot the points in a bivariate scatter-
gram, and then use drawing tools to connect them to the origin.

Computing the dot product is more practical (and more precise) than scrutinizing graphs, 
especially with vectors in many-dimensional space. 

Another use of DotProduct is shown in “How can I estimate the survival function at other 
covariate values?,” p. 245 of Using StatView. Norm(?, AllRows) [p. 392] is also useful for lin-
ear algebra computations. 
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e

The function e produces the constant e, which is approximately 2.71828… Unless you use e 
in combination with other functions, it returns a variable in which every case is e, so we call it 
a constant. The function works casewise. 

e

A + e

e^(RowNumber–1)

Ln(e^(RowNumber–1))

You can use e in combination with other functions as seen above. 

This example illustrates the inverse relationship between  (often represented as “exp(x)”) 
and the natural logarithm (also known as the base e logarithm; see Ln(?) [p. 385]). The rela-
tionship is better seen in graphs. The second plot uses a log e vertical scale to “straighten” the 
relationship between Powers and Lns. 

ex
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ExponentialSeries(1) [p. 376] produces a variable in which each case is e times the value of the 
previous case, beginning with the first case equal to the argument; for example, Powers of e 
above could be given by ExponentialSeries(1). 
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Erf(?)

Erf(var) computes the error function of var. The argument var may be either a constant or a 
variable. Missing values are ignored. The function works casewise. 

Erf(RowNumber)

The error function is a special case of the incomplete gamma function and is related to the 
normal . Erf(x) is defined as follows.

erf x( ) 2
π------- e y2–

0

x

∫=
ExponentialSeries(1)

ExponentialSeries(x) generates a series whose values are x times the powers of e, starting with 

. By default, x is 1, but you may specify any constant. The function works columnwise; 
results differ from row to row. 

ExponentialSeries(1)

ExponentialSeries(2)

e0
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Row i of the ExponentialSeries(x) is equal to . Above, ExponentialSeries(1) is the pow-
ers of e starting in row 1 with , then in row 2 , in row 3 , etc. ExponentialSeries(2) has 
values 

Also see e [p. 375], for the constant e. 

xei 1–

e0 e1 e2

2e0 2e1 2e2 …, , ,
Factorial(?)

Factorial(var) does casewise factorials of the variable you specify. If you specify a constant, 
Factorial returns a variable whose values are all that number factorial. Cases with negative or 
missing values are missing. The function works casewise. 

A!

B!

7!

Factorial is a basic operation used for many probability computations. It is usually represented 
by an exclamation point (!) and defined as follows:

, where , , and ;

or , where .

Factorials are used to count the ordered permutations of n objects in which repetition is not 
allowed; for example, how many ways can you rearrange the letters in the word  into dis-
tinct four-letter words? There are 4 possibilities for the first letter (B, O, A, or T), times 3 pos-
sibilities for the second letter (the three letters you didn’t use already), times 2 possibilities for 
the third letter (the two letters you haven’t used), times 1 possibility for the last letter (the one 
letter still left); hence, . 

Related functions are Permutations(?, ?) [p. 399] and Combinations(?, ?) [p. 361]. 

n! n n 1–( )!= n 0≥ 0! 1= 1! 1=

n! i
i 1=

n

∏= n 0>

4 3 2 1××× 4! 24= =
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FibonacciSeries

FibonacciSeries generates the Fibonacci series. The number of Fibonacci values that are gener-
ated depends on the number of rows you specify if you use the Series command, or the num-
ber of rows in the dataset if you use the Formula command. This function takes no 
arguments. The function works columnwise; results differ from row to row. 

FibonacciSeries

By definition, the first two values of the Fibonacci series are 1, and each subsequent value is 
the sum of the previous two. Thus we have 1, 1, 1+1=2, 1+2=3, 2+3=5, 3+5=8, etc. An inter-
esting property of the Fibonacci series is that if you difference the series (subtract from each 
value its previous value), then the ratio of each difference to the previous difference (which we 
compute by dividing the differenced series by the lag of the differenced series) approaches the 
golden ratio (1.6180339887…) as RowNumber (p. 417) approaches infinity: 

FibonacciSeries

Difference(Fib, 1, 1)

Lag(Diff, 1)

Diff/Lag

  
If you want a variation on the Fibonacci series, you may include the function in a larger 
expression:

Log(FibonacciSeries*7)
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Find(?, ?, ?, false)

Find(var, findstring, n, false) searches var’s values for findstring and returns the position of its 
first occurrence after the nth character (or 0 if it is not found). The n argument must be a pos-
itive integer. The fourth argument specifies whether the search should be case-sensitive; the 
default is false for case-insensitive searching, but you may specify true instead. If you supply a 
variable as the findstring argument, Find uses its exact values in the current format’s display; 
changing formats can change results. If you supply a constant, you must enclose it in quota-
tion marks. An optional fourth argument (1 or 2) specifies whether to handle text values as 
single-byte or double-byte strings; see below. The function works casewise. 

Find(Model, "a", 1, false)

Above, we find the first occurrence of the letter “a” at or after the first character in each value 
of Model in Car Data. (Model is an informative variable. To use it in a formula such as this, 
you must first change its class to nominal.) We can search for the second “a” by specifying the 
position of the first occurrence plus 1 as the starting point:

Find(Model, "a", Find(Model, "a", 1, false)+1, false)

In practice, it may be faster (and easier) to save the results of one Find in a variable and use 
that variable as the n argument:

Find(Model, "a", 1, false)

Find(Model, "a", "Where is a?"+1, false)

You may include an optional fourth argument for specifying whether to handle text values as 
single-byte or double-byte strings. Find assumes a fourth argument 1 for single-byte strings 
(English, German, French, Spanish, etc. all use single-byte characters); specify 2 to use Find 
with strings containing double-byte characters, such as Japanese, Chinese, or Arabic charac-
ters. This example shows how to use Find with both single-byte (English) and double-byte 
(Japanese) characters. 

Find(Teaching, "c", 1, false, 1)

Find(" ", " ", 1, false, 2)
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See Substring(?, ?, ?) [p. 422] and Len(?) [p. 383] for more Find examples. 
Floor(?)

Floor (var) rounds values of the variable you specify to the next lesser integer. Missing values 
are propagated. The function works casewise. 

Floor(A)

The floor of any number is the next lesser integer, regardless of the size of its fractional part 
and regardless of sign. Thus, the floor of –1.2 is –2 even though 0.2 is less than one-half and 
even though the floor of +1.2 is 1. Remember, for negative numbers, “greater” and “lesser” 
can seem backwards: –2 is less than –1. As do all computations, Floor works with actual 
stored values rather than the way values are displayed. For example, the value 1.9 is displayed 
in a format with no decimal places as 2, but its floor is 1. 

Related functions are Round(?) [p. 416], Trunc(?) [p. 429], and Ceil(?) [p. 359]; a careful 
comparison of Round, Trunc, Ceil, and Floor is made in the entry for Round. 
GeometricMean(?, AllRows)

GeometricMean(var, AllRows) computes the geometric mean of the variable you specify; by 
default, GeometricMean bases its calculations on AllRows of the variable, but you may 
instead specify OnlyIncludedRows and OnlyExcludedRows as the second argument. The geo-
metric mean is undefined for variables containing negative or zero values. Missing values are 
ignored. The function works columnwise and produces the same result for every row.

GeometricMean(A, AllRows)

The geometric mean is a measure of position typically used with ratio data. It is defined as the 
nth root of the cumulative product of values in a variable, where n is the number of nonmiss-
ing values in the variable (Count). In the example above, 1.940 is the fifth root of the cumula-
tive product. You can build your own formula for cumulative geometric means: 



26 Formulas Functions 
CumProduct(A)^(1/Count(A, AllRows))

The difference is that such a formula shows cumulative geometric means, whereas Geometric-
Mean shows a single, final answer in all rows of the new variable. 

A similar measure of position is the HarmonicMean(?, AllRows) [p. 382], which is useful with 
difference data. 
GeometricSeries(1, 2)

GeometricSeries(a, b) generates a series with initial value a and each subsequent value at a 
common ratio b to the previous value. Both arguments a and b must be constants; they are 1 
and 2 by default. The function works columnwise; results differ from row to row.

GeometricSeries(1,2)

Row i of the geometric series with a and b is . 

To generate a series in which each value is the sum (rather than the product) of the previous 
value and a given constant, use LinearSeries(1, 1) [p. 384]. 

abi 1–
Groups(?, …)

Groups(var, var2, …) computes the groups or cells formed by combining several grouping 
variables. Missing values propagate missing values. The function works casewise. 

Groups(Gender, Employment)

Groups shows how several grouping variables nest with each other. You might collapse several 
grouping variables into one to simplify analyses, or you may use the new variable as a visual 
aid. 
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The example above shows how Gender and Employment might be nested together to form a 
new grouping variable, SubGroups. The NamedSubs variable shows how you might use 
named categories for these subgroups. (For illustration purposes, we worked with a copy of 
the SubGroups variable, but you could change the SubGroups variable itself to have type cat-
egory.) 
HarmonicMean(?, AllRows)

HarmonicMean(var, AllRows) computes the harmonic mean of the variable you specify; by 
default, HarmonicMean bases its calculations on AllRows of the variable, but you may instead 
specify OnlyIncludedRows and OnlyExcludedRows as the second argument. The harmonic 
mean is undefined for variables containing negative or zero values. Missing values are ignored. 
The function works columnwise and produces the same result for every row. 

HarmonicMean(A, AllRows)

The harmonic mean is a measure of position typically used with difference data. It is defined 
as the count divided by the sum of reciprocals of the values. 

GeometricMean(?, AllRows) [p. 380] is a similar measure of position typically used with ratio 
data. 
Hour(?)

Hour(date) returns the hour number (0–23) of the date specified. The date argument may be 
a variable or a constant. (Remember, all date/time values are an exact second of an exact day, 
and unspecified times are assumed to be exactly midnight.) The function works casewise. 

Hour("Some times")
Lag(?,1)

Lag(var, n) lags the variable you specify by the number of cells n you specify. Leading values 
are filled in with missings. Missing values within a variable are copied at the lag just as non-
missing values are. The function works columnwise; results differ from row to row.

Lag(A, 1)

Lag(A, 2)
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Lag(A, –2)

Lagging moves a variable “down” the column one or more places. Above, Lag(A,1) effectively 
copies the cells in A and then pastes them a notch lower in the new variable. Lag(A,2) moves 
the values down two notches. The leading values (as many values as you specify in the second 
argument) are filled with missings, and as many values are chopped off the bottom of the vari-
able. That is, a lagged variable will never be “longer” than the original. Lag(A, –2) moves the 
variable two notches “up” the column. 

Lagging is a useful step in many sorts of variable transformations, especially when working 
with time series data. See also Difference(?, 1, 1) [p. 373], which subtracts from a variable its 
lag at the number of places you specify (and repeats that operation as many times as you spec-
ify). 
Len(?)

Len(text) returns the length in characters of the text you specify. The text argument may be 
either a variable or constant. If you supply a variable as the text argument, Len returns the 
number of characters (letters, numbers, spaces, etc.) in the current format’s display of each 
value; changing formats can change results. If you supply a constant, you must enclose it in 
quotation marks. An optional second argument (1 or 2) specifies whether to handle text val-
ues as single-byte or double-byte strings; see below. The function works casewise. 

Len(Model)

Len “measures” the length of a variable’s values. Usually Len is used with string variables, but 
other variable types also work. Above, we compute the length of each model name in the sam-
ple dataset, Car Data. (Model is an informative variable. To use it in a formula such as this, 
you must first change its class to nominal.)

Len is most useful in combination with other text functions such as Find, Substring, Concat. 
For example, we can combine Substring, Find, and Len to separate model names from the 
Model variable:

Substring(Model, Find(Model, " ", 1, false)+1, Len(Model))
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This example finds the substring of Model starting right after the first space and including up 
to as many characters as the total length of Model. (You must change the formula variable to 
have type string.) 

You may include an optional second argument for specifying whether to handle text values as 
single-byte or double-byte strings. Len assumes a second argument 1 for single-byte strings 
(English, German, French, Spanish, etc. all use single-byte characters); specify 2 to use Len 
with strings containing double-byte characters, such as Japanese, Chinese, or Arabic charac-
ters. This example shows how to use Len with both single-byte (English) and double-byte 
(Japanese) characters. 

Len(Teaching, 1)

Len(" ",1)

Len(" ",2)
LinearSeries(1, 1)

LinearSeries(a, b) creates a series with initial value a and each subsequent value b greater than 
its predecessor. The function works columnwise; results differ from row to row. 

LinearSeries(1, 2)

Row i of the linear series with a and b is . 

To generate a series in which each value is the product (rather than the sum) of the previous 
value and a given constant, use GeometricSeries(1, 2) [p. 381]. 

a b i 1–( )+
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Ln(?)

Ln(var) returns the base e logarithm (“natural logarithm”) of the argument, where e is a con-
stant whose value is approximately 2.718. Logarithms of negative numbers and zero are unde-
fined; these and missing values produce missing values. The function works casewise. 

Ln(A)

Logarithms are defined as the inverse of exponents—for instance, Ln(2.718)=1 means that 
. Therefore, exponentiating the log of an argument returns the argument. Loga-

rithms are useful because they reduce multiplication, division, and exponentiation to simpler 
operations, addition, subtraction, and multiplication:

Thus, logging data can “simplify” or “straighten” the relationship of two variables in an analy-
sis. When scattergrams show curved or spreading relationships between variables, it is often 
useful to try logging one or both variables. This is illustrated in the discussion of the e func-
tion.

See e [p. 375] for the constant e, Log(?) [p. 385] for common (base 10) logarithms and 
LogB(?, ?) [p. 386] for logarithms to other bases. 

e1 2.718=

xy( )ln xln yln+=
x
y
-- 

 ln xln yln–=

xn( )ln n xln=
Log(?)

Log(var) returns the base 10 logarithm (“common logarithm”) of the constant or variable you 
specify. Logs of negative numbers and zero are undefined; these and missing values produce 
missing values. The function works casewise. 

Log(A)

Properties of logarithms are discussed under Ln(?) [p. 385], which produces natural (base e) 
logarithms. If you need logarithms to other bases, use LogB(?, ?) [p. 386]. 
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LogB(?, ?)

LogB(var, b) returns the base b logarithm of the variable or constant you specify. Logs of neg-
ative numbers and zero are undefined; these and missing values produce missing values. The 
function works casewise. 

Log(A, 2)

Properties of logarithms are discussed under Ln(?) [p. 385], which produce natural (base e) 
logarithms. For common (base 10) logarithms, see Log(?) [p. 385].
LogOdds(?)

LogOdds(var) computes the log odds transformation of the variable or constant you specify. 
Missing values propagate missing values. The function works casewise. 

LogOdds("Prop heads")

The log odds transformation is useful for stabilizing the variance of response data that are 
expressed as a proportion of successes. The value of the transformed variable is defined on 
each case as 

where x is the value of the original variable on that case. 

The example shows a log odds transformation for a variable recording proportions of successes 
in a coin-toss experiment. The first variable counts the number of times 5 coin tosses pro-
duced heads. The second column converts this to proportions, where the numbers of heads 
are divided by 5 tosses. The third column shows the log-odds transformation of those propor-
tion data. The first row, for instance, shows that the first trial had an outcome of 2 heads (or 

x
1 x–
----------- 

 ln
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successes) from 5 tosses. The second row converts this to 0.4, meaning 40% of the trials were 
heads (successes), by dividing 2 by 5. The third row is obtained by:

The last case of the transformed variable is missing because division by zero is undefined. 

0.4
1 0.4–
---------------- 

 ln 0.4
0.6
------- 

 ln 0.666…( )ln 0.405…–= = =
MAD(?, AllRows)

(var, AllRows) computes the median absolute deviation from the median of the variable 
you specify; by default,  bases calculations on AllRows of the variable, but you may 
instead specify OnlyIncludedRows or OnlyExcludedRows as the second argument. Missing 
values are ignored. The function works columnwise and produces the same result for every 
row. 

MAD(A, AllRows)

The MAD is a measure of variability (or spread) analogous to the standard deviation. As stan-
dard deviation averages the variability of actual points from the mean,  takes the median 
of differences between points and the median; and, as median is less vulnerable to extreme 
data points than the mean,  is less vulnerable to outliers than standard deviation. 

Related functions are Mean(?, AllRows) [p. 388], Median(?, AllRows) [p. 388], and Standard-
Deviation(?, AllRows) [p. 420]. 
Maximum(?, AllRows)

Maximum(var, AllRows) identifies the largest value in the variable you specify; by default, 
Maximum is based on AllRows, but you may instead specify OnlyIncludedRows or OnlyEx-
cludedRows as the second argument. Missing values are ignored. The function works column-
wise and produces the same result for every row. 

Maximum(A, AllRows)
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Maximum is also shown in the summary pane. The Maximum function can be useful in com-
bination with other functions and operators or when you need to have the value available as a 
variable to some analysis. 

Understand that “maximum” is the greatest value. Even negative values of great magnitude (for 
example, –1,000) are smaller than positive values of small magnitude (for example, 0.001). If 
you want to know the number of greatest magnitude, use absolute values, e.g., set B to Abs(A), 
then do Maximum(B, AllRows). 
Mean(?, AllRows)

Mean(var, AllRows) computes the mean of the variable you specify; by default, Mean is based 
on AllRows, but you may instead specify OnlyIncludedRows or OnlyExcludedRows as the 
second argument. Missing values are ignored. The function works columnwise and produces 
the same result for every row. 

Mean(A, AllRows)

Mean is a measure of the central tendency of a variable and is defined as the sum of all non-
missing values divided by the number of nonmissing values, so Mean(A) is the same as 
SumOfColumn(A)/Count(A). Mean is also shown in the summary pane for each variable; the 
Mean function is mostly useful for computing other statistics or when you need to have the 
mean available as a variable to some analysis. 

Mean is a columnwise (vertical) function. If you want a casewise mean (the mean for each row 
of several variables), use Average(?, …) [p. 356] or AverageIgnoreMissing(?, …) [p. 357]. 
Median(?, AllRows)

Median(var, AllRows) computes the columnwise median of the variable you specify; by 
default, Median is based on AllRows, but you may instead specify OnlyIncludedRows or 
OnlyExcludedRows as the second argument. Missing values are ignored. The function works 
columnwise and produces the same result for every row. 

Median(A, AllRows)
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Median, like mean, is a measure of the central tendency of a variable. Median is defined as the 
middle value of a variable if all the values are listed in order of size. (So, for a variable with 7 
values, the median is the 4th largest value.) If a variable has an even number of values, the 
median is the mean of the two middle values. (So, for a variable with 8 values, the median is 
the sum of the 4th and 5th value, divided by two.) 

To find other percentile values, see the discussion under Percentile(?, ?, ?) [p. 398]. 
Minimum(?, AllRows)

Minimum(var, AllRows) identifies the least value in the variable you specify. By default, Min-
imum is based on AllRows, but you may instead specify OnlyIncludedRows or OnlyExclud-
edRows as the second argument. Missing values are ignored. The function works columnwise 
and produces the same result for every row. 

Minimum(A, AllRows)

Minimum is also shown in the summary pane. The Minimum function can be useful in com-
bination with other functions and operators or when you need to have the value available as a 
variable to some analysis. 

Understand that “minimum” is the smallest value. Even negative values of great magnitude 
(for example, –1,000) are smaller than positive values of small magnitude (for example, 
0.001). If you want to know the number of smallest magnitude, use absolute values, e.g., set B 
to Abs(A) and then do Minimum(B, AllRows). 
Minute(?)

Minute(date) returns the minute number (0–59) of the date specified. The date argument may 
be a variable or a constant. (Remember, all date/time values are an exact second of an exact 
day, and unspecified times are assumed to be exactly midnight.) The function works casewise. 

Minute("Some times")
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Mod(?, ?)

Mod(var1, var2) computes var1 modulo var2, which is the remainder after dividing var1 by 
var2 to an integer result. Both arguments may be constants or variables. Missing values in 
either argument or division by zero propagates missing values. The function works casewise. 

Mod(A, B)

Ordinarily, division is computed to as many decimal places as is necessary for an exact answer, 
within the limits of the variable’s precision. For instance, 5/3 is 1.6666… (an infinite series of 
6s after the decimals). Mod(5,3) stops dividing when it reaches the decimal point and then 
records the remainder, or the leftover part—this is the way children learn long division: 

Children are taught to divide until the amount at the bottom is smaller than the divisor, and 
then write that leftover part as “remainder 2.” This casual definition is sufficient for positive 
numbers, but for negative numbers, a more precise definition is needed. Mod(var1, var2) is 
formally defined as var1–(Trunc(var1/var2))*var2. 

Remainder(?, ?) [p. 413] is the same as Mod for positive arguments, but for negative argu-
ments, Remainder and Mod are different. The formal definition of Remainder is 
n–(Round(n/m))*m. See Trunc(?) [p. 429] and Round(?) [p. 416] for details; briefly, rounding 
goes up or down to the nearest integer, whereas truncation deletes digits after the decimal. 
Finally, see Div(?, ?) [p. 374] for the integer part of a quotient. 

1 r 2

3
2

) 53
Mode(?, AllRows)

Mode(var, AllRows) identifies the value that occurs most often in the variable you specify; by 
default, Mode is based on AllRows, but you may instead specify OnlyIncludedRows or Only-
ExcludedRows as the second argument. Missing values are ignored. When no single mode 
exists, missing values result. The function works columnwise and produces the same result for 
every row. 

Mode(A, AllRows)
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Mode can be used as a measure of central tendency for variables that can take a limited num-
ber of values, or where the values clump together. 
Month(?)

Month(date) returns the month number (1–12) of the date specified. The date argument may 
be a variable or a constant. (Remember, all date/time values are an exact second of an exact 
day, and unspecified dates are assumed to be the current date.) The function works casewise. 

Month("Other dates")

If you want month names instead of numbers, change the variable to type category and edit 
the category to have values January, February, etc. 
MovingAverage(?, ?)

MovingAverage(var, n) computes a moving average for the variable you specify as the first 
argument, averaging n neighboring rows at a time. A missing value on any row propagates 
missing values on that row and the next n–1 rows. The function works columnwise; results 
differ from row to row. 

MovingAverage(A, 3)

A moving average with a window of 3, for example, averages the first three values and records 
that answer in the third case of the new variable. Then, it averages the second, third, and 
fourth values and records that is the fourth case of the new variable. The third, fourth, and 
fifth values are averaged for the fifth case, etc. For a window of width n, the first n–1 values of 
the new variable are missing. 
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Moving averages are often used with time series data. Usually measurements taken over time 
will show, along with any long-term trends, some random short-term fluctuation. For 
instance, toy sales data may have a long-term tendency to increase near holidays, but weekly 
totals will tend to bob up and down a small amount. It can be helpful to smooth this “noise” 
by using moving averages. 

The data above seem to follow a periodic function; smoothing these data with MovingAver-
age(A,3) makes the trend more apparent. (In fact, these data are values along a sine wave with 
random uniform noise added.) 

For casewise (horizontal) averages, see Average(?, …) [p. 356] and AverageIgnoreMissing(?, 
…) [p. 357]. For a single average on an entire variable, use Mean(?, AllRows) [p. 388] or see 
Mean in the summary pane. Other functions useful with time series data are Difference(?, 1, 
1) [p. 373], Lag(?,1) [p. 382], and the date/time functions. 
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Norm(?, AllRows)

Norm(var, AllRows) computes the Euclidean norm of the variable you specify; by default, 
Norm uses AllRows of the variable, but you may instead specify OnlyIncludedRows or Only-
ExcludedRows as the second argument. Missing values are ignored. The function works col-
umnwise and produces the same result for every row. 

Norm(A, AllRows)

Euclidean norm is a linear algebra function; the norm of a vector is its magnitude, or length. 
It is computed by squaring all its values, adding them, and then taking the square root of that 
sum. Norm is equivalent to Sqrt(SumOfSquares(var, AllRows)). 

DotProduct(?, ?) [p. 374] is another linear algebra function.
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Now

Now returns the current date and time, at the time you click Compute in the Formula win-
dow. Now takes no arguments. The function works casewise. 

Now

As do all the functions, Now creates a variable with type Real. Be sure to change its type to 
Date/Time and choose an appropriate format. Also be sure that your Date & Time control 
panel is set correctly. 

Now is only current at the exact second you click Compute. Even in a dynamic formula 
involving other variables that may change, the value of Now does not update itself; however, if 
you reopen its formula window (by selecting Static or Dynamic Formula from the source pop-
up menu in the attribute pane) and click Compute again, it is updated. 

Shortcut You may enter 0 in a date/time data cell to get the current date at midnight. 
NumberMissing(?, AllRows)

NumberMissing(var, AllRows) counts the number of cases in a variable that have missing val-
ues. By default, NumberMissing uses AllRows of the variable, but you may instead specify 
OnlyIncludedRows or OnlyExcludedRows as the second argument. The function works col-
umnwise and produces the same result for every row. 

NumberMissing(A, AllRows)

NumberMissing shows the same result as Missing Cells in the summary pane for the variable. 
Its complement is Count(?, AllRows) [p. 365], which counts the number of nonmissing values 
and is also shown in the attribute pane. NumberMissing(var, AllRows) and Count(var, 
AllRows) sum to NumRows, which counts all cases in the dataset, whether missing or non-
missing. 
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NumberOfRows

NumberOfRows counts the number of rows in the dataset. NumberOfRows takes no argu-
ment. If you provide one by mistake, e.g., NumberOfRows(A), it is interpreted as multiplica-
tion. NumberOfRows produces the same result for every row. 

NumberOfRows

Since all variables in a dataset must by definition have the same number of rows, “shorter” 
variables are padded with missing values at the bottom. If analyses show missing values you 
didn’t expect, check whether NumberOfRows is greater than the number of observations you 
recorded for the variable you’re studying.

Count(?, AllRows) [p. 365] shows the number of nonmissing values in a specific variable, and 
NumberMissing(?, AllRows) [p. 393] shows the number of missing values. Count(var, 
AllRows) and NumberMissing(var, AllRows) add to NumberOfRows. 
OneGroupChiSquare(?, ?, ?)

OneGroupChiSquare(obsvar, expvar, n) computes a one group chi-square test comparing 
observed counts in the obsvar against expected counts in the expvar. If you set n to 0, the for-
mula computes the chi-square statistic. If you set n to any nonzero number, the formula com-
putes the probability for the chi-square test. Missing values are ignored. The function works 
columnwise and produces the same result for every row. 

OneGroupChiSquare(Observed, Expected, 0)

OneGroupChiSquare(Observed, Expected, 7)

Chi-square tests compare observed data with expected outcomes if the null hypothesis is true. 
Above we compare the number of female and male graduates from nursing school. Our null 
hypothesis is that an equal number of men and women graduate. Obviously more women 
than men graduated in this case, but is the difference significant? The one group chi-square 
test returns a chi-squared value of 8.889 and a probability of 0.003, so we can reject the null 
hypothesis that this nursing school produces an even mix of graduates. 

Suppose we suspect that the national mint has been producing “unfair” coins—coins that are 
more likely to land heads than tails. To test this, we toss a coin ten times and record the num-
ber of times we get heads, and we repeat that experiment with one thousand coins. Since a 
“fair” coin toss follows a binomial distribution, our null hypothesis is that the probability dis-
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tribution is binomial with count 10 and probability 0.5. (If you’d like to generate fake data to 
try this problem yourself, use the Series command with RandomBinomial(10, 0.5) and 1000 
rows (see RandomBinomial(?, ?) [p. 406]). Your numbers may differ from ours, but the test 
outcome should be similar.)

The first thing we need to do is convert these data to frequency data. We open a new view and 
create a Frequency Summary Table for #Heads, where we specify even intervals of width 1 and 
initial value 0, and we choose to include highest values (we’ll see why in a moment): 

We get a table something like this, which we can Copy and Paste into a new dataset: 

Next, we select and delete the first column, the first two rows, and the last row, and we change 
the data types to real (or integer):

0.000 1.000 8

1.000 2.000 53

2.000 3.000 117

3.000 4.000 212

4.000 5.000 218

5.000 6.000 211

6.000 7.000 112

7.000 8.000 59

8.000 9.000 10

9.000 10.000 0

Total 1000

From (>) To (≤) Count
Frequency Distribution for #Heads
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Next, we can use the binomial cumulative distribution function ProbBinomial (see ProbBino-
mial(?, ?, ?) [p. 401]) to generate the probabilities we should expect for each outcome if our 
null hypothesis (that the data follow a binomial distribution with parameters 10 and 0.5) is 
true. Remember, the  functions compute the proportion of data falling at or below the 
value you specify. So, we generate ProbBinom with the formula ProbBinomial(#Heads, 10, 
0.5). 

ProbBinomial(#Heads, 10, 0.5)

Since our counts are not cumulative, we want the probabilities for exactly each number of 
heads. To do this, we could use Difference(ProbBinom, 1, 1), but that would leave a missing 
value in the first case. So would subtracting a lagged version of the variable from the variable. 
Instead, we use SumIgnoreMissing(ProbBinom, –Lag(ProbBinom, 1)); see SumIgnoreMiss-
ing(?, …) [p. 424]. Finally, we multiply these expected probabilities by sample size (1000) to 
get expected counts:

SumIgnoreMissing(ProbBinom, –Lag(ProbBinom, 1))

DiffProb*1000

Now we’re ready to compare observed counts with the expected counts we’ve computed. We’ll 
use OneGroupChiSquare twice; once with the third argument set to 0 for the chi-square sta-
tistic, and again set to 1 for the test probability:

OneGroupChiSquare(Counts, Expected, 0)

OneGroupChiSquare(Counts, Expected, 1)
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Since P is well above the most liberal criterion 0.05, we cannot reject the hypothesis that our 
experiments follow a binomial distribution for count 10 and probability 0.5. The coins must 
be fair. 
Percentages(?, AllRows)

Percentages(var, AllRows) returns for each row that row’s percentage contribution to the sum 
of the column specified. By default, percentages are computed on AllRows of the variable, but 
you may instead specify OnlyIncludedRows or OnlyExcludedRows as the second argument. 
Missing values are ignored. The function works columnwise; results differ from row to row. 

Percentages(A, AllRows)

For example, the Sum in the attribute pane for A shows that the Sum of A (the total if you add 
all the values in the variable) is 55. The values of the “percentage of A” variable are equal to 
the value of A for that row divided by 55 and multiplied by 100. Simply, 1 is 1.818 percent of 
55, 2 is 3.636 percent of 55, etc. 

Percentages are one way to standardize values for variables with different magnitude. Suppose, 
for example, that you are comparing annual income, meal expenses, and clothing expenses 
valued in German marks. However, since income likely falls in the tens of thousands and the 
expenses might be closer to a few thousand, it would be misleading to use the variables 
together in a regression or a factor analysis. The magnitude of the income values would over-
whelm the significance of other variables. Converting each variable to show values as percent-
ages of a whole makes the variables more comparable. 

Do not confuse percentages with percentiles. Remember, Percentage translates each value into 
a percentage of the sum. Percentile(?, ?, ?) [p. 398] gives the number below which a given per-
centage of the other values lie. 
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Percentile(?, ?, ?)

Percentile(var, p, AllRows) computes the value at the pth percentile for the variable you spec-
ify. By default, the percentile is computed from AllRows of the variable, but you may instead 
specify OnlyIncludedRows or OnlyExcludedRows as the third argument. The var and p argu-
ments may be variables or constants. Missing values are ignored. The function works column-
wise; results differ from row to row. 

Percentile(Cholesterol, 50, AllRows)

It is difficult to give a strict definition of percentile that makes sense. For most purposes, a per-
centile answers the question, “What value is the cut-off point, where such-and-such percent-
age of the cases are equal to or smaller than that value?” So, the 10th percentile of a variable is 
a number that 10 percent of the values are as small as or smaller than. A given percentile is not 
necessarily a value in the variable. For instance, with an even number of cases, the 50th per-
centile (the median) is in between the middle two cases. Another exception is when many of 
the values in a variable repeat themselves. 

With the Lipid data above, Percentile(Cholesterol, 50, AllRows) fills a new column with the 
value 191, which is the 50th percentile of the variable Cholesterol when using all rows of the 
variable. Consider a percentiles plot of the same variable. This graph plots each value in the 
variable against its percentile, and draws lines at the 10th, 25th, 50th, 75th, and 90th percen-
tiles. The 50th percentile line intersects the curve of data points at the y-value 191, just as the 
Percentile function reports. 

To find several percentiles of a variable in one step, create a variable with the percentile values 
you want, then supply that variable as the p argument. For example, we could produce every 
20th percentile of Cholesterol this way:

Percentile(Cholesterol, %levels, AllRows)
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You can convert raw scores to their percentile equivalents by writing your own formula com-
bining the Rank and Count functions. For example, with Car Data, you may convert Weight 
values to percentiles:

(Rank(Weight, AllRows)–0.5)/Count(Weight, AllRows)*100

To convert raw scores to their nearest nth percentile, first convert scores to their percentile 
equivalents, as above, then use the Round function to find the nearest-nth “clump” of percen-
tiles. For example, suppose you want to see the percentile equivalents of Weight values in 10-
percentile increments: 

(Round("Wt %ile"/10))*10

You could combine those formulas into a single step if you preferred. Be aware that clumping 
percentiles into intervals as in this examples does produce “100th percentile” values. 

Do not confuse percentiles with percentages. Remember, the Percentile function gives the 
number below which a given percentage of the values lie. Percentages(?, AllRows) [p. 397] 
translates each value into a percentage of the variable’s sum. To find the nth largest raw value 
of a variable, see VariableElement. 
Permutations(?, ?)

Permutations(n, r) computes the casewise permutations of n objects taken r at a time, where n 
and r can be variables or constants. Cases with r greater than n, negative values, or missing val-
ues are missing. The function works casewise. 

Permutations(n, r)
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Permutations(n, r) computes the number of r-object ordered combinations taken from n 
objects (such as the number of four letter words taken from a set of nine letters), or 

For example, Permutations(5,3) on the second to last row is 60, which means that you could 
assign a president, vice-president, and secretary combination of three people in 60 different 
ways if you had a group of five people to choose from:

For unordered combinations, see the Combinations(?, ?) [p. 361] function. Both Permutations 
and Combinations rely on the use of factorials (such as n!), which can also be computed indi-
vidually with the Factorial(?) [p. 377] function; factorials are defined in that entry. 

n!
n r–( )!-----------------

5!
5 3–( )!------------------ 5!

2!
----- 120

2
--------- 60= = =
Pi

Pi returns the constant Pi, which is approximately 3.14159… Unless you use Pi in combina-
tion with other functions, it returns a variable in which every case is π. The function works 
casewise. 

pi 

A + pi

You can use Pi in combination with other functions, as seen in examples for the trigonometric 
functions Sin, Cos, Tan, etc., which take arguments in radians (which are multiples and frac-
tions of π). 

For the trig function examples, we generated Radians values with the formula 

(RowNumber – 1)/6*pi

and we entered by hand the values of the informative string variable “Radians π.” These famil-
iar values are provided to make the examples easier to read. The other variables are created by 
formulas using Radians as argument:

Sin(Radians)

Cos(Radians)
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These data points are classic examples in the study of the unit circle. Pi is formally defined as 
the ratio of a circle’s circumference to its diameter and is commonly seen in the formulas:

Circumference πd=
Area πr2=
ProbBinomial(?, ?, ?)

ProbBinomial(x, n, p) computes the cumulative distribution function at x of a binomial ran-
dom variable with count n and probability p. The arguments may be variables or constants; 
results are computed casewise. All three arguments should be positive; illegal or missing values 
in any argument propagate missing values. 

ProbBinomial(A, 5, 0.5)

A cumulative distribution function computes the probability that a random value from that 
distribution falls below a value x you provide. In other words, a  returns the proportion of 
the distribution that is less than x.  functions are useful for creating your own statistical 
tests, e.g., type I errors. 

In the example above, we computed the  at A for a binomial random variable with 5 
events and probability 0.5 of each event being a success. We can interpret the results for the 
second-to-last case, for example, as follows: 96.9% of the values of a normal binomial variable 
fall at or below the value 4. Another way of stating this is that we have a 0.969 probability of 
having four or fewer successes in five trials of an experiment having equal chances for success 
and failure, such as five fair coin tosses. 

To generate random Binomial data, see RandomBinomial(?, ?) [p. 406]. Also note that the 
Bernoulli distribution is a special case of the binomial distribution in which n=1. 
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ProbChiSquare(?, 1)

ProbChiSquare(x, df )  computes the cumulative distribution function at x of a chi-square 
random variable with df degrees of freedom. The arguments may be variables or constants; 
results are computed casewise. Both arguments should be greater than zero, and df must be 
integer; negative, zero, fractional, and missing values propagate missing values. 

ProbChiSquare(A, 1)

ReturnChiSquare("CDF chi-sq", 1)

A cumulative distribution function computes the probability that a random value from that 
distribution falls at or below a value x you provide. In other words, a  returns the propor-
tion of the distribution that is less than or equal to x.  functions are useful for creating 
your own statistical tests, e.g., type I errors. 

In the example above, we computed the  at A for a chi-square random variable with 1 
degree of freedom; then we computed the inverse  by applying ReturnChiSquare to the 
 chi-sq values. Applying the inverse  to the  returned the original values from A. 
We can interpret the results for the last case, for example, as follows: 97.5% of the values of a 
chi-square random variable fall at or below the value 5. Another way of stating this is that we 
have a 0.975 probability of choosing at random a value that is 5 or less from a chi-square ran-
dom variable with 1 degree of freedom. 

For the inverse , see ReturnChiSquare(?, ?) [p. 414]. To generate random chi-square data, 
see RandomChiSquare(1) [p. 407]. 
ProbF(?, 1, 1)

ProbF(x, df, df2) computes the cumulative distribution function at x of an F random variable 
with df degrees of freedom in the numerator and df2 degrees of freedom in the denominator. 
The arguments may be variables or constants, and degrees of freedom must be positive inte-
gers; results are computed casewise. All three arguments should be greater than zero; negative, 
zero, and missing values propagate missing values. 

ProbF(A, 1, 1)

ReturnF("CDF F", 1, 1)
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A cumulative distribution function computes the probability that a random value from that 
distribution falls at or below a value x you provide. In other words, a  returns the propor-
tion of the distribution that is less than or equal to x.  functions are useful for creating 
your own statistical tests, e.g., to compute p for an F test. 

In the example above, we computed the  at A for an F random variable with 1 and 1 
degrees of freedom; then we computed the inverse  by applying ReturnF to the  F val-
ues. Applying the inverse  to the  returned the original values from A. We can interpret 
the results for the last case, for example, as follows: 99.5% of the values of an F random vari-
able fall at or below the value 16211. Another way of stating this is that we have a 0.995 prob-
ability of choosing at random a value that is less than or equal to 16211 from an F random 
variable with 1 and 1 degrees of freedom. 

For the inverse , see ReturnF(?, 1, 1) [p. 415]. To generate random F data, see Ran-
domF(1, 1) [p. 407]. 
ProbNormal(?, 0, 1)

ProbNormal(x, mean, stdv) computes the cumulative distribution function at x of a normal 
random variable with mean mean and standard deviation stdv. The arguments may be vari-
ables or constants; results are computed casewise. The mean and stdv are 0 and 1 by default, 
but you may supply other values. Missing values in any argument propagate missing values. 

ProbNormal(A, 0, 1)

ReturnNormal("CDF Normal", 0, 1)

A cumulative distribution function computes the probability that a random value from that 
distribution falls at or below a value x you provide. In other words, a  returns the propor-
tion of the distribution that is less than or equal to x.  functions are useful for creating 
your own statistical tests, e.g., type I errors. 

In the example above, we computed the  at A for a normal random variable with mean 0 
and standard deviation 1; then we computed the inverse  by applying ReturnNormal to 
the  Normal values. Applying the inverse  to the  returned (almost) the original 
values from A. We can interpret the results for the second-to-last case, for example, as follows: 
84% of the values of a normal random variable fall at or below the value 1; since 1 is the stan-
dard deviation, this is not surprising. Another way of stating this is that we have a 0.84 prob-
ability of choosing at random a value that is less than or equal to 1 from a Normal random 
variable with mean 0 and standard deviation 1. 

For the inverse , see ReturnNormal(?, 0, 1) [p. 415]. To generate random Normal data, see 
RandomNormal(0, 1) [p. 410]. 
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Probt(?, 1)

Probt(x, df )  computes the cumulative distribution function at x of a t random variable with 
df degrees of freedom. The arguments may be variables or constants, and df must be a positive 
integer; results are computed casewise. Missing values in either argument propagate missing 
values. 

Probt(A, 1)

ReturnT("CDF t", 1)

[
A cumulative distribution function computes the probability that a random value from that 
distribution falls at or below a value x you provide. In other words, a  returns the propor-
tion of the distribution that is less than or equal to x.  functions are useful for creating 
your own statistical tests, e.g., to compute p for a t-test. 

In the example above, we computed the  at A for a t random variable with 1 degree of free-
dom; then we computed the inverse  by applying ReturnT to the  t values. Applying 
the inverse  to the  returned the original values from A. We can interpret the results for 
the last case, for example, as follows: 93.7% of the values of a t random variable fall at or 
below the value 5. Another way of stating this is that we have a 0.937 probability of choosing 
at random a value that is less than or equal to 5 from a t random variable with 1 degree of free-
dom. 

For the inverse , see ReturnT(?, 1) [p. 416]. To generate random t data, see RandomT(1) 
[p. 411]. 
QuadraticSeries(1, 0, 1)
2
QuadraticSeries(a, b, c) generates a series of values equal to , where x is one less 

than the row number. By default, the arguments are 1, 0, 1, but you may specify any con-
stants. The function works columnwise; results differ from row to row. 

QuadraticSeries(1, 0, 1)

a bx cx+ +
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In each row i of the new variable, the quantity  is evaluated for  and 
that result is the value for the row. For example, the fourth row above is computed by 

 because we used the default values a=1, b=0, c=1. 

See also CubicSeries(1, 0, 0, 1) [p. 367] and QuarticSeries(1, 0, 0, 0, 1) [p. 405]. 

a bx cx2+ + x i 1–=

1 0 3 1 32×+×+ 1 0 9+ + 10= =
QuarticSeries(1, 0, 0, 0, 1)
2 3 4
QuarticSeries(a, b, c, d, e) generates a series of values equal to , 

where x is one less than the row number. By default, the arguments are 1, 0, 0, 0, 1, but you 
may specify any constants. The function works columnwise; results differ from row to row. 

QuarticSeries(1, 0, 0, 0, 1)

In each row i of the new variable, the quantity  is evaluated for 
 and that result is the value for the row. For example, the fourth row above is com-

puted by , because 
we used the default values a=1, b=0, c=0, d=0, e=1. 

See also CubicSeries(1, 0, 0, 1) [p. 367] and QuadraticSeries(1, 0, 1) [p. 404]. 

a bx cx dx ex+ + + +

a bx cx2 dx3 ex4+ + + +
x i 1–=

1 0 3 0 32× 0 33× 1 34×+ + +×+ 1 0 0 0 81+ + + + 82= =
RadToDeg(?)

RadToDeg(var) converts angle measurements in the variable (or constant) you specify from 
radians to degrees. Missing values propagate missing values. The function works casewise. 

RadToDeg(Radians)

StatView’s trigonometric functions work with measurements in radians, so RadToDeg conver-
sions are necessary if you prefer to interpret results or do further analyses using measurements 
in degrees. A circle has 360 degrees or 2π radians (  radians). 2 3.1416…× 6.2832…=
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Above, Radians π is an informative variable entered by hand to make the Radians values easier 
to read. 

To convert degrees to radians, use DegToRad(?) [p. 372]. StatView’s trigonometric functions 
are Sin(?) [p. 419], Cos(?) [p. 363], Tan(?) [p. 426], Sec(?) [p. 418], Csc(?) [p. 366], Cot(?) 
[p. 364], ArcSin(?) [p. 353], ArcCos(?) [p. 349], ArcTan(?) [p. 355], ArcSec(?) [p. 352], 
ArcCsc(?) [p. 351], and ArcCot(?) [p. 350].
RandomBeta(1, 1)

RandomBeta(p, q) generates a series of random numbers from the beta distribution with 
parameters p and q. You may supply a random number generator seed, if you wish, as an 
optional third argument. All arguments must be constants; p and q are 1 by default. The func-
tion works columnwise; results differ from row to row. 

RandomBeta(3, 3)

Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
RandomBinomial(?, ?)

RandomBinomial(n, p) generates a series of random numbers from the binomial distribution 
with count n and probability p. You may supply a random number generator seed, if you 
wish, as an optional third argument. All arguments must be constants. The function works 
columnwise; results differ from row to row. 

RandomBinomial(5, 0.5)

Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
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The Bernoulli distribution is a special case of the binomial distribution. For random Bernoulli 
numbers, set n to 1. 
RandomChiSquare(1)

RandomChiSquare(df )  generates a series of random numbers from the chi-square distribu-
tion with df degrees of freedom. You may supply a random number generator seed, if you 
wish, as an optional second argument. Both arguments must be constant, and df must be a 
positive integer; the default is 1 degree of freedom. The function works columnwise; results 
differ from row to row. 

RandomChiSquare(1)
RandomExponential(1)

RandomExponential(t) generates a series of random numbers from the exponential distribu-
tion with rate t. You may supply a random number generator seed, if you wish, as an optional 
second argument. Both arguments must be constant, and df should be a positive integer; the 
default is 1 degree of freedom. The function works columnwise; results differ from row to 
row. 

RandomExponential(2)

Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
RandomF(1, 1)

RandomF(df, df2) generates a series of random numbers from the F distribution with df 
degrees of freedom in the numerator and df2 degrees of freedom in the denominator. You may 
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supply a random number generator seed, if you wish, as an optional third argument. All argu-
ments must be constants, and degrees of freedom must be positive integers. The function 
works columnwise. 

RandomF(2, 3) 

Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
RandomGamma(1)

RandomGamma(t) generates a series of random numbers from the gamma distribution of 
order t. You may supply a random number generator seed, if you wish, as an optional second 
argument. All arguments must be constants; the default is order 1. The function works col-
umnwise; results differ from row to row. 

RandomGamma(5)

Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
RandomGaussian(0, 1)

RandomGaussian(mean, stdv) generates a series of random numbers from the normal, or 
Gaussian, distribution with mean mean and standard deviation stdv. You may supply a ran-
dom number generator seed, if you wish, as an optional third argument. All arguments must 
be constants; the defaults are mean 0 and standard deviation 1. The function works column-
wise; results differ from row to row. RandomGaussian is synonymous with RandomNormal. 

RandomGaussian(0, 1)
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Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
RandomInclusion(?)

RandomInclusion(p) does random sampling from your dataset by including any row at prob-
ability p. You may supply a random number generator seed, if you wish, as an optional second 
argument. All arguments must be constants. The function works columnwise; results differ 
from row to row. 

This function is not used with Formula, Random Numbers, Series, or Create Criteria. Rather, 
it works in the background when you select Random… from the Criteria pop-up menu. The 
only time you ever see this function is when you Edit Criteria and select a criterion previously 
created with Random… Such a criterion might be called “60% Rows Included.” So, if you 
need to do something fancy with a random selection:

• Select Random… from the Criteria pop-up menu in the dataset window

• Specify a probability (type 50 for 50%; 0.5 means 0.5%) and click OK

• From the Manage menu, select Edit/Apply Criteria

• Select the “p% Rows Included” criterion and click Edit

• Edit the complex criteria definition 

When rows are excluded, their row numbers are dimmed. Also, the Criteria pop-menu reflects 
the inclusion in effect. Any analyses in the View window are then confined to those cases that 
remain, which is noted in its title. 

You may also do inclusion and exclusion by manually double-clicking row numbers, or by 
selecting rows and using the Include and Exclude commands from the Manage menu; see 
“Include and exclude rows,” p. 108 of Using StatView. 
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If, instead, you want to include at random some percentage p of all rows, create a random 
variable with the distribution of your choice, sort on that variable, and include the first p per-
cent of the rows. (If you need to avoid losing the original sort order of the dataset, see 
RowNumber [p. 417].)

Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random inclusion in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
RandomNormal(0, 1)

RandomNormal(mean, stdv) generates a series of random numbers from the normal, or Gaus-
sian, distribution with mean mean and standard deviation stdv. You may supply a random 
number generator seed, if you wish, as an optional third argument. All arguments must be 
constants; the defaults are mean 0 and standard deviation 1. The function works columnwise; 
results differ from row to row. RandomNormal is synonymous with RandomGaussian. 

RandomNormal(0, 1)

Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
RandomPoisson(1)

RandomPoisson(mean) generates a series of random numbers from the Poisson distribution 
with mean mean. You may supply a random number generator seed, if you wish, as an 
optional second argument. Both arguments must be constants, and mean must be positive. 
Poisson random variables take integer values. The function works columnwise; results differ 
from row to row. 

RandomPoisson(1)
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Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
RandomT(1)

RandomT(df )  generates a series of random numbers from Student’s t distribution with df 
degrees of freedom. You may supply a random number generator seed, if you wish, as an 
optional second argument. Both arguments must be constants, and df must be a positive inte-
ger; the default for df is 1. The function works columnwise; results differ from row to row. 

RandomT(3)

Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
RandomUniform(0, 1)

RandomUniform(n, m) generates a series of uniform random numbers from the interval 
between n and m, inclusive. You may supply a random number generator seed, if you wish, as 
an optional third argument. All arguments must be constants; the default interval is (0,1). 
The function works columnwise; results differ from row to row. 

RandomUniform(0, 2)

Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 
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RandomUniformInteger(?, ?)

RandomUniformInteger(n, m) generates a series of uniform random integers from the inter-
val between n and m, inclusive. You may supply a random number generator seed, if you wish, 
as an optional third argument. All arguments must be constants, and n and m should be inte-
gers. The function works columnwise; results differ from row to row. 

RandomUniformInteger(40, 50)

Specifying a random number generator seed ensures consistent results. For example, if you 
want to assign homework involving random numbers in which all students should get the 
same results, direct your students to specify a certain number as the seed. 

RandomUniformInteger can produce repeated values. If you need a variable of unique ran-
dom integers, create a variable of consecutive integers with RowNumber or LinearSeries, cre-
ate a random variable with RandomNormal, then sort on the random variable. (Be sure to use 
a static formula so that the random normal values don’t update.) You now have a column of 
unique integers in random order. 

RowNumber

RandomNormal(0,1)

If you want to avoid sorting your dataset, create these variables in a separate dataset, Copy the 
random integers, and Paste them into your main dataset. Remember, StatView lets you have 
multiple datasets open at once. Or, see RowNumber [p. 417] for “unsorting” tips.
Range(?, AllRows)

Range(var, AllRows) computes the range of the variable you specify; by default, Range is 
based on AllRows, but you may instead specify OnlyIncluded Rows or OnlyExcludedRows as 
the second argument. Missing values are ignored. The function works columnwise and pro-
duces the same result for every row. 

Range(A, AllRows)
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Range is the most basic measure of spread, equal to the difference between the maximum and 
minimum values. All three statistics are also shown in the summary pane for the variable. 

See also Minimum(?, AllRows) [p. 389] and Maximum(?, AllRows) [p. 387] and “Descriptive 
Statistics,” p. 1. 
Rank(?, AllRows)

Rank(var, AllRows) computes the rank of each value in the variable you specify; by default, 
Rank uses AllRows of the variable, but you may instead specify OnlyIncludedRows or Only-
ExcludedRows as the second argument. Tied values have tied ranks (as shown below). Missing 
values propagate missing values; they cannot be ranked. The function works columnwise; 
results differ from row to row. 

Rank(A, AllRows)

Ranks are the row numbers that would result if you sorted all the values in ascending order 
(least to greatest). Tied ranks are averaged, as seen above. 

Many nonparametric statistics, such as sign test and Spearman rank order correlation, are 
based on rank values rather than raw values. It is often helpful to examine ranks alongside raw 
values when interpreting the results of such statistics; see “Nonparametrics,” p. 119.
Remainder(?, ?)

Remainder(var1, var2) gives the remainder result of var divided by var2. Both arguments may 
be constants or variables. Missing values in either argument or division by zero propagates 
missing values. The function works casewise. 

Remainder(A, B)
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Ordinarily, division is computed to as many decimal places as necessary for an exact answer, 
within the limits of the variable’s precision. For instance, 5/3 is 1.6666… (an infinite series of 
6s after the decimals). Remainder(5,3) stops dividing when the quotient reaches the decimal 
point and then records the remainder, or the leftover part—this is the way children learn long 
division: 

Children are taught to divide until the amount at the bottom is smaller than the divisor, and 
then write that leftover part as “remainder 2.” This casual definition is sufficient for positive 
numbers, but for negative numbers, a more precise definition is needed. Formally, Remain-
der(var1, var2) is defined as var1–(Round(var1/var2))*var2. 

The Mod(?, ?) [p. 390] function is the same as Remainder for positive arguments, but for neg-
ative arguments, Remainder and Mod are different. The formal definition of Mod(var1, var2) 
is var1–(Trunc(var1/var2))*var2. See Trunc(?) [p. 429] and Round(?) [p. 416] for details; 
briefly, rounding goes up or down to the nearest integer, whereas truncation deletes digits 
after the decimal. Finally, see Div(?, ?) [p. 374] for the integer part of a quotient. 

1 r 2

3
2

) 53
ReturnChiSquare(?, ?)

ReturnChiSquare(alpha, df )  computes the inverse cumulative distribution function at proba-
bility alpha of a chi-square random variable with df degrees of freedom. The arguments may 
be variables or constants; results are computed casewise. The values for alpha should be 
between 0 and 1, and df should be positive integers; for illegal values or missing values in 
either argument, missing values are propagated. 

ProbChiSquare(A, 1)

ReturnChiSquare("CDF chi–sq", 1)

An inverse  gives the critical value at or below which the proportion alpha of the distribu-
tion lies. In other words, it returns the value x at which we have an alpha probability of choos-
ing at random from the distribution a value less than or equal to x. 
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For the , see ProbChiSquare(?, 1) [p. 402]. To generate random chi-square data, see Ran-
domChiSquare(1) [p. 407]. 
ReturnF(?, 1, 1)

ReturnF(alpha, df, df2) computes the inverse cumulative distribution function at probability 
alpha of an F random variable with df degrees of freedom in the numerator and df2 degrees of 
freedom in the denominator. The arguments may be variables or constants; results are com-
puted casewise. The values for alpha should be between 0 and 1, and df and df2 should be 
positive integers; for illegal values or missing values in any argument, missing values are prop-
agated. 

ProbF(A, 1, 1)

ReturnF("CDF F", 1, 1)

An inverse  gives the critical value at or below which the proportion alpha of the distribu-
tion lies. In other words, it returns the value x at which we have an alpha probability of choos-
ing at random from the distribution a value less than or equal to x. 

For the , see ProbF(?, 1, 1) [p. 402]. To generate random F data, see RandomF(1, 1) 
[p. 407]. 
ReturnNormal(?, 0, 1)

ReturnNormal(alpha, mean, stdv) computes the inverse cumulative distribution function at 
probability alpha of a normal random variable with mean mean and standard deviation stdv. 
The arguments may be variables or constants; results are computed casewise. The values for 
alpha should be between 0 and 1; mean is 0 and stdv is 1 by default, but you may specify other 
values. Missing values in any argument propagate missing values. 

ProbNormal(A, 0, 1)

ReturnNormal("CDF Normal", 0, 1)

An inverse  gives the critical value at or below which the proportion alpha of the distribu-
tion lies. In other words, it returns the value x at which we have an alpha probability of choos-
ing at random from the distribution a value less than or equal to x. 
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Suppose you want to know if a variable A is normally distributed. You may build a normality 
test using the ReturnNormal function. First, generate an “ideal” normal variable that has the 
same mean and standard deviation as your variable:

ReturnNormal(Rank(A, AllRows)/Count(A, AllRows), Mean(A, AllRows), 
StandardDeviation(A, AllRows))

Next, combine A and the new variable in a compact variable with two levels. You might name 
these “actual” and “ideal.” Finally, do a Kolmogorov-Smirnov test on the compact variable (K-
S is found in the analysis browser under Nonparametrics). If p is significant, you may con-
clude that the variables are from different distributions—in other words, that A is not nor-
mally distributed. The QC Analyses/K-S normality test template performs this test. 

For the , see ProbNormal(?, 0, 1) [p. 403]. To generate random normal data, see Random-
Normal(0, 1) [p. 410]. 
ReturnT(?, 1)

ReturnT(alpha, df )  computes the inverse cumulative distribution function at probability 
alpha of a t random variable with df degrees of freedom. The arguments may be variables or 
constants; results are computed casewise. The values for alpha should be between 0 and 1, and 
df should be a positive integer. Illegal or missing values in either argument propagate missing 
values. 

Probt(A, 1)

ReturnT("CDF t", 1)

An inverse  gives the critical value at or below which the proportion alpha of the distribu-
tion lies. In other words, it returns the value x at which we have an alpha probability of choos-
ing at random from the distribution a value less than or equal to x. 

For the , see Probt(?, 1) [p. 404]. To generate random t data, see RandomT(1) [p. 411]. 
Round(?)

Round(var) rounds each value of the variable or constant you specify to the nearest integer. 
Numbers with fractional parts greater than 0.5 are rounded up or down to the nearest even 
integer. Numbers with fractional parts exactly equal to 0.5 are rounded up or down to the 
nearest even integer. Missing values are propagated. The function works casewise. 

Round(A)
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Rounding removes decimal portions of numbers by increasing to the next greater whole num-
ber whenever the fraction is greater than or equal to one-half, and by decreasing to the next 
smaller whole number whenever the fraction is less than one-half. As do all computations, 
Round computes from the actual stored values of numbers rather than the displayed values. 
For example, the value 3.495 displays with one decimal place as 3.5, but it rounds to 3, not 4. 

This example shows how numbers exactly halfway between integers are rounded either up or 
down to the nearest even integer. 

Round(A)

Negative numbers round the same as positive numbers—for example, 3.4 rounds to 3, and 
–3.4 rounds to –3 (not –4). Remember, for negative numbers “greater” and “lesser” can seem 
backwards: –3.4 is greater than –3.6, and –3 is greater than –4. 

Related functions are Trunc(?) [p. 429], Floor(?) [p. 380], and Ceil(?) [p. 359]. Whereas the 
behavior of Round differs according to the size of the fractional part, Trunc, Floor, and Ceil 
all ignore the size of the fractional part. Trunc truncates all decimal portions—it chops off the 
digits after the decimal, regardless of the size of that fractional value. (Thus, truncation varies 
by sign: it rounds negative numbers to the next greater integer and positive numbers to the 
next lesser integer.) Floor converts all values to the next lesser integer regardless of sign and the 
size of the fractional part. Ceil (short for ceiling) converts all values to the next greater integer 
regardless of sign and the size of the fractional part. (Thus, the floor of –1.2 is the next lesser 
integer, –2; the ceiling of –1.2 is the next greater integer, –1. The floor of +1.2 is 1; the ceiling, 
2.) 
RowNumber

RowNumber shows the number of each row. RowNumber takes no arguments. If you provide 
one by mistake, e.g., RowNumber(A), it is interpreted as multiplication. The function works 
columnwise; results differ from row to row. 

RowNumber

A – RowNumber
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RowNumber merely fills a new variable with the same information seen in the first column of 
the dataset window. RowNumber is usually used in combination with other functions, as in A 
minus #, which subtracts the value of # (the current row number) from each case of A. 

One common use for RowNumber is in “unsorting” a dataset. The Sort command in the 
Manage menu lets you sort rows of a dataset according to one or more key variables. If you 
might want to return to the original dataset order, before sorting you should create an index 
variable containing the current RowNumber values. (Do this with a static formula or else 
change the variable to user entered so that when you sort, the RowNumber values are not 
updated.) Sort the dataset. When you are ready to return to the original order, Sort on the 
index variable you created. 
Sec(?)

Sec(var) returns the secant of a variable or constant. The angle measurements in var are 
assumed to be in radians. Missing values propagate missing values. The function works case-
wise. 

Sec(Radians)

The secant of an angle in a right triangle is the ratio of the length of the hypotenuse to the 
length of the leg adjacent to the angle. Recall that the cosine of an angle in a right triangle is 
the ratio of the length of the leg adjacent to the angle to the length of the hypotenuse. There-
fore, the secant is the reciprocal of the cosine:

As the angle (Radians) approaches π/2 and 3π/2 (and so on), cosine approaches zero, and thus 
secant approaches plus or minus infinity. Secants are undefined at these points, so Sec pro-
duces missing values. (On some platforms, differences in the numerics environments may 
produce extreme values rather than missing values.)

xsec 1
xcos

----------=
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If you have angles measured in degrees, you can convert them to radians with DegToRad(?) 
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may 
specify the value π with Pi [p. 400].
Second(?)

Second(date) returns the second number (0–59) of the date specified. The date argument may 
be a variable or a constant. (Remember, all date/time values are an exact second of an exact 
day, and unspecified times are assumed to be exactly midnight.) The function works casewise. 

Second("Some times")
Sin(?)

Sin(var) returns the sine of a variable or constant. The angle measurements in var are assumed 
to be in radians. Missing values propagate missing values. The function works casewise. 

Sin(Radians)

Sines, cosines, and tangents relate angles to the coordinates of points in planes. The sine of an 
angle in a right triangle is the ratio of the length of the leg opposite the angle to the length of 
the hypotenuse. 

If you have angles measured in degrees, you can convert them to radians with DegToRad(?) 
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may 
specify the value π with Pi [p. 400]. 
Sinh(?)

Sinh(var) returns the hyperbolic sine of a variable or constant. Missing values propagate miss-
ing values. The function works casewise. 

Sinh(x)
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The hyperbolic functions (sinh, cosh, and tanh, sometimes pronounced “sinch, cosh, and 
tanch”) are analogous to the trigonometric functions sine, cosine, and tangent. They are spe-
cial combinations of the exponential functions  and  and bear a relationship to the unit 
hyperbola that is analogous to the trig functions’ relationship to the unit circle. 

The hyperbolic sine is defined by

and like sine, sinh(x) has value 0 at x=0. Sinh is defined for all real numbers and ranges from 
plus to minus infinity. 

ex e x–

xsinh ex e x––
2

-----------------=
Sqrt(?)

Sqrt(var) produces the positive square root of a variable or constant. Missing values propagate 
missing values. The function works casewise. 

Sqrt(Abs(A))

Sqrt(B)

Square roots of negative numbers are undefined for real numbers, so StatView returns missing 
values for negative arguments. If you are studying magnitude of a variable without regard to 
its sign, it may be appropriate to use absolute values, as shown above, to prevent missing val-
ues from negative arguments. 

Square root produces by definition positive square roots. That is, 64 is equal to not only  
but also , but Sqrt(64) is only 8. 

82

8– 2
StandardDeviation(?, AllRows)

StandardDeviation(var, AllRows) computes the standard deviation of the variable you specify; 
by default, StandardDeviation is based on AllRows of the variable, but you may instead spec-
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ify OnlyIncludedRows or OnlyExcludedRows as the second argument. Missing values are 
ignored. The function works columnwise and produces the same result for every row. 

StandardDeviation(A, AllRows)

Standard deviation is a measure of variability; unlike variance, it is expressed in the same unit 
of measurement as the original variable. Standard deviation is formally defined as the square 
root of variance. Normally distributed data have 95% of the observations falling within 1.96 
standard deviations to either side of the mean. Standard deviation is also shown in the sum-
mary pane for each variable. 

StatView uses n–1 in the denominator, which is preferred for sample standard deviation. For 
population standard deviation, n is often preferred. If you want n instead of n–1, you can 
compute your own standard deviation: 

Sqrt((SumOfSquares(A, AllRows)– Count(A, AllRows)*Mean(A, AllRows)^2)
/Count(A, AllRows))

Variance(?, AllRows) [p. 430] function also uses n–1; however, in the Descriptive Statistics 
analysis (see “Descriptive Statistics,” p. 1), you may compute Variance with either n or n–1, so 
you could use a formula to take the square root of that result. Still another option would be to 
use a formula to multiply Variance by its usual denominator of n–1, divide by the one you 
want, n, and then take the square root of that:

Sqrt(Variance(A, AllRows)*(Count(A, AllRows)–1)/Count(A, AllRows))
StandardError(?, AllRows)

StandardError(var, AllRows) computes the standard error of the mean of the variable you 
specify; by default, StandardError is based on AllRows of the variable, but you may instead 
specify OnlyIncludedRows or OnlyExcludedRows as the second argument. Missing values are 
ignored. The function works columnwise and produces the same result for every row. 

StandardError(A, AllRows)

The standard error of the mean is a measure of the variability of the mean. Sometimes called 
, it is computed from the standard deviation (above, 4.646) divided by the square root of 
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the count (2); the result, 2.323, is also shown in the summary pane for the variable. The  
shows how much variability you should expect among sample means if you take multiple sam-
ples from the same population. 

Related functions are Mean(?, AllRows) [p. 388], StandardDeviation(?, AllRows) [p. 420], 
and Count(?, AllRows) [p. 365]. 
StandardScores(?, AllRows)

StandardScores(var, AllRows) standardizes each case of the variable you specify; by default, 
StandardScores is based on AllRows of the variable, but you may instead specify OnlyInclud-
edRows or OnlyExcludedRows as the second argument. Missing values propagate missing val-
ues. The function works columnwise; results differ from row to row. 

StandardScores(A, AllRows)

Standard scores, sometimes called standardized values or z-scores, are obtained by dividing the 
difference between each value and the mean by the standard deviation. Standardizing a vari-
able gives it mean 0 and standard deviation 1 and makes it easier to compare variables of dis-
similar magnitude. 

You could also standardize data by building a formula with Mean(?, AllRows) [p. 388] and 
StandardDeviation(?, AllRows) [p. 420] functions:

(A – Mean(A, AllRows))/StandardDeviation(A, AllRows)
Substring(?, ?, ?)

Substring(text, n, m) reads the text you specify and returns the m-character substring starting 
at the nth character. If the text is fewer than n+m–1 characters long, it returns fewer than m 
characters. The source text may be either a variable or a constant, and n and m must be posi-
tive integers. If you supply a variable as the text argument, Substring uses its exact values in the 
current format’s display; changing formats can change results. If you supply a constant, you 
must enclose it in quotation marks. If n is negative or greater than the length of text, missing 
values result. An optional fourth argument (1 or 2) specifies whether to handle text values as 
single-byte or double-byte strings; see below. The function works casewise. 

Substring(Model, 3, 6)
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Substring is used to extract part of a text value. Usually, the text argument is a string variable, 
although the function also works with other variable types. 

Above, we use substring to extract six characters from the middle of each Model value in Car 
Data, starting from the third character and moving six to the right. Each letter, number, 
space, and symbol in a string counts as a character. The fourth and fifth rows have values 
fewer than six characters long, since the Model values were fewer than eight characters long. 
(Change Model from class informative to nominal so you can use it in a formula, and change 
the formula variable to have type string.)

Substring is usually used in combination with other text functions such as Len and Find. For 
example, we can use Find to locate the position of the first space in Model names, then read 
the next 99 characters after that space, thus extracting all characters after the first word. (The 
“1, false” arguments to Find specify that the search should start on the first character of each 
Model value, and that case-sensitivity should be “off.”) This gives us model names without 
makes. (We’ve scrolled down to find some multi-word models.)

Substring(Model, Find(Model, " ", 1, false)+1, 99)

Specifying 99 as the number of characters to read is a brute-force way to read to the end of the 
string. No values are actually that long—99 is just an arbitrarily large number. 

You may include an optional fourth argument for specifying whether to handle text values as 
single-byte or double-byte strings. Substring assumes a fourth argument 1 for single-byte 
strings (English, German, French, Spanish, etc. all use single-byte characters); specify 2 to use 
Substring with strings containing double-byte characters, such as Japanese, Chinese, or Arabic 
characters. See Find(?, ?, ?, false) [p. 379] and Len(?) [p. 383] for examples handling double- 
and single-byte characters. 
Sum(?, …)

Sum(var, var2, …) does casewise addition of the variables or constants you specify. Summing 
arguments is a shorthand equivalent to linking arguments with plus (+) signs. Missing values 
propagate missing values. 

Sum(A, B)

Sum(A, B, 7)

A + B

A +B + 7
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For casewise addition in which missing values are ignored, use SumIgnoreMissing(?, …) 
[p. 424]. For columnwise (vertical) addition, see Sum(?, …) [p. 423]; Sum in the data 
attribute pane summary statistics; CumSum(?) [p. 368], which computes cumulative sums of 
the rows of a variable; and SumOfColumn(?, AllRows) [p. 424], which fills a new variable 
with a single sum. 
SumIgnoreMissing(?, …)

SumIgnoreMissing(var, var2, …) does casewise addition of the variables or constants you 
specify. Missing values are ignored. 

Sum(A, B)

SumIgnoreMissing(A, B)

SumIgnoreMissing is the same as Sum except that missing values are ignored unless every vari-
able is missing for a case, as seen in the fourth case above. For Sum, a missing value in any 
variable produces a missing value in the new variable, as seen in the third and fourth cases 
above. 

For columnwise addition, see Sum(?, …) [p. 423]; Sum in the data attribute pane summary 
statistics; CumSum(?) [p. 368], which computes a cumulative sum for each row; or SumOf-
Column(?, AllRows) [p. 424], which fills a new variable with a single sum. 
SumOfColumn(?, AllRows)

SumOfColumn(var, AllRows) adds the values of the variable you specify to produce a single 
sum in a new variable. (This sum is also shown in the summary pane for the variable.) By 
default, AllRows are used in the calculations, but you may instead specify OnlyIncludedRows 
or OnlyExcludedRows as the second argument. Missing values are ignored. The function 
works columnwise; results differ from row to row. 

SumOfColumn(A, OnlyIncludedRows)
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The row number for row 10 is dimmed, meaning it has been excluded. Since –1 + –2 + 3 + 2 
+ 3 + 4 + 5 + –6 is 8, the new variable is 8. 

Compare this result with that of the CumSum function. First, CumSum shows the “sum in 
progress” on each row, whereas SumOfColumn shows only a single answer. Second, CumSum 
always uses AllRows, so the 7 on the last row is included for a final sum of 15. 

For casewise addition, use ?+? [p. 333], Sum(?, …) [p. 423], or SumIgnoreMissing(?, …) 
[p. 424]. Sum adds values for each row on all the variables you specify. SumIgnoreMissing is 
the same except that missing values are ignored. 
SumOfSquares(?, AllRows)

SumOfSquares(var, AllRows) adds the squares of the nonmissing values of the variable you 
specify in the first argument; by default, it uses AllRows of the variable, but you may instead 
specify OnlyIncludedRows or OnlyExcludedRows as the second argument. Missing values are 
ignored. The function works columnwise and produces the same result for every row. 

SumOfSquare(A, AllRows)

Sum of squares is also shown in the summary pane. The computation for A is 
.

Sum of squares is used in computation of many statistics (and other functions, such as Vari-
ance(?, AllRows) [p. 430] and StandardDeviation(?, AllRows) [p. 420]), and you may find 
occasion to use it in formulas to compute special statistics not provided by StatView’s analyses. 

For cumulative sums of squares, use the CumSumSquares(?) [p. 368] function. For a horizon-
tal sum of squares, use a formula such as A^2 + B^2 + …, or Sum(A^2,B^2,…). 

4–( )2 5–( )2 12 52+ + + 16 25 1 25+ + + 67= =
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Tan(?)

Tan(var) returns the tangent of a variable or constant. The angle measurements in var are 
assumed to be in radians. Missing values propagate missing values. The function works case-
wise. 

Tan(Radians)

Sines, cosines, and tangents are used to relate angles to the coordinates of points in planes. 
The tangent of an angle in a right triangle is the ratio of the length of the leg opposite the 
angle to the length of the leg adjacent to the angle. 

Tangents approach plus or minus infinity asymptotically as their arguments approach π/2, 
3π/2, etc. Tangents are undefined at these values, so Tan produces missing values. (On some 
platforms, differences in the numerics environments may produce extreme values rather than 
missing values.)

If you have angles measured in degrees, you can convert them to radians with DegToRad(?) 
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may 
specify the value π with Pi [p. 400]. 
Tanh(?)

Tanh(var) returns the hyperbolic tangent of a variable or constant. Missing values propagate 
missing values. The function works casewise. 

Tanh(x)

The hyperbolic trigonometric functions (sinh, cosh, and tanh, often pronounced “sinch, cosh, 
and tanch”) are analogous to the trigonometric functions sine, cosine, and tangent. They are 
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constructed from the functions  and  and bear a relationship to the unit hyperbola that 
is analogous to trigonometric functions’ relationship to the unit circle. 

The hyperbolic tangent is defined by

and like tangent, tanh(x) has value 0 at x=0. Tanh is defined for all real numbers and ranges 
from –1 to 1. 

ex e x–

xtanh xsinh
xcosh

-------------=
Time(?, ?, ?)

Time (hour, minute, second) returns the time specified on the current date. You must change 
the formula variable to type date/time and choose an appropriate format. The function works 
casewise. 

Time(Hr, Min, Sec)

The example above shows how to use Time to combine hour, minute, and second values 
stored in separate columns. Data imported from other programs may have date/time values 
separated into several numeric-type columns, and Time puts those columns together into 
date/time values. (Don’t forget to change the type of the new variable to date/time and to 
choose a format you like.)

Other programs store time values as text strings. You can use Substring(?, ?, ?) [p. 422] and 
Time(?, ?, ?) [p. 427] to convert these to times:

Time(Substring(Text, 1, 2), Substring(Text, 3, 2), Substring(Text, 5, 2))

You may also build times with formulas such as this one:

Time(RowNumber, RowNumber+3, RowNumber–2)
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This example shows how invalid times are reinterpreted. Consider the first case, where 
RowNumber–2 would have been –1. This is reinterpreted as:

hour=1, minute=4, second=–1

hour=1, minute=3, second=59

This sort of carrying also happens when hours are greater than 23 or minutes or seconds are 
greater than 59. 
TrimmedMean(?, ?, AllRows)

TrimmedMean(var, p, AllRows) computes the trimmed mean of var using the percentage p 
you specify. The value for p must be less than 50 and greater than or equal to zero. By default, 
TrimmedMean is based on AllRows, but you may instead specify OnlyIncludedRows or 
OnlyExcludedRows as the third argument. Missing values are ignored. The function works 
columnwise and produces the same result for every row. 

TrimmedMean(A, 10, AllRows)

Trimmed mean is a measure of central tendency similar to the mean, except that trimmed 
mean is based on only the “inner” portion of the data after trimming the top and bottom p 
percent of values. In a variable with 100 values, a 10% trimmed mean discards the ten small-
est and the ten largest values, and then computes the average (sum divided by 80) of the val-
ues remaining. When p=0, the trimmed mean is equal to the mean. As p approaches 50, the 
trimmed mean approaches the median.

Trimmed means offer an advantage over the mean for variables with extreme values on either 
end. For example, the mean salary of all people living in a neighborhood may be drastically 
influenced up or down by a few extremely wealthy residents or a few homeless residents with 
negligible income, but the trimmed mean gives a realistic sense of the average income among 
the most typical residents. 

See also the Mean(?, AllRows) [p. 388], Median(?, AllRows) [p. 388], and Mode(?, AllRows) 
[p. 390], and “Descriptive Statistics,” p. 1. 
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Trunc(?)

Trunc(var) truncates the fractional portion from the values of the variable you specify. Missing 
values are propagated. The function works casewise. 

Trunc(A)

Truncation removes all digits after the decimal point. Thus, the behavior of truncation varies 
by sign: it effectively rounds negative numbers to the next greater integer and positive num-
bers to the next lesser integer. As do all computations, Trunc works with actual stored values 
rather than the way values are displayed. For example, the value 1.9 is displayed in a format 
with no decimal places as 2, but it truncates to 1. 

Related functions are Round(?) [p. 416], Floor(?) [p. 380], and Ceil(?) [p. 359]; a careful 
comparison of Round, Floor, Ceil, and Trunc is made in the entry for Round. 
VariableElement(?, ?)

VariableElement(var, n) returns the current character representation of the nth row’s value for 
the var you specify. The first argument must be a variable, and the second argument n must be 
a valid row number (or a variable containing such numbers). The function works casewise. 

VariableElement(Weight, 5)

Above, we find the value in the fifth row of the Weight variable in Car Data. 

Suppose you wanted to know the sum of the 5th largest and 5th smallest values of the variable 
Weight in Car Data. Sort the variable (use Sort from the Manage menu) in increasing order, 
then sum those elements. If you know the variable has, say, 100 nonmissing (Weight does 
not!), you could do:

VariableElement(Weight, 5) + VariableElement(Weight, 96)

If you don’t know the number of nonmissing values, you can use Count:

VariableElement(Weight, 5) + VariableElement(Weight, Count(Weight, AllRows)–4)
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VariableElement is handy for simulating spreadsheet functionality. You might use it to supply 
an argument to a function when you expect to change that value frequently, since it is easier to 
edit data values than formulas. 
Variance(?, AllRows)

Variance(var, AllRows) computes the variance of the variable you specify; by default, Variance 
is based on AllRows of the variable, but you may instead specify OnlyIncludedRows or Only-
ExcludedRows as the second argument. Missing values are ignored. The function works col-
umnwise and produces the same result for every row. 

Variance(A, AllRows)

Variance is a measure of variability about the mean. Variance is expressed in a square of the 
units of the variable; for instance, if you are measuring length in meters, variance is a quantity 
of area in square meters. Consequently, variance can be difficult to interpret, and standard 
deviation (the square root of variance) is often preferred; see StandardDeviation(?, AllRows) 
[p. 420].

StatView uses n–1 in the denominator for the Variance function’s computations; if you prefer 
n, you can build your own formula: 

Variance(A, AllRows)*(Count(A, AllRows) – 1)/Count(A, AllRows)

Or, use the Descriptive Statistics analysis (see “Descriptive Statistics,” p. 1, which allows you 
to choose n or n–1. For sample variance, n–1 is generally preferred; for population variance, n 
is usually preferred. 
Weekday(?)

Weekday(date) returns an index indicating the day of the week (1=Sunday, 2=Monday, etc.) of 
the date specified. The date argument may be a variable or constant. (Remember, all date/time 
values are an exact second of an exact day, and unspecified dates are assumed to be the current 
date.) The DayOfWeek function is synonymous. The function works casewise. 

Weekday("Other dates")
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If you want day names, change the variable to category, and edit the category to have levels 
Sunday, Monday, Tuesday, …, Saturday.
WeekOfYear(?)

WeekOfYear(date) returns the week number of the year (1–54) of the date specified. The date 
argument may be a variable or constant. (Remember, all date/time values are an exact second 
of an exact day, and unspecified dates are assumed to be the current date.) The function works 
casewise. 

WeekOfYear("Other dates")
Year(?)

Year(date) returns the year number (1904–2040) of the date specified. The date argument may 
be a variable or constant. (Remember, all date/time values are an exact second of an exact day, 
and unspecified dates are assumed to be the current date.) The function works casewise. 

Year("Other dates")
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

Algorithms a

General

Sum of squares calculations

Several statistics require calculation of the sum of squared deviations (sum of squares): 

StatView uses an algorithm that provides more accurate results for the sum of squared devia-
tions than the Monroe Calculator variance formula:

StatView uses the following algorithm for the sum of squared deviations:

where k is the first non-missing, non-excluded value for the variable, and  is the calculated 
variable mean. 

In addition, several statistics require that the sum of deviation cross products be calculated:

StatView uses the following algorithm for the sum of deviation cross products:

where (a,b) is the first non-missing, non-excluded X, Y pair,  is the X variable mean, and  
is the Y variable mean.

X x–( )2∑

X
2 X∑( )2

n
----------------–∑

X k–( )2
n k x–( )2

–∑
x

X x–( ) Y y–( )–∑

X a–( ) Y b–( ) n a x–( ) b y–( )–∑
x y
Matrix inversions

Several statistics require matrix inversions. StatView uses the Sweep Operator procedure to 
invert matrices.
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Descriptive Statistics

Continuous variables

 n = number of non-missing, non-excluded values

Count = n

Mean, referred to below as  or 

Variance 

Standard Deviation

Standard Error of the Mean 

Coefficient of Variation = 

Minimum = smallest value among X

Maximum = largest values among X

Range = Maximum – Minimum

Sum = 

Sum of squares = 

number missing = count of the missing values

Geometric Mean = 

Harmonic Mean 

Kurtosis = 

x y

x
X∑

n
---------=

s
2 X x–( )2∑

n 1–
-------------------------=

s s
2

=

sx
s

n
-------=

s x⁄

X∑

X
2∑

X∏n

1
X
---∑

n
---------

 
 
 
 

1–

m4 m2
2⁄( ) 3–
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Skewness = , where

Mode = unique most commonly occurring value among X

Median = 50th percentile (see “Percentiles,” p. 435)

Interquartile Range () = 75th percentile – 25th percentile (see “Percentiles” below)

Median Absolute Deviation from the Median () = Median(D), where 

p% Trimmed Mean = , where the Xs are sorted from smallest 

to largest and k is chosen so that k observations represent p% of the data

m3 m2 m2( )⁄

m2
X x–( )2∑
n

-------------------------=

m3
X x–( )3∑
n

-------------------------=

m4
X x–( )4∑
n

-------------------------=

D X Median X( )–=

Xk 1+ … Xn k–+ +( ) n 2k–( )⁄
Nominal variables

Count, number missing, and mode are as above

Number of levels = number of uniquely occurring values among X
Percentiles

The pth percentile using linear interpolation is , where  and  are 

the kth and (k+1)st non-missing, non-excluded values in the variable, after sorting the Xs 
from smallest to largest.

k is the integer part of v and f is the fractional part of v: , where n is the 
count and p is the desired percentile.

1 f–( )xk f*xk 1++ xk xk 1+

v np( ) 100⁄ 0.5+=
One Sample Analysis

N = number of observations

DF N 1–=
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SE = standard error of x s

N
--------=
One sample t-test

U = hypothesized mean, entered by user

t
x U–( )

SE
-----------------=
Confidence interval for the mean

 is the (two-tailed) critical value of the t distribution at level a and degrees of freedom

lower = 

upper = 

ta

x taSE–

x taSE+
Chi-Square test for variance
 = hypothesized variance, entered by userσ2

χ2
DF

s
2

σ2
------=
Confidence interval for variance

 = lower chi-square critical value, level a, DF degrees of freedom

 = upper chi-square critical value, level a, DF degrees of freedom

upper = 

lower = 

xl

xu

DF
s
2

xu
-----

DF
s
2

xl
----
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Paired Comparisons

N = number of paired observations

 = mean of D

 = standard deviation of D

SE = standard error of 

D X1 X2–=

DF N 1–=

D

sd

D
sd
nN

------------=
Paired t-test

 = hypothesized mean difference, entered by user∆

t D ∆–( ) SE⁄=
Confidence interval for the paired mean difference

 is the (two-tailed) critical value of the t distribution at level a and DF degrees of freedom

lower = 

upper = 

ta

D taSE–

D taSE+
Z test and confidence interval for the correlation coefficient

These are calculated using the r to z transformation discussed under Correlation/Covariance, 
below.
Unpaired Comparisons

 = number of observations in group 1

 = number of observations in group 2

N1

N2

DF N1 N2 2–+=
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 is the mean of the group 1 observations

 is the mean of the group 2 observations

 is the standard deviation of the group 1 observations

 is the standard deviation of the group 2 observations

Standard error:

x1

x2

D x1 x2–=

s1

s2

SE
s1
2

N1 1–( ) s2
2

N2 1–( )+

DF
---------------------------------------------------------

N1 N2+

N1N2
--------------------×=
Unpaired t-test

∆ = hypothesized mean difference, entered by user

t D ∆–( ) SE⁄=
Confidence interval for the unpaired mean difference

 is the (two-tailed) critical value of the t distribution at level a and DF degrees of freedom

lower = 

upper = 

ta

D taSE–

D taSE+
F test for variance ratio

VR = hypothesized variance ratio, entered by user

F
s1
2

s2
2⁄

VR
------------=

DF N1 1– N2 1–,=
Confidence interval for the variance ratio
lower = 
s1
2

s2
2⁄( )

F N1 1– N2 1– a, ,( )( )
------------------------------------------------------
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upper = 

where is the critical value of the F distribution with n and m degrees of freedom at 
level a.

s1
2

s2
2⁄( ) F N2 1– N1 1– a, ,( )( )⋅

F n m a, ,( )
Correlation and Covariance

Covariances and correlations are computed in StatView using provisional means.
Partial correlations

Where PC is the partial correlation matrix and IC is the inverse of the correlation matrix:

PCij

ICij–

ICiiICjj

-----------------------=
Bartlett’s test of sphericity
N = number of observations

n = number of variables

det(C) = determinant of the correlation matrix

χ2
N det C( )( )ln–=

df n n 1+( )
2

-------------------- 1–=
p values and confidence intervals
These are computed using the transformation , which has an approximately 

normal distribution with mean =  and variance =  when the data are a ran-

dom sample of N observations from a bivariate normal population with correlation R.

z
1
2
--- 1 r+

1 r–
----------- 

 ln=

1
2
--- 1 R+

1 R–
------------ 

 ln
1

N 3–
-------------
Regression
T
StatView applies the Sweep Operator to the  matrix of cross product deviations in order 

to calculate regression coefficients. Sweeping operations are discussed in Draper and Smith 
X X
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(1981), Hocking (1985) and Goodnight (1979). The sweeping operation is used to add and 
delete variables from the regression equation. Beta coefficients, partial correlations, multiple 
correlation, partial Fs and residual sum of squares are computed as each variable enters (or 
leaves) the regression equation. The calculation of confidence bands for the mean and confi-
dence intervals for the slope of a simple regression is discussed in Draper and Smith (1981) 
and Sokal and Rohlf (1981).
ANOVA

The technique used for calculating the sums of squares for the various tests reported by Stat-
View is the reduction technique as described by Searle (1971, pp. 246–248). The basic idea of 
the reduction technique is as follows. First a model is fit with all entered main effects and 
interactions (the full model), and the residual sum of squares,  is calculated. Then for 
each main effect or interaction to be tested, another model is fit, containing all the terms in 
the model except the one currently being considered. Once again, the residual sum of squares 
is calculated. Let the residual sum of squares for the model excluding only effect (where  
is any main effect or interaction in the model) be denoted . Then the sum of squares for 
testing the hypothesis that effect  has no influence on the dependent variable is calculated 
as: . This calculation is carried out for each term in the model.

The reduction sums of squares are calculated using a method described in detail by Hocking 
(1985, pp. 146 - 148). First, the matrix  is calculated, using a full rank parameterization 
for the design matrix X. In this parameterization, the first element of each row of the design 
matrix is a 1 (for the intercept), and for a nominal main effect with k levels, there are k–1 col-
umns in the design matrix. For all but the last level of the factor, a 1 is placed in the column 
corresponding to the level of that factor for a given observation (row), while for observations 
with the last level of the factor, all k–1 columns are filled with –1s. Covariates are simply 
entered as the column of values of the covariate. The columns corresponding to interaction 
terms for a particular row are formed as the Kronecker product of the columns corresponding 
to all main effects contained in the interaction. Finally, the values of the dependent variables 
are stored as the last columns in the design matrix.

The matrix  is swept on its columns corresponding to entered effects. (See Goodnight 
(1979), for a description of the Sweep Operator). The square submatrix in the lower right 
hand corner of the  matrix is the sum of squares and cross products, , matrix. Its 
number of columns equals the number dependent variables. The  for the fully swept 

 is called the error  matrix, . The residual sum of squares for each dependent vari-
able in the full model, ( ), is the corresponding diagonal element of . Due to the 
reversibility of the sweep operator,  for any effect  can be calculated by re-sweeping the 
columns corresponding to the effect in question in the fully swept  matrix, and extract-
ing the appropriate diagonal element of the  matrix. The hypothesis  matrix, , 
formed by subtracting  from this partially swept  matrix, is used in multivariate tests. 
[Note: in models with one dependent variable, the  matrices have only one element, so 

 and  are simply the lower right hand element of  after the appropriate 
sweeping operations have been performed.] The sums of squares for each effect are then calcu-
lated from  and  as described above.

full

A A
A

A
A A full–=

XTX

XTX

XTX

XTX E
full E

A A
XTX
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E

full A XTX

full A
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Repeated Measures
Repeated measures models are computed via multivariate analysis of variance. This allows 
multivariate tests of hypotheses involving repeated measures to be computed in addition to 
the usual univariate tests. The multivariate tests are formed by applying transformations to the 

 and  matrices. The transformation matrices are constructed by taking the Kronecker 
products of matrices of orthogonal polynomial contrasts, and column vectors of 1s. For exam-
ple, in a model with two within (repeated) factors  and  that have 2 and 3 levels respec-
tively, the transformation matrix for effects involving only  would be ; 
for those involving  alone, ; and for those involving the interaction of 

 and , ; where  is an  contrast matrix and  
is a column vector of  1’s. If in this example there were also a between effect , the test for 
the interaction of  with  would be formed from the transformed hypothesis matrix 

 and error matrix .

Power and lambda
Power is computed as the  of the non-central F distribution based on four parameters: 

, numerator degrees of freedom ( , the degrees of freedom associated with the null 
hypothesis), denominator degrees of freedom ( ), and lambda (esti-
mated as the hypothesis sum of squares divided by the residual mean square). Here  is the 
critical value for the central F distribution at level a with  and  degrees of freedom.

HA E

U V
U Mu O 2( ) J 3( )⊗=

V Mv J 2( ) O 3( )⊗=
U V Muv O 2( ) O 3( )⊗= O n( ) n n 1–( )× J n( )

n A
U A

Mu
THAMu Mu

TEMu

fcrit p
q n residual df– 1–=

fcrit
p q
Multivariate analysis of variance (MANOVA)

The sums of squares due to hypothesis and error that we examine for  models are 
replaced by matrices of sums of squares and cross products () for  models. Like-
wise we no longer examine F-ratios but instead consider multivariate tests and their F approx-
imations. Rather than computing the ratio of hypothesis to error sums of squares, we examine 
eigenvalues of , where  is the hypothesis  matrix and  is the error  matrix. 
Let  be the nonzero eigenvalues of  listed in decreasing order (i.e., 

). 

For all multivariate tests
 

 and is also the number of nonzero eigenvalues

HE 1– H E
λ1 λ2 … λ s, , , HE 1–

λ1 λ2 … λ s> > >

νH degrees of freedom for H=

νE degrees of freedom for E=

d number of dependent variables=

s min νH d,( )=

m
νH d– 1–

2
----------------------------=
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Wilks’ Lambda

F value: 

Numerator DF: 

Denominator DF:  

(This notation is from StatView’s expression language; see “ProbF(?, 1, 1),” p. 402 for more 
information. It can be read as, “the  at the F value of an F random variable with  and 

 degrees of freedom.” You could compute this p value yourself using a formula variable 
with this definition, substituting the F value and degrees of freedom values shown in the 
 table.)

Roy’s Greatest Root
 (the largest eigenvalue of )

F value:  

Numerator DF: 

n
νE d– 1–

2
------------------------=

Λ 1
1 λ i+
--------------

i 1=

s

∏=

r νH νE

d νH 1+ +

2
-------------------------–+=

t

1 νH d⋅ 2=( )

d
2νH

2
4–

d
2 νH

2
5–+

---------------------------- νH d⋅ 2≠( )








=

k
dνH 2–

4
-------------------=

1 Λ1 t⁄
–

Λ1 t⁄-------------------- rt 2k–
dνH

---------------- 
 

dνH

rt 2k–

p 1
1 Λ1 t⁄

–

Λ1 t⁄-------------------- rt 2k–
dνH

---------------- 
  dνH rt 2k–, ,

 
 
 

ProbF–=

dνH
rt 2k–

Θ λ1= HE 1–

t max νH d,( )=

Θ
νE t– νH+

t
---------------------------⋅
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Denominator DF: 

 

Hotelling-Lawley Trace

F value: 

Numerator DF: 

Denominator DF: 

Pillai Trace

F value: 

Numerator DF: 

Denominator DF: 

 

νE t– νH+

p 1 Θ
νE t– νH+

t
---------------------------⋅ t νE t– νH+, , 

 ProbF–=

THL λ i
i 1=

s
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s
---------- 2 sn 1+( )
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------------------------------- 
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s
2

2m s 1+ +( )
----------------------------------=

s 2m s 1+ +( )

2 sn 1+( )

p 1
2THL sn 1+( )

s
2

2m s 1+ +( )
---------------------------------- s 2m s 1+ +( ) 2 sn 1+( ), ,
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 
 

ProbF–=
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λ i

1 λ i+
--------------

i 1=

s
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-------------- s 2n s 1+ +( )

s 2m s 1+ +( )
------------------------------- 
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------------------------- 
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Multiple comparisons

Multiple comparisons are discussed in Winer (1971) and Milliken and Johnson (1984). The 
formulas used are listed below.

For all multiple comparison tests
 is the number of groups

 is the user-entered significance level

k

a
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 = number of observations in group 

 = the mean of the observations in group 

 = the standard deviation of the observations in group 

 where groups  and  are being compared.

 is the error mean square

 is the error degrees of freedom

 is the difference of the group means being compared

A difference is declared significant if , where D is the test specific critical difference 
defined below.

Fisher’s Protected Least Significant Difference (PLSD)
, where t is the (two-tailed) critical value of the t distribution at level a and 

 degrees of freedom. 

Scheffé F test 
, where F is the critical value of the F distribution at level a and 

degrees of freedom k–1 and . 

Bonferroni/Dunn
, where t is the (two-tailed) critical value of the t distribution at level  

and degrees of freedom , and m is the number of comparisons, .

Dunnett’s Test

, where  is the number of counts in the last (control) 

group, and  is the critical value from a two-tailed Dunnett’s table at significance  

with  comparisons and  degrees of freedom.

Tukey-Kramer Test

 where  is the critical value of the studentized range at significance  with 

 means and  degrees of freedom.

ni i
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si i

r 1 ni⁄ 1 nj⁄+= i j
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D t r ×=
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D F × k 1–( ) r××=
νE

D t r ×= a m⁄
νE m k k 1–( ) 2⁄=

D tDunnett 
1
ni
---- 1

nk
-----+ 

 ×= nk

tDunnett a

k 1–( ) νE

D q r ×
2

-----------------= q a

k νE
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Games-Howell Test

 where  is the critical value of the studentized range at significance  

with  means and  degrees of freedom, with

.

Student-Newman-Keuls Test

 where  is the harmonic mean of counts in all groups, and  is the critical 

value of the studentized range at significance  with  means and  degrees of freedom, 

where  (i.e., it is one more than the number of steps between 

the ith and jth means when they have been placed in ascending order).

D q
1
2
---

si
2

ni
2

-----
sj
2

nj
2

-----+
 
 
 

= q a

k ν′
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2
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sj
2
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2

-----+
 
 
  2

si
4

ni
2

ni 1–( )
------------------------

sj
4

nj
2

nj 1–( )
------------------------+

-------------------------------------------------------=

D q 

H
--------= H q

a δ νE

δ Rank xi( ) Rank xj( )– 1+=
Contingency Tables

Two way tables

n = number of observations

r = number of rows of contingency table

c = number of columns of contingency table 

DF = 

 where , the expected values

C = column total

R = row total

O = observed value

N = grand total

r 1–( ) c 1–( )

χ2 O E–( )2

E
---------------------∑= E CR( ) N⁄=
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G statistic

Contingency coefficient

Phi

Cramer’s V

Note: when r = c = 2, V is the same as Phi where 

Chi-square with continuity correction (r = c = 2 only)

 where:
A = observed value in row 1, column1

B = observed value in row 1, column2

C = observed value in row 2, column1

D = observed value in row 2, column2

Post-hoc cell contribution

Cell chi-square

2 O O( )ln∑ R R( )ln∑– C C( )ln∑– N Nln+[ ]

χ2

χ2
N+

----------------

χ2

N
-----

χ2

N q 1–( )
---------------------

q min r c,( )=

χ2 N AD BC– N 2⁄–( )2

A B+( ) C D+( ) A C+( ) B D+( )
----------------------------------------------------------------------------=

O E–

E 1 R
N
----– 

  1 C
N
----– 

 
----------------------------------------------

O E–( )2

E
---------------------
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Fisher’s Exact Test (  only)

Define , where 

Let . If , let , , and 

. Otherwise, let , , and . 

Let  and ,

where  and  = 1 if  and = 0 

if . 

The exact p value is given by .

r c 2= =

P n11 n12 n21 n22, , ,( )
r1!r2!c1!c2!

N!n11!n12!n21!n22!
------------------------------------------------=

r1 n11 n12+ A B+= =

r2 n21 n22+ C D+= =

c1 n11 n21+ A C+= =

c2 n12 n22+ B D+= =

N n11 n12 n21 n22+ + + A B C D+ + += =

p0 P A B C D, , ,( )= AD BC≤ l min A D,( )= u min B C,( )=

s 1= l min B C,( )= u min A D,( )= s 1–=

p1 p0 P A si– B si+ C si+ D si–, , ,( )
i 1=

l

∑+= p2 p2iI p2i p0≤( )
i 1=

u

∑=

p2i P A si+ B si– C si– D si+, , ,( )= I p2i p0<( ) p2i p0≤

p2i p0>

p1 p2+
Nonparametrics

One sample sign test

U = user specified hypothesized value

 = number of observations > U

 = number of observations < U

Exact p value: 

, where 

Approximate p value: 

mean = N/2, standard deviation= , . 

N+

N-

N N+ N-+=

1
2
--- 

  N 1– N

i 
 

i 0=

n

∑ n min N+ N–,( )=

N 2⁄ Z N+ Mean–( ) SD⁄=
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Mann-Whitney U

 = number of observations in group 1

 = number of observations in group 2

Mean = 

Standard deviation = 

Correction for Ties

Standard deviation becomes , where  and t is 

the number of observations tied for a given rank.

n1

n2

N n1 n2+=

R1 Ranks of first group∑=

R2 Ranks of second group∑=

U1 n1n2

n2 n2 1+( )
2

------------------------- R2–+=

U2 n1n2

n1 n1 1+( )
2

------------------------- R1–+=

U min U1 U2,( )=

U ′ n1n2 U–=

n1n2( ) 2⁄

n1n2 n1 n2 1+ +( ) 12⁄

Z U Mean–( ) Standard deviation⁄=

n1n2

N N 1–( )
----------------------- N

3
N–

12
----------------- T∑– 

  T t
3

t–
12

------------=
Kolmogorov-Smirnov 

See Siegel, pp. 127–136, and Hollander.
Wald-Wolfowitz runs test

 = number of observations in group 1

 = number of observations in group 2

R = number of runs. A run is any sequence of scores from the same group.

n1

n2
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Mean = 

Standard deviation = 

Note that there are no corrections for ties. Ties may invalidate the results.

2n1n2

n1 n2+
----------------- 1+

2n1n2 2n1n2 n1 n2––( ) 

n1 n2+( )2
n1 n2 1–+( )

------------------------------------------------------------

Z R Mean– 0.5–
Standard deviation
-------------------------------------------=
Wilcoxon signed-rank

 for each matched pair

N = number of matched pairs excluding those with a D of zero

R = Rank of |D|

Mean = 

Standard deviation = 

Correction for Ties

Standard deviation =  where  and t is the 

number of observations tied for a given rank.

D X Y–=

R+ R∑  with D 0>=

R- R∑  with D 0<=

T min R+ R–,( )=

N N 1+( ) 4⁄

N N 1+( ) 2N 1+( )
24

---------------------------------------------

Z T Mean–( ) Standard deviation⁄=

N N 1+( ) 2N 1+( ) T∑
2

---------–

24
------------------------------------------------------------- T t

3
t–=
Paired sign test 

 = number of pairs with 

 = number of pairs with 

N+ X1 X2>

N- X1 X2<

N N+ N–+=
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Exact p value 

, where 

Approximate p value 

Mean = N/2, SD = , . 

1
2
--- 

  N 1– N

i 
 

i 0=

n

∑ n min N+ N–,( )=

N 2⁄ Z N+ Mean–( ) SD⁄=
Spearman rank correlation coefficient

N = number of matched pairs

 = Rank of 

 = Rank of 

 for each matched pair

Rho

Correction for Ties

 where t is the number of X observations tied for a given rank.

 where t is the number of Y observations tied for a given rank.

Rx Xi

Ry Yi

D Rx Ry–=

ρ 1
6 D
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t–
12
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t
3
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Kendall correlation coefficient

N = number of matched pairs

C = Kendall statistic determined as follows:
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Rank the observations on the X variable from 1 to N. Rank the observations on the Y variable 
from 1 to N. Arrange the list of N subjects so that the X ranks of the subjects are in their nat-
ural order, i.e., 1, 2, 3, …, N. For each Y rank, count the number of ranks below it which are 
larger. Then subtract the number of ranks below it which are smaller. The sum of this for each 
Y is C.

Standard deviation 

Correction for Ties

 where t is the number of X observations tied for a given rank

 where t is the number of Y observations tied for a given rank

t C
1
2
---N N 1–( )
--------------------------=

2 2N 5+( )
9N N 1–( )
--------------------------

z t Standard deviation⁄=

t C
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Kruskal-Wallis test

k = number of groups

 = number of cases in the jth group

, the number of cases in all groups combined

 = sum of ranks in the jth group

 

where , t is the number of tied observations in a tied group of scores, and 

 directs one to sum over all groups of ties.
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Friedman test
k = number of variables
N = number of rows

 for each variable where R is the score ranked by row, i=1, …, k. 

Correction for ties

Ri R∑=

χr
2 12

Nk k 1+( )
------------------------ Ri

2∑ 3N k 1+( )–=

χr
2

12 Ri N
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2
------------ 

 – 
  2

∑
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-----------------------------------------------------
T∑

k 1–
-----------–=
Survival analysis

For both nonparametric methods and regression models, ;  is the 

event time or censor time for the ith individual;  is 0 if  is an event time, 1 if it is a cen-

sor time.

For nonparametric methods, data may optionally be divided into G groups and/or S strata.

For regression models, , a vector of covariates, may be observed for each 

individual (required for proportional hazards models). For proportional hazards models, the 
data may be divided into S strata.

Event Times
Let  be the distinct ordered event times (i.e., the distinct sorted times 

 for which ). Define  and .

Survival (Distribution) Function ()
, where T = time to event

Cumulative Distribution Function ()

Probability Density Function ()

Hazard Function

Ti Ci,( ) i, 1 … N, ,={ } Ti

Ci Ti

zi z1i … zpi, ,( )=

t1 t2 … tE< < <

Ti Ci 0= t0 0= tE 1+ ∞=

S t( ) Prob T t>( )=

F t( ) Prob T t≤( ) 1 S t( )–= =

f t( ) dF
dt
------ F ′ t( )= =

λ t( ) f t( )
S t( )
---------=
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Cumulative Hazard Function

Ln Cumulative Hazard Function

Λ t( ) λ u( ) ud
0

t
∫ S t( )( )ln–= =

Λ t( )( )ln S t( )( )ln–( )ln=
Kaplan-Meier

Let  = number surviving just prior to 

 = number of events at 

 (remain at risk)

 = number censored in 

Survival Function

Failure ()

Survival s.e.

Cumulative Events

Cumulative Censored

Confidence Interval

where  is the (two-tailed) critical value of the normal distribution at significance level α.
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Quantiles

Let j be such that ; then 

Quantile standard error

, where  is an estimate of the density at 

Mean Survival Time

Mean standard error

, where  and 

Ŝ tj 1–( ) 1 p–( ) Ŝ tj( )≥> t̂ p tj=
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Actuarial

Interval i (denoted ) is 

 (interval i midpoint)

 = number entering  (number entered)

 = number events in  (number events)

 = number censored in  (number censored)

(effective number at risk)

 (conditional probability of failure)

 (conditional probability of survival)

 (conditional probability of failure standard error)

Survival function
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Failure ()

Survival s.e.

Density

Density standard error

Hazard

Hazard standard error

Median Residual Lifetime ()

Let j be such that ; then

 standard error

Confidence intervals

where  is one of , , or , and  is the (two-tailed) critical value of the nor-

mal distribution at significance level α.
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Ŝ τ i( )

2 fˆ τmj( ) ni ′
------------------------------=

 ĝ( ) ĝ zα 2⁄ σ̂ ĝ( )+=
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Quantiles

Let i be such that . Then estimate the pth quantile by linear interpo-

lation: 

Quantile standard error

Ŝ τ i( ) 1 p– Ŝ>≥

t̂ p τ i ∆t
Ŝ τ i( ) 1 p–( )–

Ŝ τ i( ) Ŝ τ i 1+( )–
--------------------------------------+=

σ̂ t̂ p( ) 1
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---------------- p 1 p–( )
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Linear rank tests

Let  = size of risk set for group j at 

 = number of events for group j at 

Test statistics

, where  and 

 

for ,  if  or 0 otherwise

Weights
Logrank (Mantel-Cox) 

Breslow-Gehan-Wilcoxon

Tarone-Ware
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Peto-Peto Wilcoxon

Harrington-Fleming

Here,  is the KM estimate of the survival function, computed separately for strata but 

pooled for groups.  is a slight modification of this estimate, with  replacing . 

Cell Contributions ( )

Sum weighted observed

Sum weighted expected

Contribution

Note that the sum of the cell contributions, which is an approximate chi-square statis-

tic, is not the same as the statistic  and is conservative (Peto and Pike, 1973).

Stratification

 and 

where  and  are computed for the ith stratum.

Trend versions
Let  be a set of weights for the groups. (If there is a numeric group-

ing variable and numeric values are used, these are the levels of the grouping variable; 
otherwise  if G is even, and 

 if G is odd.)

The test statistic in this case is 
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Proportional hazards model
Hazard function

 where  is a vector of covariates and β is a vector of 

unknown coefficients.  is the baseline hazard function, corresponding to z = 0.

Survival function

 where  is the baseline survival function.

λ t z;( ) λ0 t( )e
β′z

= z z1 … zp, ,( )=

λ0 t( )

S t z;( ) S0 t( )( )eβ′z

= S0 t( ) e
λ0 u( ) ud

0

t

∫
=

Parametric models
where W is a random variable with a distribution specified by the model chosen (see below); 
models available are exponential, Weibull, lognormal and loglogistic. Note that the model dis-
tribution refers to the distribution of the untransformed response time. Also, for the exponen-
tial model .

If the Don’t transform time variable option is checked, it is assumed that the event time vari-
able contains the values of rather than those of .

Y T( )ln µ β′z σW+ += =

σ 1≡

Yi Ti
Estimation (proportional hazards)

 = {individuals at risk just before }

 = {individuals who fail at }

 = number of elements of  = number events at 

Partial likelihood function

Assuming no ties, i.e., , 

Ri ti

Ei ti

ei Ei ti
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ei 1≡

L β( ) e
β′zi

e
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l Ri∈
∑

---------------------
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Breslow approximate likelihood
In case of ties, 

Log-likelihood

First derivatives (score function)

, where

Second derivatives (information matrix)
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Estimation (parametric models)
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 is the probability density of  (see below for distribution-specific definitions)

Likelihood function

Log-likelihood

First derivatives (score function)

, where

where  and 
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yi µ– β′zi–

σ
----------------------------=
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Second derivatives (information matrix)

 where

 

where 

Exponential

Same as for Weibull (below), except that and probability density of  is 

 and . Calculations involving U and I are performed on the last 

elements of the former and the submatrix of the latter of dimension  formed by 
excluding the first row and column.

Weibull
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∂
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Lognormal

Loglogistic

OLS initial parameter estimates

Initial estimates of µ, β from the regression model ; then estimate σ as 

, where  is the residual sum of squares from the regression and  is 1.28, 

1.00, 1.81 for the Weibull, lognormal and loglogistic models, respectively.

g wi( ) 1

2π
----------e

wi
2– 2⁄

=

g wi( ) e
wi

1 e
wi+( )

2
-----------------------=

Y µ β′z ε+ +=

1
sg
--- 

N p– 1–
---------------------- sg
Newton-Raphson iteration
Find  such that 

, where  and , and the algorithm ter-

minates when . If , then the step is repeated 

with the step size halved, i.e., 

β̂ U β̂( ) 0=

β̂
j 1+

β̂
j

∆βj
+= β̂0 0= ∆βj

I
1– β̂j( )U β̂j( )=
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j

( ) l β̂
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j

( )
-------------------------------------- c≤ l β̂

j
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β̂
j 1+

β̂
j 1– ∆βj 1–

2
----------------+=
Coefficient covariances
V̂ β̂( ) I
1– β̂( )=
Model coefficient p values (Wald)

For continuous or two-level nominal variables (including the dummy variables corresponding 
to levels of multi-level nominals):

β̂i
2

V̂ii β̂( )
--------------- χ1

2≅
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For nominal variables with  levels, where  is the vector of coefficients associated with 

the first  levels of variable i and  is the corresponding submatrix of :

k 2> β̂i

k 1– V̂i β̂( ) V̂ β̂( )

βi
ˆ ′ V̂i

1–
β̂( )β̂i χk 1–

2≅
Confidence intervals
1 2⁄
 

where  is the (two-tailed) critical value of the normal distribution at significance level α .
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  e
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=
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Survival function and related quantities
Baseline survival function
Proportional hazards

 where  and  is the solution to 

. If , then . Other-

wise, an iterative solution is required, using as an initial value , where 

. If the iterative solution fails to converge at time , the base-

line survival function is missing for times ≥ .

Exponential

 where 

Weibull

 where  and 
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Lognormal

 where Φ is the standard normal cumulative distribution 

function.

Loglogistic

 where  and 

Survival function evaluated at the observations
Proportional Hazards

 

Parametric Models

Cumulative hazard

Linear predictor and its standard error

Residuals

Let , i.e.,  is 1 if  is an event time and 0 if  is a censor time. For the pro-

portional hazards model, let . Also, if is an 

event time, let 

Ŝ 0 t( ) 1 Φ t( )ln µ̂–
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--------------------- 
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Martingale Residuals

, where  is an estimate of the baseline cumulative haz-

ard function. For parametric models, is defined above. For proportional hazards, it 

is defined as 

Deviance Residuals (proportional hazards only)

Score Residuals (proportional hazards only)

, where 

Quantiles (parametric models only)
No covariates in model

The quantities plotted are  where  is the model distribution  

with estimated scale and intercept parameters,  is the ith sorted event time, and  

is the Kaplan-Meier estimate of the survival function at . 

Covariates in model

Let  be the event or censor time for the ith individual, adjusted for 

covariates. The quantities plotted are  where  is the model 

distribution  with estimated scale and intercept parameters,  is the ith sorted 

event time, and  is the Kaplan-Meier estimate of the survival function at  

computed using the .
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Testing the global null hypothesis 

For : β = 0, there are three different statistics with p degrees of freedom.

Wald

Score

H0

χw
2 β̂′ V̂

1–
β̂( )β̂=

χS
2

U ′ 0( )I
1–

0( )U 0( )=
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Likelihood ratio

χLR
2

2 l β̂( ) l 0( )–[ ]=
Joint significance tests
: some subset  of the coefficients are 0.

Let r be the number of elements of ,  be the  of the coefficients when  is 

restricted to be 0, and  be the coefficients of  corresponding to . Also let 

 be the elements corresponding to  of the score function and information 

matrix, respectively, evaluated under the model with  constrained to 0.

Three different  statistics with r degrees of freedom:

Wald

Score

Likelihood ratio

H0 β*

β* β̂r β*

β̂* β̂ β*

U β0( ) I β0( ), β*

β*

χ2

χW
2 β̂* ′ V̂
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χS
2

U ′ β̂0( )I
1– β̂0( )U β̂0( )=
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2

2 l β̂( ) l β̂r( )–[ ]=
Stratification (proportional hazards only)
, i = 1, …, S

where , , , and  are the hazard, log likelihood, score function and information 

matrix, respectively, for the ith stratum.
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Stepwise

Remove variable i for which

  is smallest if .

Enter variable i for which

  is largest if ,

where  is a vector containing the estimated coefficients for variables in the model and 0s for 
variables not in the model, and is the information matrix swept on all rows correspond-
ing to variables in the model.

For nominal variables with  levels, the above  statistics become:

 and 

where the subscript i refers to the  elements of the vectors and the  ele-
ments of the matrices corresponding to the dummy variables representing the first  lev-
els of variable i.

χ2
i( )

β̂i
2

V̂ii β̂( )
---------------= P χ1

2 χ2
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χ2
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2≅=

k 1– k 1– k 1–×
k 1–
Logistic Regression

For a model in which  is the vector of  covariates and  is the nominal response variable 
with  levels coded as , define . Let  be the condi-
tional probability of response  given .

The logit functions are: 

.

Nominal independent variables are represented by collections of design variables. A –level 

nominal independent variable  is represented by  design variables (dummy variables) 

. They have values , where  is the Kronecker delta (defined 

below) and  is the ordinal level of  numbered from  to . So, for example, 

when  is at its first level, all  are zero; when  is at its second level, only ; etc.

The Kronecker delta is

.

x' p Y
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Logistic model
where  are vectors of coefficients each of length . (Note that  since 
.) Solving for the s we have

.

gr x( ) x Br⋅=

br0 x1br1 … xpbrp+ + +=

Br p 1+ B0 0=
g0 x( ) ln1 0= = π

πs x( ) e
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e
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r 0=
R∑

--------------------------=
Estimation
Partial likelihood function

For a sample of  independent observations the conditional likelihood function is 

.

Log-likelihood

First derivatives

 for  and .

Second derivatives (information matrix)

 where  for  and 

, and  and , so  is an  matrix. 
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Parameter fitting

A modified Newton-Raphson iterative procedure is used to find parameters  for 

 such that  is maximized, simultaneously solving the 

 equations .

B̂r

r 0 1 … R, , ,= l B̂1 B̂2 …B̂R, ,( )

R p 1+( ) l∂
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Coefficient covariances
1–
V̂ B̂1 B̂2 …B̂R, ,( ) I B̂1 B̂2 …B̂R, ,( )=
Model coefficient p values (Wald test)

For continuous or two-level nominal variables (including the dummy variables corresponding 
to levels of multi-level nominals):
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ˆ
k
2
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Partial correlation (R statistic)
where the sign is that of the coefficient ,  is the Wald statistic, and  is the log likeli-
hood for a model containing only the intercepts (i.e.,  for  and 

).
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Confidence intervals
where  is the (two-tailed) critical value of the normal distribution at significance level α .
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Likelihood ratio tests
where  is the log likelihood for a model refit with variable  excluded. The degrees of free-
dom for the test is  minus the number of parameters fitted in the model excluding 
variable .

χu
2

2 l B̂( ) lu–( )=

lu u
R p 1+( )

u

Classification

For each  the predicted response is  where  satisfies:

(i.e.,  is the most probable response).

xi ŷi r= r
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r

Global tests

Arrange the data according to distinct values of  (i.e., unique covariate patterns) labeled by 

 where the number of distinct covariate patterns is . Let  be the 
number of responses  in the covariate group , let  be the number of members of , 
and let  be the probability of response  for group  predicted by the fitted model.

Pearson

Deviance

Likelihood Ratio

 where  is the log likelihood for a model containing only the inter-

cepts (i.e.,  for  and ).

x
g 1 2 … G, , ,= G n≤ ρgr

y r= g ng g
πgr y r= g

χP
2 ρgr ngπgr–( )2

ngπgr
---------------------------------

r 0=

R

∑
g 1=

G

∑=

DF R G p– 1–( )=

χD
2

2 ρgrln
ρgr

ngπgr
------------ 

 
r 0=

R

∑
g 1=

G

∑=

DF R G p– 1–( )=

χLH
2

2 l B̂( ) l0–( )= l0

Brk 0= r 0 1 … R, , ,= k 1 2 … p, , ,=



A Algorithms Bivariate Plots 
DF Rp=
Bivariate Plots

The scatterplot smoothers are applied to a set of points  for  yielding a 
smoothed function  such that , where  are the residuals.

Lowess
The lowess method, described in detail by Cleveland (1979), is outlined here.

Let  and  be the nearest integral value to . Then  is the called “tension.” Let 
 be the distance from  to its rth nearest neighbor.

Let

The smooth function  is produced by the steps:

1. For each  fit a line to the points  by weighted least squares using 

weights . Denote the value of the fitted line evaluated at  as . 

2. Let , and let  be the median value of . Define robustness weights 

. Compute a new set of s by repeating the fit procedure of step 1 using 

weights .

3. Repeat step 2. 

For any value  on the interval , call the nearest bracketing  values  and . Then 
the smoothed function  is the linear interpolation between the points  and 

.

Supersmoother
The method, described in detail by Friedman (1984), is outlined here.

Order the data by ascending value of . 
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 A Algorithms Bivariate Plots
Define the symmetric -nearest neighbor smoothing function,  where for 
each  a line is fit by least squares to the points  for which 

. The fit value, , is the value of the jth line evaluated at . 

Define the cross-validated residuals for a span of  neighbors centered about 

where , and  with  the average and  the variance 

of the  in the span.

The steps in the procedure are as follows:

1. Perform nearest neighbor smoothing for spans including , , and  of the points. 

Compute  with , , and .

2. Smooth the cross-validated residuals from step 1 with a  span and choose, point by 

point, the span value that produces the smallest smoothed residual. Compute 
 for each of the three ‘s, where  denotes the vector of 

s. Then form

where .

3. Smooth the vector of best spans. .

4. Use the smoothed best spans to interpolate between the smoothed curves from step 1. 

Let
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A Algorithms QC Subgroup Measurements 
For any value  on the interval  call the nearest bracketing  values  and . Then 
the smoothed function  is the linear interpolation between the points  and 

.

u x1 xn,( ) x xi xj
s u( ) xi ŷi,( )

xj ŷj,( )
Cubic spline

The cubic spline is computed assuming the natural boundary conditions on the end points, 

i.e.,  and  where . y'' x1( ) 0= y'' xn( ) 0= y'' δ2
y

δx
2

--------=
QC Subgroup Measurements

Exact probabilities or critical values for constants are calculated wherever possible and practi-
cal. Those probabilities or constants taken from tables are noted below. 
Sigma

Sigma (σ), which is the estimate of the process standard deviation, is computed in one of two 
ways. It may be based on subgroup standard deviations: 

or it may be based on subgroup ranges:

where  is the square root of a weighted average of the subgroup variances

 is an unbiasing constant with k degrees of freedom

and k degrees of freedom usually = total number of observations – number of subgroups + 1.

σ
sg
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---------------∑
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j
∑

i
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i
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----------------------------------=
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2

k 1–
-----------

Γ k 2⁄( )
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--------------------------------=

Γ k( ) k 1–( )Γ k 1–( )=

Γ 1( ) 1=

Γ 1 2⁄( ) π=



 A Algorithms QC Subgroup Measurements
In the equations above,

 = the range of subgroup i;  is the number of observations in subgroup i;  is the 
expected value of the range of k normal observations with standard deviation 1 (this value is 
read from a table);  is the standard deviation of the range of k normal observations with 
standard deviation 1 (also read from a table).

fi
d2 ni( )( )2

d3 ni( )
----------------------=

ri ni d2 k( )

d3 k( )
Xbar analyses

The center line is computed as , where µ is the mean of all measurements from all 
subgroups.

If control limits are based on k-sigma, then

If control limits are based on alpha, then

where is the standardized normal score.

cl µ=

 cl kσ
ni

--------+=

 cl kσ
ni

--------–=

 cl zα 2⁄
σ
ni

--------+=

 cl zα 2⁄
σ
ni

--------–=

zα 2⁄
R analyses

The center line is computed as .

If control limits are based on k-sigma, then

 

unless  is < 0, in which case  = 0.

If control limits are based on alpha, then

cl d2 ni( )σ=

 cl kd3 ni( )σ+=

 cl kd3 ni( )σ–=

 D1 α 2⁄– ni( )σ=

 Dα 2⁄ ni( )σ=



A Algorithms QC Subgroup Measurements 
where values of D with degrees of freedom are retrieved from a table from Harter (1960). 
Note that StatView retrieves values of D for only nine values of α: 0.4, 0.2, 0.1, 0.05, 0.02, 
0.01, 0.002, 0.001 and 0.0002. For all values of α within this range, D is interpolated by the 
method suggested by Harter. For α less than 0.0002, StatView uses the value for α = 0.0002. 
For the most accurate results, avoid interpolated values by setting α to one of the values given 
above.

ni
S analyses

The center line is computed as .

If control limits are based on k-sigma, then

unless  < 0, in which case  = 0.

In the equations above,  is an unbiasing constant. If s is a sample standard deviation 
with k degrees of freedom, then the standard deviation

Therefore, 

If control limits are based on alpha, then

where is the chi-square value of indicated probability with degrees of freedom. 

cl c4 ni( )σ=

 cl kc5 ni( )σ+=
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s
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--------------------- σ=
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2
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 σ
χα 2⁄ ni 1–,

2

ni 1–
-------------------------=

χ2
ni 1–
CUSUM analyses

The high and low cumulative sums are calculated as

 and  are independently set to 0 if their computed values are < 0.

SHi zi k– SHi 1–+=

SLi zi– k– SLi 1–+=

SHi SLi



 A Algorithms QC Subgroup Measurements
In the equations above, 

is the mean of the ith subgroup, µ is the mean from all measurements and k is dev/2, 
where dev is the magnitude (in standard units) of the mean shift to be detected, as specified by 
the user. 

zi

µi µ–( ) ni

σ
----------------------------=

µi
Capability analyses
Where  and  are the user-specified upper and lower specification limits, respectively; s is 
the standard deviation of all measurements:
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A Algorithms QC Individual Measurements 
T is the user-specified target value for the process; m is the average of  and ; and Z is a 
standard normal variable.
QC Individual Measurements

Sigma

For individual measurements, σ, when computed, can be based on one of two different meth-
ods of calculation. The default method is based on the standard deviation of the measure-
ments:

Alternately, the more traditional method is based on the average moving range of the measure-
ments:

In the equations above,  is the average of the moving ranges of the data over a window 
(range span) of size rs:

where , i.e.,  is the moving range for the ith 
measurement;  is the ith included measurement in the dataset; n is the total number of 
included measurements in the dataset; and is the expected value of the range of rs nor-
mal observations with the standard deviation assumed to be 1. It is read from a table.

In the equation for σ based on the standard deviation of the measurements, is the same 
unbiasing constant as used in the subgroup measurement calculations.

σ s
c4 n( )
------------=

σ MR
d2 rs( )
--------------=

MR

MR

MRi
i
∑

n rs– 1+
----------------------=

MRi Range xi rs– 1+ xi rs– 2+ … xi, , ,( )= MRi
xi

d2 rs( )

c4 n( )
I analyses

All center lines and control limits are computed in the same way as the equivalent values for 
Xbar analyses, above.
MR analyses

The center line is computed as .cl MR=



 A Algorithms QC P/NP
If control limits are based on k-sigma, then

If control limits are based on alpha, then

Note that this is closely related to the formula that is used to calculate alpha-based control 
limits for R charts. As is the case for R charts, D is retrieved from a table. The same cautions 
regarding interpolated values apply here as well. 

 cl kσd3 rs( )+=

 cl kσd3 rs( )–=

 D1 α 2⁄– rs( )σ=

 Dα 2⁄ rs( )σ=
CUSUM and capability analyses

See  and capability analysis computations for subgroup measurements, above.
QC P/NP

p analyses

The center line is computed as , where p is the total number of nonconforming items 
divided by the total number of items for all subgroups.

If control limits are based on k-sigma, then

If control limits are based on alpha, then

where (np) and (np) are defined below.

cl p=

 min cl k p 1 p–( )
ni

-------------------+ 1, 
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ni
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ni
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
 np( )

ni
--------------------=
np analyses

The center line is computed as  unless it is specified in the Lines dialog box.cl nip=



A Algorithms QC C/U 
If control limits are based on k-sigma, then

If control limits are based on alpha,  is calculated by setting 
and then solving for , where is the incomplete 

beta function, . Similarly,  is calculated by setting 

 and then solving for . Note that for all p/np analyses with 

alpha-based control limits,  is set to 0 for all values of .

 min cl k nip 1 p–( )+ ni,( )=

 max cl k nip 1 p–( )– 0,( )=
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α
2
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α 2 1 p–( )n<
QC C/U

c analyses

The center line is computed as  where u is the average number of nonconformities 

per inspection unit over all subgroups, and is the number of inspection units in the ith sub-

group.

If control limits are based on k-sigma, then

If control limits are based on alpha,  is calculated by setting  and 

then solving for , where  is the incomplete gamma function: 

Similarly,  is calculated by setting  and then solving for .

cl niu=
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u analyses

The center line is computed as .cl u=



 A Algorithms QC C/U
If control limits are based on k-sigma, then

If control limits are based on alpha, then 

where  and  are defined above. 

Note that for all c/u analyses with alpha-based control limits,  is set to 0 for all values of 

.
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ni
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accelerated failure time model Fully para-
metric survival regression models of the 
form . These 
are termed “accelerated” failure time mod-
els because a unit change in the covariate 

 induces a multiplicative change of  
in the time to failure. Perhaps more accu-
rately, this change should be termed an 
acceleration when  is negative and a 
deceleration when  is positive.

alpha The Type I probability that any indi-
vidual value of a process statistic exceeds 
the control limits; more generally, the prob-
ability of Type I error, where a null hypoth-
esis that should be accepted is rejected. 

alphanumeric Comprised of letters and/or 
numerals. 

analysis of variance () Analysis of 
variance determines the significance of the 
effects or factors in a model by calculating 
how much of the variability in the depen-
dent variable can be explained by the effect 
in question. Other model types are  
(analysis of covariance), which includes 
continuous independent variables called 
covariates,  (multivariate analysis of 
variance), which includes more than one 
dependent variable, and  (multi-
variate analysis of covariance), which 
includes more than one dependent variable 
and continuous independent variables. 

argument A value on which a function 
operates. The arguments to a function can 
be constants, column names or formulas.

assignable causes Any nonrandom factors 
that affect the results of a process. Gener-
ally, the identification and elimination of 
these is one of the primary goals of any 
quality improvement program.

T( )log µ β′Z σW+ +=

Zj e
βjZj

βj
βj
attribute Any descriptive characteristic of 
an item (e.g., an item’s color or texture). In 
 analyses, the most common attribute of 
interest is whether or not an item is defec-
tive.

baseline The descriptor given to survival 
and hazard function estimates from a sur-
vival regression model for the case in which 
all covariates are equal to 0.

beta The probability of type II error (the 
error of accepting a null hypothesis when it 
is actually false). 

between factor In repeated measures 
, an independent variable to test for 
differences among groups, as opposed to a 
within factor, which is used to compare sev-
eral measurements of the same quantity 
under different conditions or at various 
times. 

binary Having two possible values. 

bivariate graph A graph that plots the rela-
tionship between an X and Y variable. Can 
be displayed as a scattergram or line chart. 
(See also univariate graph.) Can include fit-
ted lines: cubic spline, lowess, super-
smoother, or linear regression. 

case-control studies In many settings, it 
can be expensive or impossible to obtain 
random samples of the dependent variable, 
even at pre-specified values of the indepen-
dent variables. To overcome these obstacles, 
case control studies sample separately a set 
of cases (e.g., individuals with the disease of 
interest) and a set of controls (e.g., individ-
uals who do not have the disease). 

cell  A subset of your data. Specifically, the 
intersection of the groups in your data 
when several nominal variables are consid-
ered. A cell is defined by the group labels of 
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the nominal variables. Multiply the number 
of distinct group labels in all nominal vari-
ables to get the maximum number of cells 
in the resulting analysis. 

cell plot  A plot which compares the 
means or sums of related variables or 
groups. You can depict data as bar charts 
(often referred to as side-by-side bar charts), 
line charts, or point charts to compare vari-
able to variable and group to group.

censor time The time elapsed from the 
onset of observation of a subject until the 
subject is censored. Censoring occurs when 
the subject can no longer be observed 
because, for instance, the subject drops out 
of the study or the study ends.

censored observation Any subject in a sur-
vival analysis for whom the event time mea-
surement is incompletely known. StatView 
supports only right censoring. A censored 
observation is sometimes referred to as an 
incomplete observation.

censoring The exclusion of a subject from 
the risk set at time t because that subject’s 
survival status is unknown at time t. 

colinearity The condition of relatively 
high correlation among variables. In an 
extreme case of colinearity, a straight line 
describes perfectly the relationship between 
two variables. Colinearity between inde-
pendent variables in a regression makes it 
impossible to discern their individual effect 
on a dependent variable.

compact variable An alternative to enter-
ing each observation’s group label in a col-
umn, a compact variable is a way to use 
individual columns to identify the groups 
of a nominal variable. Created by selecting 
the columns and clicking the Compact but-
ton in the dataset or the variable browser. 
In a compact variable, all the data in a col-
umn must belong to the same group. This 
structure is required to define the within 
factor of a repeated measures model.
confidence interval  A range of values such 
that there is a known probability that the 
true value of some quantity lies within that 
range. This probability is known as the con-
fidence level, and must be stated before the 
confidence interval is calculated. For exam-
ple, the 95% confidence interval for a mean 
represents a range of values within which 
we expect to find the true value of the mean 
95% of the time.

continuous selection  Selection (using the 
mouse) of cells, rows, columns or elements 
that are next to each other. Selected by 
clicking the first item and then dragging the 
mouse to the last item.

continuous data Continuous data can 
assume any numerical value over a given 
interval, e.g., data that describe persons’ 
weights or height.

control limits Maximum and minimum 
values of a particular process statistic if the 
process is in control. Values of the process 
statistic beyond these limits are regarded as 
evidence that the process is out of control.

convergence criterion The minimum rela-
tive difference in likelihood functions for 
successive iterations of the model-fitting 
procedure. When the relative difference in 
likelihood functions for successive itera-
tions falls below this value, the fitting pro-
cedure stops. Note that the fitting 
procedure also stops if the maximum num-
ber of iterations is reached before the con-
vergence criterion is met.

covariate A covariate is an independent 
variable in a [][] model that is a 
continuous variable. A covariate is expected 
to behave as a regressor (where its values 
might be thought to predict the values of 
the dependent variable) and is added to the 
model to remove its effect so that the influ-
ence of the factors can be more accurately 
measured. In survival regression models, 
covariates are used to model the variation in 
the event time variable.
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cubic spline A smoothing method for 
bivariate scattergrams that connects a series 
of third order polynomial regressions in a 
moving window of four data points. 

degrees of freedom The degrees of free-
dom (often denoted “df” or “DF”) associ-
ated with a statistical calculation are the 
total number of parameters minus the 
number of “fixed” parameters in the calcu-
lation. For example, a statistic based on the 
sample mean for a dataset with n observa-
tions has  degrees of freedom. One of 
the n observations is considered “fixed,” 
because more than one observation is 
required to calculate the variance for the 
mean. The estimate of variance is required 
because without it one cannot estimate 
measures of certainty, and thus p values, 
about test statistics (such as t, F, chi-square, 
etc.). 

dependent variable The dependent is the 
variable whose variation you want to 
explain through a relationship with the 
assigned independent variable(s). Depen-
dent variables are often called “Y variables,” 
“response variables,” or “outcome vari-
ables.”

deviance In logistic regression, a multiple 
of the log of the likelihood function: 

.

dichotomous Having two possible values. 

effect A term in an , , 
, or  model. A main effect 
is a term that consists of a single variable 
treated as a factor. An interaction effect is a 
term that consists of a factor crossed with 
one or more other factors or covariates. 

eigenvalue A value of lambda (λ ) for 
which  for  where A is a 
square matrix and x is a vector. Each eigen-
value is associated with a corresponding 
eigenvector. The eigenvectors correspond-
ing to large eigenvalues are usually the most 
useful.

n 1–
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eigenvector A vector  for which 
, where A is a square matrix and 

λ  (lambda) is an eigenvalue of A. The 
eigenvectors of a correlation matrix are use-
ful in determining which variables explain 
the variability seen in a dataset.

error bar  The extension of a single point 
on a graph to reflect the variability of the 
quantity being estimated.

event An occurrence of special interest that 
marks the endpoint of an event time. In a 
survival analysis, the event is often failure or 
death of the subject.

event time The time that elapses from the 
onset of observation of a subject to the 
occurrence of the event of interest.

excess risk The absolute difference in risk 
or probability of an outcome when com-
paring exposed to unexposed individuals.

explanatory variable Another name for 
independent variable. 

exponential distribution A special case of 
the Weibull distribution, with the scale 
parameter equal to one. For the exponential 
distribution to be applied to a parametric 
model, the hazard function must be con-
stant.

exponential regression A nonlinear trans-
formation of the basic linear regression 
model in the form . 

factor A factor is a single nominal variable 
in a linear model, such as an . Factors 
by themselves or crossed with other factors 
comprise “effects” or “terms” in such mod-
els.

failure The term used as a synonym for 
event in a typical medical or engineering 
survival analysis in which subjects “fail” or 
die.

false signal Any indication, usually from 
control charts or tests for special causes, 
that a process is out of control when, in 
fact, the process is in control. See Type I 
error, below. The QC analyst tries to mini-

x 0≠
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mize the occurrence of such signals, while 
maximizing the detection of true signals.

fitted value  The values of the dependent 
variable generated by a regression equation 
when you calculate it using the values of the 
independent variables in your data. 

frequency plots  Graphical displays of the 
frequency distribution of a variable. Stat-
View produces regular histograms, z-score 
histograms, and pie charts.

grid lines  Lines that run across a graph 
perpendicular to an axis and mark the 
major and minor intervals along the axis. 

group A collection of cases in a dataset that 
share the value of a nominal variable. All 
observations with the same value for the 
nominal variable are said to be in the same 
group level. For example, a nominal vari-
able describing a person’s gender divides the 
data into two group levels: male and 
female.

group label  A name that identifies the dis-
tinct groups of a nominal variable. A label 
is also used to identify the groups of a cate-
gory. 

grouping variable A nominal variable that 
has a distinct value for each group in the 
dataset and thereby identifies the different 
groups in the data when the variable is used 
in an analysis.

growth regression A nonlinear transforma-
tion of the basic linear regression model in 
the form . 

hazard function The rate of occurrence of 
events at time t.

hazard function, cumulative Measures the 
cumulative risk to which an individual is 
exposed up to time t. The cumulative haz-
ard function is equal to the negative log of 
the cumulative survival function.

histogram  A bar chart that plots the dis-
tribution of a variable.

hypothesis testing A statistical technique 
for collecting data to answer questions 

Y e
b0 b1X+
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through the use of a statistical model. Each 
question is stated in the form of a null 
hypothesis, and the answer takes the form 
of either acceptance or rejection of the null 
hypothesis according to whether the p value 
of a test statistic is greater than or less than 
an appropriate significance level. 

hypothesized value  A value you suspect a 
particular statistic to have in the population 
you are studying. You can construct a 
hypothesis test to see if your hypothesized 
value is reasonable considering the data you 
collected.

in control The description for any process 
that produces items that vary within the 
limits proscribed by a particular statistical 
distribution.

independent variable The independent 
variable is used to explain the linear varia-
tion in the dependent variable. Note that 
multiple and stepwise regressions take more 
than one independent variable. Indepen-
dent variables are sometimes called “X vari-
ables,” “predictor variables,” “design 
variables,” or “explanatory variables.” 

informative data An informative variable 
is used for identification purposes only, e.g., 
a column containing names of patients in a 
study.

interaction effect An interaction effect is a 
term in an [][] model that consists 
of a factor crossed with one or more other 
factors or covariates, as opposed to a main 
effect, which is a single variable treated as a 
factor. 

joint significance tests Statistical proce-
dures for evaluating the probability that 
two or more covariates together (thus, 
“joint”) make a significant contribution to 
a statistical model. These same procedures 
can be used to evaluate the contribution to 
a model of individual covariates as well, 
though in such cases, these procedures 
would be more accurately called individual 
significance tests.
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k The constant by which sigma is multi-
plied to calculate the normal approxima-
tion of the control limits. 

k-sigma An expression that indicates that k 
multiples of sigma are used to compute 
upper and lower control limits about a cen-
ter line.

lambda A quantity used to compute 
Power, Lambda is sometimes called “partial 
eta squared” or “noncentrality value.” 

LCL The Lower Control Limit, the mini-
mum value for a particular process statistic 
if the process is in control.

level A cell or group within a factor, inter-
action, categorical variable, or any other 
nominal or grouping variable. A collection 
of cases in a dataset that share the value of a 
nominal variable. All observations with the 
same value for the nominal variable are said 
to be in the same group level. For example, 
a nominal variable describing a person’s 
gender divides the data into two groups or 
levels: male and female. 

likelihood ratio test In logistic regression, 
a test of the relationship between an inde-
pendent and dependent variable based on 
comparing the likelihood or deviance of a 
model including the independent variable 
of interest with that of a model excluding 
it. 

log odds The log of a probability divided 
by one minus the same probability: 

.

logarithmic regression A nonlinear trans-
formation of the basic linear regression 
model in the form . 

logistic regression A modeling technique 
analogous to linear regression that examines 
the relationship between a nominal out-
come (or dependent) variable with one or 
more nominal or continuous independent 
variables. 

loglogistic distribution The frequency dis-
tribution of a variable whose logarithm fol-

p 1 p–( )⁄( )log
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lows a logistic distribution. The hazard 
function of a parametric model based on a 
loglogistic distribution either always 
decreases with time or initially increases to 
a maximum and then decreases.

lognormal distribution The frequency dis-
tribution of a variable whose logarithm fol-
lows a normal distribution. For the 
lognormal distribution to be applied to a 
parametric model, the hazard function 
must be initially increasing and then 
decreasing.

lowess A locally weighted regression 
method for smoothing bivariate scatter-
grams. Its tension parameter indicates what 
percentage of the dataset’s values should be 
included each the window for the smooth-
ing. A higher number produces a tighter 
smooth (with less response to local vari-
ances); a lower number produces a looser 
smooth (that is more strongly influenced by 
local variances). 

₍₎₍₎ [][] is shorthand for 
[ultivariate] alysis f []riance; that 
is, it denotes  (analysis of variance), 
 (analysis of covariance),  
(multivariate analysis of variance), and 
 (multivariate analysis of covari-
ance). All are specific types of models 
within the general linear model (along with 
linear regression, etc.). All are models pre-
dicting the values of one or more depen-
dent continuous variables from 
combinations of one or more factors (inde-
pendent nominal variables) and/or covari-
ates (independent continuous variables). 

main effect A main effect is a term in a 
[][] model that consists of a single 
variable treated as a factor, as opposed to an 
interaction effect, which consists of a factor 
crossed with one or more other factors or 
covariates. 

missing cell  An intersection of the groups 
in combined nominal variables for which 
there is no data. You get missing cells in 
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your data when one of the combinations of 
groups among the nominal variables does 
not exist in the data.

missing value A case which has no value 
for a variable, either because none was 
available or because data were lost. A miss-
ing value is represented by a period ( . ). 

model In statistics, any mathematical 
expression used to account for or “explain” 
the variation in at least one other variable.

nominal data Nominal data identify 
which the groups to which each observa-
tion belongs. 

nonconforming item An item that is 
defective, i.e., an item that does not meet 
minimum standards of acceptability.

nonconformity Any attribute of an item 
that is unacceptable (e.g., scratches, dents, 
discolorations).

nonlinear regression Nonlinear regression 
analysis estimates a nonlinear (exponential, 
logarithmic, power, or growth) transforma-
tion of the linear regression model. 

nonparametric Statistical procedures 
which make less restrictive assumptions 
about the population(s) from which the 
data were sampled.

null hypothesis  A statement that a quan-
tity has a particular value, or that several 
quantities are equal. The null hypothesis is 
the statement you are evaluating through 
your analysis of the data. It provides a basis 
for hypothesizing a known distribution for 
a statistic. You compare an observed value 
to the hypothesized value to see if the data 
supports the null hypothesis. If the test sta-
tistic seems unreasonable under the 
assumption of the null hypothesis, you can 
reject the null hypothesis in favor of some 
alternative, usually a statement which is the 
opposite of the null hypothesis. For exam-
ple, the null hypothesis for an unpaired t-
test is that there is no difference between 
the means of the two groups you are com-
paring. So, a rejection of the null hypothe-
sis means that the means of these two 
groups are not the same. 

one-sided test  A statistical test which con-
siders the possibility of change or difference 
in only one direction. For example, a test of 
the hypothesis that one mean is equal to 
another mean versus an alternative hypoth-
esis that the first mean is greater than the 
other mean. This is in opposition to the 
two-sided test which has an alternative 
hypothesis that the means are simply not 
equal. One-sided tests should only be per-
formed when you have secure knowledge 
that a change in the other direction is phys-
ically impossible. The option to perform a 
one-sided test is available in the one sample 
inference, paired comparison and unpaired 
comparison.

out of control The description for any 
process that produces items that deviate 
from the expected patterns of variation that 
are consistent with a particular statistical 
distribution.

outcome variable Another name for 
dependent variable. 

p value  A value indicating the likelihood 
that the data used to carry out a statistical 
test would occur under a specified hypothe-
sis. A p value represents the probability that 
a statistic would have a value at least as 
extreme as the one observed, assuming the 
hypothesis in question is true. Thus, with a 
low p value (less than 0.05, for example) it 
is unlikely that the hypothesis is reasonable; 
similarly a high p value indicates that the 
data does not contradict the null hypothe-
sis. A low p value leads you to reject the 
null hypothesis. 

paired comparison  A comparison of two 
variables, both measured on each of several 
subjects.

polytomous Having many possible values. 

population  The collection of all possible 
units similar to the ones you are studying. 
The population is usually the group to 
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which you extend your results after your 
analysis is performed. A sample is a subset 
of a population.

post hoc test A post hoc test is used as a 
follow-up to a [][] analysis in 
which one or more effects are found to be 
significant (in other words, after the null 
hypothesis has been rejected) to determine 
how the groups of that effect differ. 

power The ability of a statistical test to 
declare a true difference “statistically signifi-
cant.” Its value is equal to 1 minus Beta, 
and its computation for [][] is 
based on a quantity called Lambda. 

power regression A nonlinear transforma-
tion of the basic linear regression model in 
the form . 

process Any action or series of actions that 
generates a measurable result.

process statistic Computations that are 
used to infer characteristics of a process 
which typically are based on measured 
results of this process.

proportional hazards The assumption 
that, for different covariate values, the ratio 
of hazard functions is constant across all 
failure times.

raw data  Raw data consists of the infor-
mation originally obtained from a test, 
experiment or survey, before it has been 
summarized or condensed by any method. 

recode  To describe any change in the rep-
resentation of a variable’s values by recoding 
continuous values to levels of a category or 
substituting computed values to replace 
missing values.

regression Regression analysis determines 
whether the values of one or more indepen-
dent variables in a model can predict the 
values of a dependent variable. 

regression line The line that describes the 
position of values predicted from a regres-
sion equation, with the independent vari-
able plotted on the vertical axis and the 
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dependent variable plotted on the horizon-
tal axis.

relative risk The risk or probability of an 
outcome for an exposed individual divided 
by the risk of an unexposed individual (e.g., 
a relative risk of ten in a smoking/lung can-
cer study would indicate that subjects who 
smoke are ten times more likely to develop 
lung cancer than subjects who don’t).

repeated measures analysis of variance An 
 model in which one or more of the 
independent variables are used to compare 
several measurements of the same quantity 
under different conditions or at various 
times. This independent variable is called a 
within factor. A repeated measures  
can also contain one or more between fac-
tors to test for differences among groups. 

residual  The difference between the fitted 
value of the dependent variable in a regres-
sion and its actual value.

response variable Another name for 
dependent variable. 

right censoring The exclusion of subjects 
from the risk set at times beyond , 
because their survival status is unknown 
beyond .

risk The probability that any individual 
will experience an event. 

risk set The group of all subjects vulnera-
ble to an event at time t. Excludes all sub-
jects that have experienced the event or 
have been censored before time t.

sample  The specific collection of units 
from which a dataset is derived. The units 
of a sample are usually a subset of the popu-
lation.

scattergram  A graph that represents data 
points as unconnected marks or dots on an 
X-Y plane (Cartesian coordinate system). 

sigma The estimate of the standard devia-
tion about a particular process statistic.

significance level  A preset value, expressed 
as a probability between zero and one 

tc
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(p value), used as a cutoff value in deter-
mining whether to reject a null hypothesis. 
Essentially, the significance level is an esti-
mate of how often you will err by rejecting 
a hypothesis which is in fact true. A com-
mon significance level is 0.05, which means 
you are willing to be wrong one out of 
twenty times ( ) when you 
reject the null hypothesis.

statistical process control () The use of 
statistics to identify the occurrence of 
assignable causes in processes.

strata In proportional hazards models, 
strata define groups having different base-
line survival functions. In nonparametric 
models, strata define groups for which sepa-
rate survival functions are estimated. In 
general, strata define groups whose behav-
ior must be accounted for to maintain the 
validity of the model, but do not provide a 
basis for tests of significance. In this sense, 
strata define “nuisance” groups.

subgroup A natural division of observa-
tions from a population, with no observa-
tions repeated among equivalent divisions 
in the same population. 

supersmoother Supersmoother is a 
smoothing method for bivariate scatter-
grams that uses a local cross-validation 
technique to determine how much smooth-
ing is needed in each region along the X 
axis. It uses less smoothing in areas of 
greater curvature or lesser variance, and it 
uses more smoothing in areas of lesser cur-
vature or greater variance. 

survival function, cumulative The esti-
mate of the proportion of individuals that 
have not experienced the event from time 0 
to time t. Often referred to simply as the 
survival function.

survival status The state of subjects with 
respect to whether or not they have experi-
enced the event.

tail  The extreme region of a distribution 
curve for a particular variable or statistic. If 
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there are extreme values spread out over a 
large range, the distribution has long tails. 
The upper tail of a distribution refers to 
extremely large values; the lower tail refers 
to extremely small values.

tolerance A criterion for abortion of a 
model-fitting procedure that is dependent 
on colinearity among independent variables 
(covariates). The greater the colinearity 
among these variables, the more likely it is 
that they will fail to satisfy the conditions 
established by a given tolerance, and that 
the model-fitting procedure will be 
aborted.

Type I error The rejection of a true null 
hypothesis. For QC analysis: in  analy-
ses, a Type I error occurs when a process is 
mistakenly identified as being out of con-
trol. 

Type II error The acceptance of a null 
hypothesis when it is false. 

UCL The Upper Control Limit, the maxi-
mum value for a particular process statistic 
if the process is in control.

unbalanced design A balanced  
design is one in which the cells of each fac-
tor or combination of factors have an equal 
number of cases. An unbalanced  
design is one in which the cells of each fac-
tor or combination of factors have differing 
numbers of cases. 

uncensored observation Any subject in a 
survival analysis for which the entire dura-
tion of the event time measurement is 
known. This is sometimes referred to as a 
complete observation.

univariate graph  A graph that presents 
one-dimensional data, with only a Y axis. 
Each individual observation is plotted.

unpaired comparison  A comparison of 
the measurements of two distinct groups of 
equal or unequal size.

Wald test In logistic regression, a test of 
the relationship between an independent 
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and dependent variable based on compar-
ing the estimate of the slope coefficient to 
its standard error. 

Weibull distribution The generalization of 
the exponential distribution, with both 
scale and intercept parameters, to accom-
modate non-constant hazard functions. For 
the Weibull distribution to be applied to a 
parametric model the hazard function must 
be a power of T.

within factor In repeated measures , 
an independent variable used to compare 
several measurements of the same quantity 
under different conditions or at various 
times, as opposed to a between factor, 
which tests for differences among groups. 
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Symbols
– , 
# 
( ) –
( ] 
* , 
** 
+ , 
. see missing values
/ 
/* 
< , 
<> 
= , 
> , 
? 
[ ) 
[ ] 
^ 
{ } 
≠ , 
≤ , 
≥ , 
π 
¬ 
… , 
÷ 

Numerics
0 
1 
A
abbreviations see syntax
abort calculations 
abscissa see X axis
absolute value 
accelerated failure time , 
actuarial analyses –, 

–, 
Add Multiple Columns 
add results 
add variables , 

multiple vs. compound 
results –, , 

tutorial example 
also see assign variables

add vertex , 
addition , , , –

unary 
adjusted R squared 
adopt variable assignments –

tutorial example –
alert messages , 
algorithms –
Align Objects 
Align to Grid 
alignment , , , 

–
allow changes see Unlock
AllRows , , –
alpha

control limits
c/u analyses 
individual measurements 
p/np analysis 
range or moving range 
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subgroup measurements 
error see type I error, significance level

alphabetize see Sort
alternate mouse button 
ambiguous data class 
analyses

clone 
compact variables –

example , –, 
–, , , 

create –
by hand or with templates 
exercises –
tutorial example –

dialog box hints 
multiple vs. compound 

results –, , 
objects –
overview , –
parameters , –, 

tutorial example 
template exercises 
tutorial example –
variable requirements 
variable requirements also see data re-

quirements under specific analysis
analysis browser –

exercises –
open, close 

analysis generated variables
correlation matrix 
data source 
factor scores 
regression 
survival regression analysis 

analysis of variance 
analysis of covariance models , 

–, –
analysis of variance models , , 

–
data requirements –
dialog box –
discussion –
exercises –
hypothesis testing –
interaction plots , –, 

, 
Latin square , 
means tables 
model building –
multivariate models –, 

–
nonparametric –
post hoc tests 
randomized complete 

block –
repeated measures models –, 

–, –, –, 
–

results 
templates 
tutorial example –

analysis windows –
View, Window menus –
also see analysis browser, results browser, 

variable browser, views
Analyze menu

New View , , 
rearrange –
Rebuild Template List 
templates , 

analyze subsets –
 see analysis of variance
 
angle , 
 see analysis of variance
Apple Guide , , 
application preferences –
Arabic characters , , 
arc functions 
arc tool –
ArcCos 
ArcCosh 
ArcCot 
ArcCsc 
ArcSec 
ArcSin 
ArcSinh 
ArcTan 
ArcTanh 
arguments , –, 
arithmetic operators 
arrange results , –
arrow tool 
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tutorial example 
also see selection tool

ascending sort see Sort
assign variables 

dialog box –, 
exercises –
from other analyses see adopt
templates , 

variables
assign from other analyses see adopt

assignable causes , 
association see correlation, covariance
asterisk , , 

double 
attribute pane –, –, 


change attributes 
control , 
set attributes –
show 
tutorial example 

autocorrelation 
automate analyses see templates
Average 
average , , 
AverageIgnoreMissing 
avoid errors 
axis

bounds , , 
cell dialog box 
colors 
decimal places , 
frames , , , 
grid lines , 
labels , 
logarithmic and linear scales 
move 
numeric dialog box 
numeric formats , 
ordinal dialog box 
rotate text 
select 
three types 
tick marks , –
transpose 
values 
B
background calculation 
background colors 
backward stepwise regression see regression
Balloon help , –, 
bar charts

fill patterns 
frequency distribution 
univariate plots 
also see cell plots

Bartlett’s chi-square 
Bartlett’s test of sphericity 
Bartlett’s test template –
baseline cumulative hazard plot 
baseline cumulative survival plot 
baseline estimates, Kaplan-Meier 
baseline hazard 
baseline ln cumulative hazard plot 
baseline survival table 
Basic Statistics 
batch mode see templates
beep for error messages 
bell-shaped curve 
Bernoulli distribution 
beta distribution 
beta see type II error
between subjects 
Bezier curves see spline tool
bimodal distribution 
binary logistic regression 
binary operators see operators
binomial distribution , , 
BinomialCoeffs 
bivariate plots –

axis types 
confidence intervals , , 

, , 
correlation , 
cubic spline , , –, 


data requirements 
dialog box 
discussion –
error bars 
exercises , –
fitted lines –
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interaction plots 
lowess , –, 
multiple variables 
nominal data 
results 
split-by variables 
strategy –
supersmoother , –, 


templates 

exercise 
black selection handles , , , 

–, , , 
–, 

blocking factor , 
Bonferroni/Dunn –, 
Boolean operators 
Boolean variables 
borders

dialog box 
tables , , 

box plots , , , , 
axis labels vs. legend text 
change style 
data requirements 
dialog box 
discussion 
exercise 
results 
subgroups 
templates 
tutorial example 

BoxCox 
braces 
brackets 
breakpoints see Recode
Breslow-Gehan-Wilcoxon test , 
browser see analysis browser, formula brows-

er, results browser, triangle controls, 
variable browser

C
C class marker see class marker
C usage marker see usage markers
c/u analyses see QC c/u analysis
calculations
background 
cancel 
control –
precision 
save results with view 

calculator keypad 
cancel calculations 
Candy Bars Data –
capability analysis , –, 


 dialog box , 
 table 
capability indices 
Cpk 
Cpm 
example 
indices , , 
individual measurements analysis 
k (centering index) 
parameters 

caret 
case number 
case-control studies 
case-sensitive 
casewise operation –, 

–
categories , –

add 
advantages 
compact variables 
create 

example 
data type , 
delete , 
disadvantages 
edit –
enter data 
how StatView uses order –
import , 
multiple 
nominal data class , 
problems from editing 
recode , , 
reorder levels –
required , , 
tutorial example 

CDF
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Bernoulli 
binomial 
chi-square 
F 
inverse

chi-square 
F 
normal 
t 

normal 
t 

Ceil 
cell axes 

dialog box 
labels 
tick marks 

cell normality 
cell plots 

axis labels vs. legend text 
cell bar chart picture 
cell point chart picture 
data requirements 
dialog box 
discussion 
exercise 
results 
templates 

censor 
nonparametric analyses , 
pattern plot 
regression methods , 

center-justify shapes , 
central limit theorem 
central tendency

Average 
AverageIgnoreMissing 
GeometricMean 
HarmonicMean 
Mean 
Median 
Mode 
TrimmedMean 

change
analysis parameters –
appearance of results 
criteria 
data class , 
data source 
data type –
formulas 
templates 
variable names 

characteristic roots 
Chinese characters , , 
chi-square 

contingency tables 
data requirements 
distribution , 
results 

choose group(s) see Criteria
ChooseArg 
chords 
class markers , , –

compact variables , 
tutorial example 

class see data class
classify results see Split By
Clean Up Items , 

tutorial example 
Clear , –
Clipboard , 

import pictures, text 
transfer data 

clone analyses –, 
tutorial example –

closed interval 
closed polygon 
closed spline 
coded raw data , , 
coded summary data –, 
coefficient correlations table 
coefficient covariances table 
coefficient of determination see R squared
coefficient of variation , 
CoeffOfVariation 
colinearity , 
collection of analyses see templates
color palette preferences –
colors

axis 
graph frame 
graph text 
graphs 
grid 
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page break 
plots 
preferences –
shapes 
table text 
tables , 
tutorial example 
view background 

column attributes see attributes
column charts see cell plots
columns

add multiple columns 
insert 
labels 
selecting 
transpose into rows 
vs. variables 
widths in tables 

columnwise operation , , 
–, –

Combinations 
combinations 
combine analyses 
combine datasets see merge
combine functions 
combine levels 
combine strings 
command syntax see syntax
commas 
comment 
common intercepts test 
common problems see troubleshoot
common questions –

dataset –
formulas –
QC analysis –
survival analysis –

common slopes test 
communality summary 
Compact , , 
compact variables , , –, 

, , , –
advantages 
analyses –

example , –, 
–, , –

categories 
compact 
create , 

complex example –
simple example –

disadvantages –
expand , –
QC analyses –
repeated measures analysis of 

variance , 
triangle controls , 

compare distributions
box plots 

compare percentile plots 
data requirements 
dialog box 
discussion 
exercise 
results 
templates 

comparison operators 
complete 
complex criteria , 
compound vs. multiple 

results –, , 
Concat 
conditional transformation 
confidence intervals –

bivariate plots , , , 


chi-square test 
interaction plots 
logistic regression , , 

–
mean difference , –, 
one sample t-test 
proportional hazards models 
survival regression analyses 
univariate plots 
unpaired comparisons 

connect lines 
constants –

π 
e 

consultant 
contingency coefficient 
contingency tables 

data requirements –
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dialog box 
discussion 
exercise 
results 
templates 

continuous data class 
control charts –

lines –
control limits

3-sigma rule 
QC subgroup measurements 

analysis 
violations –

convert data types 
convert values see Recode
coprocessor 
Copy –, , –

as text and picture , 
unusual selection shapes –

copy analysis with new variables see clone
copy variable assignments see adopt
corner/center control 
correct errors 
Correlation 
correlation , , 

data requirements 
dialog box 
discussion 
exercise , , 
factor analysis 
Kendall rank 
matrix 
results 
Spearman rank 
templates 

Cos 
Cosh 
Cot 
Count 
count 
Covariance 
covariance , 

data requirements 
dialog box 
discussion 
exercise , 
matrix 
results 
templates 

covariates 
proportional hazards models 
survival functions , 

Cramer’s V 
crash 
create

analyses –
by hand or with templates 
templates –
tutorial example –

category
tutorial example –

compact variables 
criteria –
graphs –
tables –
templates –

exercise –
Create Analysis , 

exercises –
tutorial example 

Create Criteria –, 
Criteria –, –, 

–, –, 
analyses –
Boolean operators 
choose level(s) 
compare results with different 
complex , 
delete 
Edit/Apply , 
example 
hints 
names 
pop-up menu , , –
print definitions 
random 
set values 
subtitles 
troubleshoot –
turn off 
tutorial example –
vs. Include/Exclude Row 
windows at Open , 
also see row inclusion
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critical values see , inverse
cross-hair cursor see Recode
cross-platform compatibility , 
crosstabs see contingency tables
Csc 
 
cube root 
cubic spline , , , 

–, 
CubicSeries 
CumProduct 
CumSum 
CumSumSquares 
cumulative distribution function see 
cumulative hazard function 
cumulative hazard plot , 
cumulative survival plot 
currency

data type , –
formats , 

cursor movement see dataset preferences
curve tool see spline tool
Custom Rulers 
custom templates –

exercise –
custom tests for special causes 

dialog box 
save as template 

customize
graphs –, –
results –
shapes –
tables –
text –

CUSUM analysis
charts , , , 
individual measurement analyses 
results , 

Cut , –
unusual selection shapes –

cutpoints 
also see Recode

D
D usage marker see usage markers
data
Copy 
Cut, Clear, Delete 
enter 
manage –
select 
subsets see Criteria, Include Row, Ex-

clude Row, Sort, row inclusion
also see dataset

data class , , 
change , 
continuous 
discussion 
example 
in examples 
informative , 
nominal , –

data format
currency 
date/time 
engineering 
enhanced free fixed 
fixed places 
free format 
free format fixed 
in examples 
scientific 

data loss
change type 
when pasting 

data organization , –
arrangement 
class –
compact variables 
example 
structure –

Data pop-up menu
Assign variables dialog box 
variable browser , , 

data source , , –
analysis generated 
change 
dynamic formula 
in examples 
static formula 
user entered 

data type , –, , 
–, , 
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category –, 
change –
convert 
currency , 
date/time , 
import , 
in examples 
integer , 
long integer 
real , 
string , –, 

dataset
add columns , 
close 
common questions –
copy 
cut 
delete 
edit –
insert columns 
paste 
preferences 
print 
renamed 
save 
scroll 
split pane control 
summary pane see attribute pane
transfer between Windows and 

Macintosh , 
troubleshoot 
window 
windows –

Dataset Templates –
custom 

Date 
date/time

data type , 
fix imported values , 
format 
formats , , –
functions –

Date 
DateDifference 
Day 
DayOfWeek 
DayOfYear 
Hour 
Minute 
Month 
Now 
Second 
Time 
Weekday 
WeekOfYear 
Year 

group by month 
missing values 
valid data range , , 

–
DateDifference 
Day 
DayOfWeek 
DayOfYear 
decimal characters 
decimal places 

graphs 
in examples 
see dataset preferences
tables , 

defaults see preferences
defect variable 
degrees , 
degrees of freedom 
DegToRad 
Delete , 

categories 
Criteria 
variables 

delimiters , –
denominator df 
density plot 
Dependent 
dependent variables –
descending Sort see Sort
descriptive statistics , –

data requirements 
dialog box 
discussion 
exercise 
results 
template exercise –
templates , 
tutorial example 
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design of StatView 
determine whether results are 

selected –
deviance 
deviance residuals , , 
df see degrees of freedom
dichotomous logistic regression 
Difference 
difference , , 

unary 
differing results 
dimensionality reduction 
direction of operation –, 

–
directory of results see results browser
disk space , 
distribute space 
distributions see , random numbers func-

tions
Div 
divide continuous into groups see Recode
division , , 
document formulas 
document size 

limit 
documents vs. templates –
dose response 
DotProduct 
dotted lines 
dotted red line see page breaks
double asterisk 
double-byte strings

manipulating , , 
double-click row numbers see row inclusion
double-spacing see line spacing
Draw palette , –, , 

–
arc tool –
arrow tool 

tutorial example 
also see selection tool

corner/center control 
curve tool see spline tool
ellipse tool 
fill color 

tutorial example 
fill pattern 
grid 
line tool 

tutorial example 
line widths 
pen color 

tutorial example 
pen pattern 
polygon tool , –
rectangle tool 
rounded rectangle tool –
selection tool , , 
spline tool –
tear-off menu 
text tool –

tutorial example 
drawing and layout –
Drawing Size , 

dialog box 
DS Transfer file format , 
Dunnett’s 
Duplicate –
Durbin-Watson 
dynamic formulas , –, 


data source 
also see Formula

dynamic links
analysis objects 
Analyze menu 
formulas , 
graph text 
reopen views 
results and data –
tables 

E
e , 

also see hyperbolic functions
edit

criteria 
data –

tutorial example 
formulas 
table text 

Edit Analysis –, , , 




Index SR=StatView Reference, US=Using StatView 
shortcut 
tutorial example –

Edit Categories –
Edit Display , –, 

–, , , , 
, , , 

dialog boxes –
Edit/Apply Criteria , , 
effects 
eigenvalues 

table 
ElementOf , , 
ellipse tool 
ellipses , 
empty cell see missing values
empty graphs , 
empty tables , , 
engineering format 
enhanced free fixed format 
enter data –

tutorial example , –
values –

equal 
equamax 
Erf 
error bars –

cell plots 
interaction plots 

error function 
error messages , , 

beep 
Formula 

error of intercept 
error-free analyses 
Euclidean norm 
evaluation –
event time variable , , 

discrete vs. continuous 
nonparametric analyses 
pattern plot 
regression model survival plots 
regression models , 
survival regression models 

Example Views and Datasets 
examples , –
Excel import/export –, 

tutorial example –
excess risk 
Exclude Row –

analyses –
compare results 
subtitles 
vs. Criteria 
also see row inclusion

exclusion see Criteria, Include Row, Exclude 
Row, row inclusion

exclusive OR 
Exercises 
Expand , 
expand compact variables –
expected value 
exponential distribution 
exponential function , 
exponential model –, 
exponential regression , 
ExponentialSeries 
exponentiation 
export

 
Excel , –
missing values 
 
previous StatView versions 
SuperANOVA 
text –, 
 

expression , –
expression language 
extended precision 
extra-Binomial variation 
extract text 

F
F distribution , 
factor 
factor analysis 

basic output 
data requirements 
dialog box 
discussion 
exercise 
factor extraction methods 
factor loadings , 
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factor scores 
oblique solution 
results 
save factor scores 
summary table 
templates 
transformation methods 
unrotated solution 

Factorial 
factorial design 
factors see category, nominal data
false , 
features 
FibonacciSeries 
file formats , , , –
file size , 
filename 
fill patterns

color 
colors , 
graph interior 
graphs , 
shapes 

final communality estimate 
find and replace 
Fisher’s exact test 
Fisher’s  , 

tutorial example 
Fisher’s r to z transformation , 
fitted lines see bivariate plots
fitted values –
fix page breaks

tutorial example 
fix page breaks see Clean Up Items
fixed places 
flip see transpose
Floor 
fonts

graphs 
tables –
views , 

Food Guide Pyramid 
Force button 

stepwise regression 
survival regression models 

force recalculation –
foreign versions 
format 
date/time data –
graphs –
multiple columns

tutorial example 
numeric data 
tables –, 
templates , 
also see data format

Formula –, , , 
–

analysis generated variables 
build definition 
common questions –
compute 
date/time data 
dialog box 
dynamic links , 
edit , 
errors 
examples –
hints 
import from SuperANOVA 
missing values 
preferences 
print definitions 
shortcuts 
troubleshoot , –
tutorial example –
variable attributes 
windows at Open , 

fractional values , , , 
, , , 

F-ratio , 
free format 
free format fixed 
free-form curves see spline tool
frequency distribution , 

data requirements 
dialog box 
discussion 
exercise 
interval settings 
results 
templates 
tutorial example 

Frequency Summary Table –
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Friedman test 
F-statistic 
F-test see unpaired comparisons
function browser , 

G
G usage marker see usage markers
Games-Howell 
gamma distribution 
Gaussian distribution 
generate data , 

also see Series, Random Number, Formula
generator seed see random numbers
generic variable names for templates 
geometric mean 
GeometricMean 
GeometricSeries 
global null hypothesis tests table 
golden ratio 
graph defaults see preferences
Graph dialog box 
graphs

align 
arrange –
axes 
axis bounds 
axis frame 
axis frames , , 
axis labels 
axis values 
bivariate plots –
box plots 
cell plots 
chart of types 
colors 
compare percentile plots 
create –

by hand or with templates 
customize –
decimal places 
Edit commands 
edit text 
fill color 
fill patterns , 
fonts 
format 
frames , 
grid lines , , 
group 
height , 
interior , , 
layers 
legends , , , 

–, 
line patterns 
line widths , 
list in analysis browser 
lock 
move , 
move components 
notes , 
numeric formats 
overlay 
pen color 
pen patterns , 
percentile plots 
plots , 
plotted lines , 
point colors –
point types 
point types and sizes 
preferences –, –
reference lines 
resize 
select 
select components 
template exercise 
text color , 
tick marks , 
titles , , 
ungroup 
univariate plots 
unlock 
width , 
X axis 
Y axis 

Graphs Only 
greater than 
greater than or equal to , 
gremlins 
grid , , 

colors 
spacing 
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grid lines , , 
Group 

unexpected results 
group labels see category
group variable

nonparametric analyses 
grouped regression 
Groups 
groups –, , , , 

, 
choose see Criteria
nonparametric analyses 
also see compact variables, Split By

growth regression , 
G-statistic 

H
hairlines 
half-open interval 
harmonic mean 
HarmonicMean 
Harrington-Fleming test , 
Harris image analysis 
hashed red lines see page breaks
hatch marks see tick marks
hazard function 
hazard plot , 
height 

graphs 
tables –

help , , –
helpful hints see troubleshoot
heterogeneous variances 
Hide Grid Lines 
Hide Page Breaks 
Hide Rulers 
hierarchical Analyze menu 
Hints , –

balloon 
formulas 
informational 
interface 
preferences , 
templates (Assign Variables) 
window 

Histogram , –, 
capability indices 
normal curve 
tutorial example 

histograms see frequency distribution
historical values 
homogeneity of slopes 
homogeneity of variances , 
horizontal see casewise
Hotelling-Lawley trace 
Hour 
 
hyperbolic arccosine 
hyperbolic arcsine 
hyperbolic arctangent 
hyperbolic cosine 
hyperbolic sine 
hyperbolic tangent 
hyperbolic trig functions 
hypothesis testing –
hypothesized mean 
hypothesized variance 

I
I charts , , 
I class marker see class marker
if…then…else , 

tutorial example 
ignore characters 
illustrations in manual 
impact 
import

categories , 
data type , 
date/time values –, 

–
dialog box 
examples –
Excel 

tutorial example –
missing values , –
non-numeric data as type String 
pictures 
previous StatView versions 
separator characters –
SuperANOVA , 
text –
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tutorial example –
troubleshoot –
variable names 

in control , 
Include Row –

analyses –
compare results 
subtitles 
vs. Criteria 

inclusion see Criteria, Include Row, Exclude 
Row, row inclusion

incomplete 
incorrect results 
Independent 
independent variables –
index of results see results browser
individual measurements analysis see QC 

individual measurements analysis
inequality –
informational hints 
informative data class , , 
input column , , 
input row 
insert columns 
insert rows –
integer data type , 
interaction effects , 
interaction plots , , –, 

, 
tutorial example 
also see cell plots

intercept –, –, 
Interface hints 
interior

graphs 
tables 

international datasets , 
international system configurations 
interquartile range 
intervals –, 

frequency distribution 
 
inverse  see 
inverse functions see arc functions
inverting matrices 
invisible lines 
 see interquartile range
 , 
IsMissing , 
 , 
IsRowExcluded 
IsRowIncluded 
item count variable 
iterated principal axis factor 

extraction 
iteration history table 

J
Japanese characters , , 
joint significance tests table 
jump point 

K
Kaiser image analysis 
Kaplan-Meier , 
Kendall rank correlation 

data 
data requirements 
exercise 

Kendall’s tau 
key see legends
keyboard shortcuts , 

draw shapes 
Edit Analysis, Edit Display 
move graphs 
move tables 
see StatView Shortcuts card

Kolmogorov-Smirnov test , 
data requirements 
template 

Kruskal-Wallis test 
data requirements 
exercise 

kurtosis , 

L
Lag 
lag 
lambda , 
landscape page 
Latin square design –
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layers 
exercise 

Layout tools –
tutorial example 

least significant difference (Fisher’s 
protected) 

Left Justify , 
left to right evaluation 
legends –, –

color 
frame 
layout 
move 
orientation 
show 
symbols , 
text 

Len 
length of string 
length of vector 
leptokurtic 
less than , 
less than or equal to , 
levels see categories
Library , , , 
life table method 
likelihood ratio test , , 
Likert scale, reverse 
limit document size 
line charts

cell plots 
connect lines 
Line Plot dialog box 
univariate plots 
also see bivariate plots and univariate plots

line patterns
graphs 
tables 

line spacing 
tables , 

line tool 
tutorial example 

line widths 
graphs , 
shapes 
tables , 

linear algebra
DotProduct 
Norm 

linear axis scale 
linear predictor , 

standard error 
LinearSeries 
listwise deletion 
Ln 
ln cumulative hazard function , , 


localized versions 
locally weighted scatterplot smoother see 

lowess
locate results see results browser
Lock 
Log 
log odds 
logarithmic axis scale 
logarithmic regression 
logarithms , –

also see hyperbolic functions
LogB 
logical expressions see Criteria, Formula
logical operators , –

 
ElementOf 
equal 
exclusive OR 
false 
greater than 
greater than or equal to 
if…then…else 
 
IsMissing 
 
IsRowExcluded 
IsRowIncluded 
less than 
less than or equal to 
 
not equal 
 
true 

logistic regression –
assumptions 
binary 
case-control studies 
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confidence intervals , , 
–

data requirements 
dialog box 
dichotomous 
discussion –
estimating coefficients 
exercises , 
iterations 
multiple –, 
nominal data coding 
polytomous , , 
random samples 
reference level 
results 
simple –, 
templates 

loglogistic model 
lognormal model , 
LogOdds 
logrank (Mantel-Cox) test , 
long integer data type 
lowess , –, 

tension , 
 see Fisher’s 

M
M usage marker 
MacDraw II

size limit 
macros see templates
 see median absolute deviation
magnitude 
main effects 
manage data –

tutorial example –
Manage menu

commands , , –
Preferences 

manage templates –
 see analysis of variance
manipulate columns and rows –
Mann-Whitney U test 

data 
exercise 

 see analysis of variance
Mantel-Cox test , 
Mantel-Haenszel test , 
marquee select , 
martingale residuals , , 
mathematical expression language 
mathematical functions

absolute value 
addition 
Average 
AverageIgnoreMissing 
Ceil 
Combinations 
CumProduct 
CumSum 
CumSumSquares 
difference 
Div 
division 
DotProduct 
e 
Erf 
exponentiation 
Factorial 
Floor 
Lag 
Ln 
Log 
log 
LogOdds 
Mod 
MovingAverage 
multiplication 
negative 
Norm 
parentheses 
Percentages 
Percentile 
Permutations 
Pi 
positive 
Remainder 
Round 
Sqrt 
subtraction 
Sum 
SumIgnoreMissing 
SumOfColumn 
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SumOfSquares 
Trunc 

matrix inversion 
Maximum 
maximum , , 
Mean 
mean , , , –, , 

, 
confidence interval around 
one sample t-test 

mean difference confidence interval 
mean square 
means tables , 

tutorial example 
measure string values 
measurement units 
Median 
median , 
median absolute deviation , 
memory requirements , 
merge

datasets 
files 
graphs 

mesokurtic 
message area 
method default 
Microsoft Excel see Excel
Minimum 
minimum , , 
minus , , , 
Minute 
Missing Cells 

also see missing values
missing values –, , , 

, –, , 
–, , , 
–, 

date/time data , 
formulas 
import , –
in criteria 
multiple datasets 
Recode , 
recode 

Mod 
Mode 
mode 
model building , 
model coefficients table 
modify templates 
modulus 
Month 
Most 
mouse shortcuts 

also see StatView Shortcuts card
move

graphs 
objects 
table components 
tables 

Move Backward –
Move Forward –
Move to Back , 
Move to Front , 
moving range 
MovingAverage 
MR charts , , 
multiple 
multiple categories 
multiple comparisons see post hoc tests
multiple logistic regression –, 


multiple regression , , 
multiple vs. compound 

results –, , 
multiplication , , 

N
N class marker see class marker
name variables see variables
natural logarithm 
negation 
negative 

also see absolute value
nest functions 
nested groups 
new dataset

tutorial example 
New View , , 
nominal data 

bivariate plots 
coding 
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nominal data class , , 
–, 

also see category, Split By
nonconformity variable

c/u analyses 
p/np analyses 

nonlinear regression –, –
also see logistic regression

nonparametric tests 
data 
data requirements 
dialog box 
discussion 
exercises 
Friedman test 
Kendall’s tau 
Kolmogorov-Smirnov test 
Kruskal-Wallis test 
Mann-Whitney U test 
one sample sign test 
paired sign test 
results 
Spearman rank correlation 

coefficient 
templates 
ties 
Wald-Wolfowitz runs test 
Wilcoxon signed rank test 

Norm 
normal count 
normal curve 
normal distribution , 

curve on histogram 
definition 

normality , 
Normality Test , 
 
not enough memory , 
not equal 
notation

keyboard/mouse shortcuts 
notation see syntax
notched box plots 
notes 

move 
tables 

Now 
np charts , , 
nth root 
null hypothesis –
number of cases 
number of seconds see date/time functions
NumberMissing 
NumberOfRows 
numerator df 
numeric axes 

bounds 
dialog boxes 
tick marks 

numeric data 
numeric formats

axes 
graphs 
tables , 

numeric intervals 
numeric precision 
nutrition labels 

O
object-oriented technology , 
objects

align 
clean up –
group 
layers 
lock 
move 
ungroup 
unlock 

oblique factor scores , , , 


odds 
off-diagonal 
old StatView data 
omnibus tests 
one 
one sample analysis 

data requirements 
dialog box 
discussion –
exercise 
nonparametric 
results 
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templates 
t-test 

one-case-per-row data –
OneGroupChiSquare 
OnlyExcludedRows , , 

–
OnlyIncludedRows , , 

–
Open , –, 

dataset
tutorial example 

view
use different variables 

views –
use different dataset 
use original variables 

open interval 
open polygon 
open spline 
Open View As –, 
operators –

addition 
division 
exponentiation 
multiplication 
negative 
parentheses 
positive 
subtraction 

 
order of operations –, 
Order pop-up menu

analysis browser 
Assign variables dialog box 
function browser 
results browser 
variable browser , , 

ordinal axes , 
ordinate see Y axis
orientation

page 
also see transpose

orthogonal factor solution , 
out of control 
out of memory , 
outliers , 

and variance 
box plots 
in descriptive statistics 

output list in analysis browser 
ovals 
overlay

graphs 
graphs, tables 

P
p value

analysis of variance 
contingency tables 
correlation 
one sample t-test 
paired comparisons 
regression 
regression intercept 
unpaired comparisons 
z test 

p/np analyses see QC p/np analysis
page breaks , 

color 
print 
show/hide 

page orientation 
paired comparisons 

data 
data requirements 
dialog box 
discussion –
exercise –
nonparametric –
paired t-test 
results 
templates 
z -test 
z-test 

pairwise deletion 
parametric models –
parentheses , , 

intervals 
Pareto analysis , , 

data requirements –
dialog box –
discussion 
exercise –
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results 
partial correlation , 
partial F-ratio 
Pascal’s triangle 
Paste , , –

imported pictures and text 
results into datasets 
unusual selection shapes –

Paste Transposed 
patterns see pen patterns
Pearson correlation , 
pen color 
pen patterns

colors , 
graphs , 
shapes 
tables , 

Percentages 
Percentile 
percentile plots 
percentiles

convert raw scores to 
data requirements 
dialog box 
exercise 
find several at once 
results 
templates 

percents of column totals table 
percents of row totals table 
period see missing values
Permutations 
permutations

ordered , 
unordered 

Peto-Peto-Wilcoxon test , 
phi coefficient 
Pi 
Pillai’s trace 
placeholders , , , 

formulas 
plateau 
platykurtic 
plots 

colors 
plotted lines 

color 
 see Fisher’s 
plus , , , –
point charts see scattergrams
point colors –
point sizes , 
point types , 
Poisson distribution 
polygon tool , –
polynomial regression , –
polytomous logistic regression , 

, 
population statistics 
portrait page 
positive 
post hoc tests , –, 

assumptions 
Bonferroni/Dunn 
cell contributions table 
Dunnett’s 
Fisher’s  
Games-Howell 
interaction effects 
purposes 
repeated measures 
Scheffé’s F , 
Student Newman Keuls 
Tukey-Kramer 
type I errors 

pound signs 
power , , , 
power regression 
precision 
predicted values –, 
preferences –

application –
color palette –
dataset 
formula 
graph –
graphs –
hints , 
Survival Analysis –
table –, , 
view , , –, 

–
presentation , 

tutorial example –
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prevent changes see Lock
prevent errors 
prevent recalculation –, 
preview format changes 
previous versions’ data 
primary pattern solution 
principal components analysis 
principal values see arc functions
print

Criteria definitions 
dataset 
Formula definitions 
line widths , 
presentation

tutorial example 
Random Numbers definitions 
Recode definitions –
Series definitions 
troubleshoot 
views –

prior probability 
probabilities functions

ProbBinomial 
ProbChiSquare 
ProbF 
ProbNormal 
Probt 
ReturnChiSquare 
ReturnF 
ReturnNormal 
ReturnT 

probability value see p value
ProbBinomial 
ProbChiSquare 
ProbF 
problems see troubleshoot
ProbNormal 
Probt 
process 
process capability analysis 
product , , 
product limit method (Kaplan-

Meier) 
product-limit method (Kaplan-

Meier) 
progress bar 
proportional hazards models , , 

baseline hazard 
coefficients 
confidence intervals 
covariate values 
residuals plots 
significance tests 
stratification 
stratified 

protected least significant difference see 
Fisher’s 

Q
QC analysis 

common questions –
example 
introduction –

QC c/u analysis
c/u charts , , 
control limits 
data requirements , –
dialog boxes –
discussion –
exercise –
nonconformity variable 
results –
standardize inspection criteria 
subgroups 
templates 

QC individual measurements analysis
capability analysis 
 
data requirements 
dialog boxes –
discussion –
exercise –
results –
templates 
tests for special causes 

QC p/np analysis 
control limits 
data requirements , –
dialog boxes 
discussion –
exercises –
p charts , , , , 
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
results –
standardize inspection criteria 
subgroup variables 
templates 

QC subgroup measurements analysis
data requirements –
dialog boxes –
discussion –
exercises –
results –
templates 
tests for special causes 

QuadraticSeries 
quantile plots 
QuarticSeries 
quartiles 
quartimax 
question marks , 
questions see common questions
quotation marks , , 
quotient 

R
R (partial correlation coefficient) 
R charts , , 
R squared 
radians , , 
radius for round corners 
RadToDeg 
raise to powers 
random criteria , , 
Random Numbers –, , 


hints 
print definitions 
unique 

RandomBeta 
RandomBinomial 
RandomChiSquare 
RandomExponential 
RandomF 
RandomGamma 
RandomGaussian 
RandomInclusion 
randomized complete block design , 

RandomNormal 
RandomPoisson 
RandomT 
RandomUniform 
RandomUniformInteger 
Range , 
range , 
ranges –, 
Rank 
rank tests –, , , 
raw data

contingency tables exercise 
factor analysis 

real data type , 
rearrange templates –
Rebuild Template List –

exercise 
Recalculate –, , 

background 
templates 

recalculate see dynamic formulas
reciprocal powers 
Recode –, , , , 

, 
categories , 
dialog boxes , 
example 
examples –
hints 
missing to specified value 
missing values 
print definitions –
troubleshoot 
tutorial example –

record macros see templates
rectangle tool 
recycle formulas 
recycle results see template
reference level 
reference lines 
reference structure solution 
regression –

data requirements 
dialog boxes , 
discussion 
error distribution 



 Index SR=StatView Reference, US=Using StatView
error of intercept 
exercises , , –
exponential , 
growth , 
line equation 
lines see bivariate plots
logarithmic 
models 
multiple , , 
nonlinear –, –

also see logistic regression
plots 
polynomial , –
power 
residual plots 
residuals 
results , 
simple , , 
stepwise , –, 
t value 
templates , , , 

exercise –, 
with  procedure 
also see logistic regression

regroup , 
relations –

ElementOf 
equal 
greater than 
greater than or equal to 
 
 
less than 
less than or equal to 
not equal 

relative frequencies 
relative risk 
Remainder 
remainder 
remark 
Remove 
remove variables 

templates 
tutorial example 

rename datasets 
reopen view –
reorder category variable –
repeat analyses see templates
repeated measures analysis of variance see 

analysis of variance
reserved words –
Reshape , –

spline curves 
residual mean square 
residuals , –

plots , 
proportional hazards models 
saving and plotting 

resize
columns 
graphs 
imported pictures 
pasted object 
shapes 
tables –
text 

restrict computations see Criteria, Include 
Row, Exclude Row, row inclusion

results
accuracy 
align 
clean up –
group 
incorrect 
layers 
list in analysis browser 
lock 
move 
selected 
unexpected 
ungroup 
unlock 
validation 

results browser –
selected results –
tutorial example 

Results Selected note –, 
resume work –, 
ReturnChiSquare 
ReturnF 
ReturnNormal 
ReturnT 
reuse formulas 
reuse results see template
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reverse-code Likert scale 
rho see Harrington-Fleming, Spearman
Right Justify 
right mouse button 
right to left evaluation 
right-justify shapes 
root

nth 
square 

root curve 
roots greater than one 
Rotate Left/Right 
rotate text 

axis values 
rotation methods 
Round 
Round Corners dialog box 
rounded rectangle tool –
rounded squares 
row and column organization see data orga-

nization
row exclusion see Criteria, Include Row, Ex-

clude Row, row inclusion
row heights , 
row inclusion , , –, 

, –, 
multiple datasets 
subtitles 
also see Criteria, Include Row, Exclude 

Row
row labels 
row numbers, dimmed , , , 

, 
RowNumber 
rows

selecting 
transpose into columns 

row-wise see casewise
Roy’s Greatest Root 
rs (range span) 
rulers 

S
S charts , , , 

compared to R charts 
S usage marker see usage markers
sample size 
sample statistics 
save

analysis results with view , 
–, 

datasets 
tutorial example 

Excel 
file formats , –
template, tutorial example , 
text 
views –

tutorial example , 
Save As see save
scattergrams

cell plots 
compare percentiles plot 
confidence intervals 
error bars 
factor plots 
format 
regression plots 
residual plots 
scree plot 
templates 

example 
univariate plots 
also see bivariate plots, univariate plots

Scheffé’s F , 
scientific format 
score residuals , 
score test , 
Scrapbook 
scree plot 
search 
Sec 
Second 
second mouse button 
seed see random numbers
Select 
select

graph components 
graphs 
rows and columns 
shapes 
table components 
tables 



 Index SR=StatView Reference, US=Using StatView
variables 
Select a Dataset dialog box 
selected results –
selection handles , –, 

–, , , 
–, 

selection tool , 
 
semi-colons 
separator characters –, 

–
importing 

serial autocorrelation 
Series –, , 

example 
hints 
print definition 

series functions
BinomialCoeffs 
CubicSeries 
ExponentialSeries 
FibonacciSeries 
GeometricSeries 
LinearSeries 
QuadraticSeries 
QuarticSeries 

sets –, 
braces 

75% variance rule 
shapes

arcs –
colors 
corner/center control 
curves see spline tool
ellipses 
fill patterns 
line widths 
lines 
ovals 
pen patterns 
polygons , –
rectangles 
reshape 
resize 
rounded rectangles –
rounded squares 
select 
spline curves –
squares 
starting point 
text –

shortcuts see StatView Shortcuts card
Show , 
Show Balloons 
Show Definition 
Show Grid Lines 
Show Page Breaks 
Show pop-up menu

analysis browser 
results browser 

Show Rulers 
Show Selection , –
side by side column charts 
sigma limits 
sign of coefficients 
sign test , 

exercise 
significance level 

discussion –
post hoc tests 
also see p value

simple logistic regression –, 


simple regression , , 
Sin 
single-byte strings

manipulating , , 
single-spacing see line spacing
singular matrix 
Sinh 
Size 
skewness , , 
slash , 
slope , 
slots for variables 
 see squared multiple correlation
smooth 
smoothing see bivariate plots
snap to grid –
solve problems see troubleshoot
Sort –, , 

analyses –
turn off 
tutorial example 
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Undo 
source see data source
space 
 
Spearman rank correlation coefficient

data 
Spearman rank correlation coefficient 

(rho) , 
Special Causes Definitions table 
special purpose functions

( ), [ ], ( ], [ ), [ ] 
<, >, ≤, ≥ 
{ } 
ChooseArg 
VariableElement 

specification limits 
sphericity 
spline tool –
Split By , , , 

tutorial example –
split pane control , 

Recode 
Sqrt 
square root 
squared multiple correlation , 
squares 
SS[e(i) – e(i–1)] 
stabilize variance 
stack order of objects 
stagger tick marks 
standard deviation , , 

bars on interaction plot 
lines on univariate plot 

standard error 
bars on interaction plot 
descriptive statistics table 
lines on univariate plot 

standard error of the mean , 
StandardDeviation 
StandardError 
standardize , 
standardized regression coefficients 
StandardScores 
Static Formula , –

data source 
reason to use , , 
also see Formula
stationery see templates
statistical functions

BoxCox 
CoeffOfVariation 
Correlation 
Count 
Covariance 
GeometricMean 
Groups 
HarmonicMean 
 
Maximum 
Mean 
Median 
Minimum 
Mode 
NumberMissing 
NumberOfRows 
OneGroupChiSquare 
Range 
Rank 
RowNumber 
StandardDeviation 
StandardError 
StandardScores 
TrimmedMean 
Variance 

statistics texts, recommended 
status bars , , 
StatView 4.x data 
StatView Guide 
StatView II/SE+Graphics file format 
StatView Library , , 

categories 
StatView Templates folder , 
step function plots 
stepwise regression , –, 

F-to-enter 
F-to-remove 
survival analysis , 

Strata button
survival regression models 

stratification variable
nonparametric analyses , 
regression models 

strike-through text 
string data type , –, 
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string functions see text functions
Student-Newman-Keuls 
Style 
style sheets see templates, preferences
subgroup measurements analysis see QC 

subgroup measurements analysis
subgroup variables , 

differences 
formulas 

subject (group) 
subsets of data see Criteria, Include Row, 

Exclude Row, row inclusion
Substring 
subtitles for inclusion 
subtraction , , 

unary 
Sum 
sum , , , 
sum of squares , , 

algorithms 
SumIgnoreMissing 
summary data 
summary pane see attribute pane
summary statistics , 

tutorial example 
SumOfColumn 
SumOfSquares 
SuperANOVA

file format 
formulas 
import/export , 

superimpose graphs 
supersmoother , –, 
suppress recalculation –, 
survival analysis 

common questions –
example –
functions , , , 
introduction 
nonparametric methods

data requirements –
dialog boxes –
discussion –
exercise –
results 
templates 

preferences –
regression methods
data requirements –
dialog boxes –
discussion , 
exercise –
results –
stepwise 
templates 

symbols see point types
syntax 

arguments –, 
combine functions 
constants –
expression 
order of operations –
placeholders 
quotation marks , 
row inclusion –
variables –

system configuration 
troubleshoot 

system crash 
system software , , –

T
t distribution , 
T usage marker see usage markers
t value

one sample t-test 
paired t-test 
regression 
unpaired t-test 

table defaults see preferences
Table dialog box 
tables

align 
arrange –
borders , , 
colors , 
column widths 
components 
create –

by hand or with templates 
customize –
decimal places , 
Edit commands 
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edit text 
fonts –
format , , 
group 
height and width –
interior 
layers 
line spacing , , 
line widths , 
list in analysis browser 
lock 
move , 
move components 
notes 
number format 
numeric formats 
pen patterns , 
preferences –, , 
resize –
row and column labels 
row heights , 
select 
select components 
structure 
text alignment –
text angles –
text colors 
titles 
transpose , 
ungroup 
unlock 

tails
F-test 
one sample analysis 
paired comparisons 
unpaired t-test 

Tan 
Tanh 
target value 
Tarone-Ware test , 
Template folder , 
templates –

assign variables
dialog box 

combine analyses 
create –

exercise –
dataset 
exercises –, , 
formats , 
generic variable names 
graph formats 
manage –
modify , 

exercise 
open 
pre-assigned variables 
rearrange –
repeat analyses 
save 
save views 
tips 
variable slots 
vs. views –

temporary files 
tension , 
test differences among covariate 

levels 
test normality , , , 
tests for special causes –

c/u analyses , 
false signal 
I analyses 
individual measurements 
individual measurements 

analyses 
p/np analyses , –
subgroup measurement analyses 
subgroup measurements analysis 

text
attributes 
colors , , , 
edit graph text 
edit table text 
import/export –

tutorial example –
resize 
rotate 
Save As 
views and templates 
see text tool

text editor 
text functions –

ChooseArg 
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Concat 
Find 
Len 
Substring 

Text menu , 
text tool , –

tutorial example 
thickness see line widths
tick marks , , –

stagger 
ties 
Time , 
time functions see date/time functions
time series functions

Correlation 
Difference 
Lag 
MovingAverage 

times see multiplication, date/time
titles 

graphs 
inclusion subtitles 
move 
show 
tables 

tool bar 
Tool tips , 
transform data see Formula, Recode
transformations

BoxCox 
Difference 
Ln 
Log 
LogB 
LogOdds 

transpose
axes 
page 
rows and columns 
tables , 

tutorial example 
trend 
triangle controls

analysis browser 
compact variables , , , 


Formula dialog box –
templates 
tutorial example 

trigonometric functions 
ArcCos 
ArcCosh 
ArcCot 
ArcCsc 
ArcSec 
ArcSin 
ArcSinh 
ArcTan 
ArcTanh 
Cos 
Cosh 
Cot 
Csc 
DegToRad 
example dataset 
RadToDeg 
Sec 
Sin 
Sinh 
Tan 
Tanh 

trimmed mean 
TrimmedMean 
troubleshoot –

formulas and criteria , 
–

general problems –
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Trunc 
truth tables –
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Tukey-Kramer 
Turn Grid On/Off 
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type I error –, 
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results 
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Unlock 
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data requirements 
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results 
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each data type 
integer data 

validation of StatView results 
variability
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StandardError 
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keyboard shortcuts see StatView Short-
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Y Variable button 
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variable types see data type
VariableElement 
variables –

assign 
delete 
names 

change 
generic for templates 
tutorial example 

requirements also see data requirements 
under specific analysis

slots for templates 
vs. columns 

Variables dialog box 
variable-wise see columnwise
Variance 
variance , 

chi-square test 
comparison 
test homogeneity 

varimax 
vectors 
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velocity handle 
vertical alignment 
vertical see columnwise
View menu –
View pop-up menu 
views

background color 
clean up –
document limits 
documents vs. templates 
Edit commands 
file formats –
fonts 
grid lines 
hairlines 
Open –

use different datasets 
use different variables 
use original variables 

preferences , , –, 
–

print –
rulers 
save results , 
save templates 
save views as views 
vs. templates –
window , –

Results Selected note 
violations of control limits 

W
Wald test , , 
Wald-Wolfowitz runs test , 
Weekday 
WeekOfYear 
Weibull model –, , 
Welch’s test template –
Western Electric rules 
Westgard rules 
width 

graphs 
tables –

Wilcoxon signed rank test 
data 
exercise 

Wilks’ Lambda 
Window menu –
within subjects 

X
X axis 
X boxes , 
X usage marker see usage markers
X Variable 
Xbar charts , , , , 


 

Y
Y axis 
Y usage marker see usage markers
Y Variable 
Year 
yin-yang cursor , , 

Z
zero 
z-scores , 
z-test see paired comparisons
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