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Overview

This volume presents a reference chapter for each item in the StatView analysis browser, orga-

nized according to the analysis browser’s default order.

[ Create Analysis

)

Show : All Analyses I
Order: | Default I

Descriptive Statistics
[> Frequency Distribution ————
> Percentiles ——— |

One Sample Analysis

Paired Comparisons

Unpaired Comparisons

Correlation/Covariance
[> Regression
[> ANOV A
[> Contingency Table

Nonparametrics
[> Factor Analysis
[> Survival: Nonparametric Methods
[> Survival: Regression Models
[> Logistic Regression
[> Univariate Plots
[> Bivariate Plots
[> Cell Plots

Box Plot

Compare Percentiles Plot
[> QC Subgroup Measurements
[> QC Individual Measurements
[>QcC P/NP
pacc) — |

Chapter |, “Descriptive Statistics”
— Chapter 2, “Frequency Distribution”
—— Chapter 3, “Percentiles”

| Chapter 24,“QC C/U”
Chapter 25, “Pareto Analysis”

[> Pareto Analysis

Chapter 26, “Formulas”

Analysis chapters include the following sections:

1. Discussion of the analysis: the theory behind it, how to use it, and guidelines for interpret-

ing your results

2. Dialog box settings: how to set analysis parameters and how your choices affect the results

you get

3. Data requirements: how to organize your data, what types of variables to assign, and how

to use buttons in the variable browser

4. Results: the tables and/or graphs you can produce and what they show

5. Templates: related templates in the Analyze menu and what they produce

6. Exercises: step-by-step examples showing you how to use the analysis
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Overview How to find what you want

The final chapter, “Formulas,” details the functions and expression language that can be used
with Formula, Recode, Series, Random Numbers, and Criteria commands. The chapter first
discusses general rules for working with StatView’s expression language, then gives details and
examples for each function.

How to find what you want

Types of analyses

Certain tests

Both the manual and the program itself can help you find the main types of analyses:

Table of contents The “Contents,” p. ix, lists the main sections of each chapter. The page

number for each function is listed for the “Formulas” chapter.

Analysis browser If you want to know which analyses produce graphs, choose Graphs Only
for Show in the analysis browser. Similarly, to learn which analyses produce the most basic sta-
tistics, choose Basic Statistics. Two other choices let you browse only the Quality Control or
Survival Analysis items. (To see the analysis browser, open a view window by selecting New
View from the Analyze menu.)

[ Create Analysis ] [ Create Analysis ]
Show: | Graphs Only I Show: | Basic Statistics I
Order: Order:
[> Univariate Plots 43 Descriptive Statistics 4
[> Frequency Plots | Histogram
[> Bivariate Plots Univ. Scattergram
[> Cell Plots Biv. Scattergram
Box Plot One Sample t-test
Percentiles Plot Paired t-test
Compare Percentiles Plot Unpaired t-test
[> QC Subgroup Measurements Cell Line Chart
[> QC Individual Measurements
[>QC P/NP
pacciu
Pareto Chart

Suppose you want a Cramer’s V statistic and you can’t remember what type of analysis pro-
vides it. You have two ways to get an answer:

On-line help Both Windows help (Windows only) and StatView Guide (an Apple Guide,
Macintosh only) index StatView’s tests by name. You can use these systems while youre work-
ing to find tests quickly—and even get step-by-step instructions for completing the tests. If
you need more discussion, look in the manual’s index...

Index The index to this volume points you to the page where each test and graph type is dis-
cussed.
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Types of graphs

StatView produces many types of graphs for data analysis. Many StatView users are familiar
with more than a few products for graphing, and each product classifies graph types differ-

ently. To aid your use of StatView, here is an overview of StatView’s main graph types, with
thumbnail sketches of each. Use this chart to find your way to the graph you want.

This chart is by no means exhaustive. Countless variations are possible through assigning vari-
ables in different orders or to different roles, assigning Split By variables, using Edit Analysis
to adjust parameters of the graph, using Edit Display on various graph components and the
graph as a whole, adding colors and fills, and so on. In this chart we simply show a handful of
tiny examples and variations, so that you know where to look in the program for the type of
graph you need.

Finally, we hope that this chart will spark your imagination, giving you ideas that will take
your presentation to new worlds of graphic possibility.
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Regression Regression Plot [ R
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VII

ANOVA

Interaction Bar Plot
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Censor Pattern Plot

Event Pattern Plot

Deviance Resid. Plot

Martingale Resid. Plot

Quantile Plot

two with regression.

The first three types of plots are available with
both nonparametric and regression methods,
the next four with nonparametric, and the last
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IX

Line Chart
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Descriptive Statistics

Descriptive statistics compute numbers that summarize data rather than making comparisons
between the data or its sources. Descriptive statistics fall into three categories:

1. measures of central tendency, which give an idea of the average value of a number or other
quantity (where average can take on a variety of meanings)

2. measures of variability, which convey whether most measurements are clustered within a
narrow range of values or spread over a large range

3. measures of an overall distribution property indicated by a single number

You can use descriptive statistics on measurements representing a sample of some underlying
population, anecdotal evidence, available data, or the entire population. This population may
be real (people who live in a particular city) or theoretical (all the plants of a particular type).
The size of a population or the destructive nature of the measurement method usually makes
it undesirable to undertake measuring the entire population. Descriptive statistics can be
merely descriptive, but are more often estimates of usually immeasurable quantities known as
population statistics. Since descriptive statistics are calculated from a sample of the popula-
tion, they are often called sample statistics. Later references are to sample statistics unless oth-
erwise stated. Sample statistics characterize the population on which they are based.

Discussion

Measures of central tendency

A descriptive statistic summarizes data with a single number. One approach uses the mean, or
arithmetic average, to summarize the central tendency of a set of numbers.

Mean

The mean is the sum of the observations divided by the number of observations. The sum of
the differences between each observation and the mean is zero. Each observation plays a part
in the calculation of the mean, so difficulties can arise if your data contains outliers, observa-
tions that are distant from the bulk of your data. Outliers can be discarded or corrected #f they
arise from an obvious error in data collection; but often they are important to the data and
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should not be ignored. A simple example concerns the salaries of employees of a small com-
pany. There are five employees: two clerks each making $12,000 per year; two sales reps mak-
ing $15,000 and $18,000; and the owner of the company, whose salary is $100,000. (In
practice, measurements based on a sample of only five observations should be regarded with
caution.) The mean of the salaries is $31,400. This is not an accurate reflection of the “aver-
age” employee salary of the company. The owner’s salary distorts the value of the mean since it
is so much larger than the other salaries, yet all are given equal weight. The same problem
occurs with the “average” price of homes in a neighborhood; several expensive homes may
inflate the mean price of homes, giving the consumer a distorted image of the cost of neigh-
borhood housing.

Median

An alternative measure of central tendency that can solve this problem is the median. The
median is the middle value in a set of observations that is ordered from lowest to highest
value. When there is an even number of observations, the median is the average of the two
numbers on either side of the middle. By definition, half of the observations are less than or
equal to the median, while the other half is greater than the median. For the salary example
given above, the median salary is $15,000, a much better estimate of an “average” employee
salary. The effect of outliers is eliminated because only the central one or two observations
determine the median. The importance of most other observations is eliminated along with
the outliers since only the order of the observations is ever used in calculating the median.

Trimmed mean

A measure of central tendency that provides an alternative to discarding all the observations
except the central one or two is the trimmed mean. This statistic is a compromise between the
mean, which uses all the data, and the median, which focuses on only one or two central val-
ues. The observations that are most distant from the center of the data are eliminated
(trimmed) before the mean is calculated. You decide the amount of data to be trimmed before
the remaining observations are averaged; the default is 10%. The amount of data that is
ignored at both extremes of the dataset is expressed as a percentage. In an example of 100
observations, 20% of which are trimmed, the 20 largest and the 20 smallest (40 observations
in all) are eliminated from consideration, and the mean is calculated from the remaining 60
observations. For the salary example, the 20% trimmed mean is $15,000.

Mode

Another measure of central tendency is the mode, the value that occurs most often in a
dataset. Your chances of guessing the value of an observation correctly are best if you choose
the mode. The mode has a number of shortcomings when used as a measure of central ten-
dency. Data collected using a continuous measurement scale (such as height or weight) may
not contain observations with the same value. In such a case, the data has to be grouped
before a meaningful value of the mode is determined. Alternatively, a dataset can have several
modes, making it difficult to decide the appropriate value to use. Nevertheless, the mode may
be a useful measure of central tendency for a variable that takes on a limited number of values,
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or where the values are mostly in one clump. The salary example has mode $12,000, since
that value appears twice and the others each appear once.

Geometric and harmonic mean

Two less common measures of central tendency are the geometric mean and harmonic mean.
These measure the central tendency of a mathematical transformation of the original observa-
tions. The transformed data may have more desirable statistical properties than the raw data.
With variables like economic indices and bacterial counts, for example, which exhibit more
variability as their values increase, the logarithm of the data often behaves better than the
untransformed data. The geometric mean is calculated from the logarithm of the variables and
re-transformed to the original scale of measurement. The harmonic mean is calculated simi-
larly, but uses a reciprocal transformation (transforms a value by dividing one by that value).
The harmonic mean is sometimes used to report the central tendency of rates or ratios. The
salary example has geometric mean $20,794 and harmonic mean $16,728.

Any variable containing zeros or negative values will return missing values for the harmonic
and geometric means.

Measures of variability

A measure of central tendency alone generally does not provide enough information to sum-
marize a set of numbers. For example, if every value in one dataset has the same value, but the
values in a second dataset are spread over a wide range, the mean, median or trimmed mean
for the two datasets can still be the same. The mean of the dataset containing identical values
is more representative of the sample’s central tendency than the mean of the more diverse sam-
ple. One effective way to display the spread or variability of a set of numbers is a histogram (a
bar chart representing a frequency distribution). There are also several descriptive statistics
that summarize variability. See “Histograms and pie charts,” p. 13, for more information
about histograms.

Minimum, maximum and range

A simple expression of the variability of a set of numbers is a report of the minimum (the
smallest value in the set of numbers), the maximum (the largest value) and the range (the dif-
ference between the minimum and maximum). These values may not be representative of the
rest of the dataset, so providing only the minimum, maximum and range can be misleading,
but their easy interpretation might make it useful to report them in addition to other mea-
sures of variability. The minimum salary is $12,000 and the maximum is $100,000 for a
range of $88,000.

Variance

It is usually better to report some average measure of the difference between each value in a
variable and a measure of central tendency (usually the mean). You cannot calculate a simple
average because, by the definition of the mean, the average difference between each observa-
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tion in a dataset and the mean must be zero. One of the most common measures which gets
around this problem is the variance.

The variance does this by squaring the differences between the observations and the mean
before averaging. The sample variance, which is the type of variance most commonly used, is
usually calculated by dividing these squared differences by one less than the number of obser-
vations. The population variance is calculated by dividing the squared differences by the
number of observations. StatView defaults to calculating the sample variance. If the data you
are analyzing is an entire population as opposed to a sample of a population, you can choose
to divide by the number of observations (7, as opposed to #—1) in the Descriptive Statistics
dialog box. Use of the square of the differences increases the influence of observations far from
the mean in calculating the variance. This may or may not be desirable, depending on the
nature of your dataset. For example, if your data contains many outliers, the variance might
be considerably larger than if you did not have outliers. The salary example has a large vari-
ance (1,476,800,000), due in part to the extreme upper value ($100,000). Variance is often
used as a measure of variability when the mean is used as a measure of central tendency
because the sum of squares of differences from a set of data and any single value is minimized
when that value is the sample mean.

Standard deviation

A consequence of using the square of the differences is that the variance is reported in the
square of the original unit of measurement and can be difficult to interpret. For example, if
the height of a group of plants is measured in centimeters, the variance is expressed as square
centimeters. To overcome this problem, variability is usually reported as the standard devia-
tion (the square root of the variance). This represents an “average” deviation from the mean in
the same unit of measurement as the original observations. The salary example has standard

deviation $38,429.

Data from a normal (Gaussian or bell-shaped) distribution follow the empirical rule of statis-
tics: 68% of the data is contained in the range of the mean plus or minus the standard devia-
tion; 95% in the range of the mean plus or minus twice the standard deviation; 99.7% in the
range of the mean plus or minus three times the standard deviation. Thus, a quick rule of
thumb for normally distributed data is: the vast majority of observations (95%) fall within
two standard deviations of the mean.

(oefficient of variation

The coefficient of variation (CV) is a unitless expression of variability calculated by dividing
the sample standard deviation by the sample mean. It is especially useful when comparing the
variability of several measurements, or when measurements are in different units. When the
mean is numerically small (near zero), the coefficient of variation may be very large, even
though the variation in the data is not excessive. The salary example has CV 1.224.
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Standard error of the mean

The standard deviation of a set of observations estimates the variability of the underlying pop-
ulation. For example, the empirical rule described above relates to the proportion of individ-
ual values that will fall within a particular range. However, it is often more meaningful to
consider the variability of the sample mean, since it is the statistic that is actually used to gain
insight into the central tendency of the data. The standard error of the mean is a statistic that
estimates the variability in the sample mean you expect if you take repeated samples of the
same size from the population. It is calculated by dividing the standard deviation of the obser-
vations by the square root of the number of observations. Since it is unlikely that a sample of
observations would all be unusually high or low, we would expect the variability of the mean
to be less than that of an individual value.

For example, a dataset contains the weights of 100 ten year old boys. You could calculate the
standard deviation of the data to get an idea of the variation in weights for these individual
boys. But if you repeatedly sample 100 boys from a theoretical population of ten-year-olds, it
is unlikely that you would ever get a sample where most or all of the boys are unusually light
or heavy; thus the variability of the mean will be less than the variabilities of the individual
values.

To apply the empirical rule to the mean of a group of measurements, use the standard error of
the mean instead of the standard deviation. In such a case, you estimate the standard devia-
tion of a hypothetical population of means, and interpret the standard error of the mean rela-
tive to the mean just as you would the standard deviation relative to the observations.

Interquartile range (IQR)

In the presence of outliers, the median or trimmed mean provides a measure of central ten-
dency. Similarly, a variety of measures of variability are appropriate when outliers are present.
One measure closely related to the median is the interquartile range or 1Qr. Recall that the
median is the value greater than or equal to one half of the data and less than the other half.
The median is an example of a group of measures called percentiles. The zth percentile is the
value such that 7% of the data is equal to or less than the percentile. Thus, the median is the
50th percentile, and 90% of all values are found at or below the 90th percentile. The inter-
quartile range is calculated by subtracting the 25th percentile from the 75th. Thus, it is the
spread of values containing the central 50% of the data and, like the median, ignores the out-
ermost points in a dataset.
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Median absolute deviation (MAD)
The median absolute deviation (MAD) is a measure of variability that incorporates all the data,
but does not give as much influence to outliers as the standard deviation. The MaD is the
median of the set of absolute differences between each data point and the median of the data.
The MAD is often a useful measure of variability when the median is used to describe the cen-
tral tendency of the data.
Measures of distribution characteristics

While measures of central tendency and variability are useful for succinctly describing the
characteristics of data, sometimes more information is needed. It may be of interest to know if
the outlying values are mostly very large or very small, or if most of the values are close to the
central values. Two useful statistics that describe these properties of a set of data are skewness
and kurtosis.

Skewness

Skewness is a reflection of the symmetry of the distribution, that is, the parts of the distribu-
tion above and below the mean. For a symmetric distribution of values, the mean and the
median coincide. A histogram of the data will show one side of the data as a mirror image of
the other side, with the value of the mean as the “mirror.”

A symmetric distribution has a skewness value of zero. When the number of values smaller
than the mean is less than the number of values larger than the mean, the distribution is
skewed to the left, or negatively skewed. In this case the tails will “stretch out” more on the
left (lower) side of the distribution. The skewness value is less than zero and the mean is less
than the median. In the opposite case, when the number of smaller values is greater, the distri-
bution is skewed to the right, or positively skewed. The skewness value is greater than zero
and the mean is greater than the median.
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Kurtosis is a measure of the amount of data in the tails (as opposed to the central part of the

distribution). Kurtosis is scaled such that normally distributed data has a kurtosis value of

zero. Positive kurtosis values indicate that the data is squeezed into the middle of the distribu-

tion (the tails of the distribution are slim and there are few extreme values). Negative values

indicate the data has many extreme values spread out over a wide range (the tails are fat).

There are terms to describe these three situations: platykurtic, for negative kurtosis values;

mesokurtic, for kurtosis values near zero; and leptokurtic, for positive kurtosis values.
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When you create or edit descriptive statistics, you set the analysis parameters in two dialog

boxes, a small one with few choices and an expanded one with many choices. In the first of

the two, you can select either a subset of the descriptive statistics (Basic) or all the descriptive
statistics (Complete) and click OK.
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Descriptive Statistics

Choose which statistics to compute:
@ Basic (O Complete

[More choices] [cancel |[[ ok |

If you click the More choices button, you see an expanded dialog box listing all the descriptive
statistics.

Descriptive Statistics

Basic statistics (continuous)
4 Mean

[ Standard deviation

[4 Standard error of mean
& Count

& Minimum

& Magimum

[ Number missing

Basic statistics (nominal)
[ Number of levels

[ Count

Denominator for variance, etc: @n-1 On

Frimmed mean peroentage

[ Fewer choices ] [ Cancel ] 0K

Using this dialog box, you can pick and choose from all the available descriptive statistics by
clicking in the checkbox. The statistics are displayed in three separate groups: Basic statistics
(continuous), Basic statistics (nominal) and Additional statistics. If Basic is selected in the
fewer choices dialog box, than only the basic statistics are checked in the expanded dialog box.
If Complete is selected, then all statistics will be checked in the expanded dialog box. Those
statistics with a check mark next to them are included in the summary table. Using the
expanded dialog box, you can customize which statistics to display by clicking to remove the
check mark.

Denominator for variance Specify which value to use in calculating the variance. The default
calculates a sample variance. See the previous discussion on the variance for more informa-
tion.

Trimmed mean percentage Specify the percentage of observations to exclude at the high and
low ends of the distribution when calculating the trimmed mean. The default is 10%, which
trims the highest and lowest 10% of the observations before calculating the mean.
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Data requirements

Descriptive statistics can be generated for one or more nominal or continuous variables.

Results

Variable browser buttons

Add To generate descriptive statistics, select the variable(s) that you wish to analyze and dlick Add.
When you select a descriptive statistics table and assign additional variables, they are added to
the summary table which expands to include the new variables.

Split By When you assign one or more split-by variables to a descriptive statistics table, results for each

cell in the split-by variable(s) as well as totals for all groups are displayed in a single summary
table.

For explanations of the results, please see the preceding “Discussion,” p. 1.

Basic continuous

Table containing the mean, standard deviation, standard error of the mean, count, minimum,
maximum, and the number missing for continuous variables.

Basic nominal

Table containing the number of levels, count, number missing and mode for nominal variables.

Additional statistics
available

Table containing the above statistics and the variance, coefficient of variation, range, sum, sum
of squares, geometric mean, harmonic mean, skewness, kurtosis, median, interquartile range,
mode, trimmed mean, and median absolute deviation for continuous variables.

Templates

Exercise

The following templates provide descriptive statistics.

Descriptive Statistics

Descriptive Statistics | Basic continuous statistics table.

Descriptive Stats--
Complete

Complete continuous statistics table.

Nominal Descriptive
Stats

Nominal statistics table and histogram.

In this exercise you create a set of descriptive statistics using the sample Car Data. It contains
information about weight, gas tank size, turning circle, horsepower and engine displacement
for 116 cars from different countries.

e Open Car Data from the Sample Data folder

* From the Analyze menu, select New View
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* In the analysis browser, double-click Descriptive Statistics
¢ Click OK to accept the default analysis parameters

* In the variable browser, click and drag to select from Country to Gas Tank Size, and click

Add

Descriptive Statistics
Mean Std. Dev. Std. Error Count  Minimum Maximum # Missing

Weight 2957.629 | 535.664 49.735 116 | 1695.000 | 4285.000 0
Turning Circle 38.586 3.132 .291 116 32.000 47.000 0
Displacement 158.310 60.409 5.609 116 61.000 350.000 0
Horsepower 130.198 39.822 3.697 116 55.000 278.000 0
Gas Tank Size 16.238 3.076 .286 116 9.200 27.000 0

Nominal Descriptive Statistics

# Levels Count # Missing Mode
Country 3 116 0 3
Type 5| 116 0 4

StatView calculates two tables, one for the continuous variables and one for nominal. For a
discussion of nominal and continuous data class, see “Data class,” p. 50 of Using StatView.

It is useful to compare the subgroups of one variable that are defined by the levels of another
variable. For example, comparing Turning Circle for cars from various countries will suggest
which country makes the largest cars. To do this, you must first deselect the tables you just
created. This avoids using the variables from existing tables in the new analysis. (New analyses
are always created using the variables in any selected results.)

* Click in a blank space in the view

The tables are deselected. When deselected, the black handles around the tables disappear and
the variables in the variable browser lose their usage markers.

* In the analysis browser, again double-click Descriptive Statistics

¢ Click More choices

The expanded Descriptive Statistics dialog box contains a scrolling list of statistics under three
headings: Basic statistics (continuous), Basic statistics (nominal) and Additional statistics.
Since Basic was selected in the first dialog box, all the basic statistics are selected in the
expanded box. You will remove check marks from the statistics you do not wish to calculate.

For this analysis, you will use only four descriptive statistics: mean, standard deviation, maxi-
mum and minimum.

* Uncheck Standard error of mean, Count, and Number missing from the continuous list
¢ Click OK
* In the variable browser, select Turning Circle and click Add

* In the variable browser, select Country and click Split By



I Descriptive Statistics Exerase

Descriptive Statistics
Split By: Country

Turning Circle, Total
Turning Circle, Japan
Turning Circle, Other
Turning Circle, USA

The table shows statistics broken down by the groups of the nominal variable. These results
indicate that cars from the usa have the largest turning circle, and cars from Japan and other

Mean Std. Dev. Minimum Maximum
38.586 3.132 32.000 47.000
37.233 2.956 32.000 42.000
36.676 2.199 33.000 42.000
40.857 2.318 36.000 47.000

European countries have turning circles smaller than average.
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Frequency Distribution

A frequency distribution table or graph can be useful for getting a sense of the distribution of
your data. Histograms and pie charts divide your data into a number of ranges and display a
bar or pie slice for each range. The height of each bar or size of pie slice is proportional to the
fraction of your data which falls in that range. Frequency distribution tables and graphs can
help identify some data characteristics that may influence which descriptive statistics and
other analyses you will use.

Discussion

Histograms and pie charts

The graph of a frequency distribution is one of the quickest and easiest ways to get a picture of
your data and perform a visual test for normality. A histogram divides your data into bars
whose height is proportionate to the amount of data which falls in the range of the bar. A pie
chart accomplishes the same thing with pie wedges. The advantage of a histogram is that the
X axis has meaning, so you have two visual cues rather than one.

Pie charts can be useful for comparing portions of a whole, but they do not illustrate fine dif-
ferences. It is easier to compare bar heights than to compare pie wedges, particularly when the
differences between bars or wedges is small. When one range dominates your data, as in the
percentage of the U.S. budget spent on defense, a pie chart offers a much more dramatic dem-
onstration. When there are small differences between ranges, a histogram allows you to rank
the ranges with greater ease.

zscore histograms

A z-score histogram converts the values so the mean is zero and the standard deviation is one.
The scale is the same for all z-score histograms, regardless of the original units of measure-
ment. This graph is particularly useful when you compare two measurements which were
made on different scales. If the data are normally distributed, fewer than 1 out of 100 points
will be higher than 3 or lower than —3, and only 5% of the points will be larger than 2 or
smaller than —2.
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Dialog box settings

When you create or edit frequency distribution results, you see the Frequency Distribution
dialog box, in which you set or change the analysis parameters.

Frequency Distribution

Number of intervals: [J Show normal comparison

Do you wish to enter your own interval information?

@®no Oyes width: :I initial ualue::l
Intervals indicate: include:

Tables show: [{Counts []Percents []Relative frequencies

Histograms show:

Intervals The top half of the dialog box controls the intervals in the analysis. The number of
intervals is equal to the number of bars or pie slices in the resulting graph. The number of

intervals defaults to 10 for continuous variables; you can enter a different number. The num-
ber of intervals for nominal variables is determined by the number of unique values of the
variable. For continuous variables you can also set the interval width and the starting point.
The width defaults to the range of the data divided by the number of intervals, and the initial
value defaults to the lowest value in the variable, so the entire range is displayed. When you set
a different width and initial value, the graph might not display the full range of the data. If
this is the case, a note appears under the graph.

Changing interval width and initial value is useful when you want to examine one part of the
distribution of your data more closely. The histogram on the left below was created using the
defaults. The one on the right gives a closer look at the lower end of the distribution, since the
interval width is set at 10 and the initial value at 250.

Histogram Histogram
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17.5 1 r
2.5 r
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g 12.5 = g 2 =
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The intervals specified do not contain the entire range of the data.

When values in your data fall on an interval boundary, you can set the intervals to include the
lowest value (which is the default) or the highest value. Suppose two adjacent intervals extend
from 10 to 20 and 20 to 30 respectively. If one of your data values is 20, you need to know
which interval to include it in. If intervals include their lowest value, 20 will go in the second
interval; otherwise it will go in the first. Intervals can also be cumulative, rather than count,
which is the default. Cumulative intervals include the totals of previous intervals, as shown
below.
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Normal comparisons The checkbox for showing normal comparisons applies only to contin-

uous variables. If you check this option StatView draws in the histogram the expected fre-
quency curve for a normal distribution with the same mean and standard deviation as the
variable. Normal counts, percents and relative frequencies will also appear in the summary

table.

Frequency Distribution for Turning Circle

From (2) To (<) Count Normal Count
32.000 | 33.500 5 3.997
33.500 | 35.000 6 8.573
35.000 | 36.500 20 14.683
36.500 | 38.000 13 20.078
38.000 | 39.500 30 21.924
39.500 | 41.000 5 19.115
41.000 | 42.500 28 13.308
42.500 | 44.000 4 7.398
44.000 | 45.500 4 3.284
45.500 | 47.000 1 1.164

Total 116 113.523

Histogram

0 T T T
30 32 34 36

38 40 42 44 46 48

Turning Circle

Counts, percents and relative frequencies You can display interval values as counts, percents
or relative frequencies, in both the table and the histogram. The histogram can show only one
scale; tables can include all three. Counts show how many observations fall inside each inter-

val. Percents show what percentage of observations fall inside each interval, and relative fre-

quencies show which fraction of values fall inside each interval; relative frequencies the same
as percents divided by 100.

Frequency Distribution for Turning Circle

From (2) To (<) Count Rel. Freq. Percent
32.000 | 33.500 5 .043 4.310
33.500 | 35.000 6 .052 5.172
35.000 | 36.500 20 172 17.241
36.500 | 38.000 13 .112 11.207
38.000 | 39.500 30 .259 25.862
39.500 | 41.000 5 .043 4.310
41.000 | 42.500 28 .241 24.138
42.500 | 44.000 4 .034 3.448
44.000 | 45.500 4 .034 3.448
45.500 | 47.000 1 .009 .862

Total 116 1.000 |100.000
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Data requirements

Frequency distributions can be generated for nominal or continuous variables.

Results

Templates

Variable browser buttons

Add To generate frequency distributions, select one or more nominal or continuous variables and
dick Add.
Each additional variable assigned creates a new table or histogram.

Split By When you assign one or more split-by variables to a frequency distribution table, results for

each cell in the split-by variable(s) as well as totals for all groups are displayed in a single
summary table. When you assign split-by variable(s) to a histogram or pie chart, a separate

graph is generated for each cell.

For explanation of the results, please see the preceding “Discussion,” p. 13. The histogram is
the default result for a frequency distribution.

Summary Table

Table containing the upper and lower values and the count, relative frequency or percentage of
total observations for each interval. A comparison to a normal distribution may also be
displayed using the dialog box.

Histogram

Graph showing the percent, relative frequency, or number of observations in each interval as a
bar chart. Comparison to a normal distribution may also be displayed using the dialog box.

I Score Histogram

Graph showing the frequency distribution normalized so that the mean is zero and the standard
deviation is one.

Pie Chart

Graph showing the number of observations in each interval as slices in a pie.

The following templates provide frequency distribution results.

Descriptive Statistics

Frequency Dist-- Frequency distribution table and histogram.

Continuous
Frequency Dist.-- Frequency distribution table and histogram.
Nominal
Graphs Histogram Histogram for continuous variable with normal curve.

Pie Chart--Continuous |Pie chart for continuous variable.

Pie Chart--Nominal Pie chart for nominal variable.

Scatter Matrix 4x4 w
Histograms

4x4 matrix of scattergrams, with one scattergram for each X-Y pairing
of continuous variables; diagonal cells have histograms with fitted
normal curves.
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Exercise

Scatter w Histograms

Scattergram for continuous variables; has histograms with fitted normal
curves along top and right sides.

L-score Histogram

L-score histogram for continuous variable.

In this exercise you will create a frequency distribution using the sample Car Data. It has
information on weight, gas tank size, turning circle, horsepower and engine displacement for
116 cars from different countries. You will generate a frequency distribution of horsepower to
determine whether horsepower follows a normal distribution.

* Open Car Data from the Sample Data folder

e From the Analyze menu, select New View

* In the analysis browser under Frequency Distribution, select Histogram and Summary
Table and click Create Analysis

e Check Show normal comparison (turn the option on) and click OK

The Show normal comparison option overlays a normal distribution curve (sometimes called
a bell-shaped curve) in the histogram and adds normal counts to the summary table.

¢ In the variable browser, select Horsepower and click Add

Frequency Distribution for Horsepower Histogram
From (2) To (<) Count Normal Count 35 L Bt
55.000 77.300 4 7.255 30 — L
77.300 99.600 21 14.976
99.600 | 121.900 31 22.774 25 7 [
121.900 | 144.200 21 25.516 220 [ — L
144.200 | 166.500 24 21.063 § 15 4 L
166.500 | 188.800 7 12.809
188.800 | 211.100 3 5.738 10 r
211.100 | 233.400 2 1.893 5 L
233.400 | 255.700 2 .460 ’_
255.700 | 278.000 1 .082 0 ‘ T T
Total 116 112.567 50 100 150 200 250 300

Horsepower

The data is positively skewed relative to a normal distribution.The histogram tells us there are
no cars with horsepower in the lowest 10% or so of the hypothetical normal distribution

curve.
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Percentiles

A percentiles plot graphs observed values of a variable against its percentiles. It allows you to
see the percentage of the data that is less than or equal to an observation. Percentiles plots are
useful in comparing the distribution of different groups or variables. You can plot multiple

variables in a single percentiles plot and use split-by variables to distinguish different groups.

In addition, you can add reference lines to show the 10th, 25th, 50th, 75th, and 90th percen-
tiles as well as display a table listing these values.

Dialog box settings

When you create or edit a percentiles plot, you see this dialog box. You can place lines the per-
centiles you choose:

Percentiles

[JPlot lines at 10th, 25th, 50th, ?5th

and 90th percentiles.

Data requirements

Percentile tables and plots can be generated for one or more continuous variables.

Variable browser buttons

Add To generate a percentiles table or plot, select one or more continuous variables and dlick Add.
Each additional variable assigned is added to the analysis.

Split By The groups defined by any nominal variable(s) assigned using the Split By button appear in the
same table or plot.
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Results

The default output for this analysis is both the Summary Table and the Percentiles Plot.

Percentiles Table of values of the 10th, 25th, 50th (median), 75th and 90th percentiles.
Summary Table

Percentiles Plot | Values in each variable plotted against their percentiles. Lines indicating the 10th, 25th, 50th
(median), 75th and 90th percentiles can be added to the plot using the dialog box.

Templates

Exercise

The following templates provide percentile results.

Descriptive Statistics | Percentiles Percentiles summary table and plot for continuous variable.
Graphs Compare Percentiles | Compare Percentiles plot for continuous variable and two-level nominal
variable.

This example uses data containing measurements of weight, gas tank size, turning circle,
horsepower and engine displacement for 116 cars from different countries. You will see
whether there is a difference between the weights of cars from different countries.

* Open Car Data from the Sample Data folder

e From the Analyze menu, select New View

* In the analysis browser under Percentiles, select Percentiles Plot and click Create Analysis
* Click OK to accept the default analysis parameters

* In the variable browser, select Weight and click Add

¢ Select Country and click Split By

Percentiles Plot
Split By: Country

4500
4000

3500 7 O Japan

L O Other
A USA

3000

Weight
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0 20 40 60 80 100
Percentile



3 Percentiles Fxercise 21

This graph shows how weights differ by country of manufacture. You can see that the 50th
percentile, or median, of Japan and other countries is significantly lower than that of the U.S.
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One Sample Analysis

StatView offers two one sample hypothesis tests: the #test and the chi-square test. The #test
can be used to test the hypothesis that the mean of a normally distributed variable is equal to
a value which you specify. The chi-square test can be used to test the hypothesis that the vari-
ance of a normally distributed variable is equal to a value which you specify. In each case, you
can set a significance level and choose between one-tailed and two-tailed tests, as explained
below.

Discussion

One sample #test

The one sample #-test compares a sample mean to a hypothesized mean and determines the
likelihood that the observed difference between the sample and hypothesized mean occurred
by chance. The chance is reported as the p value. A p value close to 1 means it is very likely
that the hypothesized and sample means are the same, since it is very likely that such a result
would happen by chance if the null hypothesis of no difference is true. A small p value (for
example, 0.01) means it is unlikely (only a one in 100 chance) that such a difference would
occur by chance if the two means were the same. In such a case we would say that the sample
mean is significantly different from the hypothesized value. The # value reported in the table
expresses the difference between the mean and the hypothesized value in terms of the standard
error.

Confidence interval

An alternative is to form a confidence interval around the sample mean. A confidence interval
reports a range of values within which a particular parameter would likely occur if samples
were taken repeatedly from the same distribution. If the sample mean is not significantly dif-
ferent from the hypothesized value, the hypothesized value is likely to be included in the con-
fidence interval. Alternatively, when the hypothesized value is not contained in the confidence
interval, the sample mean is probably not equal to that value, and the two means can be
declared significantly different. Thus, the #test and the confidence interval procedures pro-
vide similar information in different ways. Confidence intervals can be created using the One
Sample Analysis dialog box.



24

4 One Sample Analysis Dialog box settings

Chi-square test

Tail

The chi-square test tests the hypothesis that the variance of a sample from a normal distribu-
tion is equal to some hypothesized value. The test compares the sample variance with the
hypothesized variance and determines the likelihood that the observed discrepancy between
the two occurred by chance. This likelihood is reported as the p value. A p value close to 1
means it is very likely that the hypothesized and sample variances are the same, since it is
probable that such a result would happen by chance if the null hypothesis of no difference is
true. A small p value (for example, 0.01) means it is unlikely (only a one in 100 chance) that
the observed discrepancy would occur by chance if the two variances were the same. In such a
case we would say that the sample variance is significantly different from the hypothesized
variance.

(onfidence interval

An alternative is to form a confidence interval around the variance of the sample. A confi-
dence interval reports a range of values within which a particular parameter would most likely
occur if samples were taken from the same distribution over and over again. If the sample vari-
ance is not significantly different from the hypothesized value, the hypothesized value is likely
to be included in the confidence interval. Alternatively, when the hypothesized variance is not
contained in the confidence interval, the sample variance is probably not equal to that value,
and the two can be declared statistically different. Thus, the chi-square test and the confidence
interval procedures provide similar information in different ways. Confidence intervals can be
created using the One Sample Analysis dialog box.

You can perform the #test or chi-square test as a one-tailed or two-tailed test. The One Sam-
ple Analysis dialog box offers the choice of upper, lower or both tails. By default, the tests con-
sider both possibilities: that the sample’s mean/variance is larger than the hypothesized mean/
variance, and that the hypothesized mean/variance is larger than the sample’s. Such a test is
called a two-sided or two-tailed test. A one-tailed test considers a difference in only one direc-
tion; that the difference is either greater than (upper), or less than (lower) the hypothesized
mean or hypothesized variance.

There are rare instances in which only one direction of difference is possible. In such cases, a
one-sided test is more sensitive to differences than a two-sided test since it considers differ-
ences in only one direction. A great deal of knowledge about the nature of the problem at
hand is necessary for the one-sided test to be valid. It is essential to be sure that a difference in
the other direction is physically impossible.

Dialog box settings

When you create or edit one sample analysis results, you set the analysis parameters in this

dialog box:
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One Sample Analysis

—Mean
[ t-test

Hypothesized mean:
D% confidence interval
Tail

—Uariance
[ chi square test

Hypothesized variance: l:]
[]% confidence interval

You can elect to perform an analysis of means (¢-test) or variances (chi-square test) and set
confidence intervals for both. If you choose a #test, you compare the sample mean to a
hypothesized mean, which you enter yourself in the text box. If you choose a chi-square test,
you compare the sample variance to a hypothesized population variance, which you enter
yourself in the text box. The hypothesized mean or variance embodies the question that you
want the analysis to answer; you have reason to suspect that the mean or variance has a certain
value.

For both tests, you can specify whether the test/confidence interval is two-tailed or one-tailed,
and if one-tailed, which tail is to be used in the analysis. If you intend to use a one-tailed test,
please read the caution in the earlier section, “Tail,” p. 24.

Data requirements

A one sample analysis (#test or chi-square) requires one or more continuous variables.

Variable browser buttons

Add To generate a one sample analysis, select one or more continuous variables and click Add.
Each additional continuous variable assigned is added to the existing table.

Split By When you assign one or more split-by variable to an one sample analysis table, results for each
cell in the split-by variable(s) as well as totals for all groups are displayed in a single summary
table
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Results

For explanation of the results, please see the preceding “Discussion,” p. 23.

Mean

One Sample t-test

Table generated if only -test is selected. This table shows the sample
mean, the degrees of freedom, and the ¢ value and the p value for the
difference between the actual and hypothesized value.

Confidence Interval

Table generated if only confidence interval is selected. This table shows
the sample mean and the upper and/or lower confidence intervals as
set in the dialog box.

One Sample Analysis

Table generated if both t-test and confidence interval are selected. This
table combines the above tables.

Variance

Templates

Exercise

Chi-square test

Table generated if only chi-square test is selected. This table shows the
sample variance, the degrees of freedom, the chi-square, and the
p value for the test.

Confidence Interval

Table generated if only confidence interval is selected. This table shows
the variance and the upper and/or lower confidence intervals as set in
the dialog box.

One Sample Analysis

Table generated if both chi-square test and confidence interval are
selected. This table combines the above tables.

The following templates provide one sample analysis results.

ANOVA and t-tests

One-Group Variance
Test

One sample analysis table with 95% confidence intervals.

t-Test (One Group)

One sample ttest table.

In this exercise you perform a one sample #test on data from blood lipid screenings of medical

students. You want to know whether the mean cholesterol level is significantly greater than
190, a point above which cholesterol levels may be unhealthy. You test the null hypothesis
that the mean value for cholesterol is 190. If you reject the null hypothesis, you can conclude
that the mean differs significantly from190. Because a one-tailed test would be inappropriate,
you will do a two-tailed #-test.

* Open Lipid Data from the Sample Data folder

* From the Analyze menu, select New View

* In the analysis browser, select One Sample Analysis and click Create Analysis

* For hypothesized mean, type 190 and click OK
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¢ In the variable browser, select Cholesterol and click Add

One Sample t-test
Hypothesized Mean = 190

Mean DF t-Value P-Value
Cholesterol | 191.232[ 94| 336 .7373]

The mean is slightly higher than the hypothesized value of 190. However, although the mean
is in fact higher, you cannot reject the null hypothesis that the mean is 190 because 191.232 is
well within the range of sampling variance. The p value indicates you would see a difference of
this magnitude by chance more than 73% of the time.
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Paired Compansons

There are several ways you can compare two samples of experimental units. One approach
compares the means of the two samples by performing a #test. If the samples are naturally
paired in some way, a paired #test is appropriate. The most common case is a paired compar-
ison of two measurements taken from the same experimental unit at different times or under
different conditions.

If instead you want to compare average measurements for the two groups, rather than paired
variables, an unpaired #test is appropriate. Unpaired comparisons are described in the next
chapter, p. 37. Note that the paired #test is the equivalent of a repeated measures ANOVA (see
“ANOVA,” p. 73) for two repeated measurements.

Another approach examines the relationship or closeness of association between properties of
paired experimental units. For example, a researcher may question how closely a bird’s body
length follows its wing span. This can be done using a correlation analysis. The paired #test
and correlation analysis are described below. The tests assume that both samples are normally
distributed and have the same variance. Extensions of these techniques for dealing with more
than two groups or data that is not normally distributed are discussed in the chapters
“ANOVA,” p. 73 and “Nonparametrics,” p. 119.

Discussion

Paired ttest

The most common use of a paired #-test is the comparison of two measurements from the
same individual or experimental unit. The two measurements can be made at different times
or under different conditions. The paired #test tests the hypothesis that the mean of the dif-
ferences between pairs of experimental units is equal to some hypothesized value, usually set at
zero. An hypothesized value of zero is equivalent to the hypothesis that there is no difference
between the two samples. The paired #test compares the two samples and determines the like-
lihood of the observed difference occurring by chance. The chance is reported as the p value.
A small p value (for example, 0.01) means it is unlikely (only a one in 100 chance) that such a
mean difference would occur by chance under the assumption that the mean difference were
zero. In such a case we would say that there is a statistically significant difference between the
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two groups. The # value reported in the table expresses the difference between the mean dif-
ference and the hypothesized value in terms of the standard error.

A paired #-test is more powerful than the unpaired #test, because it takes into account the fact
that measurements from the same unit tend to be more similar than measurements from dif-
ferent units. For example, in a test administered before and after a training program, the usual
(unpaired) #test may not detect consistent but small increases in each individual’s scores. The
paired #-test is more sensitive to the fact that one measurement of each pair essentially serves
as a control for the other.

The paired #test is also appropriate when some other natural pairing exists. For example, a
survey of husbands and wives is designed to test for differences of opinion on particular issues.
Each couple’s responses are viewed as a pair and tested for differences with a paired #test. In
some designed experiments, subjects are selected for similarities of age, race or sex. A paired #-
test is appropriate to use on such measurements. The critical issue is whether a pair’s responses
are more likely to be similar than responses from random experimental units. When the pair’s
responses are likely to be consistently more similar, a paired #test is more powerful than an
unpaired #test.

You may also may wish to examine your data graphically using a cell plot. See “Cell Plots,”
p- 237, for a discussion of cell plots.

Mean difference confidence interval

An alternative is to form a confidence interval for the mean of the difference between the two
measurements for each experimental unit. When the two measures are not significantly differ-
ent, the value of zero is likely to be included in the confidence interval. Alternatively, when
zero is not contained in the confidence interval, the difference is probably not zero, and the
measures can be declared significantly different.

Tail

You can perform the paired #-test as a one-tailed or two-tailed test. The Paired Comparisons
dialog box offers the choice of upper, lower or both tails. By default, the tests consider both
possibilities: that the first group’s mean is larger than the second group’s mean, and that the
second group’s mean will be larger than the first’s. Such a test is called a two-sided or two-
tailed test.

There are rare instances in which only one direction of difference is possible. In such cases, a
one-sided test is more sensitive to differences than a two-sided test since it considers differ-
ences in only one direction. A great deal of knowledge about the nature of the problem at
hand is necessary for the one-sided test to be valid. It is essential to be sure that a difference in
the other direction is physically impossible.

A one-tailed test considers a difference in means in only one direction; that the difference is
either greater than (upper tail), or less than (lower tail) the hypothesized difference or hypoth-
esized correlation.
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Ltest for correlation coefficients

The paired #test is used to compare the means of measurements of the same variable taken at
different times. Comparison of two variables which measure different things requires a differ-
ent approach. The z-test tests the hypothesis that the correlation coefficient is equal to an
hypothesized value, usually set at zero. An hypothesized correlation coefficient of zero is
equivalent to the hypothesis that there is no correlation between variables. The z-test com-
pares the two groups and determines the likelihood of the observed correlation occurring by
chance. The chance is reported as the p value. A small p value (for example, 0.01) means it is
unlikely (only a one in 100 chance) that such a correlation would occur by chance. In such a
case we would say that there is a statistically significant difference between the two groups.

The most powerful tool for examining relationships of this sort is the bivariate scattergram
(see “Bivariate Plots,” p. 221). A bivariate scattergram plots the values of one variable on the X
axis and the values of the other on the Y axis. It is easy to see whether a relationship exists. For
example, this scattergram shows a near linear relationship between two variables:

Scattergram
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Correlation coefficient

The correlation coefficient is a more quantitative measure of the relationship between two
variables than the bivariate scattergram. A correlation coefficient of —1 indicates that large val-
ues of one variable are exactly associated with small values of the other variable. A correlation
coefficient of +1 indicates large values of one variable are exactly associated with large values of
the other variable. The scattergram above has a correlation coefficient of 0.916.

The distinction between statistical significance and practical significance is important when
using the correlation coefficient. The level of correlation that is practically significant varies
from situation to situation. Generally, unless the absolute value of the correlation is greater
than 0.5, the relationship between variables is not important. However, a correlation of 0.1
may be statistically significant with a large enough sample. This seems contradictory, but it
means that a large enough sample size lends significance to a weak correlation. The statistical
significance indicates that the value of the correlation coefficient is not zero; the decision
remains whether the correlation is large enough to be important.

Correlation is useful for testing the relationship between more than two variables. The corre-
lation of many variables can be displayed as a correlation matrix (table). The Correlation/
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Covariance analysis, discussed in “Correlation and Covariance,” p. 43, produces such a table.

A correlation coefficient for all pairs of variables appears in the cell at the intersection of the
variables’ respective row and column. A partial correlation matrix removes the linear effect of
one or more variables before examining the relationships of the other variables. For more
information about correlation, see “Correlation and Covariance,” p. 43, and “Nonparamet-

rics,” p. 119.

The correlation coefficient measures only the /inear relationship between variables. It cannot

reveal anything about non-linear relationships and can be misleading if used with them. Poly-
nomial relationships can be examined using polynomial regression (see “Regression,” p. 51).
In some cases, you may be able to transform the data (using the formula capability) so that the

relationship becomes linear. If it is possible to divide the independent variable into groups,
you can test for the presence of a more general relationship than simply linear between these
groups and a dependent variable, by using aNova (see “ANOVA,” p. 73).

Tail

You can also perform a z-test as a one- or two-tailed test. The Paired Comparisons dialog box
offers the choice of upper, lower or both tails. By default the test considers both possibilities:
that the correlation coefficient is either smaller or larger than an hypothesized value. A great
deal of knowledge about the nature of the problem at hand is necessary for the one-sided test
to be valid. You must be certain before you start the experiment that a difference in only one
direction is possible.

Dialog box settings

When you create or edit paired comparison results, you set the analysis parameters in this dia-

log box:

Paired Comparisons

—Mean difference.
[ Paired t-test

Hypothesized difference:
[]% confidence interval
Toi

—Correlation.
[ 2 test

Hypothesized correlation: D
[]% confidence interval

Fail

You can choose to analyze the mean difference, correlation, or both, by clicking in the appro-
priate checkboxes. The paired #test computes a paired # value between two variables when the
row entry for each variable is a measure on the same subject. The z-test uses Fisher’s R to z
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Data requirements

Results

transformation to test the hypothesis that the correlation between two variables is equal to the

specified value. You can set confidence intervals for both tests, and designate either as two-

tailed or one-tailed (upper or lower). Please read the caution in the “Discussion,” p. 29, if you
are using a one-tailed test.

Paired comparisons require two or more continuous variables. If more than two continuous
variables are assigned, paired comparisons are calculated for all possible variable pairs.

The data for each sample of the paired comparison must be located in a single continuous
variable (column). Each row entry for the two columns being analyzed must be a measure for
the same subject or for observations that are naturally paired. For an introduction to dataset
organization, see “Dataset structure,” p. 49 of Using StatView. In addition, the “Exercises,”
p. 34, will help you see how to organize your data for this analysis.

Variable browser buttons

Add To generate paired comparisons, select a two or more continuous variables and click Add.
Each additional variable is added to the summary table which expands to include the new
variable(s).

Split By When you assign one or more split-by variables to a paired comparisons table, results for each

cell in the split-by variable(s) as well as totals for all groups are displayed in a single summary
table.

For explanation of the results, please see the preceding “Discussion,” p. 29. The hypothesis
being tested is shown in the title of the table.

Mean difference

Paired t-test Generated if only paired ttest is selected. This table shows the mean of
the differences between pairs, the degrees of freedom, the ¢ value and
the p value for the mean difference.

Confidence Interval | Generated if only confidence interval is selected. This table shows the
difference between the group means and the upper and lower
confidence intervals for that difference as set in dialog box.

Paired Means Generated if both paired ttest and confidence intervals are selected.
Comparison This table combines the above tables.
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Correlation Fisher’s R to Z Generated if only ztest is selected. This table shows the correlation
between variables, the number of paired observations, and the z value
and the p value for the correlation.

Confidence Interval ~ |Generated if only confidence interval is selected. This table shows the
correlation coefficient, and the upper and lower confidence intervals as
set in the dialog box.

Correlation Coefficient |Generated if both ztest and confidence intervals are selected. This

table combines the above tables.

Templates

The following templates provide paired comparisons results.

ANOVA and t-tests t-Test (Paired) Paired t-test table with 95% confidence interval.

Correlations Correlation I-Test Fisher’s R to Z with 95% confidence interval.

Exercises

Paired ttest

In this exercise you will perform a paired #test. The data used in this exercise comes from
blood lipid screenings of medical students. You will determine whether initial triglyceride lev-
els are different from those measured in the same subjects after three years.

e Open Lipid Data from the Sample Data folder

* From the Analyze menu, select New View

* In the analysis browser, select Paired Comparisons and click Create Analysis
* Click OK to accept the default analysis parameters

* In the variable browser, select Triglycerides and Trig-3 yrs and click Add
Control-click (Windows) or Command-click (Macintosh) to select several nonadjacent
variables at a time

Paired t-test
Hypothesized Difference = 0

Mean Diff. DF t-Value P-Value
Triglycerides, Trig-3yrs | 3.419[42] .386] .7015 |

From this paired #test, you can accept the hypothesis of no difference between means of the
two groups. The mean difference is so small the p value indicates you are likely to see a differ-
ence of this magnitude by chance 70% of the time. You are now finished with this example.
You may save the view to any folder and open it with the same dataset to perform any further
analyses you wish.
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Ltest

The previous exercise compares the means of groups with the same variable: triglyceride levels.
Comparison of two variables which measure different things on the same or paired experi-
mental units requires a different approach.

In this exercise you create a scattergram and calculate a correlation coefficient to determine
the degree of linear relationship between two variables. The data you use rates a number of
different western cities by nine criteria. You will discover whether better climate is accompa-
nied by an increase in housing costs.

* Open Western States Rated Data from the Sample Data folder
For Climate & Terrain, a higher score is better; for Housing, the lower the score the better.

The first step is to create a bivariate plot to see how linear the relationship is between the two
variables in question.

¢ From the Analyze menu, select New View

* In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis
* Click OK to accept the default parameters

¢ In the variable browser, select Climate& Terrain and click X Variable

* In the variable browser, select Housing and click Y Variable

Scattergram
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You can see that there is some degree of linear relationship between higher housing costs and
more desirable climate (as defined by the criteria of the study). To confirm this judgement,
examine the correlation coefficient for these two variables with a paired comparisons test.

You can avoid the step of assigning the Climate&Terrain and Housing variables again. by
keeping the scattergram selected and then requesting Paired Comparisons.

e Make sure the scattergram is still selected (has black handles)

* In the analysis browser, double-click Paired Comparisons

¢ Uncheck Paired #test, and check Z test under Correlation
(We leave the hypothesized correlation set to 0 to test the hypothesis of no relationship
between the variables. This test will produce a correlation coefficient and a p value indicat-
ing the likelihood of this correlation occurring by chance.)

¢ Click OK
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Fisher's Rto Z
Hypothesized Correlation =0

Correlation Count Z-Value P-Value
Climate&Terrain, Housing | 659 52] 5.533] <.0001]

From this test, you can conclude that a positive correlation exists between Climate& Terrain
and Housing because of a significant correlation coefficient and a p value that indicates a very
low likelihood that this degree of correlation could occur by chance.



Unpaired Comparisons

Unpaired comparisons are comparisons made between the average measurements of two
groups rather than between paired variables within those groups. StatView performs an
unpaired #-test for comparing two means and an unpaired F-test for comparing two variances,
both under the assumption that your data is normally distributed. If you want to compare
paired measurements of the variables rather than averages for the two groups, read about
paired comparisons in the preceding chapter, “Paired Comparisons,” p. 29.

Discussion

Unpaired #test

A measurement taken from two different groups raises the question: on the average, are the
measurements for one group different from the measurements for the other group? This can
be answered by performing an unpaired #test on the measurements.

The unpaired #test compares the means of two groups and determines the likelihood of the
observed difference occurring by chance. The chance is reported as the p value. A p value close
to 1 means it is very likely that the two groups have the same mean, since it is very likely that
such a result would happen by chance if the null hypothesis of no difference between groups is
true. A small p value (for example, 0.01) means it is unlikely (only a one in 100 chance) that
such a difference would occur by chance if the two groups had the same mean. In such a case
we would say that there is a significant difference between the two means. The # value
expresses the difference between the mean difference and the hypothesized value in terms of
the standard error.

You may also wish to examine your data graphically using a cell plot. See “Cell Plots,” p. 237,

for a discussion of cell plots.

Confidence interval

An alternative is to form a confidence interval for the difference between the means of the two
groups. When the two means are not significantly different, the value of zero is likely to be
included in the confidence interval. Alternatively, when zero is not contained in the confi-
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F-test

dence interval, the difference is probably not zero, and the measures can be declared signifi-
cantly different. Confidence intervals can be created using the dialog box.

Tail

The unpaired #test assumes that two groups are normally distributed and have the same vari-
ance. It is usually difficult to predict the direction in which the differences will lie. By default,
the #test considers both possibilities: that the first group’s mean will be larger than the second
group’s mean, and that the second group’s mean will be larger than the first’s. Such a test is
called a two-sided or two-tailed test.

A one-sided test is more sensitive to differences than a two-sided test since it considers differ-
ences in only one direction. A great deal of knowledge about the nature of the problem at
hand is necessary for the one-sided test to be valid. You must be certain before you start the
experiment that a difference in only one direction is possible.

A comparison of the variance of groups of measurements can be useful to validate the assump-
tions of the #test, and for other purposes. For example, a mechanical part is manufactured by
two different methods. You want to know if the size of the part differs between the two meth-
ods, and also whether one method or the other produces more consistent results. The F-test
for variances shows whether the variance of one group is smaller, larger or equal to the vari-
ance of the other group.

The F-test depends on two parameters: the degrees of freedom for each of the two groups.
This will be equal to the number of observations in the group minus one. Since the F-test is
formed as a ratio of the two variances, the parameters are referred to as numerator degrees of
freedom and denominator degrees of freedom.

(onfidence interval

An alternative is to form a confidence interval for the ratio of the variances of the two groups.
When the two variances are not significantly different, the value of 1 is likely to be included in
the confidence interval. Alternatively, when 1 is not contained in the confidence interval, the
variances are probably not equal and can be declared significantly different. Confidence inter-
vals can be created in the dialog box.

Tail

It is usually difficult to predict the direction in which the variance differences will lie. By
default, the F-test considers both possibilities: that the first group’s variance will be larger than
the second group’s, and that the second group’s variance will be larger than the first’s. Such a
test is called a two-sided or two-tailed test.

A one-sided test is more sensitive to differences than a two-sided test since it considers differ-
ences in only one direction. A great deal of knowledge about the nature of the problem at



6 Unpaired Comparisons Dialog box settings 39

hand is necessary for the one-sided test to be valid. You must be certain before you start the
experiment that a difference in only one direction is possible.

Dialog box settings

When you create or edit unpaired comparisons results, you set the analysis parameters in this
dialog box:

Unpaired Comparisons

—Mean difference
[ Unpaired t-test

Hypothesized difference:
D% confidence interval
Toit

—Uariance ratio.
CIF test

Hypothesized ratio: D

(o) ()

You can choose to analyze the mean difference, variance ratio, or both by clicking in the
appropriate checkboxes. The unpaired #test defaults to a hypothesized value of zero. The F-
test tests the hypothesis that the ratio of the two variances is equal to the hypothesized ratio,
which defaults to one. You can set confidence intervals for both tests, and designate either as
two-tailed or one-tailed (upper or lower). Please read the caution in the “Discussion,” p. 37, if

you are using a one tailed test.

Data requirements

Unpaired comparisons require a single nominal grouping variable with two or more groups
and one continuous variable. If the nominal variable contains more than two groups,
unpaired comparisons will be calculated for all possible pairs of groups.

To compare groups, your data must be organized in a way that allows the unpaired compari-
son analysis to identify which group an observation belongs to. This can be done using a col-
umn containing a separate nominal grouping variable or by using a compact variable. For an
introduction to dataset organization, see “Dataset structure,” p. 49 of Using StatView. In addi-
tion, the “Exercise,” p. 41, will help you see how to organize your data for this particular anal-
ysis.
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Standard layout

The dataset below shows one way to organize your data if you wished to perform an analysis
comparing cholesterol levels for males and females.

Name Gender “Weight Cholesterol
1] J. Suds Male 145 168
2| H. Fitz Female 123 167
3 | R. Blunt Male 245 265
4| T. Stout Male 223 187
S| S. Small Femnale 142 202

The cholesterol values for borh males and females appear in a single column. The variable
Gender is a separate nominal column and acts as a grouping variable that identifies the group
(Male or Female) for each Cholesterol measurement. There will be one row in the dataset for
each subject in the analysis.

Compact variable

If you are prefer to place different groups in separate columns, StatView offers an alternative
to the data organization shown above. In this dataset organization, the observations for each
group appear in a single column. Your dataset will contain as many columns as there are
groups being compared. If you enter your data this way, you must create a simple compact
variable in order for the analysis to know which group each observation belongs to. The cho-
lesterol measurements for male and female from the above dataset look like this in a compact
variable format:

Cholesterol
Male Ferale
1 168 167
2 265 202
3 187 .

The male cholesterol measurements are all placed in one column and the female cholesterol

measurements in another. The column identifies the group, not the row. If there are unequal
numbers of observations in the two groups, missing values ( . ) are automatically inserted in

the column with fewer observations. These missing values are ignored in the analysis.

If you plan to use a compact variable, please read the discussion “Compact variables,” p. 84 of
Using StatView.

Variable browser buttons

Add To generate unpaired comparisons, select a single nominal grouping variable and a single
continuous variable and click Add.

Each additional nominal variable assigned creates a new analysis using the new nominal
variable and the old continuous variable. Each additional continuous variable assigned creates a
new analysis using the new continuous variable and the old nominal variable.

Split By When you assign one or more split-by variables to an unpaired comparisons table, results for
each cell in the split-by variable(s) as well as totals for all groups are displayed in a single
table.
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Results

For explanation of the results, please see the preceding “Discussion,” p. 37. The hypothesis
being tested is shown in the title of the table.

Mean difference Unpaired #test Generated if only unpaired t-test is selected. This table shows the
difference between the group means, the degrees of freedom, and the
t value and the p value for the mean difference.

Confidence Interval | Generated if only confidence interval is selected. This table shows the
difference between the group means and the upper and lower
confidence intervals as set in dialog box.

Unpaired Means Generated if both unpaired ttest and confidence intervals are selected.
Comparison This table combines the above tables.
Group Info Always generated and shows the count, mean, variance, standard

deviation, and standard error for each group.

Variance ratio F-test Generated if only F-test is selected. This table shows the ratio of the
group variances, the degrees of freedom in the numerator and
denominator, and the F value and p value for the variance ratio.

Confidence Interval | Generated if only confidence interval is selected. This table shows the
ratio of the group variances, and the upper and lower confidence
intervals as set in the dialog box.

Variance Comparison | Generated if both F-test and confidence intervals are selected. This
table combines the above tables.

Group Info Always generated and shows the count, mean, variance, standard
deviation, and standard error for each group.

Templates

The following templates provide unpaired comparison results.

ANOVA and t-tests Equality of Variances F |Variance comparison F test and group info tables.
Test

t-Test (Unpaired) Unpaired means comparison, variance comparison, and group info
tables.

Exercise

In this exercise you perform an unpaired #test on census information for 506 housing tracts
in the Boston area. You will examine two groups of housing tracts, those near the Charles
River and those farther away from it. You will find out whether the median value of owner-
occupied homes varies depending on how far houses are located from the river. To do this, you
will test the null hypothesis that no difference in median housing prices exists.
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* Open Boston Housing Data from the Sample Data folder
* From the Analyze menu, select New View
* In the analysis browser, select Unpaired Comparisons and click Create Analysis

¢ Click OK to accept the default analysis parameters
(We leave the hypothesized difference 0 to test the hypothesis of no difference between
means of the two groups.)

¢ In the variable browser, select Median Value and click Add
e In the variable browser, select Charles and click Add

Charles has a G usage marker indicating it acts as a grouping variable in the analysis.

Unpaired t-test for Median Value
Grouping Variable: Charles
Hypothesized Difference = 0
Mean Diff. DF t-Value P-Value

Near, Far 6.346 | 504 | 3.996 | <.0001

Group Info for Median Value
Grouping Variable: Charles
Count Mean Variance Std. Dev. Std. Err
Near 35| 28.440 | 139.633 11.817 1.997
Far 471 |22.094 77.993 8.831 .407

You can reject the null hypothesis of no difference between the price of houses near to and far
from the Charles River. The mean value is significantly higher for housing near the river than
for housing far from it. The low p value indicates a probability of less than one in 10,000 that
such a difference would occur by chance.



Correlation and Covariance

Correlation and covariance values indicate the degree of linear relationship between two vari-
ables. Computing these values generally requires a single sample with two sets of observed val-
ues on each subject or sampling unit. Correlation and covariance measure only the linear
relationship between two variables. If the relationship is other than linear, these coefficients
can be very misleading. Before relying on the correlation or covariance of two variables as a
measure of their association, you should examine a scattergram of the two variables. In this
way you can make sure there is not some nonlinear relationship which the correlation or cova-
riance would not detect.

Discussion

Correlation coefficient

The Pearson correlation coefficient has an absolute value between 0 and 1, with 1 indicating
a perfect linear relationship and 0 meaning no linear relationship exists. When two variables
increase or decrease proportionately (as one variable increases, the other variable increases;
when one decreases, so does the other), a positive correlation between them exists. When one
variable increases when the other decreases proportionately, there is a negative correlation
(inverse relationship). A correlation of exactly 0 almost never occurs in practice. If an exact
linear relationship exists among some of the variables, the matrix is said to be singular. A sin-
gular matrix is not invertible, so it is not possible to compute partial correlations or Bartlett’s
test of sphericity. If this occurs, an error message tells you the correlation matrix is singular.

Correlation matrix

When many variables are measured, it is useful to display the correlation coefficients in a cor-
relation matrix, a table in which each row or column represents a different variable in the
dataset. The cell at the intersection of a row and column contains the correlation coefficient
for the two variables the row and column represent. In an exercise later, you will create and
interpret a correlation matrix. Other values, such as the probability that a particular correla-
tion is different from 0, may also be displayed in similar tables.
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Correlation Matrix
Age Weight Height Skinfold Systolic BP Diastolic BP

Age 1.000 .089 | -.021 .106 .024 -.064
Weight .089 | 1.000 .698 .074 .157 .136
Height -.021 .698 | 1.000 -.138 .084 .063
Skinfold .106 .074 | -.138 1.000 -.099 -.038
Systolic BP .024 .157 .084 -.099 1.000 .335
Diastolic BP | -.064 .136 .063 -.038 .335 1.000

95 observations were used in this computation.

You have the option of saving the correlation matrix as a new dataset.

Fisher’s r to z

To determine if a correlation coefficient is significantly different from zero, a Fisher’s 7 to z
transformation is carried out on the correlation. This transforms the correlation coefficient to
a variable with a standard normal distribution, allowing a probability level (p value) to be cal-
culated for the null hypothesis that the correlation is equal to zero. One caution about judging
correlation coefficients based on their significance levels: for a large enough sample, any corre-
lation coefficient that is not exactly equal to zero will have a significant probability level.

The distinction between statistical significance and practical significance is important when
using the correlation coefficient. The level of correlation that has practical significance will
vary from situation to situation. Generally, unless the absolute value of the correlation is
greater than 0.5, the relationship between two variables is probably not of much importance.
On the other hand, with a large enough sample, a correlation of 0.1 may be significant. This
may seem contradictory. It simply means that when the sample size is large enough, even a
weak correlation can safely be considered different from no correlation at all. The statistical
significance simply indicates that the value of the correlation coefficient is not 0; it is up to
you to decide whether the magnitude of the correlation is large enough to be of importance.

Bartlett’s test of sphenaity

One special correlation pattern which may exist among a set of variables is sphericity. It
means that all the variables in question are uncorrelated with each other, resulting in a correla-
tion matrix with zeroes everywhere except the diagonal. You can test to see if a correlation
matrix conforms to this pattern by requesting Bartlett’s test of sphericity. A high chi-square
and associated low p value imply that the null hypothesis of no correlation between variables
can be rejected. If the matrix is singular (an exact linear relationship exists among some of the
variables) it is not possible to compute Bartlett’s test and you see an error message noting that
the matrix is singular.

Confidence intervals

You may also form a confidence interval for the correlation between pairs of samples of exper-
imental units. When two variables are not correlated, the value of zero is likely to be included
in the confidence interval. Alternatively, when zero is not contained in the confidence inter-
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val, the correlation is probably not zero, and the measures may be declared significantly corre-
lated. You create confidence intervals using the dialog box.

Listwise/pairwise deletion

Covariance

Sometimes a correlation coefficient in a correlation matrix may not agree with a value
reported as a single correlation when the correlation coefficient is calculated for just two of the
variables included in the matrix. This discrepancy may arise because StatView, by default,
eliminates all rows that have a missing value for any of the variables for which correlations are
calculated. This procedure is called listwise deletion. Such a correlation matrix has certain
desirable statistical properties when used in further calculations, even though the deleting of
cases may obscure some relationships in the data. You can override this by choosing the pair-
wise deletion option in the Correlation/Covariance dialog box; if you do so, partial correla-
tions and Bartletts test of sphericity are not calculated.

When several variables are studied simultaneously, it is often of interest to determine if any or
all of the variables are related to each other. One way of doing this is to calculate a measure of
how much changes in one variable affect the values of the other variables. When we consider
changes in the linear sense, the measure is known as covariance. By a linear sense, we mean
that a straight line on a graph would be a good representation of the relationship between the
two variables. As one variable increases, the other consistently either increases or decreases.
The covariance between two variables is measured on a scale which is heavily influenced by
the magnitudes of the variables involved, and may be hard to interpret if the variables being
studied are measured on vastly differing scales. For this reason, the correlation coefficient is
usually preferred as a measure of linear relationships, because it is standardized to be in the
range of —1 to 1, and is not affected by the scale of measurement.

Partial correlation

A correlation matrix may involve many variables. Since the entries in the matrix only address
the relation between two variables at a time, there are many situations where the correlation
coefficient may not accurately measure the strength of the relationship of interest. For exam-
ple, suppose we have a dataset consisting of age, weight and a score on a fitness test.

The correlation between weight and the fitness score may mislead us into believing that there
is a strong relationship between these two variables, when in fact it may be just the effect of
age, since that is related to both weight and fitness score. What we would like is a measure of
correlation between weight and fitness score with the effects of age removed. This is the basic
idea behind partial correlation. The partial correlation of two variables with respect to a third
is the correlation of the two variables after the linear effect of the third variable has been
removed. Notice that, like the regular correlation coefficient, if non-linear relationships exist,
the partial correlation coefficient may not be valid. Nevertheless, the partial correlation coeffi-
cient can be a useful tool when you are studying a set of closely related variables.
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If the correlation matrix is singular (an exact linear relationship exists among some of the vari-
ables) it is not possible to compute partial correlations and you will see an error message not-
ing that the matrix is singular.

Dialog box settings

When you create or edit a correlation or covariance analysis, you set the analysis parameters in

this dialog box:
Correlation/Covariance
Compute: Method:
[ Correlations @ Listwise deletion
[] Covariances (O Pairwise deletion

[J partial correlations

[] Save correlation matrix to dataset
Additional statistics:
[ Bartiett's test of sphericity

[JFisher's r to z (p-values)
% confidence intervals

Select from correlation, covariance and partial correlation by clicking in the checkboxes at the
top. Rows are eliminated from the analysis if they contain a missing value (listwise deletion)
unless you select pairwise deletion instead. (A matrix formed with the pairwise method should
not be used as input for a factor analysis.) For a further discussion of listwise and pairwise
deletion, see the preceding section, “Listwise/pairwise deletion,” p. 45.

At the bottom of the dialog box you can choose to generate the following additional statistics:
Bartlett’s test of sphericity, Fisher’s 7 to z (p values), and a user specified confidence interval
around the correlation coefficients.

Save correlation matrix to dataset If you check save correlation matrix, the computed corre-
lation matrix is saved to a new dataset titled Correlation Matrix. The dataset will have as many
columns and rows as variables assigned to the correlation. The names of each column are Cor
“Variable name” where “Variable name” is the name of one of the assigned variables for the
correlation.

Note that the correlation matrix dataset is a very special dataset with many features. The
dataset is linked to the correlation analysis. If you change the parameters of the analysis or any
of the input data, the dataset will automatically update to reflect the new correlation matrix. If
you close the view that contains the correlation analysis, this correlation dataset will close as
well. When the view is reopened, the correlation matrix dataset is automatically recreated.
Please note that because this dataset is linked to your analysis, it is a “read only” dataset; you
can not change any value in the dataset (except the formatting) until you break the link
between the dataset and the analysis. If you plan to use this correlation matrix as an input to
another analysis, such as factor analysis, the analysis must appear in the same view as the cor-
relation analysis that dataset is associated with.
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You cannot close the matrix dataset, but can hide it by clicking the close box. It is merely hid-
den and is accessible through the Window menu. To sever the link between the dataset and
the correlation analysis, you need to choose Save As from the File menu and save the dataset
under a different name. This will save on the disk a copy of the correlation matrix as a dataset.
You can then open this dataset as you would any other dataset. When you save a copy of the
correlation matrix dataset to your disk, StatView automatically appends the letters “UE” to
the beginning of the column names to indicate that these columns are now user entered.

Data requirements

Correlation and covariance require two or more continuous variables.

Variable browser buttons

Add To generate a correlation, select the continuous variable(s) that you wish to analyze and click
Add.
Additional variables are added to the summary table which expands to include the new
variables.

Split By When you assign one or more split-by variable to a correlation or covariance analysis, results
for each cell in the split-by variable(s) are displayed in a separate tables.

Results

For explanation of the results, please see the preceding “Discussion,” p. 43.

Correlation Matrix Matrix of correlation coefficients for all pairs of variables in the analysis.

Covariance Matrix

Matrix of covariances for all pairs of variables in the analysis.

Partial Correlation

Matrix of partial correlation coefficients for all pairs of variables in the analysis.

Correlation Analysis

Generated if confidence interval and/or Fisher’s r to z is selected in the dialog box. This table
shows the correlation coefficients and the associated confidence intervals and/or p values for all
pairs of variables.

Bartlett’s Test of
Sphericity

Table containing the degrees of freedom, determinant of the correlation matrix, the chi square
statistic, and p value.

Templates

The following templates provide correlation and covariance results.

Correlations

Bartlett’s Test of
Sphericity

Bartlett’s test of sphericity table.

Correlation Matrix Correlation matrix table.

Correlation I-Test Fisher’s R to Z with 95% confidence interval.
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Exercise

Covariance Matrix Covariance matrix table.

Partial Correlation Partial correlation matrix table.
Matrix

In this exercise you perform a correlation analysis on data in which different western cities are
rated by nine criteria. For all but two of the variables, the higher the score, the better. For
Housing and Crime, the lower the score the better. You will discover whether there is a linear
correlation between any two of the criteria by creating a correlation matrix. Then you will
graph correlated and uncorrelated variables in order to see a graphic representation of a high
and low correlation.

* Open Western States Rated Data from the Sample Data folder

e From the Analyze menu, select New View

¢ In the analysis browser, select Correlation/Covariance and click Create Analysis
* Click OK to accept the default analysis parameters

¢ In the variable browser, select all the continuous variables and click Add

Correlation Matrix
Climate&T... Housing Health C... Crime Transportation Education The Arts Recreation Economics

Climate&Terrain 1.000 .659 445 .042 .086 .151 442 .260 -.122
Housing .659 1.000 .575 .147 .313 177 .633 .397 .366
Health Care & Environment .445 .575 1.000 | .520 .399 LA77 1949 470 .262
Crime .042 147 .520 [1.000 .289 .233 .553 .303 239
Transportation .086 313 .399 .289 1.000 .302 .398 .454 L1161
Education 151 177 477 | .233 302 1.000 .455 169 -.069
The Arts 442 .533 .949 .553 .398 .455 1.000 .525 .189
Recreation .260 .397 470 .303 .454 .169 625 1.000 222
Economics -.122 .366 .262 | .239 161 -.069 .189 222 1.000
52 observations were used in this computation.

Each cell at the intersection of a row and column contains a correlation coefficient for the two
variables represented by the row and column. Scroll the window from side to side to see the
complete matrix. (We have made several columns narrower to fit the page.) Scan the matrix to
see where a correlation coefficient may be high enough to indicate a linear relationship
between variables. Remember, 0 means no correlation and 1 means a perfect one to one rela-
tionship. A negative value means an inverse relationship.

Health Care & Environment and The Arts have a correlation of 0.949, a very high score.
Most other correlations are fairly low, between 0.3 and 0.5. Climate&Terrain and Crime have
a very low correlation, 0.042. To get a better idea of what these correlations mean, look at
scattergrams of the variables with high and low correlations.

¢ Click an empty area in the view to deselect all results

* In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis
¢ Click OK to accept the default analysis parameters

Notice that the buttons in the variables browser have changed. The Remove and Split By but-

tons are the same, but the Add button has become two buttons: X Variable and Y Variable.
You must assign at least one X and one Y variable to complete the analysis.
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® Yariable

Y Yariable
Remove
Split By

Health Care & Environment and The Arts are the two variables with the highest correlation
coefficient in the matrix. Begin by creating a scattergram with these two variables.

¢ In the variable browser, select Health Care & Environment and click X Variable

The variable has an X usage marker indicating you have assigned it to the X axis.

¢ In the variable browser, select The Arts and click Y Variable

The variable has a Y usage marker indicating you have assigned it to the Y axis.

Scattergram
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The plotted values of these variables occur along a fairly straight line, indicating that a high
correlation exists between them. If there were a perfect linear relationship between Health
Care & Environment and The Arts, a coefficient of one, the values would form a perfectly
straight line.

If you look at a scattergram of two variables with a very low correlation, such as Climate&Ter-
rain and Crime, you will notice that this scattergram differs from the preceding one showing a
high correlation. In this one, points are scattered all over the graph rather than clustered along
a fairly straight line. This graph provides visual evidence of a very low correlation between Cli-
mate& Terrain and Crime as determined in the correlation matrix. The correlation coefficient
for these two is only 0.042.
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Regression

Regression analysis explains or predicts the value of a dependent variable from one or more

independent variables. All variables must be continuous. StatView can estimate these regres-
sion models:

1.

RN

Discussion

Simple (one independent variable)

Polynomial (linear, quadratic, cubic, etc. terms for a single independent variable)

Multiple (two or more independent variables)

Forward and backward stepwise (for selecting from a set of possible independent variables)

Nonlinear (exponential, logarithmic, power, and growth models for one independent vari-

able)

Regression analysis is a tool for discerning relationships among variables. Given one or more

variables, regression can predict a related variable and illuminate the nature of the relationship

among variables. For example, you can predict a stock index based on unemployment rates or

other economic indicators. You can estimate the yield of a chemical reaction using tempera-

ture, pressure and quantities of input materials.

Regression modeling is useful when all of the following conditions apply:

1.

There is a linear relationship between the variable of interest (the dependent variable) and
the variables used as predictors (the independent variables). As the value of any indepen-
dent variable increases, the value of the dependent variable must increase or decrease con-
sistently. In the case of nonlinear regression, the corresponding nonlinear relationship is
present between the dependent and independent variables.

2. All observations (values for the dependent and independent variables) are independent of

3.

each other. If this is not the case (observations measured on the same object over time, for
example), regression analysis can be used to examine relationships within your data, but

the probability values for hypothesis tests will not be valid.

The portion of the dependent variable not explained by the independent variables is due to
random error. For linear and logarithmic regression, the error is assumed to be additive and
normally distributed with a constant variance. For exponential, power, and growth regres-
sion, the error is assumed to be multiplicative, and the natural logarithm of the error is
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assumed to be normally distributed with a constant variance. There are diagnostics to help
identify cases that do not follow this distribution and transformations that can help correct
the problem. These are discussed in the later section, ‘Residuals,” p. 57.

4. Error in the independent variables is nonexistent, or at least negligible relative to error in
the dependent variable.

Simple and multiple regression

Simple regression is appropriate when you wish to model a dependent variable with exactly
one independent variable. You can verify the linearity of the relationship between variables by
looking at a scattergram of the two variables. For more than one independent variable, the
appropriate technique to use is multiple regression. This takes into account the linear effect of
several independent variables in predicting the dependent variable. As the name implies, mul-
tiple regression is more complex than simple regression, since relationships among the inde-
pendent variables can make it difficult to interpret the results (see “Colinearity,” p. 53). If you
have many independent variables, you might want to consider a model selection procedure
(described later under stepwise regression).

Polynomial regression

When the relationship between a dependent variable and an independent variable is not lin-
ear, polynomial regression can be a useful tool. As stated eatlier, a linear relation implies that
the dependent variable’s values must consistently increase or decrease as the value of the inde-
pendent variable increases. By including terms for the square, cube, fourth power, etc. of the
original variables, this strict linear relation is no longer required. For example, if you include
the square of a variable as an independent variable, then the dependent variable can rise and
fall (or fall and rise) once as the original variable’s value increases. Similarly, the cube of a vari-
able will allow for two changes in direction of the dependent variable as the independent vari-
able increases. In addition, a polynomial regression can be useful when the relationship
between a dependent variable and an independent variable follows a curve, for example if the
dependent variable’s rate of increase is less as the value of the independent variable increases.

Remember, however, that polynomial regression is just a mathematical tool for fitting a curve,
and while it can be useful for prediction, care should be taken before assuming that the under-
lying relationship between the two variables being studied is actually polynomial.

Stepwise regression

In regression analysis, a model selection procedure helps choose the independent variables
that are most useful in explaining or predicting your dependent variable. StatView offers for-
ward and backward stepwise selection.

Forward selection starts with an empty model and adds independent variables in order of
their ability to predict the dependent variable. Backward selection starts with all the indepen-
dent variables in the model and at each step removes the one that is least useful in predicting
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the dependent variable. The criteria for adding and deleting variables is the partial F-ratio,
which is the square of the #test value for the null hypothesis that the coefficient of the variable
in question is equal to zero.

The forward procedure starts with no variables in the model except the intercept (if present).
The backwards procedure starts with all the variables in the model. Both procedures then use
the same algorithm to enter or remove variables. First, the partial F-ratio for each variable in
the model is examined. If the least of these is less than the F-to-remove you specify, the corre-
sponding variable is removed. Otherwise, the partial F-ratio for each variable not in the model
is examined. If the greatest of these is greater than the F-to-enter you specify, the correspond-
ing variable is entered. This completes one step. Stepping stops when no variable is entered or
removed.

The default criteria are appropriate for most models, but you can adjust them to suit your
needs. For example, if you wish to build a model containing only variables that seem very use-
ful for prediction (i.e., a model with few variables), then raise the criteria for entering variables
by increasing the value of the F-to-enter and F-to-remove.

Force

Variables can be forced into the model using the Force button on the variable browser. In the
forward procedure, all forced variables are entered at step 0; in the backward procedure, a//
variables are entered at step 0. In either procedure, forced variables are never removed from
the model regardless their partial F-ratios.

Stepwise regression summary

StatView displays regression summary tables to help you assess the quality of the regression
model at each step. Also, a stepwise regression summary table, displayed only for stepwise
models, reports the number of steps, number of variables entered, F~to-enter and F-to-
remove.

Colinearity

Forward and backward stepwise selection techniques do not always choose the same model
due to the close relationship between independent variables in regression studies. When a
variable is considered for entry or removal, its importance can be highly influenced by the
presence of other variables in the model. You can identify sets of related variables by using
both forward and backward selection and comparing the chosen models. If variables appear in
one model but not the other, they can be too closely related to provide useful information;
one of them should be removed. This phenomenon is known as colinearity.

When you perform a regression with many variables, some of the independent variables will
inevitably be related. If the relationships are not too strong (if the maximum correlations
between any two independent variables is less than 0.8), this is not likely to cause problems.
However, if there are strong relationships among some of the independent variables, your
results can be difficult to interpret or even useless. In a stepwise regression, one indication of
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colinearity is the sign of the estimated coefficient for a particular variable changing depending
on which other independent variables are included in the model.

Nonlinear models

StatView can estimate the four most commonly used nonlinear transformations of the simple
linear regression model:

1. Exponential
2. Logarithmic
3. Power

4. Growth

StatView computes estimates for the coefficients of these models by first linearizing the trans-
formations and proceeding with the usual linear regression calculations, and then back-trans-
forming the estimates into the terms of the nonlinear equation. (For example, to compute the
exponential model discussed below, StatView first logs the values of the dependent variable
you specify, represented here by ¥, then performs its usual calculations. The resulting intercept
is then exponentiated to correspond to the original nonlinear form of the equation.) Note that
this method differs from the generalized nonlinear fitting performed by other statistical pro-
grams, which fit arbitrary models by iteratively minimizing a loss function or by iteratively
maximizing likelihood.

Exponential

Exponential transformations are useful for fitting data that increase or decrease at high rates.
One common use is to model allometric data—measures of the change in proportion of vari-
ous anatomical parts of an organism throughout the organism’s growth cycle. The basic form
of the exponential transformation is this:

b X

Y = bye

StatView estimates the linearized form of the model:

InY = Inby+b,X

StatView’s linearization constrains ¥ to positive values, since logarithms of negative or zero
values are undefined. Negative or zero data cause error messages.

Logarithmic

Logarithmic transformations are useful for modeling slow-growth data. For example, metal
powder subjected to high temperatures will tend to form crystals whose size are a logarithm of
the time of treatment. The basic form of the logarithmic transformation is this:

Y = by+byInX
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By definition the logarithmic model cannot be used with negative or zero values in the inde-
pendent variable. Negative or zero data cause error messages. This model is already linear, so
StatView estimates it directly after transforming X values.

Power

Power transformations are often used in industrial situations; for example, tool life can be
modeled as a power of cutting speed. Power transformations are also useful with allometric
data, e.g., relating the mass of a fish to its length throughout its growth cycle. The basic form
of the power transformation is this:

b
Y = bX '

StatView estimates the linearized form of the model:
InY = Inby+ b;InX

StatView’s linearization constrains ¥'and X to positive values, since logarithms of negative or
zero values are undefined. Negative or zero data cause error messages.

Growth

Growth transformations are often used to model population growth over time. The basic form
of the growth transformation is this:

by + 6, X

Y=c¢

StatView estimates the linearized form of the model:
InY = by+ b, X

StatView’s linearization constrains Y to positive values, since logarithms of negative or zero
values are undefined. Negative or zero data cause error messages.

Model coefficients and intercept

An intercept is the expected value of the dependent variable if all the independent variables
had values of zero. In many cases its purpose is to correct for differences in units of measure-
ment between the dependent and independent variables.

StatView automatically includes an intercept as part of a regression model unless you specify
otherwise (for nonlinear regression, the 4, or Inb, term cannot be removed). The Regres-
sion dialog box contains a checkbox labeled “No intercept in model,” which removes the
intercept and forces the model through the origin. It might be appropriate to remove the
intercept from the model, but do so with caution. Sometimes there is a physical reason to
remove the intercept: it is known ahead of time that if the independent variable(s) are 0, the
dependent variable must be 0 (the weight of a tree must be 0 if its height is 0). Some of the
statistics produced by StatView have a different interpretation when the intercept is removed
from the model. You can test for significance of the intercept; the coefficients table provides a
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p value for the intercept along with the coefficients for the variable(s). The standard error of
the intercept is also provided in the coefficients table.

A linear regression model is an equation y = by + b x| + byx, + b3x3 + ... +error, where y
is the dependent variable, x;, X)3y +.. ATE the independent variables, and &, is the intercept.
The model intercept and coefficients &, &,, ... for each variable are listed with their standard
errors in the model coefficient table. Note that in a simple regression, the intercept and coeffi-
cient of the independent variable in the model coefficient table are the intercept and slope of
the regression line.

Standardized regression coefficients

Since the magnitudes of independent variables might vary widely, it is difficult to compare the
relative importance of a regression coefficient for one variable with that of another variable.
For this reason, standardized regression coefficients are often useful in determining which
independent variables in a regression are most important in helping to predict the dependent
variable. Standardized coefficients are calculated as if all of the independent variables had vari-
ance 1; thus two standardized coefficients can be directly compared, regardless of differences
in the scale of the variables involved.

Critena for model quality

R squared

The simplest statistic to assess the quality of a regression model is the R value, also called the
coefficient of determination. It is the proportion of the dependent variable’s variability that is
explained by the independent variables (with a maximum value of 1). Thus, an R 0f0.80
means that 80% of the dependent variable’s variation is explained by the independent vari-
able(s). An R™ close to one can be achieved by including many independent variables in the
model. If the number of independent variables in a model is close to the number of observa-
tions, interpret the R with extreme caution.

One problem with the use of R*is that the number of variables is not explicitly included in
the formula used to calculate it. Thus, when you assign an additional independent vanable to
an existing regressmn the value of R” is guaranteed to increase. A modification of R known
as the adjusted ;4 attempts to remedy this situation by applying a “penalty” to the R value
based on the number of variables assigned. The adjusted R is especially useful for comparing
a variety of models with different numbers of independent variables.

Upper-case R? vs. lower-case 7 In the case of simple linear regression (one independent
variable), R? is the coefficient of simple determination and is equal to 72, the square of the
correlation coefficient. Both represent the proportion of variability in the dependent variable
that can be explained by a straight-line relationship with the independent variable. However,
for multiple linear models (more than one independent variable), R? is the coefficient of mul-
tiple determination (representing the proportion of variability in the dependent variable that
can be explained by a straight-line relationship with  sez of independent variables) and is not
the same as the squared correlation coefficient, 7 . In any case, R? is the correct notation and
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Residuals

is preferred by most statistical packages, although for simple linear regression the #* notation
would not be incorrect.

ftest

You can assess the adequacy of each independent variable in the model with a #-test. This tests
the hypothesis that there is no linear relationship between the dependent variable and the
independent variable. This differs from the hypothesis of no correlation between the two vari-
ables (read about z-tests in the chapter “Paired Comparisons,” p. 29). The ¢ value displayed

through the regression takes into account the other variables in the regression model, whereas
correlation is performed for only two variables at a time. The # values and associated p values
for the intercept and each model coefficient can be found in the model coefficients table.

ANOVA statistics

Another measure of model quality is the regression ANova table. This table uses the sum of
squares and mean squares to calculate an F statistic, as a standard aNova (see “ANOVA,”

p. 73) does. The probability of the F-statistic for a regression is a guide to how important the
independent variable(s) are in explaining the behavior of the dependent variable; a low p value
associated with an F-statistic means it is unlikely that an F-statistic as large as the one calcu-
lated would have happened by chance. Thus we assume that the variable(s) in question are
useful for explaining variation in the dependent variable.

Because a regression model rarely estimates the value of the dependent variable exactly, there is
a difference between the predicted or fitted value of the dependent variable and its actual
value. This difference is known as the residual.

Residual plots

Residuals are useful in helping you identify outliers, observations that behave very differently
than the bulk of the observations. The residuals from a regression represent the portion of the
data that is not explained by the model. In the residual plots described below, any point that is
distant from most of the points on the plot is considered an outlier and its origin investigated.
If it is clear that the observation is an error (for example, a mistake in data transcription or
entry), then you correct it or delete it from the analysis. The fact that an observation does not
fit in with the other observations in the analysis does not justify its removal. Before removing
outliers, always investigate the source of the outlier to provide justification based on the con-
text of the data collection process. If an unusual residual is the only reason for deleting an
observation, it is best to leave it in the model and continue to investigate the cause of the
unusual residual. Sometimes these observations contain important information about your
data.

One useful residual plot is the plot of residuals versus fitted values. The following are some

different shapes for this plot.



8 Regression Discussion

6 I L 6
x
x x x
X x x x > X kX
4 x x X x - 4 x x x
% X % X X
x X x Xx x x
2 X x < % E 2 x Xyxx x X x
x X kX X
x X2 Yx ™ X X X >
X)eo%x o x Xx X x X XX XX %
0 1x x f( r 0 XX X x X
X X x % x x % x
x XX x x x x X x %
2 x x WX o x % r 2 X x &x&‘kxx
x x X ox o x L
< x x
Xy, X %
X X x X x X L b
' xx T XX x 4 R
6 -6 T T T T T T
47 472 474 476 478 48 482 484 486 488 3 35 2 5 5 55 6 65
Constant widt Cone
4 3
x
x s
3 2 % x
x
x g?x‘ Xx¢ X
20 x¥ Xy X
2 % X X 1 X x
x X X xx %% x
x X X % ¥
X X % xRy o
1 x X % i XX X x 0 % <
X, X X XX XX x x X X x X
. Xx x x XX . L X <
X X -
XXX % X o Ko X KX >2<><><>< x XX
£3 & Xx X e
1 X x x 2 x
X% x X oxx x X
x
x X X >§2
2 x X x 3 R
x XX
x x
3 T T T T T T 4 T T T T T T T T T
2 o 2 4 6 8 1 12 1 2 3 4 5 6 7 8 9 111
Line Curve

If the assumptions of the regression are met, the plot of residuals versus fitted values will show
a band of constant width independent of the fitted value. The cone shape is a common devia-
tion from this pattern, as in the upper right plot where the spread of residuals is wider for
larger fitted values. This tells you that the variance of the observations increases as the mean
increases. That generally indicates a need to transform the dependent variable by a logarithmic
or square root transformation before regression is carried out. If the data are counts, for exam-
ple, a square root transformation is often helpful.

Another useful residual plot uses the residuals plotted against each of the independent vari-
ables in the model. Once again, the expected pattern, if the assumptions are met, is a band of
residuals of constant width throughout the range of the regressor. If the assumption of a
purely linear relationship between the dependent and independent variable is not appropriate,
the residual plots will display a systematic deviation from the constant width pattern. For
example, if the residuals tend to lie in a band that curves either upward or downward, as in the
lower right plot, the addition of a new term representing the square of the regressor might
improve the fit. Similarly, the cone shape pattern suggests that a transformation of the regres-
sor in question might be in order. The plot of residuals versus independent variables might be
useful when colinearity is suspected among the independent variables.

The assumption of independence of observations might be violated when observations are
measured across time. As with the other violations of assumptions, a residual plot can help
make this clear, though the observed pattern of the residuals might be more subtle. A plot of
residuals versus a variable representing time should, as always, show no discernible pattern.
Any regularity, such as noticeable cyclical patterns, indicates that a more complex analysis is
necessary to accommodate the time series nature of the data.
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Residual statistics

Along with residual plots, StatView produces statistics which help summarize the behavior of
the residuals. These include the number of residuals greater than zero and less than zero. Since
the mean value of the residuals is guaranteed to equal zero, these two numbers can give you a
feel for the symmetry of the residuals. If they are symmetric, the two numbers should be
approximately equal. If not, the residuals might be skewed, and a transformation or a different
model might be appropriate.

The remaining residual statistics help assess the level of first degree autocorrelation within the
residuals, i.e., the level of correlation between each residual and the residual immediately
before it in the dataset. Thus, they are only of value if the observations in your data are
ordered in a meaningful way. These statistics are labelled SS[e(i) — e(i-1)], Durbin-Watson,
and Serial Autocorrelation. An autocorrelation close to —1 or 1 implies a high degree of corre-
lation between the residuals.

Dialog box settings

When you create or edit a regression analysis, you set the analysis parameters in two dialog
boxes, a small one with few choices and an expanded one with many choices. In the first of
the two, you can select simple, polynomial, multiple or stepwise regression and click OK to
accept the default parameters.

Regression
Model:
@ Simple
(2 Polynomial of order:
(2 Multiple
(2 Stepwise
(2 Nonlinear: sapniial @

[ No intercept in model

[More choices] [ cancel ] [[ ok ||

Model If you choose polynomial, you must specify an order or degree of the polynomial
between 2 and 9. If you choose stepwise, your model will be created using the default stepwise
parameters (forward stepwise with an F-to-Enter of 4.000 and an F-to-Remove of 3.996). You
can change these parameters in the expanded dialog box by clicking More Choices. If you
choose Nonlinear, you must choose which nonlinear transformation to use.

@ Nonlinear: TGN
Logarithmic
Power
Growth

If you select a result and click Edit Analysis, you will not be able to change the model type
from multiple or stepwise to simple, polynomial, or nonlinear regression. You must instead
create a new analysis with the desired model type.
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No intercept This option lets you remove the intercept from the model. Please read the cau-
tions discussed under “Model coefficients and intercept,” p. 55 before doing so. Suppressing
the intercept is not allowed for nonlinear models.

More choices To see an expanded dialog box with additional choices for regression analysis,
click More choices. You can return to the smaller dialog box by clicking the Fewer choices
button.

Regression

Model: Grders |

[ No intercept in model

Stepwise parameter Forward Backward
fmtnmenior Fatgapramaen!

Save to dataset: [ Residuals []Fitted []Predicted
Compute values for included rows all rows

Confidence level: Y%

Plot confidence bands for: [JMean []Slope

Fewer choices Cancel

Options in the top section of this dialog box are the same as in the Fewer Choices dialog box.

Stepwise parameters The section below that is available only if you choose stepwise regres-
sion. You can specify forward or backward, and set the partial F-ratio criteria for entering and
removing variables. The F-to-remove defaults to 3.996, and must be lower than the F-to-
enter, which defaults to 4.

Residual, fitted, and predicted values There are checkboxes allowing you to generate and
save residual, fitted and predicted values. These values are saved to the dataset containing the
dependent variable and are dynamically linked to the analysis. They are assigned the name Fit-
ted Y, Residual Y, or Predicted Y, where Y is the name of the dependent variable for the regres-
sion. StatView identifies the source of these columns that are generated as part of an analysis
as Analysis Generated variables (see “Save to dataset,” p. 61).

StatView distinguishes fitted and predicted values as follows:

1. Fitted values are values of the dependent variable predicted by the analysis using the data
with which the regression model were fit.

2. Predicted values are values of the dependent variable predicted by the regression model
using new data. You enter these data into the columns which contain the independent vari-
able(s), leaving missing values in the dependent column. These values can be entered into
any row in the independent variable(s). The predicted values will appear in the same row in
the Predicted Y column. Note that predicted values will also be generated for any row that
contains a missing value for the dependent variable if predicted values is checked in the
dialog box. However, predicted, fitted, and residual values have a missing value if any row
is missing for the independent variable.

Included rows or All rows You can choose whether to compute residual, fitted and predicted

values using all the rows in the dataset, or for only the included rows. If you select Included
rows, the values are calculated for just the included rows of the dataset; excluded rows contain
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missing values. If you select All rows, the values are calculated for all rows in the dataset
regardless of their included or excluded state.

Confidence bands and intervals The bottom choices in the dialog box allow you to plot con-
fidence bands for the mean, slope, or both in the simple regression plot. The confidence level
text box specifies the level for the mean and slope for the regression plot and is also used with
the confidence interval table. Confidence intervals are only available for simple linear regres-
sion.

Save to dataset An analysis generated variable is dynamically tied to the regression analysis
that created it. If you change the parameters of the model or any of the data in the indepen-
dent or dependent variables, the analysis generated variable in the dataset will automatically
update. In addition, the variable is associated with the view that contains the analysis, not the
dataset in which they appear. This means that it will automatically be added to the dataset
which contains the dependent variable when the view which contains the regression is
reopened and the regression analysis recalculated. If you close the view, the variable will be
removed from the dataset. One consequence of this is that if you plan to use an analysis gener-
ated variable in a formula, you need to open the view containing the regression analysis for the
formula to compute.

Because these variables are dynamic, you can generate a graph or statistic using the residual,
fitted, or predicted values, that will also automatically update when the model or underlying
data change. You can create a histogram or box plot showing the distribution of your residuals
and the plot will stay current with any changes you make to your model. Note that any result
created using analysis generated variables must be located in the same view as the regression
analysis.

To break the link between an analysis generated variable and the analysis, change its source to
User Entered. This causes all ties to the analysis to be broken and the letters “UE” appended
to the front of the variable name to indicate that it is now user entered. Any change to the
regression that created it will have no effect on the variable, and they act just as any user-
entered variable would. If you delete any of these analysis generated columns it is equivalent
to turning off the Save options in the Regression dialog box.

Data requirements

Simple, polynomial, and nonlinear regression models require one continuous independent
and one continuous dependent variable. Multiple and stepwise regression require one or more
continuous independent variables and one continuous dependent variable.

Variable browser buttons

Simple, polynomial, |Independent Select the continuous variable which is the independent variable for the

and nonlinear model and click the Independent button.

regression Each additional independent variable assigned creates a new analysis
with the new independent and the previous dependent variable.
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Dependent Select the continuous variable which is the dependent variable for the
model and click the Dependent button.

Each additional dependent variable assigned creates a new analysis
using the new dependent variable and the old independent variable.

Force The Force button is the same as the Independent button for all
regression analyses except Stepwise regression (see below).

Split By When you assign one or more split-by variables to any regression
results, results for each cell in the split-by variable(s) are displayed in
separate tables and plots.

Multiple and stepwise |Independent Select the continuous variables which are the independent variables for
regression the model and click the Independent button.
Additional independent variables are added to the model.

Dependent Select the continuous variable which is the dependent variable for the
model and click the Dependent button.

Each additional dependent variable assigned creates a new analysis
using the new dependent variable and the old independent variable(s).

Force The Force button allows you to force continuous variables into a
stepwise regression. Each forced variable will automatically be an
independent variable of the model even if these variables do not meet
the model criteria. For a multiple regression, the Force button is the
same as the Independent button, except that variables entered with the
Force button appear first in tables.

Split By When you assign one or more split-by variables to any regression
results, results for each cell in the split-by variable(s) are displayed in
separate tables and plots.

Results

For explanation of the results, please see the preceding “Discussion,” p. 51. The Regression

Summary, ANova table, and Regression Coefficients table are the default output for this anal-
ysis. Most of the results below are computed for both linear and nonlinear regression; excep-
tions are noted within the table.

Regression Summary  [Table containing count, number missing, correlation coefficient (), A, adjusted A, and RMS
residual. For exponential, growth, and power models, f, R2 adjusted It’2 and RMS residual are
not computed.

ANOVA Table Table containing the degrees of freedom, sum of squares, mean squares, F value, and p value
for the regression ANOVA. The table is not computed for exponential, growth, and power models.

Regression Coefficients |Table containing the coefficients of the regression equation. Standardized coefficients, standard
error, ¢ value and p value are also displayed. For exponential and power models, standard
error, ¢ value and p values are not computed for the intercept term. An additional row for the
log-intercept term is shown for exponential and power models.

Confidence Intervals  |Table containing both regular regression coefficients and their upper and lower confidence
intervals as set in the dialog box. This table is not available for stepwise regression.
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Templates

Residual Statistics

Table containing the number of positive or zero residuals, the number of negative residuals, and
autocorrelation statistics. For exponential, power, and growth models, the Durbin-Watson
statistic is not computed.

Regression Plot

A scattergram of the dependent vs. the independent variable with regression line and equation.
For simple regression, confidence intervals can be added for the mean and slope using the
dialog box. Not available for multiple regression.

Residual Plots

Graphs of residuals vs. fitted dependent and dependent and of dependent vs. fitted dependent
are available. For a stepwise regression, these plots will include information for the last step.

For further options on plotting scattergrams with fitted regression lines or smoothed curves,
see “Bivariate Plots,” p. 221.

Additional stepwise regression results

The following tables appear only if stepwise regression is selected. The Stepwise summary
always appears. The Variables in Model and Variables Not in Model tables appear if regression
coefficients are requested.

Stepwise Regression
Summary

Table containing F-to-enter, F-to-remove, number of steps, variables entered, variables forced
and the stepwise procedure used.

Variables in Model

Table containing the names and coefficients of the variables entered into the model at each
step. Standardized coefficients, standard error, and the F-to-Remove are also displayed.

Variables Not in Model

Table containing the partial correlation and the F-to-Enter of the variables not entered into the
model at each step.

The following templates provide regression results.

Graphs Bivariate Regression |Bivariate scattergram with regression line and equation.
Plot
Regression Exponential Regression |Simple regression summary and coefficients tables and regression plot

using the exponential transformation.

Growth Regression

Simple regression summary and coefficients tables and regression plot
using the growth transformation.

Logarithmic Regression

Simple regression summary, ANOVA, and coefficients tables and
regression plot the logarithmic transformation.

Power Regression

Simple regression summary and coefficients tables and regression plot
using the power transformation.

Regression--Multiple

Multiple regression summary, ANOVA, and coefficients tables.

Regression--Polynomial

Polynomial regression summary, ANOVA, and coefficients tables;
polynomial regression plot.

Regression--Simple

Simple regression summary, ANOVA, and coefficients tables; regression
plot.
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Regression--Stepwise  |Stepwise summary table and regression plot; for each step, ANOVA,
coefficients, summary, Variables In, and Variables Not In tables.

Residual Stats--Simple |Simple regression residual statistics table, residuals vs. fitted and
Regr residuals vs. dependent plots.

Exercises

Several of these exercises analyze the Tree Data sample dataset. In the 1930s, the weights and
trunk girths were measured for eight specimens from each of thirteen root-stocks, for a total
of 104 tree specimens.

Simple linear regression

We will perform a simple regression to predict the weight of trees from their girth. This makes
it possible to get accurate estimates of weight without having to cut trees down and weigh
them, a destructive and difficult process. Your first step is to perform a simple regression to see
whether there is a linear relationship between weight and girth. A high R squared (R?) would
indicate a strong linear relationship.

* Open Tree Data from the Sample Data folder
* From the Analyze menu, select New View

* In the analysis browser under Regression, select Regression Summary and Regression Coef-
ficients and click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent results

* Click OK to accept the default parameter settings
* In the variable browser, select Trunk Girth and click Independent

* In the variable browser, select Weight and click Dependent

Regression Summary Regression Coefficients
Weight vs. Trunk Girth Weight vs. Trunk Girth
Count 104 Coefficient Std. Error Std. Coeff.  t-Value P-Value
Num. Missing 0 Intercept -1225.413 102.361 | -1225.413 | -11.971| <.0001
R .916 Trunk Girth 5.874 .254 .916 23.101| <.0001
R Squared .840
Adjusted R Squared .838
RMS Residual 183.606

You can see from the high R? value in this summary table that there seems to be a clear rela-
tionship between Weight and Trunk Girth. Now, to examine the relationship and to confirm
the notion that it is linear, create a regression plot. This is a bivariate scattergram of Weight vs.
Trunk Girth with a regression line added.

¢ Make sure at least one table is still selected

* In the analysis browser, select Regression Plot and click Create Analysis
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Regression Plot
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Notice that you did not need to assign variables to this plot. The preceding table was selected
when you created this plot, so StatView treats the plot as additional output from the existing
regression analysis, rather than a newly requested analysis you are creating from scratch.

Polynomial regression

The plot shows that the weight of trees increases faster than it would if there were a strictly
linear relationship. The spread of points is curved with values at the ends above the regression
line and those in the middle below it. The relationship between Weight and Trunk Girth
might be better explained by adding a quadratic term in Trunk Girth. You can test this
hypothesis by changing the current analysis to a polynomial regression.

¢ Make sure at least one result is still selected

* Click Edit Analysis (a button at the top of the view window)
The Regression dialog box reappears so that you can change parameter settings.
* Choose Polynomial of order and click OK (keep the order setting of 2)

Regression Coefficients
Weight vs. Trunk Girth

Regression Summary
Weight vs. Trunk Girth

Count

Num. Missing

R

R Squared

Adjusted R Squared
RMS Residual

104
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Coefficient

Std. Error

Std. Coeff.

t-Value

P-Value

946.869

297.493

946.869

3.183

.0019

-6.489

1.640

-1.012

-3.956

.0001

.017

.002

1.944

7.597

<.0001
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In these results, p < 0.0001 for the squared term shows that the quadratic term is useful for
explaining the relationship between the two variables. The graph shows how well the second
order polynomial regression fits the data.

Predicted values

Now you can use this model to predict a tree’s weight based on its trunk girth. StatView will
predict a value for any row in the dataset that has a value for the independent variable and a
missing value for the dependent variable.

* Uncheck Recalculate (in the upper left corner of the view window)
This prevents predicted values from being calculated one at a time while you add each inde-

pendent value to the dataset. We will enable calculation after adding all the new independent
values to the dataset.

* Make sure at least one of the regression results is selected

* Click Edit Analysis

¢ Click More choices

e Select Predicted (after Save to dataset) and click OK

* Select Tree Data from the Window menu to bring it forward

A new Predicted Weight variable at the end of the dataset contains missing values ( . ).Your

predicted values will appear in this column. Next, we will add four new rows to the dataset by
adding values at the bottom of Trunk Girth.

¢ At the bottom of Trunk Girth column (after row 104), enter the values 500, 600, 700, 800
*  Select the view from the Window menu to bring it forward
¢ Check Recalculate

* Select Tree Data from the Window menu to bring it forward

In the Predicted Weight column of the dataset, the following values appear:

S00 . 19039.081
600 . 3111.125
700 . 4649.705
800 . 6524818

The second order polynomial regression model predicts these values for weight based on the
trunk girth values you entered.

While the polynomial regression plot appears to be a reasonable fit, one aspect is troubling;: it
would not be an effective model for predicting weight from smaller girth measurements. The
parabolic behavior of a quadratic fit doesn’t make biological sense, which becomes apparent if
we extend the horizontal axis to zero:

¢ (Click in the blank area of the view to deselect all results, then click the horizontal scale of
the Regression Plot result to select it

* Click Edit Display
¢ Change the From bound to 0 and click OK
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Adding smaller Trunk Girth values to the dataset would reveal similar results in the Predicted
Weight column.

Growth regression

A nonlinear model might be more suitable. Let’s try fitting a growth regression model:
¢ Make sure at least one result is still selected

* Click Edit Analysis (a button at the top of the view window)

The Regression dialog box reappears so that you can change parameter settings.
* Click the Fewer Choices button
¢ Choose Nonlinear, select Growth, and click OK

Regression Summary
Weight vs. Trunk Girth
Y = eM (b0 + b1*X)

Count

Num. Missing

R

R Squared

Adjusted R Squared

RMS Residual
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0

Regression Coefficients
Weight vs. Trunk Girth
Y =e”(b0 + b1*X)

Coefficient Std. Error Std. Coeff. t-Value P-Value
b0 4.335 .063 4.335 | 68.920 | <.0001
b1 .006| 1.562E-4 .972 | 41.545 | <.0001

Regression Plot
PR I R
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Trunk Girth
Y = e”(4.335 + .006 * X)
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We can tell intuitively from the regression plot that the growth regression fit is fairly good,
and unlike the polynomial curve, the growth curve shows reasonable behavior for narrower-
trunked trees. The p values indicate that both terms are useful for explaining the relationship
between girth and weight.

Let’s examine a plot of residuals vs. fitted values to assess this model further:

e Make sure at least one result is still selected

* In the analysis browser under Regression, double-click Residuals vs. Fitted Values

Residuals vs. Fitted
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The plot has a slight cone shape, suggesting that a logarithmic transformation of the depen-
dent variable might help (see “Residual plots,” p. 57). So, let’s try an exponential regression.

Exponential regression

¢ Make sure at least one result is still selected
* Click Edit Analysis (a button at the top of the view window)

¢ From Nonlinear, select Exponential, and click OK
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Regression Summary Regression Coefficients
Weight vs. Trunk Girth Weight vs. Trunk Girth
Y = b0 * e (b1*X) Y = b0 * eM(b1*X)

Count Coefficient Std. Error Std. Coeff. t-Value P-Value
b0 (from In(b0)) 76.291

In(b0) 4.335 .063 4.335| 68.920 | <.0001

Num. Missing

R
R Squared b1 .006 | 1.562E-4 .972 | 41.545| <.0001
Adjusted R Squared
RMS Residual
Regression Plot Residuals vs. Fitted
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Y =76.291 * e(.006 * X)

These results appear to be nearly identical, right down to the residuals. How could that be?
Look at the equations under the regression plots. A little algebra reveals that for these data, the
two fits are nearly equal:
y = (4335 +0.006x)
4.335 0.006x
e Xe
0.006x

Y = 76.291°%06%

76.325¢

Since we still see some cone-like spreading to the right in the residuals plot, we need to exer-
cise caution predicting values too far beyond the range of the data.

Multiple regression

We turn now to a multiple regression model. The Car Data sample dataset has information on
116 cars compiled by Consumer Reports. This information includes data about weight, gas
tank size, turning circle, horsepower and engine displacement for cars from different coun-
tries. We want to find out whether there is a relationship between gas tank size and other vari-

ables.
* Open Car Data from the Sample Data folder
* From the Analyze menu, select New View

* In the analysis browser under Regression, select Regression Summary and Regression Coef-
ficients, and click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent results

* Choose Multiple and click OK

¢ In the variable browser, select Gas Tank Size, and click Dependent
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*  Select Weight, Turning Circle, Displacement, and Horsepower and click Independent

Regression Summary Regression Coefficients

Gas Tank Size vs. 4 Independents Gas Tank Size vs. 4 Independents

Count 116 Coefficient Std. Error Std. Coeff. t-Value P-Value
Num. Missing 0 Intercept 2.551 2.553 2.551 .999 .3200
R .852 Weight .004 .001 .781 7.820 | <.0001
R Squared 727 Turning Circle -.021 .082 -.021 -.256 .7985
Adjusted R Squared | .717 Displacement -.001 .006 -.019 -.176 .8610
RMS Residual 1.637 Horsepower .011 .006 .139 1.689 .0940

The p values in the Regression Coefficients table tell you that Weight is the only variable use-
ful in predicting gas tank size. In addition, an adjusted R* value of 0.717 indicates a fairly
strong overall relationship. To confirm the relationship between Gas Tank Size and Weight
graphically, you might want to plot these two variables using a bivariate plot.

Stepwise regression

In this exercise you perform a stepwise regression using census data for 506 housing tracts in
the Boston area from Belsley, Kuh, and Welch (1980). You will determine what factors are
most useful in predicting the median value (in thousands of dollars) of homes. Variables
include crime rate, percentage of land zoned for large lots, percentage of non-retail business
acres, nearness to the Charles river, nitrogen oxygen concentration (ppb), average number of
rooms, percentage of units built before 1940, weighted distance to five employment centers,
accessibility to radial highways, property tax rate ($ per $10,000), district pupil/teacher ratio,
and percentage of lower status population.

* Open Boston Housing Data from the Sample Data folder
e From the Analyze menu, select New View

* In the analysis browser under Regression, select Regression Coefficients and click Create
Analysis

e Choose Stepwise
The stepwise setting produces a forward stepwise regression with an F-to-Enter of 4.000 and

an F-to-Remove of 3.996. If you would like to change these parameters, click the More
Choices button.

¢ Click OK
¢ In the variable browser, select all the continuous variables except Median Value and click
Independent

Control-click (Windows) or Command-click (Macintosh) to select nonadjacent variables

¢ In the variable browser, select Median Value and click Dependent

The analysis calculates and results appear in the view. The Stepwise Regression Summary table
indicates that nine variables were entered into the model in nine steps.
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Stepwise Regression Summary
Median Value vs. 11 Independents

F-to-Enter 4.000
F-to-Remove 3.996
Number of Steps 9
Variables Entered 9
Variables Forced 0
Stepwise Procedure | Forward

To see which variables were entered and which were not, scroll to the bottom of the view and

examine the information for step 9. All variables were entered in the model except Industry

and Before 1940.

Variables In Model
Median Value vs. 11 Independents

Step: 9

Intercept
Crime

Zone

NOX

Rooms

Dist. Empl.
Highways
Tax Rate
Pupil/Teach...
Low status

This result suggests that all nine variables entered in the model are somehow significant in

Variables Not In Model
Median Value vs. 11 Independents

Step: 9

Coefficient Std. Error Std. Coeff. F-to-Remove

42.003 4.950 42.003 72.002 Industry

-.128 .033 -.120 14.943 Bef. 1940
.046 .014 .117 11.142
-.173 .036 -.219 23.339
3.712 413 .284 80.751
-1.552 .189 -.355 67.295
.300 .064 .284 21.698
-.013 .003 -.243 14.975
-.964 .131 -.227 53.854
-.554 .048 -.430 133.711

Partial ... F-to-Enter
.025 .300
.020 .200

explaining the dependent variable, Median Value. It gives no details about the individual vari-

ables themselves. You can examine these data further with the Dependent vs. Fitted plot.

e Make sure at least one result is still selected

* In the analysis browser under Regression, select Dependent vs. Fitted and click Create

Analysis

Dependent vs. Fitted

Step: 9
I

| 1 L 1 L 1 |

10 15 20 25 30 35 40 45
Fitted Median Value

The houses with the highest median values cluster at the top of the graph in a straight line of

points suggesting that their predicted values have no relation to the actual values. This sug-

gests that we should reanalyze the data using two separate models: one for high value houses
and one for all other values. Using the Recode command, you could create a nominal variable
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from Median Value that divides the dataset into two such groups. You would then assign this
variable as a split-by variable to perform such an analysis.



ANOVA

An analysis of variance (aNova) studies the effect of nominal independent variables on a con-
tinuous dependent variable. (A nominal variable can take on only a limited number of values,
whereas a continuous variable can take on any value over a wide range. See “Data class,” p. 50
of Using StatView for a discussion of nominal and continuous data classes.)

A repeated measures analysis of variance (repeated measures ANovA) studies the effect of
nominal independent variables (“between factors” or “between-subject effects”) on a continu-
ous response variable within successive measurements (“within factors” or “within-subject
effects”). StatView expects within factors (the repeated measures) to be stored as compact vari-
ables in the dataset; see “Compact variables,” p. 84 of Using StatView.

An analysis of covariance (aNcova) studies the effect of both nominal and continuous inde-
y'
pendent variables on a continuous dependent variable.

A multivariate analysis of variance (Manova) studies the simultaneous effect of nominal
independent variables on several continuous dependent variables.

A multivariate analysis of covariance (MaNcovaA) studies the simultaneous effect of nominal
and continuous independent variables on several continuous dependent variables.

StatView does not compute repeated measures ANCOVA, MANOVA, O MANCOVA designs.

Discussion

Analysis of variance determines the significance of the effects in a model by calculating how
much of the variability in the dependent variable can be explained by the effect in question. It
does this by calculating a quantity called the mean square, which is mathematically similar to
the variance. This quantity is calculated by dividing the sum of squares of deviations from the
means by the degrees of freedom for the effect (the number of parameters that the model is
estimating to test for the significance of the effect). For main effects, the number of degrees of
freedom is one less than the number of discrete values for the factor in question. The degrees
of freedom for an interaction is the product of the degrees of freedom of each of the factors
contained in the interaction. Finally, this mean square is divided by an estimate of error vari-
ance known as the residual mean square. This ratio (mean square of the effect divided by
residual mean square) results in an F-statistic that can be used to test the importance of the
effect in question.
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The probability (p value) of the F-statistic for an effect is a guide to how important that effect
is in explaining the behavior of the dependent variable; a low p value associated with an F-sta-
tistic for an effect means it is unlikely that an F-statistic as large as the one calculated would
have happened by chance. Thus we assume that the effect in question is important in helping
to explain the dependent variable. The power value gives the probability of correctly rejecting
a false null hypothesis, and lambda is a quantity called the “noncentrality parameter” used in
the calculation of power.

Post hoc tests evaluate pairwise differences among levels of main effects, with protection
against simultaneous test error.

In the following sections, we explore each of these concepts in more detail. First, we review
the basics of hypothesis testing; then we discuss the components of [M]an[c]ova models and
each type of model. Finally, we discuss post hoc tests.

Hypothesis testing

Hypothesis testing is the formal statistical technique of collecting data to answer questions
about something through the use of a statistical model. Each question asked about a study
should be stated in the form of a null hypothesis. A null hypothesis states that there are no
differences between the values of the dependent variable that can be explained by the differ-
ences in the independent variables of your model. For example, if you were comparing several
quality control procedures for manufacturing computer chips, an appropriate null hypothesis
would be that there are no quality differences between chips manufactured under the various
quality control procedures.

The hypothesis tests in the analysis of variance are known as omnibus tests, because they test
a null hypothesis against the collection of all alternative hypotheses. Taking the quality control
example, assume that there are four different procedures being compared. The null hypothesis
is that there are no differences among the four techniques as measured by the mean purity of
the chips produced. What circumstances would cause this null hypothesis to be rejected? One
possibility is that three of the four techniques are equivalent, but the fourth is better than the
others; another is that three the four are equivalent, but the fourth is worse. Still another pos-
sibility is that two techniques are equivalent but result in lower purity than the other two.

A single null hypothesis is always the basis for a statistical test, and the results of a test simply
lead you either to reject the null hypothesis (if you observe significant differences) or to accept
it (if you do not observe significant differences). Failure to detect significant differences that
would enable you to reject a null hypothesis means that you must continue to assume that the
independent variable(s) has no effect on the dependent variable, unless and until more evi-
dence arises to demonstrate measurable, significant differences.

Each term entered into a linear model generates a hypothesis test, where the F statistic is a
measure of whether or not the null hypothesis should be rejected. The F-test compares the
observed F value with the value that would be expected theoretically if the null hypothesis
were true, and it reports the probability that an F statistic as large as that observed could have
been observed simply by chance. (Even when the null hypothesis is true, it’s possible that the
particular data observed could result in a higher F-ratio than expected.) A small probability
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means that an F statistic is unlikely to occur by chance, so the null hypothesis should be
rejected.

A typical significance level (or “cutoff level”) used for declaring differences significant is 0.05.
This means that if the null hypothesis were true, you would incorrectly reject it only 5% of
the time, if you reject the null hypothesis when the probability of the corresponding F statistic
is 0.05. The significance level to be used in interpreting hypothesis tests should be stated
before carrying out the analysis, which is why StatView asks you to specify an “alpha value”
before computing the analysis.

The incorrect rejection of the null hypothesis when it is actually true is known as a type I or
alpha error. You should control for this type of error by setting an appropriate significance
level and interpreting the hypothesis tests as described.

You can adjust the significance level or alpha value as needed. For example, if you conducted
a study to determine whether an expensive treatment should be applied to a population, you
would need to avoid accidentally rejecting the null hypothesis of no need for the treatment
when in fact there was no need. In such a case, you would set your significance level lower
than 0.05, perhaps to 0.01 or even 0.001. However, you would want to follow a different
approach if you were screening for further study a large number of potentially useful tech-
niques. In this case, you could tentatively reject a null hypothesis of no difference among the
techniques because it would be more vital that a useful technique not be incorrectly rejected.
A significance level of 0.10 or perhaps even 0.25 might be appropriate. Remember, although a
significance level of 0.05 is often used, it is not the best level for every situation.

Setting the significance level to a specific value controls the type I error of a statistical test, but
there is another type of possible error in hypothesis test performance: the type II or beta
error. Beta error occurs when the null hypothesis is not rejected, even though it is not true.
For example, suppose you were conducting a survey of customers in two stores about the
amount of money they spent on clothing in the last month. The null hypothesis for the survey
would be that there is no difference between the two stores in the amount of money spent.
Suppose your budget limited you to questioning only five customers in each store. It would
not be surprising if, due to the small number of subjects in the study, you were unable to
assert that there were any differences. It might even be that the observed averages were very
different, but the statistical test was unable to declare the difference statistically significant.

When you set an alpha level, you are choosing a level of probability for making a type I error
(where you fail to reject a null hypothesis that is in fact false), so choosing a smaller alpha
value and minimizing the probability of type I error means increasing the probability of type
IT error (where you accept a null hypothesis that is in fact false). These relationships can be
summarized like this:
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Reject null hypothesis Accept null hypothesis
Null hypothesis true Type | error Correct decision
a 1—-a
Null hypothesis false Correct decision Type Il error
1—B (power) B

Power and Lambda

The ability of a statistical test to declare a true difference “statistically significant” is known as
the power of a statistical test. Obviously the power will vary depending upon which of the
many alternative hypotheses are in fact true, how many subjects are studied, and other details
of the experimental design. For these and other reasons, it is much harder to guard against
type II error than type I error. To ensure that a hypothesis test is carried out with reasonable
power, make sure you base your analyses on a sufficient number of experimental units, and
that an appropriate design has been chosen for carrying out and analyzing the experiment or
study.

Two statistics that help you assess the power of a test are power and lambda. Power describes
the probability of concluding that each effect is significant when in fact it is significant. Beta
(not shown by StatView) is simply one minus power, or power is one minus beta. Lambda is a
quantity that is used to compute power. It is sometimes called “partial eta squared” (partial
n2 ) or “noncentrality value,” because the power value comes from a computation of the non-
central F distribution, based in part on lambda and indirectly on alpha. The method for cal-
culating power and lambda appears under “Power and lambda,” p. 441.

Model building

This section is a conceptual overview of model building to help you make the right decisions
about dependent and independent variables, main effects, and interactions in your models.
Subsequent sections examine each type of model (anova, ANCOVA, MAN[C]OVaA, and repeated
measures ANOVA) in more detail.

Dependent variables

The first decision to be made in building a model is the choice of dependent variable. The
dependent variable is the variable whose value you are trying to estimate or predict. For exam-
ple, if you were looking at the effect of different fertilizers on the yield of corn, the yield
would be your dependent variable. To predict college Gpa score from aptitude tests, the college
Gpa scores would be the dependent variable. For a comparison of different advertising strate-
gies to determine which one resulted in the most sales, a measure of sales would be the depen-
dent variable.

In some cases there is more than one dependent variable. In a study of the effects of different
diets on mice, for example, the growth of the mice might be measured in various ways, such as
length, girth, body weight, head circumference, and so on. You could study each of these

dependent variables individually in several individual aNovas, but if the dependent variables
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are correlated, you should study the effect of diet on all the measurements at once in a
MANOVA.

In any case, the dependent variable must always be a continuous variable. For nominal depen-
dent variables you should consider other methods, such as logistic regression; see the chapter
“Logistic regression,” p. 199.

Independent variables

The rest of the variables in any model are known as independent variables. These are the
variables to be used in predicting or estimating the dependent variable (or variables). Looking
at it another way, the independent variables are the variables which you suspect will explain
differences seen in the dependent variable.

A model with one dependent variable and one independent variable as a simple regressor is
known as a simple regression model. If there is more than one independent variable, but all
the independent variables are entered as simple regressors, the model is known as a multiple
regression model. Fitting a variable as a simple regressor is a good idea if it is appropriate for
your data for the importance of that variable. In statistical terms, only one degree of freedom
is given up from the estimate of residual variability by including a simple regressor in the
model. This, in turn, makes the tests that StatView performs more sensitive to any true rela-
tionships that might exist between the independent variables and the dependent variable.
However, there is a price to be paid. When you add a simple regressor to a model, you are
assuming that its behavior is the same over the entire range of the independent variable. For
instance, in a salary study, adding years of education as a simple regressor involves the assump-
tion that no matter how much education a person has, more education still suggests higher
salary potential than less education, and that salary increases at a fixed rate.

If the assumption of a consistent linear relationship throughout the range of the independent
variable is not supported, it is more appropriate to analyze a nominal version of the indepen-
dent variable as a factor. Models in which all of the independent variables are treated as factors
are known as analysis of variance models.

For example, suppose you are trying to determine the effect of advertising on sales. If you used
the number of advertisements as a simple regressor, you would be assuming that the effect of
more advertisements doesn’t diminish as they increase in number. If you suspect that sales will
level off after a certain number of advertisements, then you would want to treat number of
advertisements as a factor, not as a simple regressor. To accommodate the added flexibility in
describing the relationship between number of advertisements and sales, ANOVA estimates sev-
eral parameters, one fewer than the number of values of advertisements studied.

Another example where adding a variable to a model as a factor would be appropriate is in a
study of the effect of different exercise plans on blood cholesterol level. Suppose subjects were
randomly divided into groups: one group that ran each day, another group that ran three
times a week, and a third group that attended daily aerobics classes. The three different types
of exercise would represent three levels of a factor to be added to a model, with the dependent
variable being blood cholesterol level at the end of the experiment. It would be meaningless to
fit type of exercise as a simple regressor, because there is no scale on which the three types of
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exercise can be assigned that would meet the assumption of a linear relationship throughout
the range of the variable.

Models with both regressors and factors are known as analysis of covariance models. These
models typically arise in one of two ways. First, a continuous variable measured before an
experiment or study begins might be expected to affect the value of the dependent variable.
For example, in a study to test the effects of different exercise programs on weight loss, one
might guess that the initial weights of the participants would affect the amount of weight they
lose over the course of the study. The model would include starting weight as a regressor, or
covariate. Notice that it is not really of interest whether the initial weight is helpful in pre-
dicting the weight loss; it is included the model to remove its effect so that the influence of the
different programs can be more accurately measured. Second, an experiment might happen to
have both continuous and nominal independent variables, i.e., both factors and regressors.
For example, to study the sales of soft drinks at several different stores, you might test whether
the average temperature in the area influenced the overall sale of soft drinks. You would be
interested in both the effect of the different stores as levels of a factor and the effect of the tem-
perature as a covariate.

Main effects and interactions

After deciding which independent variables should be used to help explain or predict the val-
ues of a dependent variable, and whether they should be entered into the model as regressors
or factors, a third consideration for your model is that of main effects and interactions.

As an example, consider a study of training programs to teach people how to use a new pro-
gram on a computer. The dependent variable to be measured is the time it takes students to
complete a particular task on the computer using the program. Some students have had previ-
ous computer training and some have not. It is felt that this difference might influence the
results of the study, so previous training, with two levels, is entered into the model as a factor.
The students are randomly divided into three groups: one group which receives an instruction
manual, one which receives classroom training, and a third which views a videotape on the use
of the program. Type of training is entered into the model as a factor (with three levels).

Effects in a model that consist of a single variable are known as main effects. The word
“main” in “main effect” doesn't mean that a main effect is the main point of interest but rather
that it is “not an interaction effect.”In fact, a main effect could be less interesting than an
interaction effect, where the effect of one factor differs according to the level of another factor
(or factors). For example, in the computer training study it might be most interesting to know
whether the relative merits of the three programs were the same for both novice and experi-
enced users. A significant result (a low p value, e.g. p <0.05) for an interaction leads you to
reject the null hypothesis that the effect of one is the same regardless of the other. You should
then examine the means table or interaction plots, which show the means of the dependent
variable for each combination of factors, to determine the source of the differences. The exer-
cise “Factorial,” p. 91, illustrates the use of interaction plots. (You can also create interaction
plots for bars, lines, and point with the Cell Plots analysis described in “Cell Plots,” p. 237.)
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ANOVA

Analysis of variance (anova) is useful in the same kinds of situations as regression analysis—
when you are trying to relate the effect of one or more independent variables on a dependent
variable. However, ANova models are used when an independent variable has nominal (non-
numerical) values, such as hair color (with possible values black, brown, blonde and red) or
the state in which subjects live (such as California, New York, Texas, and so on). In cases like
these, it is impossible to calculate a linear relationship between the value of the independent
variable (such as black, brown or blonde) and the dependent variable. Although such a vari-
able could be coded numerically (1=black, 2=brown, and so on), it would not be appropriate
to include it as a continuous regressor since it has no inherent numerical or even ordinal value.

Since the sum of squares calculated for main effects (the effects composed of only one vari-
able) in an ANOva model are used to test the null hypothesis that the mean of the dependent
variable is the same regardless of the level the main effect, ANova models can often detect dif-
ferences even when the relationship is more complex than the simple linear one required by
regression analysis. (The price paid for the extra sensitivity is that the linear model contains
more parameters to account for these differences, which reduces the power of the analysis.)

Thus, ANova models can be useful even if the independent variable is continuous, if it is
known or assumed that the relationship between the independent variable and the dependent
variable will not easily be explained by a linear or polynomial relationship, or by some other
simple relationship that is easily linearized. For example, increasing the concentration of a fer-
tilizer increases yield of a plant up to a certain point, but the yield remains constant after that
point. Such a relationship, called a plateau, is not linear. In cases like this, you can create a
new nominal variable from the original independent variable by dividing the original inde-
pendent variable’s values into a few non-overlapping categories and using this new variable as
one of the factors in your ANova model. For information on how to do this, see “Recode
data,” p. 117 of Using StatView.

One other benefit of ANova models is their ability to detect interaction between factors in a
model. An interaction between factors means that the effect of one of the factors differs
depending on the level(s) of the other factor(s) involved in the interaction. For example, if you
were interested in the effect of different types of fertilizer on the yield of different varieties of
corn, it might be the case that some types of fertilizer were more effective on some varieties of
corn than on other varieties. A main effect test of type of fertilizer, for example, would average
out the effects of variety and would not address this question. Similarly, the main effect test
for variety would average out the effects of fertilizer. However, the interaction test of variety
by fertilizer (labeled “variety*fertilizer” in the ANOVA table) would test the null hypothesis that
the effect of fertilizer is the same regardless of the corn variety. An equivalent null hypothesis
is that the effect of variety of corn is the same regardless of fertilizer type.

Models whose effects are all factors can detect the widest variety of interactions. Although you
can enter interaction terms composed of regressors only, be aware that introducing such terms
implies a linear relation between the dependent variable and the arithmetic product of the
independent variables involved in the interaction. This might not always be the case for the
regressors you study. The increased ability to detect interactions in the ANOvA model as
opposed to regression comes at the price of additional parameter estimates and potentially
decreased sensitivity.



80

9 ANOVA Discussion

Regression

ANCOVA

When you add an independent variable to a linear model as a regressor, you assume that an
increase in the independent variable will cause a proportionate increase or decrease in the
dependent variable. You can include a continuous variable as an independent variable in an
ANova model. Usually the purpose of that functionality is for including covariates for Ancova
or MaNcova models, but it also makes it possible for you to compute regression models using
the aANOvA procedure and assigning only continuous variable(s) as independent variable(s).
One reason you might want to consider doing so is that the aNova table includes lambda and
power results (discussed under “Power and Lambda,” p. 76), which are not available from the

Regression procedure. However, regression models usually should include a constant (inter-
cept) term, which is not possible from the aNova procedure. For more information, see the
chapter “Regression,” p. 51.

A model containing both factors and regressors is known as analysis of covariance. The name
derives from the fact that in an analysis of variance model, a regressor as well as the factors
may affect the dependent variable. Models such as these can be looked upon as analysis of
variance models with the addition of a “nuisance” regressor that affects the dependent variable
and whose effect should be removed, as much as possible, before the actual analysis of variance
takes place. However, there is no reason to think of the covariate as being more or less impor-
tant than the factors in these kinds of models. StatView lets you test not just the regressors but
also their interactions with the factors.

To understand when these tests may be helpful, it is useful to explain some terminology.
When a single regressor is fit to a dependent variable, the linear model can be summed up by
two parameters: the intercept and the slope. The intercept is that part of the predicted value
which the regressor doesn’t explain. The slope is the multiplier of the regressor’s value that
scales it to the values of the dependent variable. If the slope is a large number (either positive
or negative), then changes in the regressor result in large changes in the dependent variable. If
the slope is small (close to zero), then changes in the regressor do not affect the value of the
dependent variable very much. To test the significance of the relationship of the regressor to
the dependent variable, you simply include the regressor in the model.

When factors are also present in the model, the situation becomes more complex. It might be
that the slope for the regressor is the same for each level of the factor. On the other hand, it
might be that the regressor has a different effect on the dependent variable depending on the
value of the factors in the model. Suppose you are studying weight gains of three groups of
volunteers under a special diet: a sedentary group of office workers, a group of active college
students, and a group of marathon runners in training. Suppose that you have also measured
the calorie intake of the subjects during the course of the study and want to include that infor-
mation in the analysis. It would be reasonable to suspect that the calorie intake might affect
the three groups differently.

To test the null hypothesis that the slopes are the same for the different levels of a factor, you
include the interaction of the factor and covariate. In the soft drink sales example, suppose
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some stores were located in shopping malls and others were located outside. It might be rea-
sonable to suspect that temperature would not have the same influence in all stores, which
you could test by including the interaction between temperature and store. This type of exper-
imental design is known as grouped regression, because StatView actually performs a separate
regression for each group. Since it compares the results of several regressions, a test for factor-
covariate interaction is sometimes called a test for homogeneity of slopes or a test for com-
mon slopes. A significant result tells you that the slope of the regressor differs depending on
the level of the factor (or combination of levels of the factors, if there is more than one).

We can go further and test homogeneity of slopes with respect to an interaction of several fac-
tors by adding an interaction term with the factors and the covariate. If the hypothesis of
homogeneity of slopes cannot be rejected, then the effect of the covariate can be adequately
estimated by a single, common slope, and we can eliminate the interaction involving the cova-
riate from the model.

You can examine the interaction graphically by creating a scattergram of the dependent vari-
able vs. the covariate, with separate fitted regression lines for each level of the factor(s) in ques-
tion and then comparing the slopes of the lines. This technique is demonstrated in the
exercise “ANCOVA,” p. 99.

In simple regression, the intercept is usually not of much interest. However, the test for the
significance of a factor in an ANcova is often called a test for common intercepts. If the
hypothesis of common intercepts cannot be rejected (i.e., the probability level corresponding
to the factor is greater than the significance level you have chosen), then it might be appropri-
ate to remove the factor from the analysis and examine a simple regression model. However, if
the hypothesis of homogeneity of slopes is rejected, it is customary to keep the factor in the
model.

MANOVA and MANCOVA

Many experimental situations have more than one dependent variable. For example, in study-
ing the effects of a special diet on volunteers, you might measure their weights, blood choles-
terol levels, waistlines, oxygen consumption on a treadmill, and so on. Or, a study of pollution
levels in different settings might take measurements of oxides of nitrogen, carbon monoxide
and particulate matter.

In either example, the measurements are gualitatively different from each other—that is, the
things measured are inherently different from each other. When this is 7oz the case—where
the same thing is measured several times on the same subject—repeated measures ANOVA
methods are more appropriate. Examples of this would be weight gains after one, two, and
three months on a diet, or nitrogen oxide levels measured repeatedly on the same factories
using various filtering systems. The subjects (the people or the factories) are the same, and the
variables being measured (weights or pollution levels) are the same. What changes is time or
circumstance. For more information, see “Repeated measures ANOVA,” p. 82.

In situations where a variety of different measurements are recorded, one obvious alternative is
to analyze each dependent variable separately. There are two drawbacks to this approach. First,
it might be difficult, if not impossible, to make sense of the reams of output that would be

generated. It could be that some variables are influenced by one effect in the model, while oth-
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ers are influenced by different effects, and some are not significantly influenced by any of the
effects. In such cases, it would be hard to come up with a simple, easy-to-explain summary of
the results. It is also possible that a subtle pattern of changes might not be apparent, even after
careful study of the output. However, there is an even more serious problem. When several
measurements are taken on the same experimental units, they tend to be correlated: that is,
the values of some of the variables can be readily predicted by the values of the other variables.
The correlations of multiple variables often do not contain much information about the
underlying process because each variable is a different way of looking at the same thing. This
is not always the case, but it is wise to take the possibility into account.

The technique that performs analysis of variance on more than one dependent variable and
explicitly takes into account the correlation among the dependent variables is known as mul-
tivariate analysis of variance, or MANOVA. StatView’s MANOVA results are multivariate counter-
parts of the tests you would see if you were analyzing only one dependent variable. For
example, if you requested multivariate tests for a one-factor factorial design, with teaching
method as the grouping variable and dependent variables math score, history score, and read-
ing comprehension score, you would see tables with multivariate tests for the null hypothesis
that teaching method had no simultaneous effect on all three scores. The null hypothesis for a
univariate model with only math score would simply test that teaching method had no effect
on the math score.

This subtle difference can be important when the observations are highly correlated, because
you might be misled into overestimating the significance of your results when the individual
univariate tests are all significant. Similarly, if there is a subtle difference between the groups
that can only be discerned when considering all three scores simultaneously, the MANOVA tests
might be able to detect it, where the univariate analyses would not. The multivariate tests help
you decide whether the significance is due to different relationships among the dependent
variables or just to one underlying mechanism being measured several ways.

In the univariate analysis of variance, most statisticians agree that the statistic of choice to test
the null hypotheses generally associated with linear models is the following: an F-test that uses
a statistic formed as a ratio of the mean square attributable to an effect and the mean square
attributable to error. Because such a consensus does not exist for multivariate hypothesis tests,
StatView provides the four most popular multivariate statistics. Each of these tests is formed
from the eigenvalues of matrices that are analogous to the mean squares used in univariate
hypothesis tests, but they represent different statistical approaches to the multivariate prob-
lem. In many cases, the tests lend the same conclusions. However, in some cases they will not,
because each test is more sensitive against some alternative hypotheses than others, although
none has been shown to be universally superior to the others. The choice of statistic, therefore,
is often rather arbitrary. Wilks’ Lambda is favored by some statisticians because it is derived
by the maximum likelihood technique, which has been shown to be effective and useful for
deriving similar hypothesis tests in other experimental situations. StatView also computes
Roy’s Greatest Root, the Hotelling-Lawley trace, and Pillai’s trace.

Repeated measures ANOVA

Many times an experiment or study will result in several measurements being taken on each
experimental unit. (An experimental unit is the smallest object involved in a study, for exam-
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ple, a student in a study on teaching methods, a store in a sales survey, or a manufactured item
in a quality control study.) These several measurements may represent different things, such as
height and weight, or the levels of different substances in a sample of blood, or the amount of
money spent on various budget items. In such cases, you can analyze your data with either a
set of univariate analyses, or with a multivariate analysis. (See “ANOVA,” p. 79, and

“MANOVA and MANCOVA,” p. 81.)

There are also many situations where the measurements taken on each experimental unit are
essentially the same but measured under different times or experimental conditions. Examples
would be the level of a given substance in the blood at 1, 2, 5, and 10 days after treatment, or
the performance of students on a particular test at ages 5, 6, and 7, or the productivity of
workers under a variety of environmental conditions. Sets of measurements like these are
known as repeated measurements. The statistical technique often used to analyze them is
known as repeated measures analysis of variance.

The main distinction between a repeated measures analysis and a standard multivariate analy-
sis is that in a repeated measures analysis of variance, the different measurements each repre-
sent essentially the same quantity measured on the same experimental unit but under different
conditions. Often the measurements are simply repeated over time, but repeated measures
analysis of variance can be appropriate in other settings as well.

Some repeated measures designs, especially those where the effect of interest is time, have no
alternative. In other cases, an alternative may exist. For example, in the productivity study, an
alternative to measuring each of the workers under each of the conditions would be selecting a
large group of workers, randomly assigning them to different environmental conditions, and
measuring their productivity. However, this alternative has two potential drawbacks. First, it
might be expensive, difficult, or even impossible to find enough subjects. Second, there is the
danger that despite randomization, a larger proportion of the most productive workers could
end up in one group, causing a false association between that group’s environment and its
increased productivity. This effect is eliminated in the repeated measures design, as each sub-
ject is its own control, so individual effects can be removed. This property subjects repeated
measures designs to a natural restriction in randomization. This is one of the reasons why
repeated measures designs require special analysis.

The appropriate measure of variability for assessing the effects involving the repeated measure
(known as “within-subject effects”) differs from the measure used to assess effects averaged
over subjects (known as “between-subjects effects”). A term labelled “Subject(Group)” is auto-
matically added to your aNova table. It is a within subjects error term. StatView must calcu-
late more than one estimate of variability to assess the importance of the different effects in a
repeated measures design, since the variability of measurements taken on the same individual
is generally smaller than that of measurements taken on different individuals. For those effects
that compare differences among the grouping variables (between subjects tests), the usual
estimate of residual error is appropriate. But for tests involving the repeated measure itself
(within subject tests), a separate estimate of error must be calculated.
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Post hoc tests (Multiple comparisons)

When your aNova determines that some of the effects in your model are significant, you will
usually want to examine the mean values of the dependent variable for each level of the fac-
tor(s) to determine which means are different from each other. In the corn variety/fertilizer
example, it would be helpful to examine the mean value of yield for each level of variety and
fertilizer, and each of their combinations, to determine which fertilizer types and/or corn vari-
eties result in the highest yield.

When you are testing main effects, there are several tests available to help you find out where
the differences in the dependent variable’s values are coming from. These tests, known as post
hoc tests, or multiple comparisons, are specifically designed to make many comparisons
among a group of means and still present results that are accurate at the significance levels that
they report.

StatView offers a variety of post hoc tests. Each test addresses a potentially important consid-
eration of a researcher that no other procedure addresses. However, if you do not have a pref-
erence for a particular procedure, the Games-Howell is one of the more useful, recently
developed post hoc procedures. The Dunnett is a good alternative if you want to compare a
control mean to a collection of treatment means. All tests are based on two-tailed, null
hypothesis comparisons, so they make no distinction between the case where a given mean is
larger than another mean and the case where a given mean is smaller.

Each test defines a particular critical difference for a given pair of means. These critical differ-
ences vary as a function of cell sample sizes and variances (a cell is one level of a factor), the
number of means involved in a set of comparisons, concern about either type I (alpha) or type
IT (power) errors, and whether or not you want the type I and type II error rates to be associ-
ated with a single comparison between two means or with a set of comparisons among a col-
lection of means.

The following table summarizes the assumptions of each test and shows the maximum num-
ber of means allowed for a set of comparisons.

Test Significant |Homoge- |Equal Cell Maximum

Usefulness of test F-ratio neity of |cell n normality |number of
variance means

Fisher PLSD yes yes yes yes no limit

all pairwise comparisons with
multiple ¢ statistic

Tukey-Kramer no yes either equal yes 20
control overall Type | error cell ns or

ratios = 3:|
SNK yes yes yes yes 20

all pairwise comparisons, ordered
from smallest to largest

Scheffé’s yes no no no no limit
robust to violations of assumptions
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Games/Howell yes no no; cell ms = 6 no 20
robust to unequal ns,
heterogeneous variances, non-

normality

Bonferroni/Dunn no yes yes yes no limit
all pairwise comparisons

Dunnett no no no yes 20

comparison of set of treatment
means to a control mean

Some of StatView’s tests control the probability of type I error per comparison, while other
procedures control the error probability per set of comparisons. (Recall that alpha error or type
I error is the probability of incorrectly rejecting a true null hypothesis—that is, the probabil-
ity of concluding that a pair of means are significantly different when they are really not dif-
ferent.) The following table summarizes how each post hoc addresses type I errors. If you
specify a low alpha value, error rates associated with violations of the assumption of normality
are almost negligible, as is the difference between error rate per comparison versus error rate
per set of comparisons.

Procedure Error Summary

Fisher PLSD p=0l per comparison and p>0a per set of comparisons
Tukey-Kramer P<0 per comparison and p=0 per set of comparisons
SNK p=a by layer of comparison and p>0 per set of comparisons
Scheffé’s p<O per comparison and p<a per set of comparisons
Games-Howell p=0 per comparison and p=0 per set of comparisons
Bonferroni /Dunn p<O per comparison and p=0 per set of comparisons
Dunnett P<0O per set of comparisons

Post hoc tests produce tables like the following. The first column reports the mean difference
between groups. The second column reports the mean difference that would be required for it
to be significant at the level you set in the dialog box. The third column reports the probabil-
ity that there is no difference between groups. The “S” to the right of a row appears only when
the difference is significant at the alpha level you chose.

Fisher's PLSD for Weight
Effect: Country
Significance Level: 5 %

Mean Diff. Crit. Diff P-Value
Japan, Other 165.865 | 132.607 .0147 | S
Japan, USA | -306.653 | 125.126 | <.0001 | S
Other, USA -472.518 | 117.555| <.0001 | S

If you determine that an interaction among some of the factors in your model is significant,
you should then examine the means of the dependent variable for each combination of the
factors in question to get more insight into what the interaction means. However, there are no
statistical tests for interactions like the multiple comparisons tests for main effects. You could
split your data by one of the factors and perform a multiple comparisons test on the other fac-
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tor to help determine where the significant interaction is arising from, but keep in mind that
such a test does not use all of your data, so it might not be powerful enough to establish where
the differences lie. In many cases, examining an interaction plot or means table can be more
worthwhile.

Fisher’s Protected Least Significant Difference

Assuming that a significant F-ratio has been defined (an F-ratio is significant if the reported
p value is less than a pre-specified significance level), Fisher’s pLsD evaluates all possible pair-
wise comparisons with a multiple #statistic. This multiple #test assumes that the means have
been ordered from smallest to largest. It determines the critical value to be exceeded, for any
pair of comparisons, on the basis of the maximum number of steps between the smallest and
largest mean. StatView implements the test in a general way for use with unequal as well as
equal sample zs. The original pLsD assumed equal sample size.

The pLsD is the most liberal post hoc procedure of the three available in StatView. By insisting
that the associated main effect be significant, p < O, Fisher argued that the associated probabil-
ity of a Type I error across all pairwise comparisons would be approximately a.

It is possible for an effect to have a significant F-ratio associated with it but not have any sig-

nificant pairwise comparisons. This occurs when the contrasts of some linear combinations of
the means, not necessarily pairwise, are significantly different. The probability of a type I error
is also inflated when the sample sizes are unequal.

Scheffe’s F

Scheffé’s F (1953) procedure for post hoc comparisons is very robust to violations of the
assumptions typically associated with multiple comparison procedures. It may be used when
you have unequal cell #s as well as when you have heterogeneous variances, that is, in the case
where the variances of the cells are not equal. (In the case of heterogeneous variances, the basic
assumptions of the analysis of variance are violated, and the significance levels associated with
all the hypothesis tests must be interpreted with caution.) This procedure was developed with
the assumption that all possible comparisons would be made; in StatView, the procedure has
only been implemented to make pairwise comparisons of means.

The Scheffé is the most conservative of the paired comparison procedures. However, because
it was the first paired comparison procedure with demonstrated robustness to assumption vio-
lations, it has enjoyed a long popularity and is still used by many researchers.

Bonferroni/Dunn

The Bonferroni/Dunn procedure is a multiple comparison procedure for making all possible
pairwise contrasts amongst a collection of means. There are (p(p—1)/2) comparisons when you
implement the Dunn as a procedure for comparing all pairwise differences for p means. It has
no limit on the number of comparison means that may be contrasted. This procedure tends to
be less conservative than Scheffé’s 7 it is more likely to determine that differences are signifi-
cant.
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The procedure is attributed to Dunn (1961) and based on the Bonferroni inequality and is
sometimes referred to as the Bonferroni #-procedure or the Bonferroni/Dunn test.

Dunnett’s Test

In an experiment it is often desirable to compare the collection of treatment means to a con-
trol mean. The Dunnett (1955, 1964) is such a specialized multiple-comparison procedure. If
there is a total of p means, then there will be p — 1 paired comparisons for this comparison
procedure, whereas for the other post hoc procedures there will be p(p —1)/2 comparisons.
When computing the probable “error” associated with the contrasts, the Dunnett considers
only the p —1 comparisons to the control. It is therefore more efficient than the general post
hoc procedures when its use is appropriate. Generally, it may be assumed that when using the
Dunnett, as opposed to the Tukey or some other multiple comparison procedure, a smaller
difference will be required for significance.

As implemented, the Dunnett can be used when the control group 7 and the comparison
group 7 are unequal. It can also be used when the control group variance is not equal to the
comparison group variance. As with the Games-Howell procedure, the critical value to exceed
is determined in part by the variances and cell #s associated with each pairwise comparison.

Tukey-Kramer Test

The Tukey-Kramer Test, or Tukey’s HsD (Honestly Significant Difference), originally devel-
oped by John Tukey in 1953, is an extension of Fisher’s pLsD. It is intended to keep the exper-
iment-wise probability of a type I error at alpha. Since it controls for overall error, the Tukey-
Kramer test detects fewer significant differences than other tests. (See Keselman and Rogan,
1978, for a thorough discussion of Tukey’s procedure.)

While it makes the same assumptions as the LsD, the Tukey HsD uses the studentized range
statistic instead of the Student #-distribution. The Tukey HsD, when all cell #s are equal, deter-
mines a single critical value that all comparisons must exceed to achieve significance. This crit-
ical value is a function of the total number of means involved in the collection of
comparisons.

The original HsD assumed all cell zs to be equal. However, Kramer (1956) modified it to be
used with post hoc tests having unequal cell ns. This modification is applied to Tukey’s proce-
dure to allow the HsD to be used when the cell ns are not equal. By the early 1980s researchers
had discovered that this modification made the Tukey procedure very robust to violations of
equal cell #s (Jaccard, Becker and Wood, 1984; Games, Keselman and Rogan, 1981; Dun-
nett, 1980).

The original Tukey test is calculated if all cell #s are equal. The Kramer (1956) modification,
properly referred to as the Tukey-Kramer test is calculated if at least one pair of cells has
unequal zs. Although this procedure is similar to an extension of the Tukey HsD, there is an
important distinction: the value that a pairwise comparison must exceed for significance
changes every time that a cell # changes.

With regard to error, Dunnett (1980) and Keselman & Rogan (1978) both suggest that with
extreme discrepancies amongst cell zs—ratios of 3:1 or greater—the Kramer modification of
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the HsD is also conservative and behaves very much like the usD for equal cell ns. However,
Dunnett also suggests that when cell #s are approximately equal the Kramer modification is
no longer conservative. For approximately equal cell #s, the probability of a type I error is
greater than alpha. Thus, it is best to assume that the HsD is appropriate for either equal cell ns
or very discrepant cell 7s.

(Games-Howell Test

Perhaps the most robust of a new genre of multiple comparison procedures is the one devel-
oped by Games and Howell (1976). This procedure seems to be very robust with cells having
unequal 7s and heterogeneous variances, as well as those violating the assumption of normal-
ity (Jaccard, Becker and Wood, 1984; Games, Keselman and Rogan, 1981; Keselman and
Rogan, 1978; Dunnett, 1980a and 1980Db).

While in the Tukey tradition, this procedure utilizes a Behrens-Fisher approach to estimating
the error of a comparison, and an approximation procedure that follows from Smith (1936),
Welch (1949), and Satterwaite (1946) for estimating degrees of freedom. It also requires each
cell 7 to be at least 6.

This procedure defines a different value for each pairwise comparison to exceed for signifi-
cance. The critical value to exceed is determined in part by the variances and cell ns associated
with each pairwise comparison.

Student-Newman-Keuls Test

The Student-Newman-Keuls test is a post hoc that makes all pairwise comparisons. It orders
all means from smallest to largest.

If you assume that there are 7 means, the largest difference will involve means that are 7 steps
apart. This difference is tested for p = o . If it is significant, the differences associated with
means 7— 1 steps apart are tested for p = . If they are all significant, the differences associ-
ated with means »—2 steps apart are test for p = O, etc. Thus the procedure is sometimes
called a stepwise or layered multiple comparison procedure.

For this multiple comparison procedure, the error rate deals with the set of comparisons asso-
ciated with a particular step, e.g., all comparisons that are » —2 steps apart. Therefore it has
neither an experiment-wise nor comparison-wise error rate.

Limitations of post hoc tests

Repeated measures designs Multiple comparison procedures are designed to allow compari-
sons between several groups of uncorrelated means, under the assumption that the means are
normally distributed with a common variance. Many of these methods rely on results based
on the order statistics of uncorrelated variables derived from normal distributions with the
appropriate variances. However, repeated observations on a given subject are correlated, and
so the means based on these groupings (i.e., within subjects factors) are correlated. Therefore,
comparing the means of within factors with post hoc tests is not recommended.
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Since the between factors summarize observations over the within factors, multiple compari-
son tests are appropriate for the between subjects effects in a design. However, these are usu-
ally not the factors of major interest in repeated measures designs, so the use of multiple
comparisons procedures for these factors is usually not a high priority among users.

Interaction effects These multiple comparison tests are designed to allow comparisons of
uncorrelated means. Strictly speaking, they should really only be used in models with a single
factor. As a compromise to utility, however, the notion of multiple comparisons is generally
extended to allow comparing the means corresponding to the levels of any single factor in the
design. You should remember that in most cases the only information from the rest of the
design that is used in the multiple comparisons test is the error mean square; the means being
compared are simply arithmetic means, ignoring any other factors in the model.

When a factor of interest is an interaction, it is much more difficult to ignore the other terms
in the model when comparing means. Due to imbalances in designs, arithmetic means are
often not consistent with the linear model being considered. Furthermore, there is some ques-
tion whether the multiple comparisons procedures are still valid when a certain structure is
being assumed through the modeling process. In other words, it is somewhat awkward to
claim that you are modeling the mean of a particular cell as the sum of several terms in the lin-
ear model but then to use the simple arithmetic mean to compare these cells. The same prob-
lems exist in the case of a single factor; however, it is much easier to rethink the problem as
being one of comparing several means in the single factor case, because it is such a natural
extension of the spirit under which the procedures are derived.

An alternative would be to arrange your dataset so that the design were essentially a one way
ANOvA where each level of the single factor represented a unique combination of the factors in
the desired interaction. Then you could run the usual multiple comparisons tests. Since these
tests would ignore the underlying concept of interaction, however, their use would be ques-
tionable. Furthermore, since a given interaction usually has many factor combinations, the
post hoc test tends to be less than optimally useful, since the procedure must protect itself
against errors from the many comparisons being performed.

Dialog box settings

You set analysis parameters for ANOVA results in this dialog box:

= ANOVA

Experiment type: @ Factorial (O Repeated measures

Include all interactions up to depth:
Alpha value: _}%

Means tables and plots show information for:
@ Highest order effects only (O All effects

Error bars indicate: No error bars w |
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Experiment type You must first choose the type of your ANOVa, cither factorial or repeated
measures. If you specify a repeated measures design, StatView automatically builds the correct
ANovaA table for this type of model. Remember, if you select repeated measures, your dataset
must contain a compact variable to identify the within factor(s). For more information on
compact variables, see the following section, “Data requirements,” p. 90.

Include all interactions up to depth Choose the depth of interactions to be included in the
model. The default is Full, which includes all main effects and all interactions at every depth.
You can choose 1 for just the main effects, 2 for all main effects and second-order (two-factor)
interactions, and so on, up to 7 for all main effects through seven-factor interactions.

The commentaries on each type of model in the preceding “Discussion,” p. 73, offer some

advice for determining which interactions should be included and how to interpret the signif-
icance of interaction effects. Generally, you should begin by including full interactions;
depending on the results, you might then want to click Edit Analysis and adjust the depth of
the model.

Alpha value Specify as a percentage the alpha value (significance level) to be used for post hoc
tests and power calculations. The default is 5%, or a = 0.05.

Means tables and interaction plots The choices at the bottom of the dialog box control how
many means tables and interaction plots are displayed (if you have selected these results from
the analysis browser). If you choose “Highest order effects only,” StatView produces the
means tables and interaction plots for only the effects of the highest order, according to your
Depth choice. If you choose “All effects,” means tables and interaction plots appear for each
effect included the model.

Error bars StatView can add error bars to your graphs. You can choose among no error bars,
or the number of standard deviations or standard errors you specify, or confidence intervals
for the percentage you specify.

No error bars

Standard deviation(s)

Standard error(s)
Error bars indicate: v% confidence interval

Note: post hoc tests are no longer requested in the aNova dialog box. Instead you must select
the post hoc test(s) you desire in the analysis browser. See “Results,” p. 95.

Data requirements

A factorial ANOVA requires one or more nominal independent variables with one continuous
dependent variable. MANOVA requires one or more nominal independent variables and two or
more continuous dependent variables. aNcova and Mancova models include one or more
continuous independent variables. A repeated measures ANOVA requires a single compact vari-
able and optionally one or more nominal variables.

Your data must be organized in a way that allows StatView to identify which group(s) the
observations belong to. For a repeated measures design, you must create a compact variable to
identify the groups of the within factor(s). For an introduction to dataset organization includ-
ing compact variables, see “Datasets,” p. 49 of Using StatView. In addition, the “Exercises,”
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p- 96, will help you see how to organize your data for both factorial and repeated measures
experiments.

Factorial

In a factorial experiment, you assign one or more nominal variables (factors) and one or more
continuous variable (the dependent variables). The nominal variables are the independent
variables for the analysis. Your dataset needs to be organized so that all the values of the
dependent variable appear in a single column. Each nominal variable appears in a separate col-
umn. The nominal variables divide your dependent data into groups. There will be one row in
the dataset for each subject or other experimental unit in the analysis.

Height Gender ‘Weight
1 Tall Male 145
2 Tall Fernale 123
3 Short Male 245
4 Tall Male 223
S Short Fernale 142

The dataset above shows the organization for a factorial ANova. All observations for the
dependent variable, Weight, are in a single column. The grouping variable Height is a separate
nominal column identifying the group (tall or short) for each Weight measurement. The vari-
able Gender is another separate nominal column that identifies the group (male or female) for
each Weight measurement. Each row in the dataset represents a separate, unique, subject in
the experiment.

Some users may wish to use compact variables to identify the groups of the between factors
for their factorial ANovA. In a compact variable, the values of the columns (variables) in the
usual dataset organization become the rows in the dataset with the compact variable. If you
plan to use a compact variable, please read “Compact variables,” p. 84 of Using StatView.

Repeated measures

In a repeated measures experiment, you can have one or more between factors and one or
more within factors. Between factors must be set up as individual nominal columns. A single
within factor must be set up as compact variables, and multiple within factors must be set up
as complex compact variables.

One between factor and one within factor

Consider an experiment testing the mobility of six athletes, male and female, at four tempera-
tures (60°, 70°, 80° and 90° Fahrenheit). The dataset for this experiment would have six rows,
one for each subject in the experiment, and five columns. One column would indicate the
gender of the subject. This nominal column would be a between factor in the repeated mea-
sures experiment. The other four columns would record the mobility measurements taken at
the four different temperatures.

For StatView to understand that these four columns are related and represent different groups
(or levels) of the within factor, they must be combined into a single compact variable. To cre-
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ate a compact variable, you select the columns that represent the groups of the within factor
and click the Compact button at the top of the dataset. You then need to enter a name for the
variable. You might enter the data like this:

Gender &0 70 80 20
1 male 2.40 3.60 4.80 5.00
2 male 4.30 4.50 5.00 4.25
3 female 5.30 6.00 2.60 5.10
4 femnale 4.50 2.70 6.00 4.00
S male 4.70 1.50 4.70 365
3 female 2.30 4.00 215 4.00

To compact the columns into a single compact variable, select the four columns, click Com-
pact, and enter a name for the repeated measure, such as “Mobility.” Now your dataset might

look like this:

Sender Mobility
60 70 20 a0

1 male 2.40 3.60 4.50 5.00
2 male 430 450 5.00 425
3| female 5.30 .00 260 510
4| female 450 270 6.00 4.00
5 male 470 1.50 4.70 365
6] female 230 4.00 215 4.00

A compact variable is a unique data structure. All the cells of a compact variable taken
together are the measurement variable (the continuous dependent variable), and the way
those cells are arranged into four columns indicates their group memberships (the nominal
within factor). Therefore, in the variable browser, the nominal part of a compact variable is
listed in a drop-down list under the name of the continuous variable:

Gender [ |4+
Mobility ©
Temperature o]

For more detail on creating and understanding compact variables, see “Compact variables,”
p. 84 of Using StatView.

Two between factors and two within factors

Suppose the mobility experiment had another between factor for type of athlete (swimmer or
runner) and the four mobility measurements were repeated a week later for an additional
within factor. You would simply add a nominal variable Sport for the additional between fac-
tor. For the additional within factor, you would need to create a complex compact variable.
Your dataset might like this:

Maobility

Gender Sport Week 1 ‘Week 2

60 70 80 20 60 70 30 20
1 male | swimmer | 240 360| 480| S00| 250| 370 470 | 480
2 male runner | 430| 450 S00| 425)| 420| 465 S10| 4.20
3| female | swimmer | 530 | 6.00| 260 S10| 525| 605| 240| 4.95
4| fermale runner | 450 | 270 | 6.00| 400( 450| 250| 6.15| 4.00
S
3

male | swimmer | 470 150| 470| 365| 480| 1.70| 470 | 345
fermnale runner | 230| 400| 215) 400| 215]| 380| 210 4.15

In the variable browser, you would see a continuous variable (Mobility) with two nominal
parts, Trial and Temperature:
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Gender
Sport
[~ Mobility
Trial
Temperature

EEGEE

Step-by-step instructions for creating complex compact variables appear under “Complex
compact variable,” p. 89 of Using StatView.
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Model design

Variable browser buttons (and their usage markers)

ANOVA

Independent (X)

Select a nominal variable (or the nominal part of a compact variable)
for each factor and click Independent.
Additional variables are added to the analysis.

Dependent (Y)

Select one continuous variable (or the continuous part of a compact
variable) and click Dependent.

If additional Dependent variables are assigned, the analysis becomes a
MANOVA.

MANOVA

Independent (X)

Select a nominal variable (or the nominal part of a compact variable)
for each factor and click Independent.
Additional variables are added to the analysis.

Dependent (Y)

Select two or more continuous variables (or the continuous parts of
compact variables) and click Dependent.
Additional Dependent variables are added to the analysis.

ANCOVA

Independent (X)

Select a nominal grouping variable (or the nominal part of a compact
variable) for each factor and click Independent. Then select a
continuous variable (or the continuous part of a compact variable) for
each covariate and click Independent. Or, you can select the name of a
compact variable and click Independent to assign both parts at once,
the continuous part as a covariate and the nominal part as a factor.
Additional nominal or continuous Independent variables are added to
the analysis.

Dependent (Y)

Select one continuous variable (or the continuous part of a compact
variable) and click Dependent.

If additional Dependent variables are assigned, the analysis becomes a
MANCOVA.

MANCOVA

Independent (X)

Select a nominal grouping variable (or the nominal part of a compact
variable) for each factor and click Independent. Then select a
continuous variable (or the continuous part of a compact variable) for
each covariate and click Independent. Or, you can select the name of a
compact variable and click Independent to assign both parts at once,
the continuous part as a covariate and the nominal part as a factor.
Additional nominal or continuous Independent variables are added to
the analysis.

Dependent (Y)

Select two or more continuous variables (or the continuous parts of
compact variables) and click Dependent.
Additional Dependent variables are added to the analysis.
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Repeated measures
ANOVA

Independent (X) Select a nominal variable (or the nominal part of a compact variable)
for each between factor (if any) and click Independent.

Any additional nominal variables added as Independents are added to
the analysis as additional between factors.

Dependent (Y) Select one compact variable containing the within factor(s) and click
Dependent. (Multiple within factors intended for a single repeated
measures ANOVA must be entered as a single complex compact variable;
see “Data requirements,” p. 90.)

Any additional compact variable added as a Dependent causes the
analysis to clone with the new variable as the within factor.

All models

Split By (§) When you assign one or more split-by variables to an [M]JAN[CJOVA,
results for each cell defined by the split-by variable(s) are displayed
separately.

Results

For explanation of the results, please see the preceding “Discussion,” p. 73. The default out-
put for this statistic is the ANOva table.

ANOVA Table Table containing the degrees of freedom, sum of squares, mean square, F value, p value,
lambda, and power for each effect in the ANOVA model.
Means Table Table containing the count, mean, standard deviation, and standard error for each group or

combination of groups in the nominal variable(s).

ANOVA Coefficients
Table

Table containing the coefficient, standard error, t-test, and p value for the intercept term and
each level of each effect. (For interaction effects, each combination of levels is listed. For
interactions that include covariates, each combination of levels for the nominal variable/s in
that covariate is listed.)

Not available for repeated measures models.

Interaction Bar Chart

Graph displaying the means of each group or combination of groups in the nominal variable(s)
as bars. Error bars may be added using the dialog box. For factorial designs with more than
one factor, the factor assigned last is used as a legend variable. For repeated measures designs,
between factors appear in the legend.

Interaction Line Chart

Graph displaying the means of each group or combination of groups in the nominal variable(s)
as points connected by lines. Error bars may be added using the dialog box. For factorial
designs with more than one factor, the factor assigned last is used as a legend variable. For
repeated measures designs, between factors appear in the legend.

MANOVA Tables

Table containing the statistics, F values, numerator and denominator degrees of freedom, and p
values for Wilks’ Lambda, Roy’s Greatest Root, Hotelling-Lawley Trace, and Pillai Trace.
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Post Hoc Tests Tables containing Fisher’s PLSD, Scheffé’s £ Bonferroni/Dunn, Dunnett’s, Tukey-Kramer, Games-
Howell, and Student-Newman-Keuls statistics for each main effect. The tables show the mean
difference and critical difference for all test. Fisher, Scheffé’s, and Bonferroni/Dunn are the
default tests; for a different combination of tests, select the specific tests you want from the
Post Hoc Tests list in the analysis browser.

For Fisher, Scheffé, and Bonferroni/Dunn, the table includes the p value for the difference
between all pairs of groups in the nominal variable(s). For Dunnett’s, Tukey-Kramer, Games-
Howell, and Student-Newman-Keuls, mean differences are compared to critical differences from
stored tables for the specified value of alpha.

The symbol “S” appears to the right of each row if the mean difference exceeds the critical
difference.

Note that for interaction charts, StatView places groups of the first variable in the interaction
(the first variable assigned to the model) in the legend. Cell plots (see “Cell Plots,” p. 237)
offer additional control over creating interaction plots.

Templates

The following templates provide ANOVA results.

ANOVA and t-tests ANOVA or ANCOVA ANOVA, means, and Fisher’s PLSD tables; interaction bar plot.

ANOVA Post Hoc Tests |Interaction line plots and Fisher's PLSD, Scheffé’s, Bonferroni/Dunn,
Dunnett’s, Tukey-Kramer, Games-Howell, and Student-Newman-Keuls
tables.

Interaction Bar Chart |Interaction bar plot with 95% confidence level error bars.

Interaction Line Chart |Interaction line plot with 95% confidence level error bars.

MANOVA or MANCOVA  |ANOVA, means, MANOVA, and Fisher’s PLSD tables; interaction bar plot.

Repeated Measures For each effect, ANOVA, means, and MANOVA tables, interaction bar
ANOVA chart.

Exercises

Fully factorial ANOVA

In this exercise you perform a factorial ANOva using data on weight and type for 116 cars from
different countries. You will determine whether car weight is related to the type and country
of origin of cars.

* Open Car Data from the Sample Data folder
e From the Analyze menu, select New View
* In the analysis browser under ANOVA, select ANovA Table and click Create Analysis

* Click OK to accept the default analysis parameters
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* In the variable browser, select Country and Type and click Independent

* Select Weight and click Dependent

Since Weight is the dependent variable in the analysis, a Y usage marker appears next to it in
the variable browser. Type and Country are independent variables, marked with X.

ANOVA Table for Weight
DF Sum of Squares Mean Square F-Value P-Value Lambda Power

Country 2 246287.238 123143.619 1.663 .1946 3.327 .331
Type 4 | 14307811.192 | 3576952.798 | 48.317 | <.0001 | 193.266 | 1.000
Country * Type 8 1404272.808 175534.101 2.371 .0221 18.969 .874
Residual 101 7477200.453 74031.688

From this ANova table, you can see that Type has a strong influence on the variable Weight, as
indicated by the low p value, < 0.0001. The interaction of Type and Country also seems to
have a strong influence. The main effect of Country does not, however, as its much higher

p value shows. We will now examine the interaction of Type and Country more closely with
an interaction plot.

*  Make sure the ANova table is still selected
* In the analysis browser under ANOVa, select Interaction Line Plot and click Create Analysis

Interaction Line Plot for Weight
Effect: Country * Type
.
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Notice that the lines for the different types of cars are spread out over the range of weights.
This confirms that the type of car has a significant main effect. To understand the interaction
between type and country, concentrate on the places in the graph where the lines are not par-
allel. For example, sporty cars made in the Usa are heavier than other sporty cars, but usa
compact cars are lighter than other compact cars. You might also like to produce an interac-
tion chart which uses side-by-side bars to show this information.

Repeated measures ANOVA

In this exercise, we perform a repeated measures ANOVA using data from a study of industrial
health, testing the effectiveness of several techniques for teaching the use of a respirator mask.
Subjects are divided randomly into three groups: a control group that received no training in
the use of the mask; a group that received a detailed instruction sheet; and a third group that
attended a thirty minute class. The effectiveness of the mask (measured as the amount of par-
ticulate matter that passed through the mask while performing a fixed task—lower amounts
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mean better effectiveness) was measured for each of the subjects before training and also one
and two weeks after training.

We want to find out whether, averaged over time, there is any difference in effectiveness
among the three teaching techniques. We have two questions about the within-subjects factor,
Time: whether the test scores change over time if averaged over treatments, and whether the
pattern of change over time is the same for each teaching technique.

* Open Teaching Effectiveness Data from the Sample Data folder

The first column of the dataset contains the group labels for teaching technique—Control,
Instructions and Lecture—in a category variable. The three remaining columns are a compact
variable recording the effectiveness of the mask before training (week 0) and 1 and 2 week
after training. Repeated measures designs require that data are arranged in a compact variable
(see “Compact variables,” p. 84 of Using StatView). Assigning a compact variable to a repeated
measures analysis as a Dependent variable also assigns the nominal portion of the compact
variable as a between-subjects factor.

* From the Analyze menu, select New View

* In the analysis browser under aANOVa, select aNovaA Table and click Create Analysis
* Choose Repeated Measures and click OK

* In the variable browser, select Teaching and click Independent

*  Select Effectiveness and click Dependent.

ANOVA Table for Effectiveness
DF Sum of Squares Mean Square F-Value P-Value

Teaching 2 26.751 13.376 2.154 .1370
Subject(Group) 25 155.225 6.209
Time 2 18.926 9.463 8.783 .0005
Time * Teaching 4 18.171 4.543 4.216 .0051
Time * Subject(Group) | 50 53.869 1.077

The between-group main effect for teaching technique is not significant. This means that
averaged over the three times, there was no difference in the effectiveness scores of the three
teaching methods. This test could be misleading, however, since it includes the pretraining
(week 0) scores, which you would expect to be the same for all groups.

In many repeated measures experiments, the between-group main effect and interaction tests
have this limitation and are therefore not the main focus of the analysis. Keep in mind, how-
ever, that including these effects reduces the estimate of residual error, making the tests more
powerful, and providing an opportunity to study the between-subjects by within-subjects
interactions, which are usually of great interest.

You can see that time after training had a very significant effect. This makes sense: as the sub-
jects became more familiar with the respirator masks, they learned to use them more effec-
tively. Of special interest is the significant teaching technique-by-time interaction, indicating
that the patterns of changes in effectiveness over time differed by teaching technique.

We can look at an interaction plot to see how effectiveness differs among groups and times:

e Make sure the ANOva table is still selected

* In the analysis browser under ANOVA, select Interaction Bar Plot and click Create Analysis
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ANCOVA

Interaction Bar Plot for Effectiveness
Effect: Time * Teaching
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Now we can see how the significance of the Time*Teaching interaction arose. The control
group had very little change in effectiveness over time, but the two experimental groups saw
considerable improvements. The group that attended the lecture showed progress over time,
but the group with the instruction sheets showed even more progress. The instruction sheets
seem to have been the most effective teaching method.

Suppose a university English department wants to know whether its first-year composition
course is as effective for history and math majors as it is for English majors. We could do a
simple analysis of variance with final class scores as the dependent variable and major as the
factor. However, students could have differing verbal abilities, and we must control for that by
including their Verbal saT (Scholastic Achievement Test) scores as a covariate. We might have
data such as these (which are simulated):

* Open Writing Scores from the Sample Data folder
The main question, of course, is whether the course is equally effective for students of differ-
ent majors. Secondarily, we want to estimate the average class score for students in each major.

Finally, we want to know whether saT scores are effective for controlling for variability among
individual students.

The first concern is to test for homogeneity of slopes—that is, whether the interaction term is
significant. A visual way to do this is to create a bivariate plot of the dependent by the covari-
ate, with separate lines for each group in the factor.

e From the Analyze menu, select New View

* In the analysis browser under Bivariate Plots, select Bivariate scattergram and click Create
Analysis

e Choose Regression lines, and for “When split, show lines for,” choose “each group sepa-
rately”

¢ Click OK
¢ In the variable browser, select saT Score and click X
e Select Class score and click Y

*  Select Major and click Split By
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Bivariate Scattergram with Regression
Split By: Major
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Class score = 199.203 + .665 * SAT score; R"2 = .735 (History)
Class score = 277.978 + .396 * SAT score; R"2 = .388 (Math)
Class score = -408.729 + 1.589 * SAT score; R"2 = .809 (English)

None of the three regression lines are flat, suggesting that the covariate is a meaningful term to
include. The lines have slightly different slopes, but it’s unclear whether the slopes are signifi-

cantly different. The lines are roughly parallel, suggesting that the covariate-factor interaction

probably is not significant, but we should test that to be sure. We will need to examine the sta-
tistical results. (We also notice how sparse the dataset is, which should give us pause in inter-

preting results.)

* Make sure the plot is still selected

* In the analysis browser under aANova, double-click ANova Table

* Click OK to accept the default analysis parameters

* In the variable browser, select Major and click Remove, then click Independent

(The other variable assignments are fine the way they were “adopted” from the plot.)

StatView automatically treats Major as a factor since it is nominal, and it treats saT Score as a
covariate or regressor since it is continuous. In the variable browser, both variables have X
usage markers to indicate that they are independent variables, and Class score has a Y usage
marker to indicate that it is a dependent variable.

ANOVA Table for Class score
DF Sum of Squares Mean Square F-Value P-Value Lambda Power

SAT score 1 49255.924| 49255.924 | 15.652 .0016 | 15.652 .966
Major 2 7732.295 3866.148 1.229 .3246 2.457 .215
SAT score * Major | 2 11580.897 5790.449 1.840 .1979 3.680 .306
Residual 13 40911.036 3147.003

We can tell from the Fand p values that the saT Score*Major interaction term is not signifi-
cant, just as we expected from the roughly parallel regression lines for each factor level. There-
fore, we can remove the interaction from the model. (Notice that we focus our attention on
the interaction term before paying much attention to the results for the main effects. That the
interaction term is not significant is good news; parallel slopes are one of the requirements for
analysis of covariance.) We remove the interaction term by choosing interactions up to depth
1—that is, to main effects only:

¢ Make sure the result is still selected
* Click Edit Analysis
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* For the option Include all interactions up to depth, choose 1 (instead of Full) and click OK

ANOVA Table for Class score
DF Sum of Squares Mean Square F-Value P-Value Lambda Power

SAT score | 1 71902.115| 71902.115| 20.547 .0004 | 20.547 .994
Major 2 22414.844| 11207.422 3.203 .0695 6.405 .516
Residual 15 52491.933 3499.462

The Fand p values for Major are still not significant, which is good news for the department:
the class appears to be as effective for history and math majors as for English majors. (Strictly
speaking, the result only tells us we cannot reject the null hypothesis that scores are the same
for students of different majors.) Meanwhile, the Fand p values for sat Score show that sat
Score clearly #s useful for predicting class score, so including the term in the model is useful: it
controls for differences already in existence before the experiment.

Randomized complete block ANOVA

The sample dataset Flax Oil Content, from Steel and Torrie (1980), shows percentage mea-
surements of oil content in flaxseed grown in each of four different locations for six different
treatments. At each location one plant was inoculated with bacteria as a seedling, one plant in
early bloom, one in full bloom, one at a lower dose in full bloom, and one when the plant was
ripening. A sixth plant in each location was a control case, not inoculated at all. There was no
replication of treatment by location combinations.

¢ Open Flax Oil Content from the Sample Data folder

0il content
Treatment

Location 1 | Location 2 | Location 3 | Location 4
1 Seedling 4.4 5.9 6.0 4.1
2 Early bloom 33 1.9 4.9 71
3 Full bloom 4.4 4.0 45 3.1
4 Full bloom (1/100) 6.8 66 7.0 6.4
S Ripening 6.3 4.9 5.9 71
& |Uninoculated (Control) 6.4 7.3 7.7 6.7

The measurements, recorded as oil percentage minus 30, are organized in a compact variable.
Note that adding or subtracting a constant to each value in a dataset doesn’t change the results
of the analysis, because all of the sums of squares to be calculated are corrected for the overall
mean.

The purpose of the experiment was to determine whether the treatments had any effect on the
oil content of the flaxseed. The experiment was replicated in four different locations so that
the results of the experiment could be generalized over a wider area. Without such replication,
it could have been argued that conclusions might apply only to a certain planting location.

A randomized complete block experiment differs from the usual factorial experiment in that
one factor (in this example, location) is included in the analysis simply to control variability
and make the experiment more meaningful—not because the effect of that factor is thought
to be interesting. This factor is known as the blocking factor, or simply the block.

Usually only one observation is taken for each treatment and block combination. Therefore,
the effect of any interaction between the treatment and blocks cannot be assessed in the usual
way. Because of this, the randomized complete block is only appropriate when you know that
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there is no interaction between the blocking factor and the treatment. For the analysis to be
valid, the experimenter must be certain that the behavior of the treatments is the same in each
of the locations studied.

The oil content may be uniformly higher or lower for one location than another, as long as
this is true for each of the treatments. In fact, one reason to include treatment in the model is
to control for differences of that sort. The randomized complete block analysis is not appro-
priate if the behavior of the treatments differs among blocks. For example, if one of the blocks
were very wet and another dry, and you knew that the soil’s moisture content changed the
behavior of the bacteria, then a randomized complete block analysis would be inappropriate.

Remember, there must be 7o interaction between the treatments and the blocks. That point is
usually confirmed by the researcher’s knowledge of the subject matter or by previous experi-
ments. Remember in turn that you must restrict the model to interactions of depth 1—that
is, to main effects only.

* From the analysis browser under aANOva, select aNovaA Table and click Create Analysis

* Select 1 for the option Include all interactions up to depth and click OK
(Only main effects are appropriate for randomized complete block designs.)

* Select Oil content (just the continuous part) and click Dependent
* From the variable browser, select Treatment and Location (the nominal part of the com-

pact variable Oil content) and click Independent

The variable browser’s X and Y usage markers indicate that the variables (or compact variable
parts) are assigned to independent and dependent roles for the analysis, respectively.

ANOVA Table for Oil content
DF Sum of Squares Mean Square F-Value P-Value Lambda Power

Treatment | 5 31.652 6.330 4.816 .0080 | 24.081 .910
Location 3 3.141 1.047 797 .5147 2.390 .178
Residual 15 19.716 1.314

We can ignore the F and p values for the blocking factor (Location), since that term is only
included to control variability, but it is reassuring that we cannot reject the null hypothesis
(that oil content is the same among different locations). Being unable to reject that null
hypothesis is a requirement for a randomized complete block design to be valid. The F value
for Treatment is 4.816, with a p value of .0080, indicating significant differences among treat-
ments. Thus, the time of inoculation by bacteria does have an effect on the oil content of the
flax seed.

To find the source of the treatment differences, it is useful to examine a table of means.
¢ Make sure the ANOva table is still selected

* In the analysis browser under aNova, double-click Means Table
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Means Table for Oil content Means Table for Oil content
Effect: Treatment Effect: Location

Count Mean Std. Dev. Std. Err. Count Mean Std. Dev. Std. Err.
Early bloom 4| 4.300 2.233 1.117 Location 1 6 | 5.267 1.419 .579
Full bloom 4| 4.000 .638 .319 Location 2 6 | 5.100 1.961 .800
Full bloom (1/100) 41 6.700 .258 .129 Location 3 6 | 6.000 1.213 .495
Ripening 4| 6.050 .915 .457 Location 4 6 | 5.750 1.716 .700
Seedling 4 5.100 .990 .495
Uninoculated(Control) 4| 7.025 .585 .293

The lowest oil percentages are evident in those plants where inoculation took place in early or
full bloom. We can disregard the means table for Location, since it serves only as a blocking
factor. We can use post hoc tests to compare these means.

¢ Make sure one of the results is still selected

¢ In the analysis browser under aANova/Post-hoc tests, select all seven tests and click Create
Analysis
Click and drag or Shift-click to select several adjacent results

Fisher's PLSD for Oil content
Effect: Treatment
Significance Level: 5 %

Mean Diff. Crit. Diff P-Value

Early bloom, Full bloom .300 1.728 .7165
Early bloom, Full bloom (1/100) -2.400 1.728 .0097 | S
Early bloom, Ripening -1.750 1.728 .0475 | S
Early bloom, Seedling -.800 1.728 .3394
Early bloom, Uninoculated (Control) -2.725 1.728 .0043 | S
Full bloom, Full bloom (1/100) -2.700 1.728 .0046 | S
Full bloom, Ripening -2.050 1.728 .0232 | S
Full bloom, Seedling -1.100 1.728 .1949
Full bloom, Uninoculated (Control) -3.025 1.728 .0020 | S
Full bloom (1/100), Ripening .650 1.728 .4352
Full bloom (1/100), Seedling 1.600 1.728 .0671
Full bloom (1/100), Uninoculated (Control) -.325 1.728 .6941
Ripening, Seedling .950 1.728 .2595
Ripening, Uninoculated (Control) -.975 1.728 2477
Seedling, Uninoculated (Control) -1.925 1.728 .0313 | S

Again we ignore the results for the blocking factor, Location. Since Fisher’s pLsD is the most
liberal of the post hoc tests, it is not surprising that it shows significant results (indicated by an
“S” to the right of the p value) for the most pairs of treatment levels. Recall that the critical
difference (1.728) is the difference between a given pair of means that would be required for
the test to be significant at the alpha level set in the anova dialog box (here, .05).
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Scheffe for Oil content
Effect: Treatment
Significance Level: 5 %

Mean Diff. Crit. Diff P-Value

Early bloom, Full bloom .300 3.088 .9996
Early bloom, Full bloom (1/100) -2.400 3.088 .1834
Early bloom, Ripening -1.750 3.088 .4879
Early bloom, Seedling -.800 3.088 .9598
Early bloom, Uninoculated (Control) -2.725 3.088 .1015
Full bloom, Full bloom (1/100) -2.700 3.088 .1064
Full bloom, Ripening -2.050 3.088 .3237
Full bloom, Seedling -1.100 3.088 .8625
Full bloom, Uninoculated (Control) -3.025 3.088 .0567
Full bloom (1/100), Ripening .650 3.088 .9835
Full bloom (1/100), Seedling 1.600 3.088 .5800
Full bloom (1/100), Uninoculated (Control) -.325 3.088 .9994
Ripening, Seedling .950 3.088 .9199
Ripening, Uninoculated (Control) -.975 3.088 .9116
Seedling, Uninoculated (Control) -1.925 3.088 .3878

By contrast, Scheffé is the most conservative of the post hoc tests, and by its standards none of
the pairs of means are significantly different.

Bonferroni/Dunn for Qil content
Effect: Treatment
Significance Level: 5 %

Mean Diff. Crit. Diff P-Value

Early bloom, Full bloom .300 2.824 .7165
Early bloom, Full bloom (1/100) -2.400 2.824 .0097
Early bloom, Ripening -1.750 2.824 .0475
Early bloom, Seedling -.800 2.824 .3394
Early bloom, Uninoculated (Control) -2.725 2.824 .0043
Full bloom, Full bloom (1/100) -2.700 2.824 .0046
Full bloom, Ripening -2.050 2.824 .0232
Full bloom, Seedling -1.100 2.824 .1949
Full bloom, Uninoculated (Control) -3.025 2.824 .0020 | S
Full bloom (1/100), Ripening .650 2.824 .4352
Full bloom (1/100), Seedling 1.600 2.824 .0671
Full bloom (1/100), Uninoculated (Control) -.325 2.824 .6941
Ripening, Seedling .950 2.824 .2595
Ripening, Uninoculated (Control) -.975 2.824 2477
Seedling, Uninoculated (Control) -1.925 2.824 .0313

Comparisons in this table are not significant unless the
corresponding p-value is less than .0033.

Bonferroni/Dunn tends to fall between the two, as evidenced in this case by the single signifi-
cant pair. Notice that StatView warns that only comparisons with p values less than 0.0033
are significant for the alpha value (.05) specified. The Tukey-Kramer, Dunnett, Games-How-
ell, and Student-Newman-Keuls test are similar.

We can examine these results graphically with an interaction line plot or bar chart. The rela-
tive oil content levels are of greater interest to us than their actual values (recall that the
researchers subtracted 30 from each measurement when recording the data, so the measure-
ments are already somewhat abstract). StatView chooses a vertical (Y axis) scale for line plots
to suit the range of the data for line charts, whereas it prefers a vertical scale from 0 to the data
maximum (when practical) for bar charts. Therefore, we will choose a line plot.

e Make sure at least one of the results is still selected
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* In the analysis browser under ANOvA, select Interaction Line Plot and click OK

Interaction Line Plot for Oil content
Effect: Treatment
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Again, we disregard the result for Location. The wide difference in oil content between full
bloom inoculation and no inoculation illustrates the single significant comparison in the Bon-
ferroni/Dunn results. The researchers can safely conclude that inoculation, particularly at the
time of full bloom, decreases oil content.

Latin square ANOVA

To determine whether the moisture content of turnip green leaves is affected by time in stor-
age, researchers classified the leaves of five turnip plants into five size groups, subjected these
leaves to one of five lengths of storage time according to a specific pattern, and finally mea-
sured the moisture content of each leaf.

Since it is reasonable to suspect that the moisture content might vary from plant to plant, sev-
eral different plants were sampled in a Latin square design. Like the randomized complete
block design, Latin square experimental designs include factors that are intended solely to
reduce variability and give analysis results validity over a wider range of samples. Another
approach to this experiment would be to think of the plants as replicates within a leaf size/
time of storage classification and to analyze the model as a two-way factorial design. The dis-
advantage of such an approach is that it would not account for any differences between
plants—they would be interpreted as part of the residual error, possibly making the analysis
insensitive to true differences.

Latin square designs must be applied with caution, because not every possible combination of
factor levels is observed; our example has a single observation for each plant/leaf size combina-
tion, which means that numerous possible plant/leaf size/storage time combinations are 7oz
observed. Therefore, the analysis is invalid in the presence of any interaction, even if the inter-
action has no practical consequences. For example, if storage time dramatically affects mois-
ture content for a particular leaf size, then the Latin square analysis would not be valid.
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The key feature of the Latin square design is that each treatment appears exactly once for each
combination of two blocking factors. This balance, combined with the lack of interactions, is
required for the analysis to be valid. Thus, a Latin square is appropriate only when it is possi-
ble to create two blocking factors for your data, each of which has the same number of levels
as the number of treatments in the experiment. In our examples, the researchers studied five

storage times, so they used five leaf types from five individual plants.

Latin squares are useful for agricultural experiments that must control for variability in fertil-
ity of a field, when it is convenient to divide the field into a number of rows and columns
matching the number of treatments. Although one could work out by hand the treatment
combinations needed, researchers usually refer to published tables of these designs, such as
those in Cochran and Cox (1957). Not all numbers of treatments can be accommodated by
Latin squares designs, so it is wise to consult a reference early in the planning stage of an
experiment.

*  Open Turnip Moisture from the Sample Data folder

Storage Time| Plant | Leaf Size | Moisture Content
667
715
8.29
8.95
9.62

5.40
477
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Plant and Leaf Size are the blocking factors, Time of Storage is the treatment factor, and Mois-
ture Content is the dependent measurement variable. Observe how each storage time is repre-
sented once in each plant and once in each leaf size. The design is more apparent when
arranged in a compact variable. (Unfortunately “compact” arrangement is considerably less
convenient to enter in the dataset in this case; the way it reveals the data design is its value.)

*  Open Turnip Moisture Compact from the Sample Data folder

Moisture Content
Storage| P1 P2 P3 P4 PS
A B C D E A B C D E A B C D E A B C D E A B C D E
1 | . .1829 . . . . .| 754 . . . . .| 968[492 . . .| 616 . .
2 Il i . i .|962[540 i . i i .|853 i . i i .1 7.29 . . . . .15.83
3 1] i . .|895 . i i . .|693[732 i i i i .[5.00 i i i i .|783 i
4 v 718 i i : i -S540 i i : i -1999 i i : i .|708[488 i : i i
S v]66e7 ) . . ) L1477 ) . . ) L1850 ) . . ) L1785 ) . . ) .1851

According to the assumptions of the Latin square design, we must include only main effects in
the model. If we attempted to include interaction effects, error messages about matrix singu-
larity would quickly alert us to our mistake, since so many cells have few if any data points.

e From the Analyze menu, select New View

* In the analysis browser under aNOVa, select aNovA Table and click Create Analysis

* Choose 1 for Include all interactions up to depth

* Click OK

We will demonstrate variable assignments with both versions of the dataset; you may choose
either one or repeat the steps above to try both methods.

¢ In the variable browser, choose Turnip Moisture for Dataset

*  Select Moisture Content and click Dependent

* Select Plant, Leaf Size, and Storage Time and click Independent
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Using the compact version of the dataset works similarly. The only tricky thing is that here it
is important to assign Moisture as a Dependent before attempting to assign its nominal parts
as Independents: StatView does not allow you to assign the nominal part of a compact vari-
able to an ANOvA unless you have already assigned its continuous part to the analysis.

¢ In the variable browser, choose Turnip Moisture Compact for Dataset

* Click the triangle to the left of Moisture Content to expose the nominal parts of the com-
pact variable

* Select Moisture Content and click Dependent
* Select Storage Time and the nominal parts of the compact variable, Plant and Leaf Size,

and click Independent

The results from either dataset are the same:

ANOVA Table for Moisture Content
DF Sum of Squares Mean Square F-Value P-Value Lambda Power

Storage 4 .627 .157 .233 .9147 .931 .085
Plant 4 28.885 7.221| 10.714 .0006 | 42.857 .996
Leaf Size| 4 23.708 5.927 8.794 .0015 | 35.176 .986
Residual | 12 8.088 .674

The significant F ratios for Plant and Leaf Size (10.714, with p value 0.0006 and 8.794 with
p value 0.0015, respectively) indicate that these factors served their purpose, removing vari-
ability from the analysis. Otherwise they are of no great interest. However, we cannot reject
the null hypothesis that storage time does not affect moisture content, because the F ratio
0.233 is so low, with p value 0.9147. In other words, the researchers have not found evidence
to support their theory that storage time affects moisture content. A glance at interaction line
plots will explain this:

¢ Make sure the aNova Table is still selected in the view

* From the analysis browser under ANOVA, double-click Interaction Line Plot

Interaction Line Plot for Moisture Content
Effect: Storage
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Observe that, while moisture content does seem to drop off as storage times increase to treat-
ment IV, it jumps back up again for the longest storage time, treatment V. This makes no
sense. Also note that the least and greatest cell means are less than half a percent apart. What
little difference we see is probably random.
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Factorial MANOVA design

Suppose you are an exercise physiologist who wants to determine whether stretching and
wearing ankle weights has any effect on the value of treadmill exercise. You could test this
hypothesis by measuring calories burned, average speed in meters per minute, and oxygen
consumed in liters for a number of subjects who you have previously determined have roughly
the same level of physical fitness, divided randomly into four groups: with or without ankle
weights, and with or without a period of stretching before the exercise. This would be a 2 x 2
factorial design.

Suppose you tested twenty subjects and recorded measurements such as the following:

* Open Exercise from the Sample Data folder

Pre-stretch | Ankle weights| Energy (cal) |Speed (m/min)| Oxygen (1)
1 No No 106.9 37.8 343
2 No No 4.0 92.9 254
3 No No 975 853 29.2
4 No No 971 82.4 3.7
S No No 995 324 295
& No Yes 100.2 83.9 363
7 No Yes 101.0 353 44.0
g No Yes 1185 85.4 47.3
9 No Yes 104.5 796 44.3
10 No Yes 111.2 85.2 44.7
11 Yes No 828 8327 26.8
12 Yes No 30.4 39.0 20.2
13 Yes No 956 875 338
14 Yes No 320 783 18.0
15 Yes No 83.2 39.0 286
16 Yes Yes 89.1 86.7 283
17 Yes Yes 106.4 30.5 38.2
18 Yes Yes 983 796 36.7
19 Yes Yes 89.2 323 299
20 Yes Yes 104.6 87.6 43.8

The goal of this experiment is to determine whether pre-stretching and wearing ankle weights
change the outcome measurements for the exercise. One interesting point is that we know
that the null hypothesis that wearing ankle weights has no effect is almost certainly false.
However, we don’t know whether the effects of pre-stretching, if any, are the same whether or
not the ankle weights are worn. Thus, the ankle weights serve to some extent as a blocking fac-
tor in the experiment, even though it is a complete factorial design.

If we were only interested in one of the measurements of exercise value, such as calories
burned, we could simply analyze the data with a two-way factorial aNova design. However,
we want to know whether or not the factors affect three measurements (energy, velocity and
oxygen consumption) simultaneously. This is why we should take correlations among depen-
dent variables into account by examining StatView’s MANOVa tables of results for multivariate
hypothesis tests.

¢ From the Analyze menu, select New View

* In the analysis browser under ANOVA, select ANova Table and manova Tables and click
Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select multiple nonadjacent
analyses.

* Click OK to accept the default analysis parameters
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(We leave the default interaction depth, Full, because we must test the interaction of weights

and pre-stretching—we don’t yet know whether the effect of stretching will be the same

regardless of whether weights are worn.)

* In the variable browser, select Pre-stretch and Ankle Weights and click Independent
Shift-click or click and drag to select multiple adjacent variables

*  Select Energy (cal), Speed (m/min), and Oxygen (1) and click Dependent
Shift-click or click and drag to select multiple adjacent variables

The interaction Pre-stretch * Ankle Weights does not appear to be significant: the p value for
the term is nowhere close to the alpha level of 5% in any of the ANOVA or MANOVA tables. This
means that the effects of ankle weights during are the same with or without pre-stretching.
Another way to view it is that pre-stretching has the same effect with or without weights.
Therefore, we can remove the term from the model and examine only main effects.

¢ Make sure at least one of the tables is still selected
* Click Edit Analysis
¢ Choose 1 for Include all interactions up to depth and click OK

MANOVA Table for Pre-stretch
Value F-Value NumDF DenDF P-Value

S 1.000

M .500

N 6.500 . . . .
Wilks' Lambda .602 3.309 3 15 .0491
Roy's Greatest Root .662 3.309 3 15 .0491
Hotelling-Lawley Trace .662 3.309 3 15 .0491
Pillai Trace .398 3.309 3 15 .0491

The MaNOVA results for Pre-stretch show a p value of 0.0491 for the three measurements, so at
the 5% significance level, we reject the null hypothesis that stretching has no effect.

MANOVA Table for Ankle Weights
Value F-Value NumDF DenDF P-Value

S 1.000

M .500

N 6.500 . . . .
Wilks' Lambda .358 8.963 3 15 .0012
Roy's Greatest Root 1.793 8.963 3 15 .0012
Hotelling-Lawley Trace | 1.793 8.963 3 15 .0012
Pillai Trace .642 8.963 3 15 .0012

The MaNoOVA results for Ankle Weights are even more clear. The p value of 0.0012 means that
we should definitely reject the null hypothesis that ankle weights have no effect. This is no
surprise—we expected that ankle weights would have a significant effect.
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ANOVA Table for Energy (cal)

Pre-stretch
Ankle Weights
Residual

ANOVA Table for Speed (m/min)

Pre-stretch
Ankle Weights
Residual

ANOVA Table for Oxygen (I)

Pre-stretch
Ankle Weights
Residual

From the univariate tests, we can see that pre-stretching has a significant effect on energy and
oxygen consumption. Likewise, ankle weights have a significant effect on energy and oxygen
consumption. However, neither seem to have much effect on speed, which is a bit surprising.
Now that we know both factors are significant, we want to know how they effected the out-

come measurements.

DF Sum of Squares Mean Square F-Value P-Value Lambda Power
1 591.872 591.872 | 10.696 .0045 | 10.696 .884
1 649.800 649.800 | 11.743 .0032 |11.743 913

17 940.688 55.335

DF Sum of Squares Mean Square F-Value P-Value Lambda Power
1 2.450 2.450 172 6836 172 | .067
1 22.472 22.472| 1.577| .2261| 1.577 | .209

17 242.200 14.247

DF Sum of Squares Mean Square F-Value P-Value Lambda Power
1 194.688 194.688 | 7.329 | .0149 | 7.329 | .729
1 672.800 672.800 | 25.327 .0001 | 25.327 .999

17 451.602 26.565

¢ Make sure at least one of the results is still selected

¢ In the analysis browser under aANova, double-click Means Tables or one of the interaction

plots

Clearly, wearing weights increases oxygen consumption (27.75 vs. 39.35 liters) and energy
consumption (90.9 vs. 102.3 calories), and also decreases speed (85.7 vs. 83.6). The tables for
pre-stretching show that whether subjects stretch or not also has a slight effect on the outcome

measurements.

Means Table for Energy (cal)

Effect: Ankle Weights

Count Mean Std. Dev. Std. Err.
No weights 10 90.900 9.405 2.974
Weights 10 [ 102.300 9.046 2.861
Means Table for Speed (m/min)
Effect: Ankle Weights
Count Mean Std. Dev. Std. Err.
No weights 10 |85.730 4.307 1.362
Weights 10 |83.610 2.938 .929
Means Table for Oxygen (I)
Effect: Ankle Weights
Count Mean Std. Dev. Std. Err.
No weights 10 |27.750 5.370 1.698
Weights 10 |39.350 6.556 2.073




Contingency Tables

Contingency table analyses determine whether a relationship exists between two nominal
variables. Other statistics (#-tests, regressions, means, correlation tests) apply to dependent
variables that are continuous, that is, they are capable of taking on many different values with
an obvious ordering to them like height, weight, income, chemical concentration, sales, etc.
Tests applied to continuous variables lose their validity with nominal variables that do not
have an ordered, continuous property. (See “Dataset structure,” p. 49 of Using StatView for a
discussion of nominal and continuous variable classes.)

Height is a continuous variable because an underlying meaning to the ordering of values
applies to it-—sixty inches is clearly bigger than fifty inches—and this relationship holds
through the range of the scale. But hair color and eye color, for example, cannot constitute
continuous variables, for there is no natural ordering to brunette, blonde, red and black; nor
to blue, gray, brown and green.

Thus, even if we recode a variable representing hair color as brunette=1, black=2, red=3 and
so forth, any tests performed on the transformed variable would be pointless. (It is possible for
a nominal variable to be ordered, but StatView provides no special tests for this case.) For
example, it is meaningless to say that brunette is only one third of red. In addition, if we scudy
the relationship of hair color and eye color, we cannot calculate a mean for hair color because
there is no numerical quantity we can assign to a particular hair color that helps describe it.

Discussion

When you collect data, it may be wise to think in terms of a two-way tabular arrangement in
which you categorize each observation into one group for each of two nominal (grouping)
variables. Such an arrangement is called a contingency table. The intersection of a row and
column in the table is called a cell. If you study the cross-classification of eye color and hair
color, for example, each cell would contain a count of observations for each possible combina-
tion of hair and eye color groups: blue eyes/brown hair, brown eyes/brown hair, blue eyes/
blonde hair, brown eyes/blonde hair and so forth. It could look something like this:

Brown hair Blonde hair Black hair Red hair
Brown eyes 21 10 1 2
Blue eyes 9 17 2 3
Green eyes I 3 I 3
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Chi-square test

It may be of interest to study this contingency table to see which combinations of groups have
more or less observations than would be expected if the two variables were independent. For
this you can apply the chi-square test for independence. The hypothesis of independence
states that the likelihood of an observation falling into one group for one variable is indepen-
dent of the other group the observation falls into. To calculate this test, StatView finds the
expected value for the number of observations for every combination of groups based on the
hypothesis of independence and compares the expected with the observed values in each cell.

(The chi-square test is not valid when the minimum expected value is less than five. You may
have cells in your contingency tables with observed values less than five without causing any
problems. The key issue is whether or not the expected values are greater than five. You can
print a table of expected values for your contingency table.)

A low chi-square value and high probability (p value) would suggest accepting the null
hypothesis. If the hypothesis of independence were not rejected for the example given, the
chi-square test would indicate that people with blonde hair are no more likely to have blue
eyes than any other color eyes, and that people with brown eyes are no more likely to have
brown hair than any other color hair. If rejected—a large chi-square value and correspond-
ingly low probabilicy—the test would show that a relationship between certain variable
groups exists. You would then study the contingency table to see which combinations of
groups have more or fewer observations than would be expected if the two variables were
independent. You can do this by comparing the contingency table (observed frequencies) to
the expected values table, or by examining a table of post hoc cell contributions to the overall
chi-square statistic.

Tables produced

In addition to the contingency table itself, StatView offers a variety of displays with the groups
of one variable in the cross classification displayed in the rows of a table and the groups of the
other displayed in the columns of the table. One set of tables displays the percents of row or
column totals. In a table displaying the Percents of Row Totals, for example, column percent-
ages represent the proportion of data in the first variable that falls into each group of the sec-
ond variable. Under the hypothesis of independence, the column percentages within each
group of the first variable (each row of the table) should be the same. You can compare the
values in a given row with the totals displayed at the bottom of the table and determine which
cells are out of line. The cells that stand out indicate a larger or smaller proportion falling in a
particular combination of groups than would be expected under the hypothesis of indepen-
dence. A similar analysis holds for the Percents of Column Totals table, except that you com-
pare the values in the rows with the totals on the right hand side of the table.

Post hoc cell contributions

An alternative to studying percents is to study the table of post hoc cell contributions. These
numbers are a form of standardized residual that indicate what each cell in the table contrib-
utes to the chi-square statistic. Since they are calculated to follow a standard normal distribu-
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tion, absolute values greater than, for example, 1.96 for a 0.05 probability level indicate that
the cell in question provides significant information about the combinations of groups of the
variables whose occurrence is different than would be expected under the hypothesis of inde-
pendence. An example of the use of post hoc cell contributions is given in the “Exercise,”

p. 117.

Cell chi-squares

The chi-square statistic reported in the summary table is the sum of the values in the cell chi-
squares table. By examining this table, you can tell which cells have observed frequencies that
differ most from what is expected under the hypothesis of independence. This is the same
information obtained from the post hoc cell contributions, except that the cell chi-squares are
compared to the total chi-square whereas post hoc cell contributions are compared to the nor-
mal distribution.

Additional statistics; G-statistic and Cramers V

An alternative statistic for testing the hypothesis of independence between two categorical
variables is the G-statistic. The G-statistic is derived using a statistical principle known as the
likelihood ratio principle.

Another statistic, the contingency coefficient, is offered by analogy to the correlation coeffi-
cient, which is used to test the association between two continuous variables. An attractive
feature of the correlation coefficient is that it is always in the range of —1 to 1, so that several
different relationships can be compared on an equivalent scale. The contingency coefficient is
a transformation of the chi-square statistic so that the contingency coefficient is in the range
of 0 and 1. Thus it can be useful for comparing associations between different pairs of vari-
ables. Closely related to the contingency coefficient, and testing the same hypothesis of no
association between variables, is Cramer’s V (pronounced kruh-merz”). High values of these
statistics indicate that there is dependence between the variables. The range of V'is from 0 to
1, so its interpretation is more in line with that of a correlation coefficient.

2x2 contingency tables: Fisher’s exact test, Phi coefficient

Other statistics are available in the summary table for the special case of 2X2 tables (in which
both variables studied have exactly two groups). Fisher’s exact test is calculated by enumerat-
ing all possible rearrangements of the observations and comparing the number of unusual
rearrangements to the observed counts under the assumption of no association between the
two variables. The probability levels reported for this test are exact, not large sample approxi-
mations like the G-statistic and chi-square described earlier. The continuity correction for a
2X2 table, and its associated p value is an alternative technique which is used to make the
probability level of the 2X2 test for independence closer to the exact probability level. The phi
coefficient is similar to the contingency coefficient in that it is bounded in the range from 0 to
1; it is the same as Cramer’s V except in the special case of 2X2 tables. Its interpretation is sim-
ilar to that of the correlation coefficient and may be especially useful if the categories for each
of the variables have a natural ordering.
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Dialog box settings

When you create or edit a contingency table, you set the analysis parameters in this dialog
box:

Contingency Table

Select type of data:
@ Coded raw data
(O Coded summary data

(O Two way table

[ Fisher's Exact Test (2 & 2 only)

You use this dialog box to specify how your data is organized for the contingency table analy-
sis. Please see the preceding section, “Data requirements,” p. 114, for more information and

for examples of these types of data. This dialog box also allows you to disable computation of
Fisher’s Exact Test (available only for 2%2 data). This option is provided so that you can avoid
the lengthy computation required for large datasets.

Data requirements

Variable requirements differ depending on the type of data being analyzed.
1. Coded raw data requires two nominal variables.
2. Coded summary data requires two nominal variables and one continuous variable.

3. A two-way table requires two or more continuous variables. In the cases where continuous
variables are required, those variables represent counts based on the levels of the nominal
variables in your analysis.

The discussions below describe how to enter data each way for a study to determine whether a
relationship exists between eye color and gender for eight athletes.

Coded raw data

Coded raw data for this example would contain two nominal columns: one indicating the eye
color and the other the gender for each athlete. The dataset would contain eight rows, one for
each athlete. A dataset organized in this manner would appear as:
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Eye Color Gender
1| Brown Male
2| Blue Male
3| Blue Female
4 | Green Male
S | Brown Female
& | Blue Male
7 | Green Ferale
8| Brown Male

The nominal variables appear as separate columns in the dataset. Each row identifies the eye
color group and the gender group for an athlete.

Coded summary data

Coded summary data for this example would contain two nominal grouping variables in col-
umns and an additional column with the count in each combination of groups (cell). A
dataset organized in this manner would appear as:

Eye Color Gender Count
1| Blue Female 1
2| Blue Male 2
3| Brown Female 1
4 | Brown Male 2
S| Green Fernale 1
& | Green Male 1

The dataset contains six rows, one for each possible combination of eye color and gender: blue
eyes/female, blue eyes/male, brown eyes/female, and so on. Each combination is made up of
entries in the nominal Eye Color and Gender columns. The count for each combination
appears in the count column.

You are not required to have as many rows as there are combinations. If duplicate combina-
tions appear in your data, StatView will sum the counts for that combination. Also, if a frac-
tional value appears in a count column, the value will be rounded to the nearest integer.

Two-way table

To use a two-way table, you enter a contingency table of observed values directly into a dataset
as input for the analysis. Each column is a column of the contingency table and each row a
row of the table. The observed frequencies are entered as individual observations. There will
be as many columns as groups in one nominal variable and as many rows as groups in the sec-
ond nominal variable. A dataset organized in this manner would appear as:

Male Ferale

N

1
2 2 1
3 1 1
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The two columns represent the two gender groups: male and female. The three rows the three
eye color groups: blue, brown and green. The values in each cell are the counts for the partic-
ular combination.

Variable browser buttons

Add For coded raw data, select two nominal variables and click Add. For coded summary data, select
two nominal variables and one continuous variable and click Add. For a two-way table, select
two or more continuous variables, and click Add.

For raw data, each additional nominal variable assigned creates a new analysis. For coded
summary data, each additional nominal or continuous variable assigned creates a new analysis.
For a two-way table, each additional variable you assign is added to the existing analysis.

Split By When you assign one or more split-by variables to a contingency table result, results for each
cell in the split-by variable(s) are displayed in separate tables.

Results

For explanation of the results, please see the preceding “Discussion,” p. 111. The Summary
and Observed Frequencies tables are the default output for this analysis.

Summary Table Table containing the degrees of freedom, the chi-square statistic and associated p value, the G-
squared statistic and its associated p value, the contingency coefficient, and Cramer’s ¥ for the
analysis. If 2x2 data are used, the Fisher’s exact test, the continuity correction with its
associated p value are displayed, and the phi coefficient is displayed instead of Cramer’s V.

Observed Frequencies |Table containing the number of observations in each cell (combination of groups) of the dataset
with totals for each group in the grouping variables.

Percents of Row/ Table containing the percentage of the observations in each group of one grouping variable that

Column Totals fall into each group of the second grouping variable.

Percents of Overall  |Table containing the percent of total observations in the dataset that falls in each cell

Total (combination of groups).

Expected Values Table containing the expected values for the number of observations in each cell (combination
of groups) if the variables were independent.

Post Hoc Cell Table containing the post hoc cell contributions for each cell (combination of groups).

Contributions

Cell Chi Squares Table containing the chi-squares statistic for each cell (combination of groups).

Templates

The following templates provide contingency table results.

Correlations Contingency Table--2 |Summary and observed frequencies tables for two-way data.
Way Data
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Exercise

Contingency Table--Raw | Summary and observed frequencies tables for raw data.
Data
Contingency Table--  |Summary and observed frequencies tables for summary data.
Summary Data

In this exercise you will perform a contingency table analysis of coded raw data. The dataset

contains information on weight, gas tank size, turning circle, horsepower and engine displace-

ment for 116 cars from different countries. You will determine whether some countries tend

to produce larger or smaller cars than other countries.

* Open Car Data from the Sample Data folder

e From the Analyze menu, select New View

* In the analysis browser under Contingency Table, select Summary Table and Observed
Frequencies and click Create Analysis

e Click OK to accept the default parameter, Coded raw data

* In the variable browser, select Type and click Add, then select Country and click Add
(It is important to add the variables in this order.)

Note that the groups of the first variable appear as rows of the contingency table; the groups
of the second variable appear as columns. The variables are highlighted with G usage markers
indicating grouping variables assigned to the analysis. The analysis calculates and tables appear

in the view.

Summary Table for Type, Country Observed Frequencies for Type, Country
Num. Missing 0 Japan Other USA Totals
DF 8 Small 7 12 3 22
Chi Square 25.814 Sporty 10 4 11 25
Chi Square P-Value | .0011 Compact 3 12 7 22
G-Squared 27.861 Medium 6 8 16 30
G-Squared P-Value | .0005 Large 4 1 12 17
Contingency Coef. 427 Totals 30 37 49 116
Cramer's V .334

The high chi-square and low p values in the summary table suggest a relationship between
country and car size. You will now determine which cells are contributing to the large chi-
square values by examining post-hoc cell contributions.

¢ Make sure at least one table is still selected

* In the analysis browser, select Post Hoc Cell Contributions and click Create Analysis

Post Hoc Cell Contributions for Type, Country
Japan Other USA

Small .709 | 2.532 | -3.017

Sporty 1.823 |-1.925 201

Compact | -1.455 | 2.532 | -1.100

Medium -.852 -.714| 1.428

Large -.238 |-2.491 | 2.561
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You did not have to assign variables to the Post Hoc Cell Contributions table. The variables
analyzed in the tables preceding it were used because those tables were selected when you cre-
ated Post Hoc Cell Contributions.

Relative to what is expected if the distribution of car sizes were the same for each country, the
Other group has more small cars than Japan, and more still than the usa. The usa, however,
has many more cars categorized in the Large group. You may want to examine the table of
expected values to verify that the discrepancies arise from the cells with large post hoc cell con-
tributions.



Nonparametrics

Nonparametric statistics test hypotheses about data for which the underlying distribution of
the data is not assumed. Rather than estimate the parameters of a hypothesized distribution,
then perform a computation on these estimates (parametric statistics), nonparametrics
employ alternatives such as sequentially ranking observations from all groups or variables of
interest or comparing two groups observation by observation to test hypotheses.

Discussion

One sample

Most of the hypothesis tests presented in other chapters require the data being studied to ful-
fill certain assumptions, usually regarding the nature of the underlying distribution from
which the data arises. In order for the probability levels presented by a #-test to be valid, for
example, the data being studied must come from a normal distribution. These assumptions
are so important that many statisticians feel that a significant probability value associated with
a test statistic needs to be interpreted as either evidence that the null hypothesis is false or evi-
dence that the assumptions of the test have been violated.

Occasionally the assumptions required for a parametric test are not met because of the nature
of the data. If you are measuring the amount of time it takes people to do a simple task, you
might know that most responses will be around zero, with fewer and fewer responses corre-
sponding to increasing time. This would not result in a normal distribution of data since nor-
mal distribution must be symmetric, with equal amounts of data on either side of the mean.
In other cases, your examination of the data (or residuals from regression or analysis of vari-
ance) might indicate that the assumptions of the analysis are not being met. Under such cir-
cumstances, performing one of the nonparametric tests described in this chapter can be
appropriate.

sign  test

The one sample sign test is the nonparametric equivalent of the one sample #test. It tests
whether the values of a variable are centered around a specified value. That is, it tests the
hypothesis that the median of a distribution is equal to some hypothesized value by compar-
ing the number of observations above and below that value.
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Mann-Whitney U test

The Mann-Whitney U test is useful in the same cases as an unpaired #test. It is the nonpara-
metric version of the two group unpaired #test. Recall that a #test tests the hypothesis that
the means of the two groups are equal, assuming normality of the observations. The Mann-
Whitney U tests the hypothesis that the distributions underlying the two groups are the same.
The requirements for validity of the Mann-Whitney test are that the two groups of observa-
tions come from continuous distributions and are independent of each other, both within and
between groups. Since the Mann-Whitney test does not look at the observations but instead
considers their ranks, it is resistant to outliers in either of the groups being compared.

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test tests whether the distribution of a continuous variable is the
same for two groups. That is, it tests the null hypothesis that two distributions are the same
under the assumption that the observations from the two distribution are independent of each
other. It is calculated by comparing the two distributions at a number of points and then con-
sidering the maximum difference between the two distributions. (The actual data points are
not compared, but a function of the points is calculated and compared.) Since this test relies
on the maximum value in a set of numbers, it may be heavily influenced by outliers and
should be used with caution if outliers are suspected.

Wald-Wolfowitz runs test

The Wald-Wolfowitz runs test tests whether the two groups of observations have been ran-
domly sampled from the same population. This test compares two groups assumed to be inde-
pendent of each other by combining the data for both groups, ranking the data and counting
the number of runs present in the ranked data. A run is a sequence of consecutive observa-
tions from one or the other of the groups. (Only the number of runs is important, not their
lengths.) If the two samples come from different distributions, we would expect many groups
of small runs, while if observations from one group tend to be larger than those from the
other group, we would see only a few runs in the data. Since the test is based on ranks, it is
resistant to outliers.

The Wald-Wolfowitz test looks at the data across the entire range, whereas the Kolmogorov-
Smirnov test looks at the maximum difference between the distributions. If there are only one
or two outliers, the Kolmogorov-Smirnov may mistakenly state that the two distributions are

different.

Wilcoxon signed rank test

The Wilcoxon signed rank test is appropriate in the same cases that a paired #test would be
used; it is the nonparametric version of the paired #test (see “Paired Comparisons,” p. 29). It
is based on the rank of the differences between each pair of observations in the dataset, and
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tests the hypothesis that sum of the ranks is equal to zero under the assumption that the distri-
bution of ranks is symmetric about 0.

Paired sign test

The paired sign test, or two sample sign test, is useful in the same situations that a paired #
test is used. It is another nonparametric version of the paired #-test. It tests the hypothesis that
one of the paired variables is just as likely to be greater than the other variable as it is to be less
than the other variable, without regard for the magnitude of the difference. Thus, it makes
very few assumptions about the underlying distributions from which the data arise. If you feel
that the differences between the two paired variables you are studying will be symmetric
around some value, the Wilcoxon signed rank test is more powerful.

Spearman rank correlation coefficient

The Spearman rank correlation coefficient, sometimes referred to as Spearman’s rho, is an
alternative to the usual correlation coefficient. Since it is based on the ranks of the data and
not the data itself; it is resistant to outliers. It calculates a correlation coefficient based on the
ranks of the values of two variables. The null hypothesis tested by Spearman’s rho is that the
two variables are independent of each other, against an alternative hypothesis that the rank of
a variable is correlated with the rank of another variable. Spearman’s rho ranges in value from
—1 (indicating high ranks of one variable occur with low ranks of the other variable) through
0 (indicating no correlation between the variables) to +1 (indicating high ranks of one variable
occur with high ranks of the other variable).

Kendall’s rank correlation coefficient

Kendall’s tau is an alternative to Spearman’s rho and is useful in the same situations as Spear-
man’s rho. In general, the interpretation of these two statistics results in similar conclusions
about the data. Kendall’s tau also ranges from —1 through 0 to +1.

Kruskal-Wallis test

The Kruskal-Wallis test is a nonparametric equivalent of a one-way analysis of variance by
ranks, i.e., it tests the null hypothesis that three or more groups all come from the same distri-
bution. It is basically calculated as a regular aNova, but uses the ranks of the data and is there-
fore resistant to outliers. Along with the test statistic, StatView displays a table including the
mean rank for each of the groups to aid you in determining which group tends to have larger
values than the others.
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Friedman test

The Friedman test is a two-way analysis of variance by ranks for matched samples. It is a spe-
cial case of a nonparametric two-way aNova in which, for each of several groups (usually
called blocks), there are a number of observations, each representing the response for that
group to a particular treatment. It tests the hypothesis that the effects of the treatments are the
same against the hypothesis that at least one of the treatments has an effect different from the
others. Like most of the other nonparametric tests, it is based on ranks and is therefore resis-
tant to outliers.

Dialog box settings

When you create or edit nonparametric results, you set the analysis parameters in this dialog
box:

Nonparametric Tests

@ One sample sign test

Hypothesized value:

(O Unpaired two group
T8t | Maan-ibitney ¥ |

(O Paired two group
fesdl | il ouna Signed vank Wi

() Kruskal-Wallis test

() Friedman test

There are ten nonparametric tests to choose from in this dialog box. There are no further
parameters for any of these tests except the One Sample Sign Test, for which you specify the
hypothesized value around which you believe the values are centered. For paired and unpaired
two groups, you must choose a test:

® Unpaired two group (@ Paired two group
X [ Mann-Whitney " - -
est:
Kolmogorov-Smirnov _ /lUI!CIJHOI_] S|gned rank
Wald-Wolfowitz Paired sign

Spearman rank correlation
Kendall rank correlation

If you are editing nonparametric results by selecting a result and clicking Edit Analysis, you
will not always be able to switch from one particular test to another. For example, you will not
be able to switch to an unpaired two group test from a paired two group test if you have spec-
ified variables which the unpaired test cannot use (i.e., a second continuous variable).
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Data requirements

The nonparametric statistics are divided into five groups. Each group requires a different data
organization as described below. For an introduction to dataset organization, see “Dataset
structure,” p. 49 of Using StatView.

Data for Mann-Whitney, Kolmogorov-Smirnov, and Wald-Wolfowitz tests must be organized
in the same manner as for unpaired comparisons analysis. Please see “Data requirements,”

p- 39, for a complete discussion of the required data organization. In addition, there are exer-
cises for both the Mann-Whitney U and Kolmogorov-Smirnov tests (see “Exercises,” p. 125).
Data for the Kruskal-Wallis test must be organized in the same manner as for factorial analysis
of variance experiments. Please see “Data requirements,” p. 90, for a complete discussion of
the required data organization. In addition, see the exercise “Kruskal-Wallis test,” p. 128.

Data for the Friedman test must be entered so that each column contains information on a
single sample (or treatment). Each row contains the response of a particular group for the
treatment. The dataset will contains as many columns as there are different samples (or treat-
ments) and as many rows as there are responses for the treatment. See the exercise, “Friedman

test,” p. 128.

Nonparametric test | Requirements Additional variables
One Sample Sign one continuous variable Each additional variable creates a new analysis.
Mann-Whitney U, one continuous variable and one  |Each additional nominal and/or continuous variable creates
Kolmogorov-Smirnov, ~ [nominal variable with two levels |a new analysis for each nominal/continuous pair.
Wald-Wolfowitz Runs
Wilcoxon Signed Rank, |two continuous variables Each additional continuous variable creates a new analysis
Paired Sign, Spearman for each pair.
Rank Correlation,
Kendall Rank
Correlation
Kruskal-Wallis one nominal variable with more |Each additional nominal and/or continuous variable creates
than two levels and one continuous |a new analysis for each nominal/continuous pair.
variable
Friedman three or more continuous variables | Each additional variable is added to the existing analysis.

Variable browser buttons

Add To generate nonparametric statistics, select the variable(s) that you wish to analyze and click
Add.
Split By When you assign one or more split-by variable to a nonparametric analysis, results for each cell

in the split-by variable(s) are displayed in separate tables or plots.
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Results

For explanation of the results, please see the preceding “Discussion,” p. 119.

One Sample sign test

Table containing the number of observations above, below and equal to the hypothesized value,
the p value for the analysis.

Mann-Whitney U test

Table containing the U and U/ prime statistics, tied and untied z values and p values, and the
number of ties.
Table containing the count, sum and mean of the rankings for each group in the analysis.

Kolmogorov-Smirnov
test

Table containing the degrees of freedom, the number of observations in each group, the
maximum difference between groups, and the chi-square statistic and p value for the analysis.

Wald-Wolfowitz Runs
test

Table containing the number of runs in the combined groups, the number of observations in
each group, the mean and standard deviation used in the z value, and the z value and the
p value for the difference between groups.

Wilcoxon Signed Rank
test

Table containing the number of differences between pairs, and tied and untied z values and
p values, and the number of ties.
Table containing the count, sum and mean of the rankings for each group in the analysis.

Paired Sign test

Table containing the number of differences above, below and equal to 0 and the p value for
the analysis.

Spearman Rank

Table containing the sum of squared differences and the Rho (with and without correction for

Correlation ties) for the groups, the tied and untied z values and p values, and the number of ties in each
group.

Kendall Rank Table containing the sum of squared differences and the tau (with and without correction for

Correlation ties) for the groups, the tied and untied z values and p values, and the number of ties in each

group.

Kruskal-Wallis test

Table containing the degrees of freedom, number of groups and ties, and the # and p values,
with and without correction for ties.
Table containing the count, sum and mean of the rankings for each group in the analysis.

Friedman test

Table containing the degrees of freedom, number of groups and ties, and the chi-square and
p value, with and without correction for ties.
Table containing the count, sum and mean of the rankings for each group in the analysis.

Templates

Note that some of the tests above show a correction for ties. Ties occur when two observations

have the same value. Nonparametric tests assume that no two values are the same. In some

tests, StatView is able to make a correction for the presence of ties; where it cannot, a warning
message is produced if ties are present.

The following templates provide nonparametric results.

Nonparametrics

Friedman Friedman test and rank info tables.

Kendall Correlation Kendall correlation test table.

Kolmogorov Smirnov | Kolmogorov Smirnov test table.
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Kruskal Wallis Kruskal Wallis test and rank info tables.
Mann Whitney Mann Whitney U test and rank info tables.

One Sample Sign Test |One sample sign test table.

Paired Sign Paired sign test table.

Spearman Correlation | Spearman correlation table.
Wald Wolfowitz Wald Wolfowitz runs test table.
Wilcoxon Signed Rank |Wilcoxon signed rank test and rank info tables.

Exercises

One sample sign test

In this exercise you will perform a one sample sign test using data from blood lipid screenings
of medical students. You are concerned with one variable here: Cholesterol. You will find out
if the cholesterol level of the students differs significantly from 190, a point above which cho-
lesterol levels may be unhealthy. You will test the null hypothesis that the value for cholesterol
is 190. If you reject the null hypothesis, you can conclude that student cholesterol levels differ
significantly from 190.

* Open Lipid Data from the Sample Data folder

e From the Analyze menu, select New View

* In the analysis browser, select Nonparametrics and click Create Analysis

* Enter “190” as hypothesized value and click OK to accept the other settings

¢ In the variable browser, select Cholesterol and click Add

The variable name appears highlighted with an X usage marker next to it indicating you have

assigned a continuous variable to the analysis. The analysis calculates and this table appears in
the view.

One-Sample Sign Test for Cholesterol
Hypothesized Value: 190

# Obs. > Hyp. Value 48
# Obs. < Hyp. Value 43
# Obs. = Hyp. Value 4
P-Value .6752

You cannot reject the null hypothesis. The p value is large, and there are roughly the same
number of observations above and below the hypothesized value of 190.

Mann-Whitney U test

In this exercise you perform a Mann-Whitney U test using census data for 506 housing tracts
in the Boston area. You will examine two groups of housing tracts, those near the Charles
River and those farther away from it. You will find out whether median housing prices vary
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depending on how far houses are located from the river. This is the nonparametric equivalent

«

of the unpaired #-test exercise (“Exercise,” p. 41). You may wish to compare results between
the two tests.

* Open Boston Housing Data from the Sample Data folder
* From the Analyze menu, select New View
* In the analysis browser, select Nonparametrics and click Create Analysis

* Choose Unpaired two group and click OK
(Leave Mann-Whitney selected for the test)

¢ In the variable browser, select Median Value and click Add
¢ In the variable browser, select Charles and click Add

Mann-Whitney U for Median Value Mann-Whitney Rank Info for Median Value
Grouping Variable: Charles Grouping Variable: Charles

U 5605.500 Count Sum Ranks Mean Rank
U Prime 10879.500 Near 35 11509.500 328.843
Z-Value -3.160 Far 471 1116761.500 247.901
P-Value .0016

Tied Z-Value -3.160

Tied P-Value .0016

# Ties 129

These results indicate a difference in price between houses near and far from the Charles
River. The mean rank for housing near the river is much higher than that for housing far from
it. Though the unpaired #test produced the same conclusion, it could have been fooled had
there been significant outliers. The unpaired #test, since it compares means, can be dramati-
cally influenced by a few outliers. A nonparametric test, however, deals only with the rankings
of the observations and cannot be affected by outliers.

Wilcoxon signed rank test

In this exercise you perform a Wilcoxon Signed Rank test using data from blood lipid screen-
ings of medical students. You will determine whether initial triglyceride levels are different
from those measured in the same subjects after three years. (This is the nonparametric equiva-
lent of the exercise, “Paired t-test,” p. 34. You may wish to compare results between the two
tests.)

e Open Lipid Data from the Sample Data folder
¢ From the Analyze menu, select New View
¢ In the analysis browser, select Nonparametrics and click Create Analysis

* Choose Paired two group and click OK
(Leave Wilcoxon Signed Rank selected)

¢ In the variable browser, select Triglycerides and Trig-3 yrs and click Add
Control-click (Windows) or Command-click (Macintosh) to select several nonadjacent
variables
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Wilcoxon Signed Rank Test for Triglycerides, Trig-3yrs

# 0 Differences 1
# Ties 7
Z-Value -.013
P-Value .9900
Tied Z-Value -.013
Tied P-Value .9900

52 cases were omitted due to missing values.

Wilcoxon Rank Info for Triglycerides, Trig-3yrs

Count Sum Ranks Mean Rank
# Ranks < 0 22 450.500 20.477
# Ranks > 0 20 452.500 22.625

52 cases were omitted due to missing values.

There is no significant difference in triglyceride levels between the initial measurements and

those made three years later because the p values are very large and the mean ranks are quite

close in value.

Kendall rank correlation

In this exercise you perform a Kendall rank correlation. The dataset consists of different west-
ern cities rated by nine criteria. You will discover whether there is a relationship between two
of the variables, Climate&Terrain and Housing. For Climate& Terrain, the higher the score,
the better. For Housing, the lower the score the better.

Open Western States Rated Data from the Sample Data folder

From the Analyze menu, select New View

In the analysis browser, select Nonparametrics and click Create Analysis
Choose Paired two group, select Kendall rank correlation for the test, and click OK

In the variable browser, select Climate&Terrain and Housing and click Add

Kendall Rank Correlation for Climate&Terrain, Housing

Score

Tau

Z-Value

P-Value

Tau corrected for ties
Tied Z-Value

Tied P-Value

# Ties, Climate&Terrain
# Ties, Housing

494.000

.373

3.898

<.0001

.374

3.913

<.0001

8

0

The low Tau in these results shows a low correlation between Climate& Terrain and Housing,.

Compare these results to those in the Correlation chapter; see “Exercise,” p. 48.
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Kruskal-Wallis test

In this exercise you perform a Kruskal-Wallis test using data on weight, gas tank size, turning
circle, horsepower and engine displacement for 116 cars from different countries. You will
determine whether some countries tend to produce larger or smaller cars than other countries.

* Open Car Data from the Sample Data folder

e From the Analyze menu, select New View

* In the analysis browser, select Nonparametrics and click Create Analysis

o Select Kruskal-Wallis test and click OK. Two table placeholders appear in the view.

* In the variable browser, select Weight and Country and click Add
Control-click (Windows) or Command-click (Macintosh) to select several nonadjacent
variables at once

An X usage marker indicates that Weight is assigned as a continuous variable; a G marker
indicates that Country is assigned as a grouping variable.

Kruskal-Wallis Test for Weight Kruskal-Wallis Rank Info for Weight
Grouping Variable: Country Grouping Variable: Country

DF 2 Count  Sum Ranks Mean Rank
# Groups 3 Japan 30| 1633.500 54.450
# Ties 15 Other 37| 1609.500 43.500
H 16.054 USA 49| 3543.000 72.306
P-Value .0003

H corrected for ties | 16.056

Tied P-Value .0003

The small p values indicate that there is a difference in weight depending on the country of
origin. The mean rank for the group Other is the lowest, and the rank for cars made in the
usa is the highest.

Friedman test

In this exercise you perform a Friedman test using data from a wine tasting in which fifteen
people rated six red wines. Each wine was rated using criteria commonly used to judge wine
quality. The totals for each judge and wine were calculated. You will determine whether there
is a difference in the quality of the wines as determined by the judges. The judges are the
blocks; the brand of wine is the treatment.

* Open Wine Tasting Data from the Sample Data folder

* From the Analyze menu, select New View

* In the analysis browser, select Nonparametrics and click Create Analysis
* Select Friedman test and click OK

¢ In the variable browser, select all the continuous variables and click Add
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Friedman Test for 6 Variables
DF
# Groups
# Ties
Chi Square
P-Value
Chi Square corrected for ties
Tied P-Value

5

6

8

27.552

<.0001

28.142

<.0001

Friedman Rank Info for 6 Variables

Wine A
Wine B
Wine C
Wine D
Wine E
Wine F

Count Sum Ranks Mean Rank
15 56.500 3.767
15 57.500 3.833
15 66.000 4.400
15 27.500 1.833
15 36.500 2.433
15 71.000 4.733

The large chi-square value indicates that the judges rated the wines differently. Examining the
Rank Info table shows the order in which the wines were ranked.
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Factor Analysis

Factor analysis reduces a large number of correlated variables to a smaller, more manageable
number of factors. A factor is a linear combination of related variables that can take the place
of the original variables in further analysis. The structure of the factors (the variables repre-
sented by each factor) is the most important information resulting from a factor analysis. The
number of factors and sufficient dimensionality is also important from a theoretical stand-
point, but StatView handles those for you.

Factor analysis is useful when you have many correlated measurements among the experimen-
tal units (subjects, plants, etc.) and want to concentrate on a smaller number of values than
the number of measurements at hand; or you want to learn about the interrelationships
among variables. This technique is known as dimensionality reduction. Consider a study of
the anatomy of a species of bird, for which you record 100 measurements (beak length, beak
width, weight, length of body, length of tail, etc.). It is reasonable to assume that the measure-
ments will be correlated with each other. A factor analysis can help you understand which
variables are related to each other, as well as provide a means for you to analyze fewer variables
than the original 100.

Discussion

Data input

You can apply factor analysis to two types of data: raw data and a correlation matrix. Raw data
occurs in standard row and column format (variables in columns, observations in rows). More
observations than variables are required in the dataset. Correlation matrix data requires a
Pearson correlation matrix, which has to be determined from a single pool of subjects rather
than from different samples of subjects. You need to know the number of cases used to deter-
mine the matrix; StatView uses it for multivariate significance tests performed on the data.
StatView uses only the values in the lower left of the correlation matrix. (The part of the cor-
relation matrix below the diagonal is a mirror image of the part above the diagonal.) Thus,
you may use either a square correlation matrix (such as one created using the Correlation anal-
ysis) or a lower left correlation matrix as input. Note that if your input is a correlation matrix,
make sure that all rows in the dataset are included. If you have excluded any rows, make sure
you do not add the corresponding column to the analysis.
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To calculate the factor scores, that is, the values of each of the factors for each of the observa-
tions in the data, you must perform the analysis using raw data.

Factor extraction methods

Four factor extraction methods are available in StatView: principal components analysis, Har-
ris image analysis, Kaiser image analysis and iterated principal axis.

Principal components analysis

The principal components analysis performs a simple eigenvalue-eigenvector analysis of the
correlation matrix in its original form. (Eigenvalues, sometimes called characteristic roots,
latent roots or just roots, are a mathematical function of a matrix, and are used in many
mathematical and statistical techniques.) Principal components analysis is a “classical” tech-
nique, often appropriate if your dataset represents a random sample of observations, and the
variables you choose are a fairly complete collection of those that are of interest to you. If you
are not sure which technique is most appropriate for your data, rely on principal components
analysis.

Image analysis

Image analysis is focused more on the sampling of variables than the sampling of subjects. If
you can think of the variables in your data as a sample of variables from a potentially large
(possibly immeasurable) universe of variables, an image analysis may be more suitable than
principal components. Image analysis techniques tend to extract more factors than non-image
analysis methods. They factor a modification of the original correlation matrix, the image
variance covariance matrix. Due to the large number of factors that generally define an image
factor solution, the final rotated solution usually has a large number of zero loadings. How-
ever, the non-zero loadings are not always as large as those of the more traditional factor ana-
lytic model. Two types of image analysis are available in StatView: Harris and Kaiser. The
Harris technique appeared in the original literature of factor analysis. Kaiser’s technique is a
modification that produces a factor pattern whose interpretation can be carried out similar to
the more traditional principal components technique.

Iterated principal axis

Iterated principal axis factor extraction is a modification of the principal components tech-
nique. It uses the information from the initial principal components extraction to improve the
quality of the factor solution. It assumes that the initial number of factors determined by the
principal components technique is the correct one, and finds a set of factors that most fully
explain the original correlation matrix. To do this, it replaces the diagonal entries of the matrix
(by definition equal to 1) with an estimate of the communality of each variable (a measure of
how closely it relates to the estimated factor solution). It then recalculates the communalities,
and continues to factor the adjusted matrix until the communalities no longer change. With
this technique, you must choose between three methods for estimating the initial communal-
ities.
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Extraction method: [ Iterated principal anis¥][./ SMC
0ff-diagonal
1

SMC uses the squared multiple correlation of the variable with all the other variables. Off-
Diagonal uses the largest correlation between the variable and any other single variable. 1 sim-
ply starts the process with the original correlation matrix. The iterated principal axis method
is appropriate if you are certain that your data can be very well explained with a small number
of factors. Due to its iterative nature, it requires more computing time than the other meth-

ods.

Factor loadings

Rotations

The factor extraction method you choose depends on the nature of your data and the ques-

tions you want to answer. The results of a factor analysis are summarized by a primary pattern
matrix. For each factor, the entries in this matrix represent the coefficients (often called load-
ings) of the linear combination of the original variables that define that factor. A rescaled ver-
sion of this matrix, the oblique solution reference structure matrix, is displayed in StatView.

The coefficients initially produced by a factor extraction method are difficult to interpret
because their magnitude varies widely. To get around this, you transform the factor pattern
matrix by one or more transformations or rotations. The rotation helps you see the structure
of the matrix more clearly by transforming it so that, for a given factor, as many variables as
possible have either large coefficients or coefficients near zero. You can identify which vari-
ables make up a large part of the factor (the large coefficients) and which variables are not very
important in that factor. You can then use your knowledge of the dataset to assign meanings
to the factors that were extracted. You can experiment with different rotations before deciding
which one helps you see the underlying structure of your data best.

For many datasets, determining the number of factors and identifying the important variables
in them will satisfy your needs. You may want to go further and incorporate into other analy-
ses the insights into the structure of your data obtained through factor analysis. One easy way
to do this is to save the factor scores and later plot or analyze them. For each factor extracted,
every observation in your dataset has a factor score, provided that the raw data is available.
This score is a measure of the magnitude of the variables underlying the factor in question for
that observation. You can use the factor scores as you would use other variables to produce
plots, compare groups, etc. Factor scores are artificially constructed from a number of differ-
ent variables so assumptions underlying many statistical procedures may not be met for these
scores. Therefore, probability levels reported for hypothesis tests using factor scores should be
judged with caution.

Number of factors to extract

An important decision in the extraction stage of your analysis is the number of factors to
retain for further study. This number is usually a function of the eigenvalues. Your options are:
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state the number of factors you wish to retain; choose the method default, which varies with
each factor extraction technique; or specify the technique you want to use. The defaults for
each extraction technique are described after the discussion of the available criteria. [delete “In
all cases the number of factors extracted is at least two.”]

ERUERUEIEE | Method default

Roots greater than one
?5% variance rule
Root curve

User specified

If you select a technique that depends on the data, there are three criteria used to determine
the number of factors: roots greater than 1, root curve analysis and extraction of 75% of the
variance.

Roots greater than |

The roots greater than 1 criterion retains as many factors as there are eigenvalues greater than
or equal to 1. Since the sum of the eigenvalues of the correlation matrix is equal to the num-
ber of variables, the average value of an eigenvalue is 1. This criteria essentially retains all fac-
tors whose eigenvalues are “above average,” and tends to extract a larger number of factors
than necessary.

Root curve

The root curve criterion is based on a plot of eigenvalues from largest to smallest. It looks for
a point in this graph where there is a dramatic shift, i.e., one eigenvalue that is markedly
smaller than the next largest one. The number of factors retained corresponds to the number
of eigenvalues before this dramatic change. When you use this criterion, you also get a plot of
the eigenvalues versus their ranks, called a scree plot, to help you assess the adequacy of the
solution.

15% variance rule

The 75% variance criterion is determined by retaining factors until 75% of the original vari-
ance is explained by the factors retained. Since the eigenvalues are determined in order of
decreasing magnitude, each eigenvalue accounts for less variance than the preceding one.
When the sum of the proportionate contributions of the eigenvalues exceeds 0.75, factors are
no longer retained in the final solution.

User specified

If you specify the number of factors to extract, it cannot exceed the number of variables. In
practice, most useful factor solutions have a maximum number of factors less than half the
number of variables.
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Method default

The default number of factors extracted for principal components is two or the number deter-
mined by the 75% variance rule, whichever is greater. The default method for the two image
analysis models is Harris eigenvalues greater than 1. Harris eigenvalues are the eigenvalues of
the image variance-covariance matrix. If you apply one of the three criteria discussed above in
place of the default method, the criterion is applied to a modification of the Harris eigenval-
ues. If you enter a specified number of factors greater than that which might be determined by
the image analysis default method, the number determined by the default will override. The
default method for determining the number of factors with the iterated principal axis method
is to use the number of eigenvalues greater than 1.

Transformation method

You can consider the initial factor solution as your final solution matrix, but it is often diffi-
cult to interpret the results of a factor analysis without further transformation. You can choose
one of three orthogonal transformations to define a final solution: varimax, equamax and
quartimax. An orthogonal transformation is one that retains a basic property of the initial fac-
tor solution, namely that the factors extracted are uncorrelated with each other. While this
property is attractive from a mathematical point of view, it can make it difficult to see the
underlying structure of your data.

No transformation
ransformation method: Orthotran/|NgIETT E

Equamax
Quartimag

StatView automatically applies an additional transformation, the orthotran transformation, to
the orthogonal transformation you choose in order to make the underlying structure clearer. It
does this by relaxing the requirement that the factors remain uncorrelated. If this does not
improve the solution, it retains the original orthogonally transformed structure. When the
orthotran procedure does perform an additional transformation, the resulting factor pattern is
said to be oblique, i.c., the factors are not uncorrelated with each other.

Factor scores

If you have a non-singular correlation matrix, you can compute regression estimate factor
score weights. This option is available only if you input raw data, since the factor scores are a
function of the variable values for each observation in the dataset. Your factor scores are unro-
tated if you did not choose a transformation method. You have a choice of saving a trans-
formed solution as orthogonal or oblique factor scores. Orthogonal factor scores show zero
intercorrelations; oblique scores are correlated. For more information on saving factors scores,
see “Save factor scores,” p. 137.
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Dialog box settings

When you create or edit a factor analysis, you see this dialog box:

Factor Analysis

Input: @ Raw data (O Correlation matriz - # cases: ‘:]

Extraction method: | Principal components W] <M w

Factors to extract: | Method default v|

Transformation method: Orthotran/[ Varimax |

Save to dataset:

[ Factor scores: Bbligup @ [J Correlation matrix

(o) (o)

All the choices in the dialog box are discussed in greater detail in preceding pages. First you
must specify the type of input data, raw data in row and column format, or a correlation
matrix. If your input is a correlation matrix, the number of cases used to determine the corre-
lation matrix must be entered.

You choose the factor extraction method from the pop-up menu. If you choose iterated prin-
cipal axis extraction method, you must also specify the initial communality estimate as smc
(squared multiple correlations), off-diagonal, or 1 (see earlier “Discussion,” p. 131). You also
choose the method for determining how many factors to extract, from the pop-up menu.
More detail on these choices can be found in the earlier section “Number of factors to

extract,” p. 133.

There are three transformation methods to choose from in addition to the automatic orthot-

ran transformation. They are varimax, equamax, and quartimax. You may also choose no
transformation. If your input data is raw data, the checkboxes at the bottom of the dialog box
let you save either factor scores or a correlation matrix.

Save a correlation matrix If you check save correlation matrix, the computed correlation
matrix is saved to a new dataset titled Factor Analysis Correlation Matrix. The dataset will
have as many columns and rows as variables assigned to the factor analysis. The names of each
column are Cor “Variable name” where “Variable name” is the name of one of the assigned
variables for the factor analysis.

Note that the correlation matrix dataset is a very special dataset with many features. The
dataset is linked to the factor analysis. If you change the parameters of the analysis or any of
the input data, the dataset will auzomatically update to reflect the new correlation matrix. If
you close the view that contains the factor analysis, this correlation dataset will close as well.
When the view is reopened, the correlation matrix dataset will automatically be recreated.
Please note that because this dataset is linked to your analysis, it is a “read only” dataset; you
can not change any value in the dataset (except the formatting) until you break the link
between the dataset and the analysis. In addition, the variables in this dataset can only be used
in the view which contains the factor analysis that it is linked to.

To sever the link between the dataset and the factor analysis, you need to choose Save As from
the File menu and save the dataset under a different name. This will save on the disk a copy of
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the correlation matrix as a normal dataset. You can then open this dataset as you would any
other dataset. When you save a copy of the correlation matrix dataset to your disk, StatView
automatically appends the letters “UE” to the beginning of the column names to indicate that
these columns are now user entered.

Save factor scores This option is available only if you input raw data, as opposed to a correla-
tion matrix, since the factor scores are a function of the variable values for each observation in
the dataset. Your factor scores are unrotated if you did not choose a transformation method.
You can save a transformed solution as orthogonal or oblique factor scores. Orthogonal factor
scores show zero intercorrelations; oblique scores are correlated.

The factor scores are appended to the end of the dataset to which the first specified variable
belongs. They are assigned the names Obl 1, Obl 2, etc., or Orth 1, Orth 2, etc., depending
on the type of scores saved. StatView identifies the source of these variables as analysis gener-
ated. They are dynamically linked to the factor analysis that created them. If you change the
parameters of the analysis or any of the input data, the variables in the dataset automatically
update. In addition, the variables are tied to the view that contains the analysis, not the
dataset in which they appear. They will automatically be added to the dataset again when the
view is reopened and the factor analysis recalculated. If you close the view that contains the
factor analysis, the variables will be removed from the dataset. Note that one consequence of
this is that if you plan to use an analysis generated factor scores in a formula, you need to open
the view which contains the factor analysis in order for the formula to compute.

Since these variables are dynamic, if you generate a graph or statistic of these factor scores,
these graphs or statistics will update when the analysis changes. If you plan to create new anal-
yses or graphs from the factor scores, such as a histogram or descriptive statistics, these results
must be contained in the same view as the factor analysis.

To break the link between an analysis generated variable and the analysis, change its source to
User Entered. This causes all ties to the analysis to be broken and the letters “UE” appended
to the front of the variable name to indicate that it is now user entered. Any change to the fac-
tor analysis that created it will have no effect on the variable, and they will act just as any user-
entered variable would.

Data requirements

Factor analysis requires three or more continuous variables.

Variable browser buttons

Add To generate a factor analysis, select three or more continuous variable(s) and click Add.
When you select a factor analysis result and assign additional variables, they are added to the
existing analysis.

Split By When you assign one or more split-by variable to a factor analysis, results for each cell in the
split-by variable(s) are displayed in separate tables and plots.
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Results

The following results are available for factor analysis. The Basic output is the default.

Basic output Summary table, eigenvalues, unrotated factors, communality summary, oblique solution primary
pattern matrix, and oblique solution reference structure.

Supplemental output | Correlation matrix, partial correlation matrix, eigenvectors, orthogonal transformation, primary
intercorrelations, oblique factor score weights, orthogonal factor score weights.

Advanced output Variable sampling, variable complexity, proportionate variance contributions.

Plots Unrotated factor plot, orthogonal factor plot, oblique factor plot, scree plot.

Templates

The following templates provide factor analysis results.

Factor Analysis Factor Analysis Plots | Unrotated factor, oblique factor, orthogonal factor, and scree plots.

Factor Analysis--Basic | Factor analysis summary, eigenvalues, unrotated factors, communality
summary, oblique solution primary pattern matrix, and oblique solution
reference structure tables.

Factor Analysis-- Factor analysis summary, eigenvalues, eigenvectors, unrotated factors,
Complete communality summary, oblique solution primary pattern matrix, and
oblique solution reference structure, oblique score weights, orthogonal
score weights, orthogonal solution, partial correlation matrix, primary
intercorrelations, proportional variance contributions, sampling
adequacy, unrotated factors, and variable complexity tables. Unrotated
factor, oblique factor, orthogonal factor, and scree plots.

Exercise

In this exercise you perform a factor analysis to find the factors that best explain variability in
a correlation matrix of eight physical measurements.

* Open Eight Physical Variables Data from the Sample Data folder

e From the Analyze menu, select New View

* From the analysis browser under Factor Analysis, select Basic Output and click Create
Analysis

* Enter 305 for # cases and click OK

¢ In the variable browser, select all the variables and click Add

Factor analysis summary The summary table notes the number of variables used in the anal-

ysis, the factor procedure used to determine the number of factors, the transformation proce-
dure and the number of factor scores defined. It also includes Bartlett’s chi-square test; a
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significant chi-square value suggests that the collection of coefficients in the correlation matrix
differ from 0 and most likely do not occur by chance.

Factor Analysis Summar

Number of Variables

Est. Number of Factors 4
Number of Factors

Number of Cases 305
Number Missing 0
Degrees of Freedom 35
Bartlett's Chi Square 2116.975
P-Value <.0001

Factor Extraction Method: Principal Components
Extraction Rule: Method Default
Transformation Method: Orthotran/Varimax

Eigenvalues The eigenvalues are presented in an order that corresponds to their size. Typi-
cally, there are as many eigenvalues as there are variables, and the sum of the eigenvalues
equals the sum of the diagonal elements of the matrix from which they are determined. The
variance proportion is an estimate of the proportion of variance that the eigenvalue and its
eigenvector account for when they are used to define a factor.

Usually, StatView divides the number of variables by two to determine an initial estimate of
the number of eigenvalues (also an initial estimate of the number of factors). The many rules
for determining the number of final factors are then applied to the eigenvalues. You may over-
ride the number of eigenvalues determined initially by entering a number of factors in the dia-
log box. The eigenvalues displayed are of no great value in the interpretation of the factor
solution. They are displayed for completeness and for those who wish to address subjectively
the number-of-factors question.

Eigenvalues

Magnitude Variance Prop.
Value 1 4.673 .584
Value 2 1.771 .221
Value 3 .481 .060
Value 4 421 .053

Unrotated factors Once the number of factors is determined, it is necessary to determine the
correlation of each variable with each factor, a value typically referred to as a factor loading,.
Most modern-day factor analysts view this unrotated factor matrix as the initial step in deter-
mining a desirable factor solution matrix. The square of a loading represents the proportion of
variance of the variable that can be predicted by the factor.

Unrotated Factors
Factor 1 Factor 2

height .859 -.372
arm span .842 -.441
forearm length .813 -.459
lower leg length .840 -.395
weight .758 .525
bitrochanteric diameter .674 .533
chest girth .617 .580
chest width .671 .418
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Communality summary Computing the sum of the squared loadings by row results in a pro-
portion, the final communality estimate, that represents the total proportion of variance of
the variable that can be predicted by the factors.

Communality Summary
SMC  Final Estimate

height 816 877
arm span .849 .903
forearm length .801 .872
lower leg length .788 .861
weight .749 .850
bitrochanteric diameter | .604 .739
chest girth .562 717
chest width 478 .625

Prior to a factor analysis, the total proportion of variance of a variable is estimated by the
squared multiple correlation (smc) of the variable with all the other variables. The communal-
ity estimates and the smc are reported in the communality summary table. Some analysts
think of the smc as the initial communality estimate, while others think of the largest off-
diagonal entry associated with the variable as the initial communality estimate. When a singu-
lar (determinant equal to 0) correlation matrix is analyzed, the initial communality estimate is
assumed to be 0.

You can see from this communality summary table that approximately 82 percent of the vari-
ation in height is predictable in a linear regression equation using the other seven variables.
This conclusion is derived from the smc of height with all the other variables. When two fac-
tors are used to predict height, approximately 88% of the variation is predictable, an improve-
ment of approximately 6%.

Oblique solution primary pattern matrix When determining an oblique solution, StatView
uses an algorithm that simply takes a given orthogonal solution and releases the restriction of
orthogonality. The algorithm, the orthotran solution, always defines a simple structure solu-
tion that is good as or better than the associated orthogonal simple structure solution.

Oblique Solution Primary Pattern Matrix
Factor 1 Factor 2

height 919 .034
arm span .973 -.046
forearm length 971 -.079
lower leg length .928 | 3.423E-4
weight -4.694E-5 .922
bitrochanteric diameter -.063 .890
chest girth -.145 911
chest width .043 .768

There are two types of oblique solutions: a primary pattern solution and a reference structure
solution. These two are quite similar; indeed, one is a column rescaling of the other. The pat-
tern solution defines loadings that are regression coefficients for predicting the standard score
of a variable in terms of the defined factors. The reference structure solution defines loadings
that are correlations. Both solutions have good simple structure in that the high loadings are

high, and the low loadings are near zero.

Oblique solution reference structure When comparing a primary pattern solution to a refer-
ence structure solution, it is immediately apparent that the large loadings are larger in the pri-
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Plots

mary pattern solution. Sometimes these primary pattern values become larger than 1, simply
because they are regression weights. Regardless of whether you use a primary pattern or refer-
ence structure solution, the conclusions should be the same. For this data, it is clear that the
first four variables are associated with the first factor and not associated with the second factor.
Using similar logic, it is apparent that the second four variables are associated with the second
factor. To name the factors, you choose a name that represents the essence of the variables
loading on it. The first factor could be named bone structure, the second factor could be
named flesh factor.

Oblique Solution Reference Structure
Factor 1 Factor 2

height .795 .030
arm span .842 -.040
forearm length .840 -.068
lower leg length .803 | 2.962E-4
weight -4.062E-5 .798
bitrochanteric diameter -.055 770
chest girth -.126 .788
chest width .038 .664

For these data you would arrive at the same factor name if you used an orthogonal solution. Is
it reasonable to assume that body weight or flesh is independent of bone structure? If you
believe so, then you may be satisfied with an orthogonal solution. If, however, you assume
that taller people are generally heavier and fleshier than shorter people, you will be satisfied
with an oblique solution.

StatView provides several plots associated with factor analysis. In this part of the exercise, you
create two: one associated with the unrotated factor solution, and one associated with the
oblique solution. Within any particular set of plots, all pairwise factor plots are presented.

e Make sure one of the previous results is selected
* In the analysis browser, select Unrotated Factor Plot and click Create Analysis

Unrotated Factor Plot
1 I . . | |
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The plot of the unrotated solution allows you to make a quick judgment regarding the poten-
tial simple structure of the factor solution. For this data, two distinct clusters of points are
apparent in the unrotated plot. An ideal factor solution for the variables would have one axis
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passing through the cluster of variables 1 through 4 in the upper right quadrant, and the other
axis passing through the other cluster. If the data were under-factored (which is not possible
with the eight physical variables), you might see points scattered through all four quadrants
with no definitive clusters of points. If the data were over-factored, you would see many

points near the point of intersection of the two axes, and perhaps one or two points defining a
cluster.

* In the analysis browser, select Oblique Factor Plot and click Create Analysis

Oblique Factor Plot
.

Factor 2

Factor 1

The plot of the oblique solution shows the oblique axes, primary axes, passing through the
clusters of points as they do for the eight physical variables. The plotted primary axes are not
at right angles because they are correlated. In this example, the simple structure of the oblique
solution is quite good; the primary axes pass directly through the clusters. When the orthogo-
nal solution passes axes through the clusters, the oblique solution and the orthogonal solution
are identical and the factor intercorrelations are zero.



Survival: Nonparametnic

This is the first of two chapters regarding StatView’s survival analysis tools. This chapter intro-
duces survival analysis in general and goes on to discuss StatView’s Survival: Nonparametric
analyses in particular. The second, “Survival: Regression,” p. 167, discusses the Survival:
Regression analyses.

Introduction to survival analysis

What is survival analysis?

Survival analysis is a suite of statistical techniques used to evaluate data consisting of the
elapsed time between two events of interest. A typical example, on which the name is based,
concerns the length of time that seriously ill patients survive. In such a case, the survival time
is often measured from the initiation of treatment (i.e., the beginning of monitoring) and
ends, typically, with death (the event). Some questions that may interest an investigator col-
lecting such data are:

1. What is the mean time from initiation of treatment to death?
2. What is the probability that a patient will survive five years after treatment begins?

3. Does the patient’s condition before commencement of treatment affect the length of sur-
vival time?

4. How do survival times after an experimental treatment compare with those for patients
exposed to a standard treatment?

5. What factors, by lengthening or shortening the time from treatment to death, influence
the success of the treatment?

Survival analysis methods are the statistical tools designed to answer these kinds of questions.

Survival analysis methods can be applied to a broad class of problems in engineering, econom-
ics, demography, and the social and natural sciences. In engineering, reliability studies are car-
ried out to evaluate how long certain components or systems function before they fail. In job-
mobility investigations, the length of time that an individual remains in a certain job is a pri-
mary focus. A study of fertility may wish to estimate factors which influence the time from
menarche to first birth for a population of women. These different applications all use survival
analysis techniques, although they may be given a name more appropriate to the topic under
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study. Other names for survival analysis include failure-time analysis, reliability theory, and
lifetime data analysis. It is important to note that the ideas of survival analysis can be applied
to the study of any variable with non-negative values, not just those that arise from measure-
ments of elapsed time. For example, health care analysts are often concerned with the proper-
ties of the total costs associated with treating a specific disease in an individual. In this case the
variable “cost” plays the role of the non-negative variable whose behavior you wish to explain
in the analysis; observations which are minimum values of the cost of treating patients (per-
haps because their treatment is not complete) would be considered censored observations.

Survival and hazard functions

In addition to familiar statistical summaries for describing the properties of variables within a
single population or comparing characteristics across populations, there are three closely
related functions that play a special role in most survival analyses. The first is the survival
function, usually denoted by S(), which, for any specified time #, gives the probability of an
individual’s survival at least to time #. In a population, S(2) then yields the proportion of the
population that will survive beyond time #. Thus, if the survival variable 7" measures the time
in years from diagnosis of a certain cancer until death, then §(5) is the probability of surviving
five years or more. The survival function is closely related to the associated distribution func-
tion of 7.

The hazard function provides an alternative way to convey the same information as a survival
function, but it is particularly appealing because of its natural interpretation on a chronologi-
cal time scale. The hazard function, often denoted by A(#), gives for any specified time # the
instantaneous risk of failure at time # among individuals who have survived az /east to time 2.
Note that, for a continuously monitored population, A(#) is not the proportion of individuals
who fail at time # instead it measures the proportion among those individuals az risk at time ¢
who fail at time # Thus, the hazard function provides a way to look dynamically at how the
risk of failure changes as time progresses. An increasing hazard function reflects increasing risk
as time progresses and vice versa. A constant hazard function indicates that the risk of failure
is unaffected by the length of time an individual has already survived. The cumulative hazard
function, (%), measures the cumulative risk to which an individual is exposed up to time 7 it
equals the negative of the logarithm of the survival function.

As suggested above, these three functions (the cumulative survival, hazard, and cumulative
hazard functions) are closely related, as indicated by the following equality:

—[" A () du _
S(#) :eﬁ) () :e/\(t)

As a consequence of this relationship, if you know just one of these functions, you can infer
the values of the other two.

Regression models

As in many quantitative analyses, we are often most interested in relationships between vari-
ables; thus, in survival analysis, we may wish to determine which factors influence survival
time. Typically, as in other statistical investigations, regression analysis is used to investigate
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and quantify the effects of explanatory variables on an outcome of interest—here, survival
time. In survival analysis two forms of regression analysis have proved useful. The first
employs standard linear regression models in which survival time plays the role of the depen-
dent variable. Often, a transformed version of survival time (usually the logarithm of survival
time) is used, leading to a linear model on the log time scale—the so-called accelerated failure
time model. In this model, the effects of changes in explanatory variables are quantified in
terms of the multiplicative effects of such changes on survival time. That is, if the dose of a
treatment given to one individual is one unit greater than that given to another, the model
measures whether the individual’s survival time is twice as long, three times as long, or half as
long, and so on.

The second kind of model describes the way the hazard function is affected by changes in the
explanatory variable. The popular proportional hazards model describes the effect of changes
in explanatory variables in terms of the multiplicative effect on the hazard function. That is,
in the example of the last paragraph, this model indicates whether the patient receiving the
higher dose is subject to twice the hazard, three times the hazard, or half the hazard through-
out the subject’s monitoring period.

Parametric and nonparametric analyses

In statistical analyses, investigators often have considerable flexibility in how much structure
they are willing to assume regarding the variables under study. For example, in describing the
survival properties of a population of items under test in a reliability study, an investigator
may wish to assume that the underlying hazard function is constant; that is, that the risk of
failure for items on test is not influenced by the amount of time on test. This is equivalent to
a parametric assumption that survival times are drawn from an exponential distribution. Sub-
sequently, the constant hazard can be estimated from survival times of a sample of items.
Alternatively, the investigator may be unwilling to make such a strong assumption and, at
least initially, leave the form of the hazard function unspecified. Based on survival data, a non-
parametric estimate of the cumulative hazard function and the associated survival function
can then be calculated.

Censored observations

Collecting survival information on a sample of individuals often involves longitudinal follow-
up to monitor a subject’s failure status. Sometimes it is impossible to determine the exact time
of failure, particularly in cases where a study ends before an individual has experienced the
event. Such cases require specialized statistical techniques that allow one to use both complete
observations and incomplete information simultaneously.

A censored observation is one for which only partial information is available on the survival
time of an individual under study; for example, right censoring refers to the case where it is
known only that a survival time exceeds a known value, #. This kind of information will be
available when we have monitored an individual for ¢~ time units and the individual still has
not failed when observation ceases. For censored observations it is important that the dataset
reflects whether an individual’s recorded information has been censored. Understanding the
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patterns and properties of censoring and how these can influence your observations are crucial
to the correct interpretation of survival data.

An investigative team of clinicians, data managers and statisticians have organized a clinical
trial of a new chemotherapy in the treatment of a certain form of lung cancer. Upon referral
from oncologists and with informed consent, 300 patients recently diagnosed with lung can-
cer are randomly assigned either to the new treatment (at one of two doses) or to the current
standard therapy, each group comprising 100 patients. The patients are carefully monitored
for side effects and their health status is followed for two years after treatment or until the
time of death. Data collection ends when the follow-up of all patients is completed. For each
patient, the dates of diagnosis, initiation of treatment, and end of follow-up or death are
recorded in a data file. For individuals whose length of follow-up was less than two years, the
reason for cessation of monitoring—death, removal from study, etc.—is also recorded. Other
relevant information is also collected in each case, including the stage of cancer at diagnosis,
age of patient at diagnosis, and other clinical and demographic measurements.

After the data are collected, the team is eager to study the results of the trial. Initially they con-
sider the data obtained from the 100 patients assigned to receive the standard treatment. It is
decided to measure the relevant survival variable as the time from diagnosis until death. In the
dataset, these data are recorded in the event time variable. Using a Kaplan-Meier analysis, the
investigators obtain an estimate of the survival function. For comparison, using a parametric
regression model, they also fit a Weibull survival function to the data. By examining the
results, the team is convinced that the Weibull model is inadequate, and notes that, for the
standard therapy group, the Kaplan-Meier estimate of the survival function is similar to anal-
ogous curves based on historical data on the effects of the standard treatment. The latter com-
parison is helpful in ascertaining whether there might be any survival differences for
individuals enrolled in the present trial as compared with past patients.

The Kaplan-Meier estimate (a nonparametric method) of the survival curves for the two
experimental groups are plotted on the same graph as the standard group. The Kaplan-Meier
estimate also allows rank tests to be used to compare the three survival curves. Among these,
the logrank test is chosen. This test evaluates whether the observed differences among the sur-
vival curves can be attributed to chance variation or to actual differences among the three
groups.

If the hazard functions in the three groups are assumed to be proportional, the proportional
hazards regression model can be used to quantify the relative hazard obtained by comparing
the two new treatment groups to the standard group.

Before interpreting the results, the investigators use StatView to check the proportional haz-
ards assumption, by examining plots of estimates of the three hazard functions. For example, a
graph of the log cumulative hazard functions for each group shows three approximately paral-
lel curves. These and other evaluations suggest that the proportional hazards assumption is
reasonable. The regression analysis shows that the hazard function is reduced by about 20 per-
cent under treatment in the low-dose group, and 25 percent in the larger-dose group. The dif-
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ference between the two different doses of the new treatment could be due merely to chance
variation.

With this important part of the analysis completed, the investigators now consider the role of
other factors in survival and whether certain patient characteristics might be associated with
treatment efficacy. First, basic patient characteristics are entered as covariates into the propor-
tional hazards model to investigate their influence on survival time and to examine whether
compensation for these effects might improve the precision associated with the treatment
group comparisons. It is discovered not only that younger patients survive longer, but also
that the higher dosage is considerably more effective than the lower dosages. Specifically, the
hazard is reduced in the younger patients with the high dose of the new treatment by 45 per-
cent compared with the standard treatment in patients of average age. Although the results are
not definitive, this finding suggests further investigation of the appropriate dose level for the
new treatment in younger patients.

Finally, information related to the causes of censoring is examined and the data are evaluated
to determine whether specific patient characteristics are associated with the chance of being
censored. This analysis helps the investigators assess their assumption that censoring is not
associated with the risk of mortality.

Thus, a full analysis of survival data uses many of the options available in StatView. Effective
use of the right combination of these tools is the key to appropriate analysis, interpretation,
and reporting of survival data.

Nonparametric methods

In survival analysis, the time that elapses until the occurrence of an event of interest—hereaf-
ter referred to as the event time—is recorded for a sample of individuals from a defined popu-
lation. As indicated in “Introduction to survival analysis,” p. 143, some of these observations

may be censored, because, for instance, the study may end before the event occurs for particu-
lar individuals. For such individuals, only a lower bound for the event time is known; that is,
it is known only that they did not experience the event within a certain time interval. Having
both uncensored (or complete) and censored (or incomplete) observations as data, an investi-
gator typically wants to study the characteristics of the survival and hazard functions
(see“Introduction to survival analysis,” p. 143, for an explanation of these terms).

Specifically, comparison of the survival and hazard functions across natural groups of individu-
als is often a key issue. What constitutes a natural group depends on the context in which the
data are collected. In randomized clinical trials, the primary groups are usually the various
treatment groups to which individuals are assigned. In observational studies, the groups might
be determined by natural characteristics of the individuals, such as occupation or age, or may
reflect some condition to which individuals have been exposed, such as a history of smoking.
Since in these cases, group membership is not assigned at random (a person cannot be assigned
a gender, for instance), comparisons of survival functions among such groups must be inter-
preted with caution.

In analyzing survival data, it may be appropriate to assume that the hazard function belongs
to a family of equations of a simple mathematical form, the parameters of which are all
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defined. The choice of an appropriate parametric family will depend on external information
about the population’s survival properties. The data also help determine if a particular para-
metric model is appropriate. We return to this issue in the next chapter, “Survival: Regres-
sion,” p. 167, where we discuss methods for estimating and comparing survival functions that
are based on parametric models.

As one alternative to strictly parametric models, in this chapter we consider ways to estimate
and compare survival functions that are oz based on any specific parametric model. Such pro-
cedures are referred to as nonparametric. These methods are valuable both when there is little,
if any, a priori information on which to base the choice of a specific parametric model and for
providing a benchmark estimate of the survival function (i.e., one requiring minimal assump-
tions about the data) that can be compared to estimates that emerge from specific parametric
models.

Event times can be recorded on either continuous or discrete scales. (“Continuous” in this
context should not be confused with the continuous data class used in StatView. As explained
in “Data requirements,” p. 157, the event time variable must always be continuous, regardless

of whether it is measured on a continuous or discrete scale.) For example, consider a case in
which event times are recorded in days, even though it typically takes several months or years
for the event to occur. For such cases, few, if any, individuals are likely to share exactly the
same event time, and it would be appropriate to use a continuous scale. On the other hand, if
event times are recorded only to the nearest month or year, it is probably more appropriate to
treat the event times as discrete, because a relatively large proportion of individuals will share
identical event times. For data recorded on a continuous scale, it is possible, in principle, to
estimate the survival function parametrically over a continuous interval of time. With discrete
data, however, the survival function can be estimated only at a few discrete time points. If it is
determined that event times should be treated as discrete data, actuarial (also called life table)
estimates of the survival function should be used.

A key assumption that underlies both the estimation and comparison of survival functions is
that the causes of censoring of observations are nor related to event times. For example, if fol-
low-up is terminated for some individuals—who thus become censored observations—
because their survival prognosis is poor (that is, the occurrence of their event is imminent),
the methods described in this chapter, and throughout this manual, are inappropriate.

Discussion

The first concern when analyzing survival data should be to estimate the underlying survival
function. Later, it may be valuable to compute separate survival function estimates for groups
and/or strata of the population. Examination of the latter estimates can provide insight into
causes of survival patterns and their variation across groups of interest. In particular, an esti-
mate of the survival function yields estimates both of the probability of surviving a set period
of time—for example, one year, five years, etc.—and of the uncertainty associated with these
estimates. Beyond characterizing the survival patterns for the population under study, these
estimates are useful for establishing the prognosis of future individuals, and for comparison
with other groups or populations.
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Understanding the event time variable

Before describing various estimates of the survival and related functions, it is important to say
a little about the definition of the key variable in a survival analysis. This is the event time
variable, which measures the time that elapses until the occurrence of the event of interest, or,
in the case of censored observations, until the individual is no longer monitored. As indicated
in “Data requirements,” p. 157, it is necessary to enter information that distinguishes among
those individuals who are followed until the event occurred and those who were subject to
censoring. Of more fundamental importance to the investigator is the need to define carefully
both the origin of the event time (which may begin, for example, with the date of diagnosis,
the date of randomization, the date of treatment initiation, etc.) and the endpoint of interest
(for example, death from any cause, death from a specific cause, relapse, etc.). In addition, the
investigator should consider the choice of the numerical scale for the event time variable.
(Note that this issue is distinct from considerations surrounding the use of continuous and
discrete scales, as discussed on p. 148.) In many cases, this may merely be the selection of a

particular chronological scale such as days, weeks, or years. In other cases—for example, in the
monitoring of machine failure patterns—an alternative to chronological time may be suitable.
For cars, accumulated mileage until failure might be preferable to time since manufacture as
the event time variable; for electronic components, the number of switches on or off until
failure may be more relevant than time until failure.

Nonparametric survival function estimates

In a preliminary analysis of survival data, the investigator might begin by plotting a nonpara-
metric estimate of the survival function, §(¢), against time. (As discussed in “Introduction to
survival analysis,” p. 143, §(#) indicates the proportion of the population for whom, at time 7
the event of interest has not yet occurred.) If the event times are treated as continuous, then it
is conventional to use the Kaplan-Meier estimator of the function §(z). (Note that the
Kaplan-Meier estimator is sometimes referred to as the product limit estimator.) The survival
function generated by this estimator is a step function. As a step function, S(#) = 0at the
origin (# = 0) and it remains at that value until the first jump point, (i.e., event time) where
it takes on a value less than 1, remains “flat” until the next jump point, and so on. The set of
times at which S() changes is simply the set of uncensored event times in the dataset.

If the event time measurements are discrete, or if the dataset is very large, an actuarial estimate
of the survival function may be used. In this method, the uncensored and censored event
times are grouped into predefined intervals on the time axis, and the survival function is esti-
mated at the beginning of each interval.

Graphs of the estimated survival function can be embellished in several useful ways. For
instance, symbols indicating observed event times or observed censoring times (or both) can
be included on the graph. It is particularly useful to indicate where censoring occurred during
follow-up or monitoring, which in turn could indicate nonrandom causes of censoring, par-
ticularly when estimated survival curves are compared across groups.
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Hazard plots

Comparisons

While the cumulative survival function plot is useful in its own right, it is difficult to infer the
form of the underlying hazard function directly from this graph. This task is made simpler by
examining a variety of hazard plots. The first of these is the cumulative hazard plot, which
graphs an estimate of the cumulative hazard function, /A(¢), against time # This plot provides
insight into the development of hazard over time; for example, changes in the rate at which
the cumulative hazard function grows reflect whether the hazard function is increasing or
decreasing. This kind of qualitative sense of the shape of the hazard function is enhanced by
the In cumulative hazard plot, which graphs an estimate of In(/A(#)) against the logarithm of
time, In(#). This plot is particularly useful for judging whether some of the parametric models
of the chapter “Survival: Regression,” p. 167, adequately describe the survival properties
reflected in the data. Specifically, if the event times are sampled from a Weibull distribution,
the log cumulative hazard plot should produce points that lie approximately on a straight line;
if the slope of the approximating line is close to 1, an exponential model may be appropriate.

With interval-grouped data, the hazard plot graphs the estimate of the hazard function, A(%),
against time, based on the actuarial estimate of the survival function. This plot allows a direct
interpretation of how the risk of failure evolves over time.

of survival functions

The detection of differences in survival patterns among groups of subjects is often a primary
motivation for survival analysis. A first step to this end is the construction of separate estimates
of the survival function for each distinct group. These might be plotted on different graphs,
or, more usefully, on the same graph. These plots allow immediate comparison of estimated
survival probabilities and observed censoring times. A next step is to assess whether observed
differences in estimated survival functions might be due to chance variation alone; this can be
achieved through a variety of tests to evaluate the equivalence of survival functions across
groups.

Comparing survival functions across groups—rank tests

Statisticians have suggested various procedures to test the hypothesis that survival functions
among groups are equal. One way to evaluate the equality of survival functions is as follows:
First, consider each of the observed event times in turn; for each such time and each group,
one can calculate how many individuals of the original dataset were at risk of failure (at each
event time, some may have already failed or been censored, so these cases are no longer at
risk). For each observed event time, the proportion of individuals at risk in each group is eval-
uated in comparison to the group membership of the individual who actually failed. For
example, if at the early event times an active treatment group and a placebo group include
roughly the same number of individuals at risk, but the observed events all belong to the pla-
cebo group, this would provide evidence that, initially, the risk of failure is higher in the pla-
cebo group. So, one way to compare survival functions among groups is to calculate these
comparisons at each event time and then combine this information across all event times. Dif-
ferent test statistics are obtained according to how one weights the evidence obtained at dis-
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tinct event times. The different weighting schemes correspond to tests with different names,
but all are generically referred to as rank tests, because they depend only on the ordering of
the event times and not on the numerical values.

The most common of these tests is the logrank test (also known as the Mantel-Cox or Man-
tel-Haenszel test); it gives equal weight to all observations and is best suited to detecting dif-
ferences among survival curves for which the underlying hazard functions are proportional.
(Such proportionality is usually indicated by parallel In cumulative hazard plots for these
groups. Another method to test this assumption is to plot the logarithm of the survival esti-
mate for one group against the logged estimate for the other group: the resulting plot should
be close to a straight line through the origin.) An alternative weighting leads to the Breslow-
Gehan-Wilcoxon test, which gives greater weight to times with more observations in the risk
set; it is, therefore, less sensitive than the logrank test to late events when few subjects remain
in the study. If there are no censored observations, this test simplifies to the Wilcoxon test.
Another generalization of the Wilcoxon test is the Tarone-Ware test, which gives a weighting
between the logrank and Breslow-Gehan-Wilcoxon tests. A further variant is the Peto-Peto-
Wilcoxon procedure, which uses an estimate of the survival function for its weightings.
Finally, there is the Harrington-Fleming family of tests, in which the weighting is controlled
by a parameter p.

Usually, these test statistics provide very similar summaries of the evidence for or against the
hypothesis that the survival functions of the various groups are equivalent, at least in datasets
that are moderately large. The Harrington-Fleming test with p=0 is identical to the logrank
test; with p=1, Harrington-Fleming is similar to the Peto-Peto-Wilcoxon test. In the Breslow-
Gehan-Wilcoxon test, the weighting depends on the censoring patterns in the dataset and so
can lead to anomalous results if censoring is common and differs substantially across the
groups.

Sometimes one group may be at lower risk early in the monitoring period, but at higher risk
later. It is important to note that none of the tests described are effective at detecting this kind
of difference. Use of these tests, therefore, should always be supplemented by visual compari-
son of the estimated survival curves for the various groups.

All of the tests for comparing groups can be replaced by analogous tests for trend among
groups. This may be appropriate when there is a natural ordering associated with the groups
(for example, in a case where groups are defined by varying dosage levels of a drug). Trend
tests are intended to detect departures from the null hypothesis—i.e., that the survival func-
tions among groups are equivalent—in the direction of increasing or decreasing survival pro-
portions as one moves through the groups in the specified order. If the ordering of the groups
can be quantified—for example, by a measure of dose—then the group variable that com-
prises these values can be used as a covariate with the regression methods in the chapter “Sur-

vival: Regression,” p. 167, to examine more closely the relationship between the covariate and
survival.
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Dialog Box Settings

Survival: Nonparametric Methods dialog box

H\H
HHH

Survival: Nonparametric Methods

Estimation method:
@ Kaplan-Meier (Product-Limit)
(O Actuarial (Life Table)
intarpaisl @ number Owidin

Survival plots show:
K Event times [] Censor times

The settings in this dialog box control the computation and display of all results within the
Survival: Nonparametric Methods header in the analysis browser. By default, this dialog box is
accessed by clicking the Create Analysis button after choosing any result within the Survival:
Nonparametric Methods header. If you prefer, the more choices version of this dialog box can
be made the default by changing the setting of the Survival Analysis Preferences dialog box
(see “Survival Analysis preferences,” p. 230 of Using StatView). The fewer choices dialog box
also can be accessed by clicking the Fewer choices button in the more choices version of the
Survival: Nonparametric Methods dialog box (see below).

Estimation method These radio buttons allow you to choose between two methods for com-
putation of the survival function. The Kaplan-Meier (Product-Limit) option calculates the
survival function by the Kaplan-Meier method, and is the default. The Actuarial (Life Table)
option calculates the survival function by the actuarial method. If the actuarial method is
enabled, the Intervals options are enabled, and the Survival table: Sort by options (see below)

are disabled.

Intervals These radio buttons and text field allow you to set the intervals used in computing
the actuarial survival function. If the number option is chosen, the actuarial estimate is based
on a specified number of evenly divided intervals, the number of which is set in the text field
following the width option. If the width option is chosen, the estimate is based on evenly
divided intervals of specified width. This width (in units of the event time variable) is set in
the text field following this option. These radio buttons and text field are active only if the
Actuarial (Life Table) estimation method is selected.

Survival plots show These checkboxes allow you to specify the data that are displayed on any
cumulative survival plots that are created. If the Event times checkbox is enabled (the default),
symbols denoting the occurrence of uncensored events are plotted on cumulative survival
plots. If the Censor times checkbox is enabled, symbols denoting the occurrence of censored
events are plotted on cumulative survival plots.

Tests Clicking this button opens the Rank Tests dialog box, described under “Rank Tests dia-
log box,” p. 156.
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More choices Clicking this button opens the more choices version of the Survival: Nonpara-
metric Methods dialog box. This dialog box is described immediately below.

More choices

Survival: Nonparametric Methods

Estimation method: [ Kaplan-Meier (Product-Limit) ¥]

interusiss @ aumberl O i

Survival plots show: [JEvent times []Censor times

Stratified graphs: | single graph with all strata ¥|

Survival table: Columns: | Default v [JCreate dataset
conf. level: % Sort by:

Additional options are available in the More choices dialog box. This dialog box is accessed by
clicking the More choices button in the fewer choices version of the Survival: Nonparametric
Methods dialog box. If you prefer, this more choices version of the Survival: Nonparametric
Methods dialog box can be made the default by changing the setting of the Survival Analysis
Preferences dialog box (see“Survival Analysis preferences,” p. 230 of Using StatView).

Stratified graphs This pop-up menu allows you to specify how data from stratified analyses
are displayed in graphs. If the Single graph with all strata option is chosen (the default), results
for all strata are displayed in a single graph. If the Separate graph for each stratum option is
chosen, results for each stratum are displayed in separate graphs.

Survival table: Columns This pop-up menu allows you to specify which columns are dis-
played in the computed survival table and saved to a dataset, if specified. There are three
options available from this pop-up menu: Default, Complete and Specify....

The choice of contents of the survival table depends on whether the estimation method is
Kaplan-Meier or actuarial. The following tables show which values will be included in the sur-
vival table if this pop-up menu is set to either Default or Complete.

Estimation method Default columns Additional columns for
Complete
Kaplan-Meier Time (ase
Status Cumulative Survival Confidence Limits

Cumulative Survival
Cumulative Failure
Survival Standard Error
(umulative Events
Cumulative Censored
Remain at risk
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Estimation method Default columns Additional columns for
Complete
Actuarial Interval Start Interval Midpoint
Interval End Conditional Prob. Event Standard Error
Number Entered Hazard
Number Censored Hazard Standard Error
Number Events Density
Effective Number at Risk Density Standard Error
Conditional Probability of Event Median Residual Lifetime
Conditional Probability of Survival MRL Standard Error
Cumulative Survival Cumulative Survival Confidence Limits
Cumulative Failure Hazard Confidence Limits
Survival Standard Error Density Confidence Limits

If the Specify... option is chosen from the Survival table: Columns menu, the Survival Col-
umns dialog box appears. This dialog box allows you to specify any combination of the col-
umns listed above that correspond to the chosen estimation method. See “Survival Columns
dialog box,” p. 155.

Survival table: Create dataset Enable this checkbox to create a survival table dataset. The
contents of this dataset are the columns specified by the Survival table: Columns pop-up
menu. By default, this option is disabled.

Survival table: Conf. level This text field allows you to set the confidence level used to com-
pute the survival table confidence limits columns. These columns are: Cumulative Survival
Confidence Limits for Kaplan-Meier estimates and Cumulative Survival Confidence Limits,
Hazard Confidence Limits and Density Confidence Limits for actuarial estimates. The value
entered here must be greater than 0 and less than 100. The default is 95 percent confidence
limits.

Survival table: Sort by This pop-up menu gives you a choice of methods to sort the contents
of the survival table. If the Time option (the default) is chosen, the rows in the survival table
will be sorted by event time, from smaller to larger values. If the Case option is chosen, the
rows of the survival table will be sorted by the ordering of cases in the dataset that holds the
event time variable. The Sort by pop-up menu is available only if the estimation method is
Kaplan-Meier.

Tests This button opens the Rank Tests dialog box, described under “Rank Tests dialog box,”

p. 156.
Fewer choices This button opens the fewer choices version of the Survival: Nonparametric

Methods dialog box, described above.
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Survival Columns dialog box

Survival Columns

Display in survival table (Kaplan-Meier):

[0 Case

M Time

& Status

& Cum. Survival

& Cum. Failure

& Survival Std. Error
& Cum. Events

& Cum. Censored

& Remain At Risk

This dialog box is accessed by choosing the Specify option from the Survival table: Columns
pop-up menu in the more choices version of the Survival: Nonparametric Methods dialog
box.

Display in survival table (Kaplan-Meier/Actuarial) Items that are checked in this scrolling
list will appear in the associated survival tables that appear in the view or that are saved to a
dataset. An item is checked or unchecked by clicking in the box to the left of the item, or by
selecting any combination of items, then clicking the Check/Uncheck button. Shift-click and
Control-click (Windows) or Command-click (Macintosh) to select multiple items.

The choices available in this scrolling list depend on whether the estimation method is
Kaplan-Meier or actuarial. These choices are summarized above in the description of the Sur-

vival table: Columns pop-up menu in the more choices version of the Survival: Nonparamet-
ric Methods dialog box.

Check/Uncheck This button allows you to check or uncheck items selected in the Columns
to display scrolling list. If any of the selected items are unchecked, clicking this button will
check them. If all of the selected items are checked, the button name changes to Unchecked;
clicking it unchecks the selected items. This button is disabled if no items in the scrolling list
are selected.
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Rank Tests dialog box

Rank Tests

Choose test(s) to compute:
[JLogrank (Mantel-Cox)
[ Breslow-Gehan-Wilcoxon
[J Tarone-Ware
[J Peto-Peto-Wilcoxon
[J Harrington-Fleming; ¢#::

O campute fvend persisnsg
O #se numeric saiues when apprapiaie
[0 #isping el contribulisag

This dialog box is accessed by clicking the Tests button in the Survival: Nonparametric Meth-
ods dialog box. The Compute trend versions and Display cell contributions checkboxes are
enabled only when at least one of the rank tests is enabled.

Logrank (Mantel-Cox) Checking this box enables the logrank test. This test is sometimes
called the Mantel-Cox or Mantel-Haenszel test.

Breslow-Gehan-Wilcoxon Checking this box enables the Breslow-Gehan-Wilcoxon test.
Tarone-Ware Checking this box enables the Tarone-Ware test.
Peto-Peto-Wilcoxon Checking this box enables the Peto-Peto-Wilcoxon test.

Harrington-Fleming Checking this box enables the Harrington-Fleming test. This automati-
cally enables the rho: text field.

rho This text field allows you to enter a value for rho, the weight parameter used to calculate
the Harrington-Fleming test. You may enter any non-negative value. With rho=0, the Har-
rington-Fleming test is equivalent to the logrank test. With rho=1, it is almost identical to the
Peto-Peto-Wilcoxon test. This field is active only when the Harrington-Fleming checkbox is
enabled.

Compute trend versions Checking this box enables trend versions of the chosen rank tests.
Trend versions of these tests check for linear trends in the ordering of means for the specified
group levels. The ordering of group levels for the trend tests is explained below under Use
numeric values when appropriate. Enabling the Compute trend versions checkbox activates
the Use numeric values when appropriate checkbox, and inactivates the Display cell contribu-
tions checkbox.

Use numeric values when appropriate When this checkbox is enabled, the numeric values (if
present) in the group variable are used to order the group levels for the trend tests. This allows
you to specify arbitrary (e.g., nonlinear) relationships among group levels. If Compute trend
versions is checked and this checkbox is disabled, the case ordering of the group levels in the
group variable (i.e., the order of the group levels in the dataset) is used for the trend tests.

Display cell contributions When this checkbox is enabled, separate tables are displayed for
each of the selected rank tests, showing the contribution of each group or stratum level to an
estimate of the overall chi-square statistic. This item is not available when the Compute trend
versions checkbox is enabled.
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Data requirements

Nonparametric survival analyses require only one continuous variable, the event time variable.
The rows of the event time variable have the times at which the event or censoring occurred
for each subject. This is usually the time of death or failure for uncensored observations, or
the censor time for censored observations. The event time variable can have any positive value.

In addition to the continuous variable, a nominal censor variable is necessary if any of the
event times are censored. This variable indicates whether each subject is censored (incom-
plete) or uncensored (complete). When the censor variable is not specified, all cases are
assumed to be uncensored. When specified, the censor variable can be assigned only particular
values. Use Uncensored (data type: string or category) or 0 (data type: integer or real) in the
censor variable to indicate that a particular event time is 7oz censored. Use any non-zero
numeric value, or Censored to indicate that a particular event time s censored.

The Survival Analysis Preferences dialog box allows you to change this behavior so that 0 indi-
cates censored observations. See “Survival Analysis preferences,” p. 230 of Using StatView.

If there are treatment or study groups present in your data, these can be specified with an
optional nominal variable, called the group variable. In general, separate survival estimates are
calculated for each level of the group variable. Data from specified group levels are displayed
in all graphs and are necessary for computation of any rank tests that are enabled.

In both the nonparametric and proportional hazards analyses, strata are specified with a nom-
inal variable, called the stratification variable. All cases with the same value of the stratification
variable are assigned to the same stratum. For nonparametric models, a stratification variable
affects analyses in much the same way as does the group variable: separate survival estimates
are calculated for each level of the stratification variable. However, the key difference between
the effect of the stratification and group variables is how they are used in rank tests. In rank
tests, data are pooled across strata to compare survival functions among group levels. Thus,
the group variable provides the levels that are compared in the rank tests, while the levels of
the stratification variable affect the computation of the rank tests, are not the groups that are
compared. Strata may thus be regarded as sources of variation that must be accounted for, but
are not themselves of particular interest.

Below is an example of one dataset with all variables properly formatted and ready for use in a
nonparametric analysis.

Event Time [ Censor Yariable| Group Variable | Stratification Yariable
» Type: | Integer Category Category Integer
» Source: | User Ente... | User Entered User Entered User Entered
> Class: | Continuous [ Norninal Norninal Norninal
> Format: | . . .
» Dec. Places: | @ . . .
1 63 Uncensored Treatment 2
2 51 Uncensored Control 3
3 45 Uncensored Control 3
4 29 Uncensored Treatment 2
S 26 Uncensored Control 3
) 59 Uncensored Control 2
7 63 Censored Control 1
g S0 Uncensored Treatment 3
9 37 Uncensored Treatment 2
in AN LI E P REYS A Tuenadrnand 1
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The following table explains how to use the buttons in the variable browser to assign such
variables to a nonparametric survival analysis.

Variable browser buttons

Time Select one event time variable (continuous), then click the Time button. Usage is indicated by a
T in the variable browser.

A second continuous variable assigned with the Time button is used as a new event time
variable. This creates a new analysis using all previously specified censor, group, stratification
and split by variables.

Censor Select one censor variable (nominal), then dlick the Censor button. Acceptable values are 0
(must be Type: Integer or Real), or Uncensored (Type: String or Category) for uncensored
observations, and any other numeric value or Censored to indicate censored observations. Usage
is indicated by a C in the variable browser. NOTE: The Survival Analysis Preferences dialog box
allows you to change the meaning of values in the censor variable so that 0 indicates censored
observations. See “Survival Analysis preferences,” p. 230 of Using Statliew.

Each additional censor variable creates a new analysis using all other variables already
specified.

Group Select one group variable (nominal), then click the Group button. This creates separate
estimates of the survival function for each group level. The group variable provides the levels
that are compared in the rank tests. Usage is indicated by a G in the variable browser. Each
additional group variable creates a new analysis using all other variables already specified.

Strata Select one stratification variable (nominal), then click the Strata button. This creates separate
estimates of the survival function for each stratum. Results for rank tests use data pooled
across strata. Usage is indicated by the symbol # in the variable browser.

Split By When you assign one or more split-by variables (nominal) to a nonparametric survival analysis,
results are displayed separately for each cell defined in the split-by variable(s). Usage is
indicated by an § in the variable browser.

Each additional stratification variable creates a new analysis using all other variables already

specified.

If you routinely create analyses first, then assign variables, you will find that the analyses will
begin computing as soon as you have specified the event time variable. This may be unduly
time consuming, especially if you assign censor, group, and stratification variables in sequence
after the event time variable. To avoid this, do one of the following: (1) assign variables firsz,
then create your analyses; (2) always assign the event time variable after all other variables have
been assigned; or (3) disable the Recalculate box in the view before adding variables, then
enable it once variable assignment is complete. If you choose to assign variables before creat-
ing the analysis, you can configure the variable browser by deselecting all results in the view,
then clicking on any item within the Survival: Nonparametric Methods header in the analysis
browser.
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Results

Default Results

Default results are those created by selecting the Survival: Nonparametric Methods header in
the analysis browser. They can also be selected individually by opening the Survival: Nonpara-
metric Methods header.

Summary Table

This table is created by selecting Summary Table within the Survival: Nonparametric Meth-
ods header in the analysis browser.

# 0bs

Gives the total number of observations for which all variable specifications are complete.

# Events

Gives the number of positive, uncensored event times.

# Censored

Gives the number of censored event times.

% Censored

Gives the percentage of valid observations in the event time variable that are censored.

# Missing

Gives the number of observations with missing variable specifications.

# Invalid

Gives the number of observations with invalid variable specifications, due, for instance, to
negative values for the event time variable, or to uninterpretable values in the censor variable.

Other contents

Labels to the left of each row are group and stratum levels as specified by the group and
stratification variables.

Survival Statistics Table

This table is created by selecting Survival Statistics Table within the Survival: Nonparametric
Methods header in the analysis browser.

Estimate

Gives the estimated value of the cumulative survival function at the indicated percentile of the
(DF for each group and stratum level, if specified. If estimation method is Kaplan-Meier, table
also gives the estimate of the mean value of the cumulative survival function.

Standard Error

Gives the standard error about the estimate of the cumulative survival function at the indicated
percentile for each group and stratum level, if specified. If estimation method is Kaplan-Meier,
table also gives the standard error about the estimated mean of the cumulative survival
function.

Other contents

Labels to the left of each row are the values of the estimated percentiles, corresponding to the
first, second and third quartiles. Also gives the group and stratum names if specified.
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Cumulative Survival Plot

This graph is created by selecting Cumulative Survival Plot within the Survival: Nonparamet-
ric Methods header in the analysis browser.

Plotted lines These give the estimated value of the cumulative survival function. Each line represents the
estimate for every level defined by the interaction of any specified group and stratification
variables. If Single graph with all strata is enabled in the more choices version of the Survival:
Nonparametric Methods dialog box, all strata and group levels appear in a single graph;
otherwise, functions for each stratum appear on separate graphs.

Plotted points These optionally give the time and corresponding value of the cumulative survival function for
censored and uncensored events. Display of uncensored and censored events is controlled by
Survival plots show: checkboxes in the Survival: Nonparametric Methods dialog box.

Other Results

Survival Table

This table is created by selecting Survival Table within the Survival: Nonparametric Methods
header in the analysis browser. Separate tables are created for each level of the group and strat-
ification variables. The columns included in this table vary with the estimation method used
and the setting of other parameters in the Survival: Nonparametric Methods dialog box. See
“Survival: Nonparametric Methods dialog box,” p. 152 and “More choices,” p. 153.

The contents of this table can be saved to a dataset by enabling the Create dataset checkbox in
the more choices version of the Survival: Nonparametric Methods dialog box. If this option is
enabled, results from all strata and groups are saved to the same dataset.

Cumulative Hazard Plot

This graph is created by selecting Cumulative Hazard Plot within the Survival: Nonparamet-
ric Methods header in the analysis browser.

Plotted lines These give the estimated value of the cumulative hazard function. Different lines/symbols
represent the estimates for every level defined by the interaction of any specified group and
stratification variables. If Single graph with all strata is enabled in the more choices version of
the Survival: Nonparametric Methods dialog box, then all strata and group levels appear in a
single graph; otherwise, functions for each stratum appear on separate graphs.
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Ln Cumulative Hazard Plot

This graph is created by selecting Ln Cumulative Hazard Plot within the Survival: Nonpara-
metric Methods header in the analysis browser.

Plotted lines These give the estimated values of the natural log of the cumulative hazard as a function of the
natural log of the event time variable. Different lines/symbols represent the estimates for every
level defined by the interaction of any specified group and stratification variables. If Single
graph with all strata is enabled in the more choices version of the Survival: Nonparametric
Methods dialog box, all strata and group levels appear in a single graph; otherwise, functions
for each stratum appear on separate graphs.

Hazard Plot

This graph is created by selecting Hazard Plot within the Additional Results subheader within
the Survival: Nonparametric Methods header. It computes only if the estimation method is
actuarial (the estimation method is specified in the Survival: Nonparametric Methods dialog

box).

Plotted lines These give the estimated value of the hazard function. Different lines/symbols represent the
hazard estimates for every level defined by the interaction of any specified group and
stratification variables. If Single graph with all strata is enabled in the more choices version of
the Survival: Nonparametric Methods dialog box, all strata and group levels appear in a single
graph; otherwise, functions for each stratum appear on separate graphs.

Density Plot

This graph is created by selecting Density Plot within the Additional Results subheader
within the Survival: Nonparametric Methods header. It computes only if the estimation
method is actuarial (specified in the Survival: Nonparametric Methods dialog box).

Plotted lines These give the estimated value of the density function. Different lines/symbols represent the
density estimates for every level defined by the interaction of any specified group and
stratification variables. If Single graph with all strata is enabled in the more choices version of
the Survival: Nonparametric Methods dialog box, all strata and group levels appear in a single
graph; otherwise, functions for each stratum appear on separate graphs.

(Censor Pattern Plot

This graph is created by selecting Censor Pattern Plot within the Additional Results sub-
header within the Survival: Nonparametric Methods header. It is also created if the Additional
Results subheader is selected.

Plotted points These give the incidence of all censored events by event time. If Single graph with all strata is
enabled in the more choices version of the Survival: Nonparametric Methods dialog box, censor
patterns for all strata and group levels appear in a single graph; otherwise, censor patterns for
each stratum appear in separate graphs.
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Event Pattern Plot

This graph is created by selecting Event Pattern Plot within the Additional Results subheader
within the Survival: Nonparametric Methods header. It is also created if the Additional
Results subheader is selected.

Plotted points These give the incidence of all uncensored events by event time. If Single graph with all strata
is enabled in the more choices version of the Survival: Nonparametric Methods dialog box, event
patterns for all strata and group levels appear in a single graph; otherwise, event patterns for

each stratum appear on separate graphs.

Rank Test Table

This table is created whenever any rank tests are enabled in the Rank Tests dialog box, which
is accessed by clicking the Tests button in the Survival: Nonparametric Methods dialog box.
Results from all enabled tests are displayed in a single table.

Chi-Square Gives the value of the chi-square statistic computed for each of the indicated tests.

DF Gives the degrees of freedom associated with the chi-square statistic computed for each of the
indicated tests.

P-Value Gives the p value, or probability of Type I error, based on the chi-square value and the degrees
of freedom for each of the indicated tests.

Other contents If more than one rank test is enabled, row labels give the names of the corresponding tests.

Rank Test Cell Contributions Table

This table is created whenever the Display cell contributions checkbox is enabled in the Rank
Tests dialog box. (This dialog box is accessed by clicking the Tests button in the Survival:
Nonparametric Methods dialog box.) Separate cell contribution tables are created for each
rank test enabled in the Rank Tests dialog box. Each table displays results for all strata and
group levels. This table cannot be computed with trend versions of the rank tests.

Sum Weighted Obs. | Gives the sum of the weighted observed values for each cell defined by the interaction of the
specified group and stratification variables.

Sum Weighted Exp.  |Gives the sum of the weighted expected values for each cell defined by the interaction of the
specified group and stratification variables.

Contribution Gives the contribution of each cell to a conservative estimate of the overall chi-square statistic.
Note that this estimate is not the same as the computed value of the overall chi-square statistic
given in the Rank Test table.
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Templates

Exercise

The following templates provide nonparametric survival analysis results.

Survival Analyses Actuarial Analysis Survival summary, actuarial survival, and rank test tables; actuarial
cumulative survival, density, hazard, and In cumulative hazard plots.

Kaplan-Meier Analysis | Survival, survival summary, and rank test tables; cumulative hazard

plot, cumulative survival plot, and In cumulative hazard plots.

In this exercise, you will use the Kaplan-Meier method and rank tests to evaluate differences
in survival patterns among groups of subjects. Suppose that you must analyze data from a ran-
domized clinical trial that studied whether a certain treatment regimen administered to indi-
viduals suffering from a specific disease delayed the time until relapse. The dataset amL
Survival Data in the Sample Data folder contains information on such a trial conducted by
Embury et al. (1977) at Stanford University (cited in Miller, 1981).The investigators were
concerned with the efficacy of maintenance therapy for acute myelogenous leukemia (amr).
Initially, patients were treated by chemotherapy until remission. Then, these patients were
randomized into two groups—a treatment group that received maintenance therapy and a
control group that did not. Individuals in both groups were followed until they suffered a
relapse, the event of interest in this example. The event time variable is defined as the length
of time in remission, i.e., the time from entry into the study until relapse.

In this exercise, you will use the nonparametric procedures of this chapter to estimate the sur-
vival functions for both the therapy and control groups and compare survival properties across
the groups.

* Open aML Survival Data from the Sample Data folder

Scroll through the dataset to examine its contents. You will notice three variables: “Monitor
time (weeks)” gives, for each patient, the elapsed time in weeks from entry into study until
relapse or cessation of monitoring; “Censored?” is a binary variable with value 1 if the obser-
vation is censored or 0 if relapse was observed; and “Treatment” indicates whether each
patient was in the control group or received maintenance therapy.

¢ Choose New View from the Analyze menu

* From the analysis browser, select Survival: Nonparametrics
(This is equivalent to selecting the default results: Summary Table, Survival Statistics, and
Cumulative Survival Plot.)

¢ Click Create Analysis

The Survival: Nonparametric Methods dialog box now appears on the screen. Notice that
Kaplan-Meier—the estimation method you want—is selected by default. However, because
you want to test whether there is a significant difference between the control and maintenance
therapy groups, you also want to create some rank tests.

¢ Click the Tests button
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¢ Check each of the five test checkboxes
(When the Harrington-Fleming checkbox is checked, you can select a value for rho; for
this example, leave it at the default value of 0.5.)

Rank Tests

Choose test(s) to compute:
[ Logrank (Mantel-Cox)
[ Breslow-Gehan-Wilcoxon
[ Tarone-Ware
[ Peto-Peto-Wilcoxon
[J Harrington-Fleming; rho:
[J Compute trend versions
O #se numeric gatues when apprapiate

[J pisplay cell contributions

e Click OK
¢ In the main dialog box, click OK
Empty result placeholders now appear on screen. Each result has below it a note instructing

you to add variables to the analysis using the variable browser. You need to enter the event
time, censor, and group variables to this analysis before it will compute.

Because the analysis will not compute until the event time variable is assigned, it is advisable
to assign “Monitor time (weeks)” last to avoid computation after each variable assignment.

* In the variable browser, select Treatment and click Group

¢ Select Censored? and click Censor

¢ Select Monitor time (weeks) and click Time

A G usage marker indicates that Treatment is assigned as the grouping variable. Similarly, a C

marker shows that Censored? is the censoring variable, and a T shows that Monitor time
(weeks) is the time variable.

Yariables i

Time
Censor
Group
Strata
Rerove
Split By

Data: | AML Survival Data
Order: | Dataset order

Monitor time (we
Treatment
Censored?

The summary table provides information on the number of patients (observations), observed
deaths (events), and censored observations in each treatment group. Here we see that there are
a total of 23 observations, of which 12 are in the control group and 11 are in the treatment
group that received maintenance therapy. There is one censored observation in the control
group, and four censored values in the maintenance therapy group.
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Survival Summary Table for Monitor time (weeks)
Censor Variable: Censored?
Grouping Variable: Treatment
# Obs. # Events # Censored % Censored # Missing # Invalid

Control 12 11 1 8.333 0 0
Maint. Therapy 11 7 4 36.364 0 0
Total 23 18 5 21.739 0 0

Now, scroll down to the Kaplan-Meier survival plot. This graph shows separate Kaplan-Meier
estimates for each treatment group. It is immediately apparent that the estimated survival
curve for the maintenance therapy group lies above the estimated survival function for the
controls, suggesting that individuals receiving therapy take longer to relapse.

Kaplan-Meier Cum. Survival Plot for Monitor time (weeks)
Censor Variable: Censored?

Grouping Variable: Treatment
. . . . . . .

—— Cum. Survival (Control)
6 [ O EventTimes (Control)
—— Cum. Survival (Maint. Therapy)

O Event Times (Maint. Therapy)

Cum. Survival

0 20 40 60 80 100 120140160180
Time

Now let’s take a look at a cumulative hazard plot.
¢ Make sure at least one of the results is still selected
* From the analysis browser under Survival: Nonparametric Methods, select Cumulative
Hazard Plot and click Create Analysis
Kaplan-Meier Cum. Hazard Plot for Monitor time (weeks)

Censor Variable: Censored?
Grouping Variable: Treatment

\
2.5 o L
2 / i
B b dn S
<
N1.5 // - —0— Cum. Hazard (Control)
T 7 .
£ 1 /O | —O0— Cum. Hazard (Maint. Therapy)
5 oH
5] i ol L
/
.57 MO L
1 4P -
o “ L

T T TTT
0 20 40 60 80 100 120140160 180
Time

The cumulative hazard plots for the two treatment groups show a pattern consistent with that
in the cumulative survival plot. The cumulative hazard function for the control group is
higher than that for the therapy group. Note that, for each group, the slope of the cumulative
hazard plot becomes slightly steeper as time progresses, suggesting that the risk of relapses
increases with time from entry into the study.

Now create the log cumulative hazard (or log minus log survival) plot.
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¢ Make sure at least one of the results is still selected

* From the analysis browser under Survival: Nonparametric Methods, select Ln Cumulative
Hazard Plot and click Create Analysis

Kaplan-Meier Ln Cum. Hazard Plot for Monitor time (weeks)
Censor Variable: Censored?
Grouping Variable: Treatment
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This graph provides some clues about the sort of parametric model (discussed in the next
chapter, “Survival: Regression,” p. 167) you might wish to use to model these data. Given the

small sample size, a straight line approximates the data for both groups reasonably well. This
suggests that a Weibull model may be appropriate to describe the variation in survival times of
these groups. Furthermore, the slopes of the approximating lines are somewhat greater than 1,
which suggests that the exponential model (which is a special case of the Weibull) may fit less
well than the general Weibull model. We return to these considerations in the discussion of
parametric models in the next chapter.

Although you must be careful not to draw too many conclusions from these graphs, some sug-
gestive patterns do emerge. For example, the log cumulative hazard plots for the two groups
are roughly parallel, indicating the underlying hazard functions are approximately propor-
tional. However, there is a hint that the log relative hazard for the two groups —as measured
by the vertical distance between the two curves—decreases over time. This might indicate that
the beneficial effects of maintenance therapy decline after about 23 to 25 weeks, although a
substantial therapeutic effect persists through the end of the common monitoring period of
40 weeks or so. Although there are not enough data to allow thorough examination of such
conjectures, the analysis suggests valuable questions to be examined in a more definitive study.

Since the plots indicate that the hazard functions are approximately proportional, it is reason-
able to test the equality of the survival estimates from the two groups using the rank tests.

Rank Tests for Monitor time (weeks)
Censor Variable: Censored?
Grouping Variable: Treatment

Chi-Square DF P-Value

Logrank (Mantel-Cox) 3.396 | 1 .0653
Breslow-Gehan-Wilcoxon 2.723 | 1 .0989
Tarone-Ware 2982 1 .0842
Peto-Peto-Wilcoxon 2.708 | 1 .0998
Harrington-Fleming (rho = .5) 3.019| 1 .0823

The rank tests table gives the )(2 statistics for the requested tests, with their associated (two-
sided) p values. The results of these tests are qualitatively similar; each test suggests that the
observed survival difference between the two groups may be real, although the comparisons
are not statistically significant (at the 0.05 level) probably due to the small sample sizes.



Survival: Regression

This is the second of two chapters regarding StatView’s survival analysis tools. The previous
chapter, “Survival: Nonparametric,” p. 143, introduces survival analysis in general and goes

on to discuss StatView’s Survival: Nonparametric analyses in particular. This chapter discusses
the Survival: Regression analyses.

Regression methods

In the previous chapter, “Survival: Nonparametric,” p. 143, we considered the use of nonpara-
metric methods for estimation of the survival function and for comparison of these estimates
among specified groups of interest. For cases in which differences among groups can be quan-
tified—for example, by the dosage of a drug—or in which the relation between a variable and
survival is of interest, it is natural to extend these techniques to regression models. An example
of a variable—or covariate—that may be associated with survival is age at diagnosis of a cer-
tain disease.

Regression models are widely used with both continuous outcome variables (linear models)
and outcome variables that are dichotomous or are counts (generalized linear models). For
survival data that are subject to censoring as described in “Introduction to survival analysis,”
p. 143, a useful regression model that uses time to event as the dependent variable, is the pro-
portional hazards model, sometimes called the Cox model because it was introduced by
David Cox in 1972.

The proportional hazards regression model can be described as follows: Consider a covariate,
denoted by Z. In the baseline group, defined by Z = 0, the hazard function is denoted by
Ao(2) , but its shape is unspecified in the model. For general levels of the covariate Z, the
usual regression assumption is that the hazard for such levels is the baseline hazard multiplied
by an exponential function of Z; that is,

M£2Z) = AP

With this assumption, note that the hazard for individuals with Z = 11is eB times the hazard
in the baseline groug Jfor all values of t. In fact, the name proportional hazards model is derived
from the fact that ¢" is constant over time; this ensures that hazard functions at different lev-
els of the covariate are proportional, with the constant of proportionality dependent on the
regression coefficient 3 and the difference in covariate values. The regression coefficient [3 is
interpreted as the logarithm of the relative hazard between groups that differ in levels of Z by
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one unit; alternatively, the relative hazard induced by increasing Z by one unit is . Note
that a positive regression coefficient B means that increases in the covariate Z are associated
with increased hazard and thus with shortened expected event times. Conversely, a negative
regression coefficient [3 indicates that increases in Z lead to a lower hazard and longer lifetimes.

In the chapter “Survival: Nonparametric,” p. 143, we discussed nonparametric methods for

producing survival function estimates, based on data (possibly censored) sampled from a cer-
tain population, without using & priori assumptions regarding the shape of the “true” survival
function for that population. Parametric models, by contrast, rely on the additional assump-
tion that we know an appropriate family of survival distributions for the population of inter-
est. Since each of the families that we wish to use to describe the survival function has one or
two unknown parameters that must be estimated, this approach is referred to as parametric
survival modeling.

The disadvantage of parametric models is that distortion can be introduced into estimates of
the survival function if the choice of a parametric family is not appropriate to the population
under study. However, if our assumed parametric family provides an adequate description of
the survival function, these estimates can be considerably more precise than those obtained
from the nonparametric techniques of the chapter “Survival: Nonparametric,” p. 143.

In a fashion similar to that used for proportional hazards models, you can apply regression
methods with a parametric model. In the case of a parametric model, variation in survival dis-
tributions across covariate groups are specified by a regression equation as in a proportional
hazards model. However, unlike a proportional hazards model, a parametric model assumes
prior knowledge of the survival distribution at all levels of the covariate, up to a finite number
of unknown parameters; these functions are left unspecified in a proportional hazards model.
For example, with an exponential parametric model, the hazard function is assumed to be
constant for any value of the covariate, Z, with levels of the constant hazard function deter-
mined by the specific value of Z. Again, the benefit of this kind of parametric regression
model is increased precision for estimates of regression coefficients; the disadvantage is that
answers may be biased if your choice of a parametric family (in this case, the exponential
model) is incorrect.

One consequence of the trade-off between parametric and nonparametric approaches is the
need to carefully examine whether a parametric model adequately fits the observed data. We
will elaborate on methods for achieving this in the following discussion.

Discussion

Proportional hazards model

In examining the results from fitting a proportional hazards regression model to survival data,
we follow procedures similar to those used for more familiar regression models. It is important
to understand how to interpret the reported estimates of model parameters, how to test
hypotheses regarding these parameters, and how to assess the adequacy of the model.



14 Survival: Regression Discussion 169

Parameter estimates in the proportional hazards model

Estimates of covariate coefficients, given by the vector B , are interpreted as estimates of the
log relative hazard associated with a unit increase in the associated covariate, holding all other
covariates fixed. It follows that ¢" gives the relative hazard for two groups that differ only in
the relevant covariate, and then only by one unit. Thus, it is helpful to use a suitable choice of
scale for the covariate so that a unit change provides a meaningful comparison. The relative
hazard is constant over time, explicitly reflecting the proportional hazards assumption.

There is no explicit intercept term in a proportional hazards model. The role of the intercept
is played by the baseline hazard function, Ay(#) , which describes the hazard for the group
whose covariate values are all set to zero. Information on baseline survival properties is pro-
vided by the estimate of the baseline cumulative survival function, So -

It is useful to examine various plots associated with the baseline estimate of the survival func-
tion, specifically a cumulative survival plot, a cumulative hazard plot, and a plot of the natural
log of the cumulative hazard versus log time. The interpretation of these plots is analogous to

the interpretation of the single group plots discussed in the chapter “Survival: Nonparamet-
ric,” p. 143. These plots can also be used to assess the plausibility of certain parametric models
for the baseline hazard, and thus they may suggest the use of parametric regression models dis-
cussed under “Parametric models,” p. 171.

Note that the survival and hazard functions for groups at all levels of the covariates are directly
related by the proportional hazards assumption to the baseline versions of those functions.
Specifically, the proportional hazards assumption entails that, whatever the value of the cova-
riates, the shape of the hazard function is the same, with changes only in absolute level. There-
fore, it is often easier to interpret results if the covariates are coded so that the baseline group
represents a meaningful level of the covariates. For example, if patient age upon entry into a
study is used as a covariate, it would be helpful to record age as the difference in age from a
baseline value, such as 50 years old, rather than to record age on its original scale. If you were
to use values of age in actual years, the baseline group would refer to individuals with age zero
at the time of entry into the study, which would not provide a meaningful reference group.

Stratified proportional hazard models

In many cases, the proportional hazards assumption is reasonable within certain groups of the
population, referred to as strata, but not for purposes of comparing individuals from different
strata. The model can be extended to accommodate such cross-strata comparisons by allowing
the baseline hazard function to vary across strata. Then, the hazard function for the 7th stra-
tum, specified by the model, is given by A (#) PZ . Estimates of regression coefficients are
interpreted just as in the unstratified case. Now, however, estimates of the baseline cumulative
survival function (associated with A ;) are provided for each stratum.

Significance tests and confidence intervals

Standard hypotheses of interest in the context of a proportional hazards regression model con-
cern the association of a specific covariate or group of covariates with survival. For example, in
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a randomized clinical trial, a primary question is whether treatment is associated with longer
survival. Such qualitative hypotheses are accommodated in the model by setting the relevant
regression coefficients 3 to zero. As in linear regression models, the null hypothesis B = 0
can be examined by any one of three procedures—the Wald test, the score test, and the likeli-
hood ratio test. These tests should yield similar results in large samples; in small samples, the
likelihood ratio procedure is usually the method of choice.

Since relative hazard comparisons, as measured by B, are easier to interpret, confidence inter-
vals are given for P for each covariate in the regression model.

Residual plots

An important part of regression modeling is the assessment of how well the regression model
fits the data. Typically, the goodness of fit of a proportional hazards model is examined with
plots of residuals.

A graph of so-called martingale residuals plots those residuals against the fitted value of the
linear predictor (i.e., ' Z, which is the sum of the products of each covariate multiplied by
the respective regression coefficient), for each case in the dataset. Similarly, the graph of devi-
ance residuals plots those residuals against the fitted value of the linear predictor and provides
an alternative view of the goodness of fit of the entire model to the data. Residuals of this kind
are analogous to residuals in linear regression, quantifying, for each data point, the difference
between an observation and its predicted value based on the fitted model. StatView also allows
you to save these residuals, as well as the score residuals, to a dataset. Once saved, residuals
can also be graphed against covariates singly or against the event time variable.

Martingale, deviance, and score residuals

The values of martingale residuals lie between —co0 and 1. If the fitted model is adequate, the
martingale residuals are uncorrelated with each other and have an average value of zero.
Unlike residuals derived in linear models, however, martingale residuals are not symmetrically
distributed about zero. Therefore, some care and experience is necessary in examining these
plots. Another type of residuals, available only for proportional hazards models, are deviance
residuals, which can span the entire range of real values and are much more symmetrically dis-
tributed about zero if the fitted model is adequate. For these reasons, plots of deviance residu-
als may be easier to interpret than plots of martingale residuals.

Unlike martingale and deviance residuals, score residuals are computed for each covariate—
thus, the score residual associated with a specific covariate directly reflects the adequacy of the
model to describe the association of that particular covariate with the risk of failure. Score
residuals tend to be closer to zero for censored observations; for uncensored cases, they repre-
sent the deviation of the observed covariate value from a weighted average of covariate values
in the risk set at the observed failure time for that case.
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Interpreting residuals

In general, these residual plots are interpreted very similarly to residual plots in simple linear
regression analysis. First, the residual plot should be examined to see if there are unusually
large values of the residuals for certain data points. These cases might be examined to deter-
mine whether they possess any unusual characteristics. Furthermore, it is often instructive to
fit the regression model with such data points excluded, to assess the effect of these cases on
estimated regression coefficients and relevant hypothesis tests.

Second, unless you detect a systematic pattern of the residuals in these plots, you can assume
that the model fits the data reasonably well. The appearance of certain patterns in residual
plots does not always mean that the model is completely inappropriate, however; it may sug-
gest that slight modifications to the model may improve the fit. For example, in the case of a
single covariate Z, curvature in the residual plot may indicate that it is preferable to use a
transformed scale for Z or that one should include polynomial terms such as 7% in the model.
Similarly, clusters of large residuals for small values of B'Z suggest that the model might be
inadequate when # is large or small. Patterns in residual plots can also indicate that the hazard
functions are not proportional among all levels of a particular covariate, i.e., that the assump-
tion of proportional hazards is inappropriate. In such cases it can be worthwhile to stratify the
model by the problematic covariate if this covariate is not of primary interest (i.e., if parame-
ter estimates for this covariate are unnecessary). Viewed in this way, stratification allows you to
“get around” the proportional hazards assumption by stratifying the model on those variables
for which the proportional hazards assumption does not hold. For a stratified model, the
residuals from different strata are plotted with different symbols in the same graph. This
allows you to evaluate the adequacy of the model within each stratum.

When several covariates have been included in the model, it is useful to save the residuals to a
dataset so that they can be plotted against each covariate in turn, using bivariate plots. In
addition, a plot of residuals against the case (row) number or identification number can be
useful (for instance, for determining if there is a lack of fit for individuals entering the study at
certain times). Finally, plotting the residuals against a covariate not included in the model is
valuable for helping you determine whether you should add the covariate to the model. In
particular, if a new covariate should be added to the model to improve the fit, residual plots
against this covariate should display some pattern or correlation; absence of a pattern suggests
that the new covariate will add little to the model’s ability to explain the observed failure pat-
terns in the data.

If the model accurately captures the covariate’s effect on failure, then the score residuals for
that covariate should appear as a random pattern about zero. Note that if the covariate is an
indicator variable associated with a discrete variable, such as gender, then the score residuals
for that covariate against failure time will appear as two horizontal bands on either side of
zero, with all score residuals for censored observations tending to be closer to zero.

Parametric models

We now turn to the use of parametric models to describe both survival properties of a single
population and the variation of these properties across levels of covariates. Since the way to fit
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a single parametric population model in StatView is to create the appropriate parametric
regression model with no covariates, we begin with such models.

StatView allows you to use various parametric families to describe survival functions either for
an entire population or as part of a regression model. The choice of an appropriate model
depends on prior knowledge of the survival process under investigation, useful interpretation
of model parameters, and the model’s ability to adequately fit the observed data. Understand-
ing the basic properties of different parametric families is helpful for suggesting a reasonable
initial choice of a parametric model.

Four parametric models are available in StatView; these are the exponential family, the
Weibull family, the lognormal family, and the loglogistic family. An exponential distribution
requires specification of a single parameter and has a constant hazard function. The other
three families require two parameters to describe their properties and each possesses more flex-
ible hazard functions than does the exponential family. The Weibull hazard function is either
strictly increasing, strictly decreasing, or constant. If the hazard is constant, then the Weibull
reduces to an exponential model; that is, the exponential model is a special case of the Weibull
family. Further possibilities are allowed in the other two families, the lognormal and the loglo-
gistic. In the lognormal family, the hazard function increases from 0 at # = 0 to a maximum
and then decreases towards 0 again as ¢ becomes large. For the loglogistic model the hazard
function either always decreases or resembles the lognormal in that it can increase to a maxi-
mum before declining back to zero for large 7.

Parametric regression models

Each of the four parametric families mentioned above can be extended to account for the
effects of covariates through use of a parametric regression model. It is standard in parametric
models to use a model somewhat different from the proportional hazards model introduced in
“Proportional hazards model,” p. 168, although, as discussed below, in some cases the models
coincide.

In particular, for each of the parametric models, it is possible to write the failure time random
variable in the form log7 = P + 0 W, where the error variable Whas mean zero and con-
forms to the distribution of the specific model under consideration. When covariates are
present, this suggests the regression model

log7 = p+p'Z+cW,

where Z is the vector of covariates, yielding a regression model that is linear in the logarithm of
time to an event. For each of the four families, we can fit this regression model using standard
parametric techniques.

These regression models—often referred to as accelerated failure time models—are log-linear
in 7, so the regression coefficients 3 have the following interpretation: If . is the coefficient
correspondiél%.to the jth covariate Z;, then a unit increase in Z; induces a multiplicative
change of ¢ /7 in the time to failure, if all other covariates are éxed. That is, if T is the ran-
dom variable measuring time to failure when Z] = 0, then

7
7z) = &1,
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gives the time to failure at an arbitrary level of Z;, again all other things being equal. Note
that if the regression coefficient 3, is positive, increases in the covariate Z; reflect increases in
the time to an event and therefore reflect increasing lifetimes. This is in contrast to propor-
tional hazards models, for which increasing values of covariates with positive coefficients
imply decreasing lifetimes.

For exponential and Weibull families, the accelerated failure time regression model accommo-
dates a different parameterization and interpretation, which are consistent with the formula-
tion of the proportional hazards model. We will refer to this alternative parameterization as
the relative hazard parameterization, as contrasted with the log time parameterization that
StatView uses for all parametric models. This relative hazard parameterization for Weibull and
exponential families is as follows. For these families, using the model log7 = p+p'Z+oW
is equivalent to assuming that, for individuals with covariate value Z, the hazard function is
Ao(2) &Y'Z, for a suitable choice of Y, the hazard function Ao(2) takes either the exponential
or Weibull form. Thus, the exponential and Weibull accelerated failure time regression models
are special cases of the proportional hazards model. The difference in the parametric analyses
is that they take advantage of a specified shape for the baseline hazard function, whereas this is
left unspecified in the general version of the proportional hazards model. Note that in the rel-
ative hazard parameterization, the regression coefficients differ from those provided by the log
time parameterization. Specifically, for a given covariate, the regression coefficients provided
by the log time parameterization () equal the negatives of the relative hazard coefficients (y)
for exponential models, and, for Weibull models, the coefficients (3) equal the negatives of
the relative hazard coefficients (y) multiplied by the scale parameter (0). In either case, the
coefficients provided by the two alternative parameterizations will have different signs; this is
because a covariate associated with increasing the time to failure 7" must consequently reduce
the hazard or risk of failure and vice versa. To reiterate, StatView provides only the log time
parameter estimates for Weibull and exponential models. The conversion given above, how-
ever, allows you to compute relative hazard estimates for comparison with fitted proportional
hazards models. The Weibull family, including the exponential as a special case, is the only
parametric family for which the accelerated failure time model and the proportional hazards
model are consistent. For example, in the accelerated failure time model based on the loglogis-
tic or lognormal families, the hazard functions for different levels of the covariates are not pro-
portional.

Fitting a parametric survival family for a single population

In many preliminary data analyses, it will be valuable to fit a specific parametric family to sur-
vival data without adjusting for covariates. This is accomplished by fitting the appropriate
regression model without adding any covariates. Thus, to model a sample of data assumed to
be taken from a lognormal population, you would create the lognormal regression analysis
without assigning any covariates with the variable browser.

Significance tests and confidence intervals

As discussed above, a parametric regression model is fit using standard parametric techniques.
These methods yield estimates of the log time regression coefficients  and, if appropriate,
estimates of the scale parameter necessary to fit the modeled distribution for the error term W
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in the regression model. Significance tests for null hypotheses involving one or more of the
regression coefficients are carried out in exactly the same fashion as fgr proportional hazards
models. If requested, confidence intervals are given for coefficients ¢ 7, which describe the
multiplicative effect on the time to event of a unit change in the corresponding covariate Z;,
if all other covariates are held fixed. Neither confidence intervals nor coefficient significance
tests are available for stepwise models.

Plots for checking your models

As for proportional hazards models, it is important to assess whether a parametric regression
model adequately fits observed survival data. Specifically, you might determine that the addi-
tional assumption of a specific parametric model for the error term in the log-linear model is
inappropriate after examination of the data.

In the single group situation, you can assess the selected parametric family in a variety of ways.
First, it is informative to compare the fitted survival curve based on the parametric assump-
tion to the model-free Kaplan-Meier estimate discussed in the chapter “Survival: Nonpara-
metric,” p. 143. Discrepancies in these two estimates of the underlying cumulative survival

function may indicate that the parametric model is inadequate and may suggest why the
model fits poorly and thus indicate a more suitable choice of parametric family. If preferred,
similar comparisons can be carried out using plots of the cumulative hazard or log cumulative
hazard functions. In the case of the Weibull family, the log cumulative hazard plot against
log(#) will be linear; this allows it to be easily compared with the same plot based on the
Kaplan-Meier estimator. In the special case of an exponential model, the log cumulative haz-
ard plot should be both linear and have a slope of one. For example, if the Kaplan-Meier ver-
sion of the log cumulative hazard plot is roughly linear, but with a slope other than one, then
an exponential model is inappropriate, although a Weibull model might be suitable.

As with proportional hazards models, you can estimate the baseline cumulative hazard plot as
well as the regression coefficients for parametric regression models. This is a model-based esti-
mate of the survival function for the group in which all covariates are zero. As in the single
group case, these plots, and their cumulative hazard counterparts, can be examined to investi-
gate the suitability of the parametric assumption in the accelerated failure time regression
model.

To graphically check how well a parametric model describes observed survival data, it is help-
ful to create quantile plots. The idea of these plots is to compare the observed quantiles of the
distribution of the data points with estimated quantiles based on the particular parametric
model. Specifically, in the case of a single population (i.e., a model without covariates), the
quantile plot graphs the parametric estimate of the quantiles against the observed values, the
latter obtained from the Kaplan-Meier estimate of the survival function. If the parametric
model is appropriate, the plotted points should lie, approximately, on a straight line with a
slope equal to one. In the regression setting (i.e., for models with covariates), the same tech-
nique can be used but now applied to standardized residuals of the observed survival times in
order to remove the effects of the covariates. Again, if the particular parametric family under-
lying the regression model is reasonable, the plotted points should be close to a straight line
with a slope of one.
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StatView also allows you to create martingale residual plots and to save these residuals to a
dataset. Again, martingale residuals can be investigated to expose unusually large residuals and
can be saved and plotted against observed failure times, covariates included in the model, and
covariates not included that are potential candidates to add to the model.

Dialog Box Settings

Survival: Regression Models dialog box

|
HHH

Survival: Regression Models

Model: [ Proportional Hazards ¥ ]

Confidence level: %

Survival plots show:

K Event times [ Censor times

Add Kaplan-Meier estimates to baseline:
[ Plots [JTables

[ Sstepwise variable selection

[More choices] [Cancel] [[ 0K ]]

The settings in this dialog box control the computation and display of all results within the
Survival: Regression Models header in the analysis browser. By default, this dialog box is
accessed by clicking the Create Analysis button after choosing any result within the Survival:
Regression Models header in the analysis browser. If you prefer, the more choices version of
this dialog box can be made the default by changing the setting of the Survival Analysis Pref-
erences dialog box (see “Survival Analysis preferences,” p. 230 of Using StatView). The fewer
choices version of this dialog box also can be accessed by clicking the Fewer choices button in
the more choices version of the Survival: Regression Models dialog box.

Model This pop-up menu allows you choose among various regression models. The available
models are: Proportional Hazards (the default), Exponential, Weibull, Lognormal and Loglo-
gistic.

Confidence level This text field allows you to set the confidence level used to compute the
confidence intervals displayed in the Confidence Intervals Table. The default is 95 percent
confidence limits. This option is inactive for stepwise models.

Survival plots show These checkboxes allow you to specify the data that are displayed on any
cumulative survival plots that are created. If the Event times checkbox is enabled (the default),
symbols indicating the occurrence of uncensored events are plotted on cumulative survival
plots. If the Censor times checkbox is enabled, symbols indicating the occurrence of censored
events are plotted on cumulative survival plots.

Add Kaplan-Meier estimates to baseline These checkboxes allow you to add the correspond-
ing Kaplan-Meier estimates to baseline regression model plots and tables. Enabling the Plots
checkbox adds the Kaplan-Meier estimates to the Baseline Cumulative Survival Plot, Baseline
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Cumulative Hazard Plot, and Baseline Ln Cumulative Hazard Plot. Enabling the Tables
checkbox adds the Kaplan-Meier estimates of the cumulative survival, cumulative hazard, and
the natural log of the cumulative hazard to the Baseline Survival Table. It also adds these
quantities to the baseline survival dataset, if the Create baseline survival dataset checkbox is
enabled in the more choices version of this dialog box.

Stepwise variable selection Checking this box enables forward stepwise variable selection.
Checking this option is equivalent to choosing Forward from the Stepwise pop-up menu in
the more choices version of the Survival: Regression Models dialog box. Furthermore, this
checkbox is also enabled if Backward is chosen from the Stepwise pop-up menu in the more
choices version of the Survival: Regression Models dialog box. For more control over stepwise
model parameters, click the More Choices button.

Tests If two or more covariates have already been specified, clicking this button opens the

Joint Significance Tests dialog box; otherwise, a warning dialog box appears. The Joint Signif-
icance Tests dialog box is described under “Joint Significance Tests dialog box,” p. 179.

More choices Clicking this button opens the more choices version of the Survival: Regression
Models dialog box. This dialog box is described immediately below.

More choices

Survival: Regression Models

Model: [ Proportional Hazards ¥| Confidence level: %

Survival plots show: [X] Event times []Censor times

Add Kaplan-Meier estimates to baseline: []Plots []Tables

Stepwise: Ealer o

Add columns to dataset:

[J Create baseline survival dataset

Additional options are available in the More choices dialog box. By default, this dialog box is
accessed by clicking the More choices button in the fewer choices version of the Survival:
Regression Models dialog box. If you prefer, this more choices version of the Survival: Regres-
sion Models dialog box can be made the default by changing the setting of the Survival Anal-
ysis Preferences dialog box (see”“Survival Analysis preferences,” p. 230 of Using StatView).

Stepwise This pop-up menu allows you to choose among standard (non-stepwise), forward
selection, and backward selection stepwise regression models. If the Don’t use option is chosen
(the default), the standard model is enabled. If the Forward option is chosen, a forward step-
wise model is enabled. If the Backward option is chosen, a backward stepwise model is
enabled. If either stepwise option is enabled, the Enter p and Remove p text fields are acti-
vated. Either stepwise model deactivates the Confidence level and Tests items.

Enter p This text field allows you to set the p value that determines entry of specified covari-
ates in a stepwise model. The unentered covariate with the smallest p value below this critical
value is entered into the model on the next step. This Enter p value must be between 0 and 1,
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and less than or equal to the Remove p value. The default value is 0.05. This text field is active
only after a stepwise model is enabled.

Remove p This text field allows you to set the p value that determines removal of specified
covariates in a stepwise model. Except for forced covariates (which are never removed from a
model) the covariate in the model with the largest p value greater than this critical value is
removed from the model on the next step. This value may be any value greater than or equal
to the Enter p value and less than 1. The default value is 0.05. This text field is active only
after a stepwise model is enabled.

Add columns to dataset This pop-up menu allows you to save specific computed values to
the dataset as analysis generated variables. All computed values are evaluated at the corre-
sponding values of the event time variable and all covariates in the model.

If the None option is chosen (the default), no columns are saved to the dataset. The following
table indicates those values saved to the dataset with the Default and Complete options

enabled:

Default columns Additional columns for Complete
Regression estimate of the cumulative survival function KM estimate of the cumulative survival function
Regression estimate of the cumulative hazard function KM estimate of the cumulative hazard function
Regression estimate of the natural log of the cumulative |KM estimate of the natural log of the cumulative hazard
hazard function function

Linear predictor of the regression estimate

Standard error of the linear predictor

Martingale residuals

Deviance residuals (proportional hazards models only)
Score residuals (proportional hazards models only)

Note that all Kaplan-Meier estimates are computed as if there were no covariates in the
model.

By choosing the Specify... option, the Survival Columns dialog box appears, allowing you to
choose which columns to save to the dataset; see “Survival Columns dialog box,” p. 178.

Create baseline survival dataset Checking this box creates a separate dataset with all of the
computed values in the baseline survival table. The contents of this dataset are partially con-
trolled by the Add Kaplan-Meier estimates to baseline: Tables checkbox.

Tests If two or more covariates have already been specified, clicking this button opens the
Joint Significance Tests dialog box; otherwise, a warning dialog box appear; see “Joint Signifi-
cance Tests dialog box,” p. 179.

Est. Pars. Clicking this button opens the Estimation Parameters dialog box; see “Estimation
Parameters dialog box (proportional hazards),” p. 180 and “Estimation Parameters dialog box

(parametric models),” p. 181.

Fewer choices Clicking this button opens the fewer choices version of the Survival: Regres-
sion Models dialog box, discussed above.
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Survival Columns dialog box

Survival Columns

Add to dataset (Proportional Hazards):

O Cum. Survival

O Cum. Survival (KM)

O Cum. Hazard

O Cum. Hazard (KM)

O Ln Cum. Hazard

O Ln Cum. Hazard (KM)

O Linear Predictor (B'2)

O Linear Predictor Std. Error
[ Martingale Residuals

This dialog box is accessed by choosing the Specify option from the Add columns to dataset
pop-up menu in the more choices version of the Survival: Regression Models dialog box.

Add to dataset (Proportional Hazards/Parametric Models) Items that are checked in this
scrolling list will appear in the dataset containing the event time variable. An item is checked
or unchecked by clicking in the box to the left of the item, or by selecting any combination of
items, then clicking the Check/Uncheck button. Shift-click and Control-click (Windows) or
Command-click (Macintosh) to select multiple items.

Note that many of the items in this list are followed by “(KM),” which indicates the Kaplan-
Meier estimate of the preceding quantity. Those items with no parenthetical suffixes are esti-
mates of the type indicated in the Model pop-up menu in the Survival: Regression Models
dialog box.

If the chosen regression model is proportional hazards, this scrolling list includes Deviance
Residuals and Score Residuals. If the chosen regression model is one of the parametric models,
deviance and score residuals are not available.

Check/Uncheck This button allows you to check or uncheck items selected in the Add to
dataset (Proportional Hazards/Parametric Models) scrolling list. If any of the selected items
are unchecked, clicking this button will check them. If all of the selected items are checked,
the button name changes to Uncheck; clicking it unchecks the selected items. This button is
disabled if no items in the scrolling list are selected.
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Joint Significance Tests dialog box

Joint Significance Tests

Tests to perform:
O wald [JScore []Likelihood ratio

{puariales: subsets i esh

i frentment | |
20 iensared?
o g
Hemope
)

This dialog box is accessed by clicking the Tests button in either the fewer or more choices
versions of the Survival: Regression Models dialog box. /mportant: this dialog box does not
appear unless two or more covariates have already been specified. Also note that joint signifi-
cance tests are not computed for stepwise models.

Note that joint significance tests only evaluate whether combinations of covariates, or levels of
nominal covariates, make a significant contribution to a particular regression model. If instead
you are interested in testing for differences among covariate coefficients, or weighted combi-
nations of these coefficients, please see “How can I make comparisons among coefficients for
linear hypotheses?,” p. 248 of Using StatView.

Tests to perform These checkboxes allow you to choose among any combination of Wald,
Score and Likelihood ratio tests of the hypotheses appearing in the Subsets to test scrolling
list.

Covariates This scrolling list shows all covariates (each preceded by a number) that have
been previously specified using the variable browser. The covariates you select from this list are
used to construct the joint significance tests. This list is inactive unless one or more of the
Tests to perform checkboxes is enabled.

Test When this button is clicked, the covariates selected in the Covariates scrolling list are
added as a defined subset to the Subsets to test scrolling list. If no covariates are selected, this
button is inactive.

Subsets to test This scrolling list shows all defined combinations of covariates that are to be
evaluated by the tests enabled with the Tests to perform checkboxes. If none of the tests is
enabled, this list is inactive.

Remove Clicking this button removes the covariate subsets selected in the Subsets to test
scrolling list. If no covariate subset is selected, this button is inactive.

To construct a subset to be evaluated by the selected tests, Control-click (Windows) or Com-
mand-click (Macintosh) those covariate(s) in the Covariates scrolling list whose joint signifi-
cance you wish to test, then click the Test button. The numbers preceding these covariates
then appear on a single line in the Subsets to test scrolling list. Each line in the Subsets to test
scrolling list represents a separate hypothesis that will be evaluated by the tests enabled with
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the Tests to perform checkboxes. An example, showing that three different hypotheses have
been defined, is illustrated below.

Joint Significance Tests

Tests to perform:
K wald []Score [XLikelihood ratio

Covariates: Subsets to test:
1: Gender 1 |1 1|
2: Smoking History 1;4
3: Alcohol Use 2;3
4: Medication
= 2]

Hemape

In this example, the three hypotheses that have been specified are in the Subsets to test scroll-
ing list. The first hypothesis tests the significance of excluding the covariate Gender from the
model. It was specified by selecting “1: Gender” from the Covariates scrolling list, then click-
ing the Test button. The second hypothesis tests the significance of excluding both “Gender”
and “Medication” from the model. It was specified by command-clicking on “1: Gender” and
“4: Medication” from the Covariates scrolling list, then clicking the Test button. The third
hypothesis tests the significance of excluding both “Smoking History” and “Alcohol Use”
from the model. It was specified by shift-clicking on “2: Smoking History” and “3: Alcohol
Use” from the Covariates scrolling list, then clicking the Test button. All three hypotheses will
be evaluated with both the Wald and likelihood ratio tests.

Estimation Parameters dialog box (proportional hazards)

|
HHU

Estimation Parameters

Initial coefficients:
Convergence criterion:

Maximum iterations:

Tolerance:

This dialog box is accessed by clicking the Est. Pars. button in the more choices version of the
Survival: Regression Models dialog box. It appears only if Proportional Hazards is selected
from the Model pop-up menu. If one of the parametric models is chosen, the parametric
models version of this dialog box appears.

Initial coefficients This pop-up menu allows you to specify initial values for the model coef-
ficients before the iterative fitting process begins. If the Zero option is chosen (the default), all
coefficients are initally set to 0. If the Specify... option is chosen and at least one covariate

has already been specified, the Coefficient Initial Values dialog box appears; otherwise, a warn-
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ing dialog box appears. The Coefficient Initial Values dialog box allows you to set specific ini-
tial values for each regression coefficient; see “Coefficient Initial Values dialog box,” p. 182.

Convergence criterion This text field allows you to set a value for the iterative convergence
criterion. If the relative change in the partial likelihood function between iteration steps is less
than this value, the model-fitting process stops. You may enter any value greater than 0 and
less than 1; the default value is 0.000001. Smaller values of this parameter result in the same
number or more iterations as previous fits of the same data, while larger values result in the
same number or fewer iterations.

Maximum iterations This text field allows you to set a value for the maximum number of
iterations for the fitting process. The fitting process stops after this number of iterations, even
if the convergence criterion has not been satisfied. You may enter any non-negative integer in

this field. The default value is 25.

Important: if large values are entered for Maximum iterations, or very small values for Conver-
gence criterion, the time required to fit a model may increase significantly. We suggest that
you edit these values with caution.

Tolerance This text field allows you to set a value for the sweep tolerance. When a “pivot” is
less than this tolerance, the model-fitting process stops and an error message appears. The tol-
erance value is useful for detecting multicollinearity among independent variables. You may
enter any value greater than 0 and less than 1. The default value is 0.0000000001 (i.e.,
1079). Higher tolerance values reduce the model’s tolerance of colinearity among indepen-
dent variables and make abortion of the fitting process more likely. We suggest you edit this
value cautiously.

If you wish to see how well specific coefficients fit your data, you can specify coefficient values
using the Specify... option in the Initial coefficients pop-up menu, then set Maximum itera-
tions to 0, then run the model.

Estimation Parameters dialog box (parametric models)

Estimation Parameters

Initial coefficients:

Intercept:
Scale: [ Initial ¥] |I—|

Convergence criterion:

Maximum iterations:

Tolerance: m

[ Don’t transform time variable

This dialog box is accessed by clicking the Est. Pars. button in the More choices version of the
Survival: Regression Models dialog box. It appears only if one of the four parametric models is
selected from the Model pop-up menu. If Proportional Hazards is chosen from the Model
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pop-up menu, the proportional hazards version of this dialog box appears (see “Estimation
Parameters dialog box (proportional hazards),” p. 180).

Initial coefficients This pop-up menu allows you to set the values for the model coefficients
before the iterative fitting process begins. If the oLs option is chosen, all coefficients are ini-
tially set to their ordinary least squares estimates. If the Zero option is chosen (the defaul), all
coefficients are initially set to 0. If the Specify... option is chosen and at least one covariate
has already been specified, the Coefficient Initial Values dialog box appears; otherwise, a warn-
ing dialog box appears. The Coefficient Initial Values dialog box allows you to set specific ini-
tial values for each regression coefficient. This dialog box is described below.

Intercept This pop-up menu allows you to set a value for the model intercept term. If the Ini-
tial oLs option is chosen, the intercept is initially set to its ordinary least squares estimate. If

the Initial option is chosen (the default), you may enter an initial value for the intercept in the
text field following the pop-up menu. The default initial value is 0. If the Fixed option is cho-
sen, you may enter a fixed value for the intercept, which the fitting procedure will not change.

Scale This pop-up menu allows you to set values for the model scale term. If the Initial ors
option is chosen, the scale term is set to its ordinary least squares estimate. If the Initial option
is chosen (the default), you may enter an initial value for the scale term in the text field follow-
ing the pop-up menu. The default initial value is 1. If the Fixed option is chosen, you may
enter a fixed quantity for the scale term, which the fitting procedure will not change. This
pop-up is inactive if the Model pop-up menu is set to Exponential.

Convergence criterion, Maximum iterations, and Tolerance These text fields all function
identically to those in the proportional hazards version of this dialog box. For more informa-
tion about these parameters, see “Estimation Parameters dialog box (proportional hazards),”
p- 180.

Don’t transform time variable Enabling this checkbox prevents the parametric fitting proce-
dure from log transforming the event time variable before fitting the model. This allows the
use of previously log transformed event time variables in accelerated failure time models.

Coefficient Initial Values dialog box

Coefficient Initial Dalues

Covariates: Coefficients:

Covariate 1: Treatment 1

Covariate 1: Treatment 2 0
Covariate 1: Treatment 3 0
Covariate 2 1]

Coefficient initial value: ICI

Spe

This dialog box is accessed by choosing the Specify... option from the Initial coefficients:
pop-up menu in the Estimation Parameters dialog box. /mporzant: this dialog box does not
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appear unless at least one covariate has already been specified; otherwise, a warning dialog box
appears.

Covariates Coefficients This scrolling list shows all covariates (or in the case of nominal
covariates, all except the last level of the covariate) that have been previously specified using
the variable browser, as well as their initial values. To change the initial value of a covariate (or
of a level of a nominal covariate), you must first select it from this scrolling list.

Coefficient initial value This text field allows you to edit the initial value of any covariate (or,
in the case of nominal covariates, all except the last group level of the covariate) that has been
previously specified using the variable browser. After selecting from the scrolling list the item
whose initial value you wish to edit, enter the new value in this text field, then click the Spec-
ify button to change the initial value to the value you have entered.

Specify Clicking this button changes the initial value of the item selected in the scrolling list
to the value that is in Coefficient initial value text field.

For nominal covariates, the coefficients associated with each group level should be thought of
as values relative to the last group level specified in the covariate. This is a consequence of the
convention used in StatView that the value of the coefficient for this last group level is
always 0.

Because of this convention, we suggest the following: the group level with which you want the
other group levels compared should be created /ast when you are formatting and entering your
data. For example, if you wish to model the effect of a nominal covariate that has a control
group and three treatment groups, then you probably want to compare the effect of the treat-
ments to the control. Therefore, when creating this nominal variable, you should use a cate-
gory that has Control as the last defined group level, as pictured below.

Edit Category

Category name: IEHDEYilTlEM groups |

Treatment 1 ||
haa ) |freaiment?
e Treatment 3
-
W

Data requirements

Except for the replacement of the group variable with the covariate variable(s), data organiza-
tion and variable types for survival analysis regression models are very similar to those for non-
parametric survival analyses. There are two major differences, however: The first is that among
the regression models, only proportional hazards models accept a stratification variable. Strat-
ification variables are ignored by the parametric (Weibull, exponential, lognormal, and loglo-
gistic) regression models. The second difference, pertaining to the use of covariates in
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regression models, in contrast to the use of the group variable in nonparametric analyses, is
summarized in the next paragraph. For a discussion of event time and censor variables, please
see“Data requirements,” p. 157.

As suggested above, survival analysis regression models require the specification of an event
time variable and, in some cases, at least one covariate variable, hereafter referred to as a cova-
riate. (Specifically, proportional hazards models require at least one covariate, while the covari-
ate is optional in parametric models.) Like the group variable used in nonparametric survival
analyses, the covariate may be used to indicate study or treatment groups in regression mod-
els. Unlike the group variable, however, covariates can be either nominal or continuous, and
you may specify more than one covariate in a single model. Regression models also allow one
or more covariates to be forced into stepwise models.

The following picture shows a dataset with all variables properly formatted and ready for
entry in a survival analysis regression model.

Event Time | Censored Yariable | Covariate 1 | Covariate 2 [ Covariate 3 | Covariate 4 Strata

> Type: | Integer Category Category Real Real Real Integer

> Source: | User Entered | User Entered User Entered | User Entered| Dynamic Fo...| Dynamic Fo...| User Ent...

» Class: | Continuous Norninal Norninal Continuous Continuous Continuous Norninal

» Format:| @ [ [ Free Forma...| Free Forma...| Free Forma...| ®

» Dec. Places: | @ . . 1 3 3 .
39 61 Uncensored Treatment 21.0 273 -.208 2
40 35 Uncensored Treatment 185 -376 -.235 3
41 20 Censored Treatment 20.7 -.050 -.337 1
42 32 Uncensored Control 20.1 -.213 -.823 1
43 46 Uncensored Control 203 1.933 -.306 2
44 61 Uncensored Control 207 356 6.237E-5 3
4= 3 lnrancarad Fantral 2N s -1 A1d - za7 z

The following shows how to use the buttons in the variable browser to assign these variables
to a survival regression model.

Variable browser buttons

Time Select one event time variable (continuous), then click the Time button. Usage is indicated by a
T in the variable browser.

A second continuous variable assigned with the Time button is used as a new event time
variable. This creates a new analysis using all previously specified censor, covariate, stratification
and split by variables.

Censor Select one censor variable (nominal), then dlick the Censor button. Acceptable values are 0
(must be Type: Integer or Real), or Uncensored (Type: String or Category) for uncensored
observations, and any other numeric value or Censored to indicate censored observations. Usage
is indicated by a C in the variable browser. NOTE: The Survival Analysis Preferences dialog box
allows you to change the meaning of values in the censor variable so that 0 indicates censored
observations. See “Survival Analysis preferences,” p. 230 of Using Statliew for details.

Each additional censor variable creates a new analysis using all other variables already
specified.

Covariate Select one or more covariates (nominal or continuous), then dlick the Covariate button. Usage is
indicated by an X in the variable browser.
Each additional covariate is added to the analysis.
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Force

Select one or more covariates (nominal or continuous), then click the Force button. Necessary
only for forcing entry of a covariate into a stepwise model. If stepwise is not specified in the
Survival: Regression Models dialog box, forced covariates are treated like any other covariate.
Usage is indicated by an F in the variable browser.

Each additional forced covariate is added to the analysis.

Strata

Select one stratification variable (nominal), then click the Strata button. The stratification
variable, if specified, is used only by the proportional hazards regression model; it is ignored by
the parametric regression models. Usage is indicated by the symbol # in the variable browser.
For proportional hazards models, each additional stratification variable creates a new
proportional hazards analysis using all other variables already specified.

Split By

When you assign one or more split-by variables (nominal) to a survival analysis regression
model, results are displayed separately for each cell defined in the split-by variable(s). Usage is
indicated by an § in the variable browser.

If you routinely create analyses first, then assign variables, you will find that the analyses will

begin computing as soon as you have specified an event time variable and, for proportional

hazards models, a covariate. This may be unduly time consuming, especially if you must then

assign additional covariates, censor, and stratification variables. To avoid this, do one of the

following: (1) assign variables firsz, then create your analyses; (2) always assign the event time
variable after all other variables have been assigned; or (3) disable the Recalculate box in the
view before adding variables, then enable it once variable assignment is complete. If you

choose to assign variables before creating the analysis, you can configure the variable browser

by de-selecting all results in the view, then clicking on any item within the Survival: Regres-
sion Models header in the analysis browser.

Results

Default Results

Default results are those created by selecting the Survival: Regression Models header in the
analysis browser. They can also be selected individually by opening the Survival: Regression

Models header.

Summary Table

This table is created by selecting the Summary Table item within the Survival: Regression
Models header in the analysis browser.

# 0bs

Gives the total number of valid observations for which no variable specifications are missing.

# Events

Gives the number of valid uncensored event times.

# Censored

Gives the number of censored observations in the event time variable.

Y% Censored

Gives the percentage of event times that are censored, relative to the total number of valid
observations in the event time variable.
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# Missing

Gives the number of observations with missing variable specifications.

# Invalid

Gives the number of observations with invalid variable specifications, due, for instance, to
negative values of the event time variable, or to uninterpretable values in the censor variable.

Other contents

Labels to the left of each row are stratum names, if the stratification variable has been
specified.

Global Null Hypothesis Tests Table

This table is created by selecting the Summary Tables item within the Survival: Regression
Models header in the analysis browser.

Chi-Square Gives the chi-square statistic computed for the indicated test. Evaluates the significance of
simultaneous exclusion of all covariates from the model.

DF Gives the degrees of freedom for the associated chi-square statistic.

P-Value Gives the p value (the probability of rejecting a true null hypothesis) for the associated chi-

square statistic.

Other contents

Labels to the left of each row indicate the tests that are computed.

Stepwise Summary Table (stepwise only)

This table is produced whenever one of the two stepwise methods is enabled in the Survival:
Regression Models dialog box. It does not require selection of the Summary Tables item
within the Survival: Regression Models header in the analysis browser.

P-to-Enter Gives the value entered in the Enter p text field in the more choices version of the Survival:
Regression Models dialog box.
P-to-Remove Gives the value entered in the Remove p text field in the more choices version of the Survival:

Regression Models dialog box.

Number of Steps

Gives the total number of variable entry and removal steps required to satisfy the specified P-
to-Enter and P-to-Remove criteria.

Variables Entered

Gives the total number of covariates (forced and unforced) in the model at the conclusion of
the stepwise procedure.

Variables Forced

Gives the number of covariates forced into the model using the Force button in the variable
browser.

Model Coefficients Table

This table is created by selecting the Model Coefficients Table item within the Survival:
Regression Models header in the analysis browser. Information for each continuous covariate
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occupies one row of this table; information for each nominal covariate occupies one row of
the table plus one additional row for each covariate level.

DF Gives the degrees of freedom associated with each continuous covariate, or with each level of
each nominal covariate. For parametric models, also gives the degrees of freedom associated
with the intercept and scale parameters.

Coef Gives the model estimate of the regression coefficient associated with each continuous covariate,
or with each level of each nominal covariate. For parametric models, also gives the model
estimate of the intercept and scale parameters.

Std Error Gives the estimates of the asymptotic standard error about each coefficient.

Coef/SE Gives the values of each coefficient divided by its standard error.

Chi-Square Gives the values of the chi-square statistic associated with the hypothesized exclusion of the

individual continuous covariates or with each level of each nominal covariate.

P-Value (P-to-Remove
if stepwise)

Gives the p value (probability of rejecting a true null hypothesis) for the associated chi-square
statistic.

Exp(Coef)

Gives the value of e for each estimated coefficient. This quantity gives a more easily
interpreted measure of the relative effect on the model of the individual coefficients than do
the untransformed coefficients.

Other contents

Row labels are the names of each covariate, or level for nominal covariates.

Variables Not In Model Coefficients Table (stepwise only)

This table is produced only if one of the two stepwise methods is enabled in the Survival:
Regression Models dialog box. It is created by selecting the Model Coefficients Table item
within the Survival: Regression Models header in the analysis browser.

| P-to-Enter

|Gives the p value associated with any assigned covariates not entered in the model.

Baseline Cumulative Survival Plot

This graph is created by selecting the Cumulative Survival Plot item within the Survival:
Regression Models header in the analysis browser.

Plotted line(s)

These give the estimated value of the baseline cumulative survival function for each specified
stratum.

Plotted points

When present, these give the time and corresponding value of the baseline cumulative survival
function for censored and uncensored events. Display of these events is controlled by Survival
plots show checkboxes in the Survival: Regression Models dialog box. If Add Kaplan-Meier
estimates to baseline: Plots is enabled in the Survival: Regression Models dialog box, plotted
points also show the Kaplan-Meier estimate of the survival function. Separate plots are provided
for each stratum in proportional hazards models.
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Other Results

Confidence Intervals Table

This table is created by selecting the Confidence Intervals Table item within the Survival:
Regression Models header in the analysis browser. It is not computed if either of the stepwise
methods is enabled in the Survival: Regression Models dialog box.

Exp(Coef)

coef

Gives the value of ¢ for each estimated coefficient.

<%> Lower

Gives the lower confidence limit for the value e%€" for each estimated coefficient. The
magnitude of the confidence interval is controlled by the Confidence level text field in the
Survival: Regression Models dialog box. The default is 95 percent confidence limits.

<%> Upper

Gives the upper confidence limit for the value e¢' for each estimated coefficient. The
magnitude of the confidence interval is controlled by the Confidence level text field in the
Survival: Regression Models dialog box. The default is 95 percent confidence limits.

Baseline Survival Table

This table is created by selecting the Baseline Table item within the Survival: Regression Mod-
els header in the analysis browser. Separate tables are created for each specified stratum in pro-
portional hazards models.

Time

Gives the uncensored event times.

Cumulative Survival

Gives the values of the model estimate of the baseline cumulative survival function for the
indicated event times.

Cumulative Survival
(kM)

Gives the values of the Kaplan-Meier cumulative survival function for the indicated event times.
Appears only if Add Kaplan-Meier estimates to baseline: Tables is enabled in the Survival:
Regression Models dialog box.

Cumulative Hazard

Gives the values of the model estimate of the baseline cumulative hazard function for the
indicated event times.

Cumulative Hazard
(KM)

Gives the values of the Kaplan-Meier cumulative hazard function for the indicated event times.
Appears only if Add Kaplan-Meier estimates to baseline: Tables is enabled in the Survival:
Regression Models dialog box.

Ln Cumulative Hazard

Gives the values for the model estimate of the natural log of the baseline cumulative hazard
function for the indicated event times.

Ln Cumulative Hazard
(KM)

Gives the values of the Kaplan-Meier estimate of the natural log of the cumulative hazard
function for the indicated event times. Appears only if Add Kaplan-Meier estimates to baseline:
Tables is enabled in the Survival: Regression Models dialog box.
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Baseline Cumulative Hazard Plot

This graph is created by selecting the Cumulative Hazard Plot item within the Survival:
Regression Models header in the analysis browser.

Plotted lines

These give the estimated value of the baseline cumulative hazard function. If Add Kaplan-Meier
estimates to baseline: Plots is enabled in the Survival: Regression Models dialog box, this graph
also shows the Kaplan-Meier estimate of the cumulative hazard function. Separate plots are
provided for each stratum specified in proportional hazards models.

Baseline Ln Cumulative Hazard Plot

This graph is created by selecting the Ln Cumulative Hazard Plot item within the Survival:
Regression Models header in the analysis browser.

Plotted lines

These give the natural log of the estimated value of the baseline cumulative hazard function
versus the natural log of the event time variable. If Add Kaplan-Meier estimates to baseline:
Plots is enabled in the Survival: Regression Models dialog box, this graph also shows the Kaplan-
Meier estimate of the natural log of the cumulative hazard function. Separate plots are provided
for each stratum specified in proportional hazards models.

lteration History Table

This table is created by selecting Iteration History Table within the Additional Results sub-
header within the Survival: Regression Models header in the analysis browser.

Contents

Shows the coefficient estimates for each continuous covariate, or each group level for nominal
covariates, at each iteration of the fitting process. Also gives the estimates for the intercept and
scale parameters for parametric models (scale parameter is excluded from exponential models).
The log likelihood for the fit at each iteration is also given in the bottom row of the table.

(oefficient Correlations Table

This table is created by selecting Coef Correlations Table within the Additional Results sub-
header within the Survival: Regression Models header in the analysis browser.

| Contents

|Gives the pairwise correlations between all the coefficients in the Model Coefficients Table.

(oefficient Covariances Table

This table is created by selecting Coef Covariances Table within the Additional Results sub-
header within the Survival: Regression Models header in the analysis browser.

Contents

Gives the pairwise covariances between all the coefficients in the Model Coefficients Table.
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Martingale Residual Plot

This graph is created by selecting the Residual Plots item within the Additional Results sub-
header within the Survival: Regression Models header in the analysis browser. It is also created
if the Additional Results subheader is selected. Separate graphs are created for each specified
stratum in proportional hazards models.

Plotted points These give the values of the martingale residuals on the vertical axis and the corresponding
values of the linear predictor (3'Z) on the horizontal axis.

Deviance Residual Plot

Available only for proportional hazards models, this graph is created by selecting the Residual
Plots item within the Additional Results subheader within the Survival: Regression Models
header in the analysis browser. It is also created if the Additional Results subheader is selected.
Separate graphs are created for each specified stratum.

Plotted points These give the values of the deviance residuals on the vertical axis and the corresponding value
of the linear predictor ((3'Z) on the horizontal axis.

Quantile Plot

This graph is created by selecting Quantile Plot within the Additional Results subheader
within the Survival: Parametric Models header in the analysis browser. It is also created if the
Additional Results subheader is selected. Results are not computed for this plot if the model is
proportional hazards.

Plotted points On the vertical axis, points give the value of the estimated baseline inverse cumulative
distribution function (CDF) evaluated at the distinct values of a Kaplan-Meier (KM) estimate of
the CDF. These are plotted against the corresponding KM values on the horizontal axis. If there
are no covariates in the model, the KM estimate is based on the observed times. If there are
covariates in the model, the observed times are adjusted for the covariates using the estimated
model coefficients and the KM estimate is based on these adjusted times. If the event times are
drawn from the modeled distribution, the points should form a straight line.

Joint Significance Tests Table

This table is created by specifying one or more joint significance tests using the Joint Signifi-
cance Tests dialog box. One table is created for every subset of covariates specified in this dia-
log box. See “Joint Significance Tests dialog box,” p. 179. NOTE: Joint significance tests are not
computed for stepwise models.

Chi-Square Gives the value of the chi-square statistic for the indicated test of the specified hypothesis.

DF Gives the degrees of freedom for the indicated test of the specified hypothesis.
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P-Value Gives the p value (probability of rejecting a true null hypothesis) for the associated chi-square
statistic and degrees of freedom.

Other contents If more than one test is enabled with the Tests to perform checkboxes in the Joint Significance
Tests dialog box, the names of the enabled tests are given in the column to the left of the
table.

Templates

The following templates provide survival regression analysis results.

Survival Analyses Cox (Prop. Hazards) | Confidence intervals, global null hypothesis tests, and model coefficients
Model and survival summary tables; baseline cumulative hazard, baseline
cumulative survival, baseline In cumulative hazard, deviance residuals,
and Martingale residuals plots.

Exponential Model Confidence intervals, global null hypothesis tests, model coefficients, and
survival summary tables; baseline cumulative hazard, baseline
cumulative survival, baseline In cumulative hazard, quantile, and
Martingale residuals plots.

Loglogistic Model Confidence intervals, global null hypothesis tests, model coefficients, and
survival summary tables; baseline cumulative hazard, baseline
cumulative survival, baseline In cumulative hazard, quantile, and
Martingale residuals plots.

Lognormal Model Confidence intervals, global null hypothesis tests, model coefficients, and
survival summary tables; baseline cumulative hazard, baseline
cumulative survival, baseline In cumulative hazard, quantile, and
Martingale residuals plots.

Weibull model Confidence intervals, global null hypothesis tests, model coefficients, and
survival summary tables; baseline cumulative hazard, baseline
cumulative survival, baseline In cumulative hazard, quantile, and
Martingale residuals plots.

Exercise

This exercise illustrates how to fit survival regression models. The data are from a prospective
study of the occurrence of coronary events—usually heart attacks. Covariates that may influ-
ence the risk of a coronary event include smoking behavior, blood pressure history, and cho-
lesterol level. These data are from the Western Collaborative Group Study (described in
Rosenman ez al. (1975), among other places) of 3,154 male employees from ten California
companies during 1960-1961. (The data we will analyze in this example are a randomly
selected subsample of the complete dataset.) The original purpose of the study was to investi-
gate the effects of behavior type and smoking habits on heart disease. The researchers also col-
lected information on other possible risk factors that are not included in this dataset.
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After recruitment, the study followed participants for nine years, although a few were lost to
follow-up (i.e., censored) before the end of the study. The time variable of interest was the
interval from entry into the study until the appearance, as determined by a medical expert, of
coronary heart disease. The dataset wcas Data in the Sample Data folder contains event time
and censor variables for 614 participants, as well as measurements of two covariates of inter-
est—smoking behavior at study entry (measured in the number of cigarettes smoked per day)
and behavior type (a nominal variable with two levels, referred to as Type A and Type B). Indi-
viduals were classified into behavior types on the basis of an interview; in general terms, Type
A behavior is characterized by aggressiveness and competitiveness, whereas Type B behavior is
considered more relaxed and noncompetitive. In this subsample of the wcas data, events were
observed in 60 individuals.

In this exercise, you will use both a proportional hazards regression model and a parametric
accelerated failure time model to fit these failure time data.

¢ Open wcas Data from the Sample Data folder

The four variables include two covariates (Cigarettes and Personality Type), a censor variable

(Censor), and the event time variable (Time), which consists of the number of days from
entry into the study until the occurrence of either the event or censoring.

First we fit a proportional hazards model to the observed data, using Cigarettes as the only
covariate.
* From the Analyze menu, select New View

* In the analysis browser, select Survival: Regression Models
(This is equivalent to selecting the default results: Summary Tables, Model Coefficients
Table, and Cum. Survival Plot.)

¢ In the variable browser, select Time and click Time

¢ Select Censor and click Censor

* Select Cigarettes and click Covariate

* In the analysis browser, click Create Analysis

* Click OK to accept the default analysis parameters

This creates the default survival regression results: Survival Summary Table, Global Null
Hypothesis Tests Table, the Model Coefficients Table, and the Baseline Cumulative Survival

Plot. Scroll down to the Model Coefficients Table to see how cigarette consumption affects
this model.

Model Coefficients for Time
Censor Variable: Censor
Model: Proportional Hazards
DF Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)
Cigarettes | 1 [.016 | .008] 2.055]  4.222| .0399] 1.016]

These results show an estimated regression coefficient of 0.016, indicating a relative hazard for
a coronary event of 1% = 1,016 associated with an increase in cigarette consumption of
one cigarette per day at study entry. This is not a particularly meaningful comparison since
the covariate difference is so small; a single cigarette each day would not be expected to have a
major effect. The relative hazard associated with a more substantial increase of, say, 20 ciga-
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rettes (one pack) per day is immediately available from these results and is given by
1.377, indicating a 37.7 percent increase in hazard throughout the follow-up period.

* In the analysis browser under Survival: Regression Models, select Confidence Intervals
Table and click Create Analysis

Confidence Intervals for Time
Censor Variable: Censor
Model: Proportional Hazards
Exp(Coef) 95% Lower 95% Upper
Cigarettes | 1.016 | 1.001 | 1.032 |

This table shows the information necessary to calculate the 95-percent confidence intervals
about the relatlve hazard associates with consumption of one pack of cigarettes per day:

(1. 001°, 1.032* ) = (1.020, 1.877) . Note that the p value for testing the null hypothesis
(Hy:B = 0) that smoking consumption does not influence the risk of a coronary event is less
than 0.05, indicating that observed differences in the rates of coronary events among individ-
uals with varying cigarette consumption are unlikely to have arisen by chance variation.

Now we expand the model to see if Personality Type adds any explanatory information. How-
ever, before you use Personality Type as a covariate in this model, it is important to determine
whether the hazard functions for personality types A and B are, in fact, proportional. (Note
that we have also assumed that hazards are proportional over the levels of smoking—Ilater, we
shall consider briefly the fit of our overall model.) To evaluate the proportionality assumption,
you can assign Personality Type as a stratification variable to the present model.

¢ Make sure at least one of the results is still selected
* In the variable browser, select Personality Type and click Strata

* In the analysis browser under Survival: Regression Models, select Ln Cum. Hazard Plot
and click Create Analysis

With Personality Type used to stratify the model, the baseline hazard function is allowed to
vary between the two behavior types, but the effects of cigarette smoking are assumed to be
the same in both groups, as specified by the proportional hazards assumption.

Model Coefficients for Time
Censor Variable: Censor
Stratification Variable: Personality Type
Model: Proportional Hazards
DF Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)
Cigarettes | 1 [.014] .008] 1.763] 3.109 | .0779]  1.014]

The regression coefficient for cigarette consumption is now 0.014. The following graph gives
the In cumulative baseline hazard plots for both personality types.
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Baseline Ln Cum. Hazard Plot for Time

Censor Variable: Censor

Stratification Variable: Personality Type

Model: Proportional Hazards
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This graph illustrates that these two curves are approximately parallel, suggesting that it is rea-
sonable to assume that the hazard functions for the two behavior types are proportional. This
indicates that it would be appropriate to use Personality Type as a covariate. Note, however,
that the observation with the smallest event time in the Type A group appears unusual; it
might be worthwhile to eliminate this observation and refit the model to determine whether
this particular observation has unduly influenced the model estimates.

Now that you know that the assumption of proportional hazards is reasonable, you can
remove Personality Type as a stratification variable and reassign it as a covariate.

¢ Make sure at least one of the results is still selected

* In the variable browser, select Personality Type and click Remove, then click Covariate

Confidence Intervals for Time
Censor Variable: Censor
Model: Proportional Hazards

Exp(Coef) 95% Lower 95% Upper
Cigarettes 1.014 .999 1.029
Personality Type: A 1.866 1.094 3.184

Model Coefficients for Time
Censor Variable: Censor
Model: Proportional Hazards

DF Coef Std. Error Coef/[SE Chi-Square P-Value Exp(Coef)
Cigarettes 1| .014 .008 1.783 3.178 .0746 1.014
Personality Type: A 1| .624 .273 2.290 5.244 .0220 1.866

Note from the results in the model coefficients table that the relative hazard associated with a
pack per day increase in cigarette consumption is now estimated to be e 00014 — 4 373 ,
very similar to the estimate produced without Personality Type in the model; this indicates
that adjustment for behavior type makes very little difference to the relationship between cig-
arette consumption and the risk of a coronary event. The relative hazard for coronary heart
disease, comparing Type A and Type B individuals, is % = 1.866, with an associated 95-
percent confidence interval given by (1.094, 3.184). In this comparison, therefore, Type A
individuals are estimated to have nearly twice the hazard of a coronary event than do Type B
individuals.

Before turning to the analysis of the same covariates using a parametric accelerated failure
time regression model, you should check whether the proportional hazards model adequately
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describes the effects of these two covariates (cigarette consumption and personality type) on
coronary heart disease. Both the martingale and deviance residuals plotted against the linear
predictor can help you evaluate the model.

¢ Make sure at least one of the results is still selected

* In the analysis browser under Survival: Regression Models’ Additional Results subheading,
select Residuals Plots and click Create Analysis

Martingale Residual Plot for Time Deviance Residual Plot for Time
Censor Variable: Censor Censor Variable: Censor
Model: Proportional Hazards Model: Proportional Hazards
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The graph of martingale residuals plots these residuals against the linear predictor—in this
case, a linear combination of smoking consumption and the variable describing personality
type. Martingale residuals are always negative for censored observations, which explains why
most of the residuals in this plot are less than zero. Although these residuals have mean zero,
you can see from the graph above that they are not symmetrically distributed about zero. In
this example, where more than 90 percent of the observations are censored, both the martin-
gale and deviance residual plots are somewhat difficult to interpret because of the large num-
ber of negative residuals close to zero and the fact that heavy censoring of this kind means that
it is inappropriate to assume that deviance residuals are normally distributed. Nevertheless,
there is no noticeable pattern to either residual plot, which suggests that the linear part of the
model assumption is reasonable. Note that one individual—with a linear predictor value close
to 2—has an extreme combination of covariate values. Examination of the saved residuals
indicates that this is case number 485 in the dataset, corresponding to a cigarette consump-
tion of 99 cigarettes per day. This suspiciously resembles a data entry code for a missing value;
even if the reported value is accurate, it would be advisable to refit the models with this indi-
vidual deleted to determine its influence on the results.

Before we try to fit a parametric model of these data, we should examine the baseline In
cumulative hazard plot.
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Baseline Ln Cum. Hazard Plot for Time
Censor Variable: Censor
Model: Proportional Hazards
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The points in this graph roughly approximate a straight line, which suggests that a Weibull
model for the baseline hazard might adequately fit the behavior of these data. The slope of the
approximating line is clearly different from 1, which indicates that the exponential model is
not likely to fit the data as well as the Weibull model.

Finally, you should try using a Weibull regression model to describe the dependence of the
event time variable on these same two covariates.
* Click in the empty space of the view to deselect all results

* In the analysis browser under Survival: Regression Models, Control-click (Windows) or
Command-click (Macintosh) to select Summary Tables, Model Coefficients Table, and
Quantile Plot
(Quantile Plot is found under the Additional Results subheader.)

¢ In the variable browser, select Time and click Time
¢ Select Censor and click Censor
* Select Cigarettes and Personality Type and click Covariate

* In the analysis browser, click Create Analysis
* In the dialog box: for Model, choose Weibull

Survival: Regression Models

~Proportional Hazards
Confide Exponential

Lognormal
Loglogistic

Survival
HEv

Add Kaplan-Meier estimates to baseline:
[ Plots [OJTables

[] Stepwise variable selection

[More choices]  [cancel ] [ ok ||

* Click OK
* Select the resulting table and click Edit Display
* Choose 6 decimal places and click OK
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Model Coefficients for Time
Censor Variable: Censor

Model: Weibull

DF Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)
Scale 1 .665753 .082351 8.084352 . . .
Intercept 1| 9.817419 .280208 | 35.036195 | 1227.534972 | <.0001 | 18350.633294
Cigarettes 1|-.009137 .005275| -1.732186 3.000467 .0832 .990905
Personality Type: A| 1| -.419467 .188196 | -2.228881 4.967911 .0258 .657397

The coefficients reported here refer to the accelerated failure time model. Therefore, an
increase of 20 cigarettes per day is estimated to reduce time to the event by a factor of

820 X =0.009137" — 0.83, i.e., by approximately 17 percent. In other words, the time to an
event for those individuals who smoke 20 cigarettes per day is estimated to be 17 percent
shorter, on average, than for nonsmokers. This result is qualitatively consistent with the analy-
sis based on a proportional hazards regression model, which shows that increases in cigarette
consumption are associated with higher hazards and shorter times to coronary events. A closer
comparison of the two approaches is also possible with the above output. Recall from the
“Discussion,” p. 168, that you can also give a Weibull regression model a relative hazard inter-
pretation. In particular, this alternative interpretation yields proportional hazards across levels

of the covariates. The estimated log relative hazard is given by the value of the model coefh-
cient from the Weibull fit, multiplied by -1, and then divided by the estimated scale parame-
ter (0). In our example, this yields a log relative hazard for a unit increase in cigarette
consumption given by 0.009137/0.666 = 0.014 (to three decimal places). For the personal-
ity types, the Weibull model gives a log relative hazard comparison between the two groups of
0.419/0.666 = 0.629 , with Type A individuals having the higher hazard. These estimates
are very close to those obtained above from the proportional hazards regression model. In
passing, note that the scale parameter is estimated to be 0.666—indicating that the hazard is
increasing—with an estimated standard error of 0.082. This strongly suggests that the true
scale is significantly smaller than one, which indicates that the Weibull regression model pro-
vides a better fit to the data than the exponential version, as was also suggested by the In
cumulative hazard plot considered above.

Finally, the quantile plot provides a graphical means for assessing the appropriateness of the
Weibull assumption for fitting this accelerated failure time model.

Quantile Plot for Time
Censor Variable: Censor
Model: Weibull
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The fact that the quantile plot closely approximates a straight line of slope 1 passing through
the origin, suggests that the Weibull assumption is appropriate for these data.
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Before concluding, you should be aware that the data on this cohort are considerably more
extensive than reported here. Furthermore, the follow-up for heart disease morzality (as
opposed to the mere incidence of a coronary event) continued beyond the time frame of the
original study (a report on 22 years of follow-up is given in Ragland and Brand (1988)). Curi-
ously, this later analysis of the mortality data found no association between behavior type and
heart disease mortality. Part of the explanation of the anomalous results between analysis of
coronary events and mortality may be that behavior type is related to the chances of successful
recovery from initial coronary events.



Logistic regression

Logistic regression is a modeling technique analogous to linear regression. It examines the
relationship between an outcome (or dependent) variable with one or more independent vari-
ables. The primary difference from linear regression is that the dependent variable, rather than
being continuous, is a nominal variable. In the most common case, the dependent variable is
binary or dichotomous—that is, it has two possible values. However, the technique can also
be employed for a polytomous (many-valued) nominal response variable. StatView can per-
form both dichotomous and polytomous logistic regression with one or more independent
variables.

Logistic regression methods can be applied in a wide variety of settings. In many biomedical
examples a binary dependent variable might indicate whether an individual contracts a certain
disease in a specified time period. Independent variables of interest might include smoking
history, age, and alcohol consumption patterns for each individual. However, the methodol-
ogy extends to much broader settings where, for example, the outcome might be whether an
individual voted Republican or Democratic in the last presidential election, and independent
variables might include family income, marital status, gender, parental voting history, etc.

Discussion

This discussion assumes familiarity with the analogous linear regression modeling technique
and its assumptions, which are discussed in the chapter “Regression,” p. 51. If we use the sym-
bol Y to denote the dependent (or outcome or response) variable, the linear regression model
discussed in that chapter is based on the assumption that

E(Y]x)) = by+ byx;, (Eq. 15.1)

where E(Y]x,) is read as “the conditional mean of ¥ given x; ”in the simplest case where
there is only one independent (or explanatory or covariate) variable of interest.

For logistic regression, the dependent variable assumes only two values—traditionally coded
Y=1and Y = 0. Then,

E(Y]x)) = p,. (Eq. 15.2)
where Py, s the probability that ¥ = 1 for any individual for whom X; = x;.The linear

model (Eq. 15.1 above) suffers from two problems. First, while its right side can potentially
take any value, its left side—being a probability, as we see in Eq. 15.2—is constrained to lie
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between 0 and 1. Second, interpreting the coefficients is somewhat less natural when the out-
come is binary, and as we will discuss later, the model cannot be applied directly to what are
known as case-control or retrospective studies.

Simple logistic regression model

Therefore, the logistic regression model instead predicts a nonlinear transformation of
E(Y]x,) (the left side of Eq. 15.1) from the independent variable:

O O

gD 0 = 4 4 p (Eq. 15.3)
S0 —, 0~ %™%™M q- 15.
1l “I0

Solving this equation for Px, (recall that exponentiation is the inverse of logarithm), we get
the simple logistic regression model, which suffers from neither of the earlier problems:
(6o + byx7)

E(Hxl) = pxl = W (Eq. 15.4)
e

Once the coefficients of the model 4, and &; are known (or estimated), we can use this for-
mula to calculate the probability of a given response, say ¥ = 1, for any specified value of the
covariate X .

The nonlinear transformation we used is the log of the odds that ¥ = 1, where odds refers to
the probability that ¥ = 1 divided by one minus the same probability, given x| :

ad g
O P’ﬁ 0J

logDi-——D
D _Px‘ll:l

This is called the log odds of the dependent variable when X; = x; , which the model
assumes to change /inearly with changes in X , as seen in Eq. 15.3. This is the key linearity
assumption of the logistic regression model, as there is no a priori reason why the risk or prob-
ability that the outcome variable ¥ = 1 should vary with X; in this way. Goodness-of-fit
tests for the model provide one check for the validity of this assumption.

Interpreting coefficients

To use and interpret a regression model effectively, it is crucial to understand the meaning of
the model coefficients—64, and &, in Eq. 15.3. First, consider the intercept term, b, : this
coefficient is simply the log odds associated with the outcome ¥ = 1 for individuals whose
independent variable X; = 0. In other words, the coefficient 4, determines the baseline
(i.e., X; = 0) probability that ¥ = 1. Specifically, from Eq. 15.4:
bo

P(Y=1|X,=0) = py = == %

1+e

Now, consider the slope coefficient, 4, . Eq. 15.3 shows that this coefficient measures the
change in the log odds that ¥ = 1 (the log odds ratio) associated with a #nit change in the
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independent variable, X . In other words, &, provides a measure of the impact (or associa-
tion) of the variable X; with the dependent variable ¥. Specifically:

b
Odds Ratio(X| = x; + 1 compared to X; = x;) = e "

The fact that the odds ratio associated with a unit change in X does not depend on the level
of X, is due to the linearity assumption of the model. When the variable X is binary, e.g.
gender, then the term ¢! is simply the odds ratio relating the factor (such as gender) to the
outcome and is usually estimated from a 2 X 2 contingency table.

The attraction of the odds ratio as a measure of association is twofold. First, in rare outcome
settings (such as when p. is small for all values of the independent variable, X ) it approxi-
mates the relative risk (e.g., a relative risk of ten in a smoking/lung cancer study would indi-
cate that subjects who smoke are ten times more likely to develop lung cancer than subjects
who don’t), which is easier to interpret. Second, the odds ratio can be calculated from case-
control study data, as we discuss under “Case-control studies,” p. 203, whereas other measures
of association such as excess risk (for example, the absolute difference in risk of lung cancer,
comparing smokers to nonsmokers) cannot.

Multiple logistic regression models

Extending the simple logistic regression model (Eq. 15.3) to accommodate several indepen-
dent variables simultaneously is straightforward. With independent variables X, X, X3, ..
we work with the following model:

a 0
O le,xz,XS,... O

1 _le,xz,xa, 0

L]

log = byt byx; ¥ byxy Fbyxzt . (Eq. 15.5)

As in Eq. 15.4, we can solve this equation to express Pxy, sy, x5, ... 1D TEIMS of the coefficients:
by + byxy + byxy + byxg + ...
- - _e¢
Py, xy g0 = E(Y]xy, %9, %3, 0) = L+ ebo+ byx) + byxy + baxy + . (Eq. 15.6)

The coefhicients in the multiple logistic regression model have interpretations similar to the
single independent variable case, except for one subtle but important difference. As for the
case with one independent variable, the intercept coefficient & is the log odds associated
with the outcome ¥ = 1 for individuals whose covariate values are all zero; that is,

X; =X, = X5 = ... =0.Again, from Eq. 15.6:
by
P(Y=1\X1=X2=X3=...=O) = £0,0.0,.. = W
1+e

The slope coefficient associated with the jth independent variable X, 4. in Eq. 15.5, mea-

. . . J7 T .
sures the change in the log odds that ¥ = 1 associated with a uni increase in the indepen-
dent variable, X] , controlling for or holding fixed all other independent variables X, for £#.
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That is, 4. is equal to the log odds ratio associated with a unit increase in X} with all other

independent variables held at a fixed level. Specifically:

b
Odds Ratio(Xj =xtl compared to X] = xj‘ all other covariates held fixed) = ¢ '

This odds ratio measures the strength of the relationship between the independent variable X

and the outcome ¥, controlling for the potential confounding effects of all other independent

variables in the model, at least to the extent that their impact is adequately represented by the
linear assumption of the model (Eq. 15.5).

Assumptions

Fitting a logistic regression model to a set of data is appropriate only when all of the following
conditions apply:

1.

The independent variables are assumed to have a linear relationship with the log odds
based on the probability p, . ., .. = P(Y=1 |1, %5, %3, ...) associated with the
binary dependent variable as described by Eq. 15.5. In particular, as the value of any inde-
pendent variable increases, the probability that the dependent variable is coded as 1 must
increase or decrease consistently. This is the “dose response” assumption of the model. Of
course, the model also specifies the linearity of this response as measured on the log odds
scale for the probability p. Note that more complex relationships can be modeled in logistic
regression by including functions of the independent variables (for example, by including a
formula variable X? ) as additional independent variables. Goodness-of-fit tests are useful
for comparing the ability of different models to fit the observed data.

. All cases (the values of the dependent and independent variables) are assumed to be inde-

pendent of each other. When this is not true (for example, when observations are measured
on the same subject over time), a logistic regression model could still be applied, but more
sophisticated techniques than those available in StatView would be needed to estimate
standard errors and p values associated with hypothesis tests.

. It is assumed that, for a given set of values for the independent variables, the variation of

the dependent variable Y (the pattern of observed Os and 1s) is consistent with a random
response with fixed probability p. In some cases, although the probability might vary with
the independent variables according to the model given in Eq. 15.5, the variation in
responses at any fixed value might be more than expected (this is known as extra-Binomial
variation), or less than expected, such as when values of the outcome are identical at each
set of specific covariate values.

As with any modeling procedure, the goal of logistic regression is to find the best-fitting, most

parsimonious model that has a reasonable interpretation in the context of the example.
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Estimating coefficients

Random samples

We assume that the observations arise from a simple random sample from some population,
or at least a random sample at each of a specified set of fixed covariate values. The latter
reflects the fact that the logistic regression model is a conditional model for the dependent
variable given the independent variables (as is the linear regression model). In such cases, the
model coefficients are estimated by the maximum likelihood technique. In the simple logistic
model, Eq. 15.3, the likelihood function based on a set of 7 independent observations,
(x1;7,): = 1, ..., n, is given by:
7 1=7;
Loy b1) = T1 2, (1=2y,)

i=1

Estimates of 4, and &, are obtained by maximizing this function over all possible values of
by and b, . The log of the likelihood function provides a relative measure of how adequately
the independent variables explain the pattern of observed responses. A simple multiple of this
function, —2log/( 4y, 6,) , is given a special name—it is known as the deviance. Estimates of
the standard deviation and consequently the standard error of the maximum likelihood esti-

mates of 4, and &, can be computed from the likelihood function.

(ase-control studies

In many settings, it can be expensive or impossible to obtain random samples of the depen-
dent variable, even at pre-specified values of the independent variables. For example, the
dependent variable might describe whether an individual contracts a disease after exposure to
an environmental agent in a situation where the disease could take decades to produce clini-
cally identifiable symptoms. Further, in many examples the overall frequency of ¥ = 1
responses may be so low that enormous random samples would be needed to obtain enough
such outcomes to permit an effective analysis. For example, suppose you wished to investigate
the propensity to use mental health services in a certain population where the overall fre-
quency of use in a given time period was less than 1%. To overcome these obstacles, an alter-
native sampling strategy is to sample separately a set of observations where ¥ = 1 (cases) and
a set of observations where ¥ = 0 (controls).

It can be shown that the maximum likelihood estimates of logistic regression model coeffi-
cients are still appropriate for such samples except for the intercept coefficient, by . The estimate
of the intercept should be ignored for case-control data since it reflects the extent to which
cases are over- or under-sampled in data collection as compared to their natural frequency. In
our mental health example, you could generate a case-control sample of an equal number of
users (cases) and nonusers (controls); this 50% frequency of users and nonusers in the data,
determined by the sampling, would be picked up in the estimate of the intercept coefficient
but would not affect the estimates of slope coefficients 4, &,, ... .
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Polytomous logistic regression models

In many situations the outcome variable ¥ may assume more than two distinct values. For
example, if the outcome is an individual’s vote in an election, there may be three candidates
(Democratic, Republican, and Independent). Polytomous logistic regression models are
designed to extend the logistic regression model to such a setting.

When dealing with polytomous outcome data it is important to distinguish whether the scale
of Yis ordered or not. The voting example in the last paragraph has no natural ordering; the
example where Y represents levels of agreement (strongly agree, agree, disagree, strongly dis-
agree) clearly possesses an apparent order. StatView assumes qualitative or unordered depen-
dent variables. Although this model can be applied to the ordered case, it does not take
advantage of ordering.

For simplicity, we describe the polytomous logistic regression model for the case where ¥ can
fall into any of three levels and is coded 0, 1, or 2. Note that the coding does not indicate
ordering in the relevant levels of ¥. With independent variables X;, X,, X3, ... , the polyto-
mous logistic regression model is described by two equations, analogous to Eq. 15.5:

Pr(Y=1]x, %y, ... _
log[Pr(Y: O\xi,xz, ik bio* byyx + bppxy + .

Pr(Y = 2]xy, x5, ... )

[Pr(Y = 0]xy, %y, ... = byt by oyt

(Eq. 15.7)

log

The coefhicients of both these equations have similar interpretations to those in the dichoto-
mous case. For example, 4; ; is the log odds ratio associated with a unit increase in X, hold-
ing all other covariates fixed, when comparing individuals whose outcome variable is either

Y =0 or Y = 1 (thatis, we ignore individuals for whom ¥ = 2). Thus the coefficient 4, j
measures the impact of changes in X; on the probability that ¥ = 1, given that Vs either 0
or 1.

Similarly, 67; is the analogous log odds ratio when comparing individuals whose outcome
variable is either ¥ = 0 or ¥ = 2. Comparisons of individuals with ¥ restricted to ¥ = 1
or Y = 2 can also be derived by taking differences of the coefficients in Eq. 15.7. For exam-
ple, the log odds ratio for comparing ¥ = 2 to ¥ = 1, associated with a unit increase in X;;,

holding all other covariates fixed, is simply &, i~ b, i

Dialog box settings

When you create or edit a logistic regression analysis, a dialog box asks whether to include
partial correlations and confidence intervals to the model correlation table, and it offers a

chance to control the number of fitting iterations. To accept the default choices (no partial
correlations or confidence intervals, and at most 30 iterations) for an analysis, simply click

OK.
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Logistic Regression

Add to Model Coefficients Table

[J R (partial correlation)

[]% confidence interval

Maximum lterations:

R (partial correlation coefficient) You can choose whether to compute R, an approximate
measure of the partial correlation coefficient for each design variable and logit level.

Confidence intervals You can choose whether to compute the upper and lower confidence
intervals for the percentage level you specify. No confidence intervals are computed by
default, but if you check the box on, the default level is 95%. Type a different number in the
text box to specify a different level.

Maximum iterations By default, StatView iterates until the maximum likelihood tolerance
(convergence criterion) is reached, in a maximum of 30 iterations. However, you may specify
a different limit for the number of fitting iterations for the model.

Data requirements

StatView can perform logistic regression with unlimited independent variables. The depen-
dent variable must be nominal with two or more levels (up to 32,000). The dependent vari-
able can have any type, as long as its class is nominal. The independent variable(s) can be
continuous or nominal.

Variable browser buttons

Independent Select one or more continuous or nominal variables that are the independent variable for the
model and click the Independent button.
Additional independent variables are added to the existing model.

Dependent Select the nominal variable that is the dependent variable for the model and click the
Dependent button. The variable can have two levels or more, up to a limit of 32,000 levels.
Additional Dependent variables create additional analyses.

Split By When you assign one or more split-by variables to any logistic regression analysis, results for
each cell in the split-by variable(s) are displayed in separate tables.

If you clone logistic regression results by Control-Shift-clicking (Windows) or Command-
Shift-clicking (Macintosh) the Independent button of the variable browser, the existing inde-
pendent variables are replaced with the new independent variables. Cloning with a new
Dependent variable produces a new analysis with the same independent variables.
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Nominal data coding

StatView uses the first level of a nominal variable as the reference level—the level against
which other levels are compared. For a nominal with a numeric type (real, integer, long inte-
ger, currency, or date/time), levels are sorted from smallest to greatest. For a nominal with
type string, levels are sorted alphanumerically (such as 1, 11, 2, 22, A, B, C). For a nominal
with type category, levels are sorted according to their order in the category definition. Gener-
ally, the easiest (and most computationally efficient) choice is a category variable whose levels
are defined in order so that the desired reference level is the first level. (If you need to change
the order of levels in an existing category variable, see “How can I reorder category variables?,”
p. 238 of Using StatView.)

For example, a model with a category dependent variable with levels “No disease” and “Dis-
ease,” in that order, and a category independent variable with groups A, B, C, D, and E, in
that order, would have a coefficients table like this:

Logistic Model Coefficients Table for Outcome
Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)

Disease: constant | -2.251 .743 | -3.028 9.171 .0025 .105
Group: B 577 .866 .666 444 .5052 1.781
Group: C .605 .792 .764 .584 .4449 1.831
Group: D 1.414 .766 1.846 3.409 .0649 4.113
Group: E 1.638 .782 2.094 4.386 .0362 5.146

Suppose we instead used a string variable with the values “No disease” and “Disease.” When
alphabetized, “Disease” comes before “No disease” and consequently will be the outcome
against which other outcomes are compared. Also suppose we used a numeric grouping vari-
able with the order reversed, e.g., A=5, B=4, C=3, D=2, E=1, so that the E or 1 group is now
the reference level. Our results would be completely different, because levels of the variables
would be compared in different combinations.

Logistic Model Coefficients Table for Outcome String
Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef)

No disease: constant | .613 .244 2.518 6.339 .0118 1.846
Group Integer: 2 224 .306 .733 .537 4637 1.251
Group Integer: 3 | 1.033 .366 2.824 7.975 .0047 2.810
Group Integer: 4 | 1.061 .507 2.092 4.376 .0365 2.889
Group Integer: 5 | 1.638 .782 2.094 4.386 .0362 5.146

Note that some programs, such as sas, yMp, and systaT, pick the /st level rather than the first
as the reference level. Therefore, when comparing results from several programs, you must be
careful to code your nominal variables as needed to get the results you intend from each pro-
gram.
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Results

For explanation of the results, please see the preceding “Discussion,” p. 199. The summary
and coefficients tables are the default output. See “Nominal data coding,” p. 206, for details
on how to control which quantities are compared.

Logistic Summary Table containing count, number missing, number of response levels in the dependent variable,
number of fit parameters in the model, log likelihood, intercept log likelihood, and R.
Model Coefficients Table containing the coefficient for each designed variable and logit in the model, along with its

standard error, the ratio of the coefficient to its standard error, the Wald chi-square statistic,
the type | error probability, R, relative likelihood, and optional upper and lower bounds for the
confidence limit (if chosen).

Whole Model Fit Table containing the degrees of freedom, chi-squared statistic, and p value for the Pearson,
Deviance, and Likelihood Ratio tests.

Logistic Likelihood Table containing the degrees of freedom, G likelihood ratio statistic, and p value associated with

Ratio Tests excluding each independent variable from the model.

Classification Table Table containing the predicted and observed outcome categorizations based on their
probabilities.

Iteration History Table displaying the coefficients used in successive iterations (until the convergence criterion is

reached) for each design variable for each level of the logit. The final row shows the log of the
likelihood estimate for the model at each iteration.

For further options on plotting scattergrams with fitted simple regression lines see “Bivariate
Plots,” p. 221.

Templates

The following templates provide regression results.

Regression Logistic Regression Logistic Summary table and Model Coefficients table with 95%
confidence intervals.

Exercises

Simple logistic regression

The first example is based on a very simple dataset relating coffee consumption to incidence
of pancreatic cancer, as described in MacMahon ez al. (1981). These data arose from a case-
control study, and for this illustration we will use the data for male subjects. Case Outcome is
a binary category variable recording whether each individual represents a case (pancreatic can-
cer) or a control (no cancer). Daily Coffee is a continuous variable recording how much coffee
each individual drinks: 0 for none, 1.5 for 1-2 cups per day, 3.5 for 3—4 cups per day, or 5.5
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for 5 or more cups per day. Any Coffee converts Daily Coffee to a binary category variable
(either no coffee or some coffee) with a dynamic formula:
if "Daily Coffee"=0
then "No coffee"
else "Some coffee”

We can create a frequency table to see an overview of the data:
* Open the file Coffee and Pancreatic Cancer from the Sample Data folder
¢ Copy the Daily Coffee variable and Paste it into the Input column

* From the Class pop-up menu for Daily Coffee.2 (the new copy of the variable), select
Nominal
(We need a nominal version of the variable for the contingency table, but we want to keep
the original continuous variable for a logistic regression model.)

* From the Analyze menu, select New View

* From the analysis browser under Contingency Table, select Observed Frequencies and
click Create Analysis (or double-click Observed Frequencies)

e Click OK to accept the default parameters
* From the variable browser, select Case Outcome and Daily Coffee.2 and click Add

Observed Frequencies for Case Outcome, Daily Coffee.2
0.0 1.5 3.5 5.5 Totals

No pancreatic cancer | 32| 119 74| 82 307
Pancreatic cancer 9| 94| 53| 60 216
Totals 41 213 127 142 523

First we will perform a very simple regression analysis to examine the association between cof-
fee drinking and the incidence of pancreatic cancer. We want to see whether coffee consumers
tend to be more likely than expected to get the disease. To do this we'll use the dichotomous
independent variable Any Coffee, which ignores the level of coffee consumption amongst
drinkers.

* Click in the blank area of the view to deselect the frequency table

* In the analysis browser under Logistic regression, select Summary Table, Model Coefhi-
cients, and Likelihood Ratio, and then click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent items

* In the Logistic Regression dialog box, check the 95% confidence interval option (turn it
on) and click OK

* From the variable browser, select Case Outcome and click Dependent

* From the variable browser, select Any Coffee and click Independent

Logistic Summary Table for Case Outcome

Count 523
# Missing 0
# Response Levels 2
# Fit Parameters 2
Log Likelihood -350.862
Intercept Log Likelihood | -354.559
R Squared .010
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The summary table reports the number of observations, the number of possible outcomes
(two), and details regarding the maximized log likelihood function.

Logistic Model Coefficients Table for Case Outcome

Coef Std. Error Coef/SE Chi-Square P-Value R Exp(Coef) 95% Lower 95% Upper
Pancreatic cancer: constant | -1.269 .377 -3.362 11.303 .0008 | -.115 .281 .134 .589
Any Coffee: Some coffee .984 .388 2.535 6.426 .0112 .079 2.676 1.250 5.730

Logistic Likelihood Ratio Tests Table for Case Outcome
DF Chi-Square P-Value
Any Coffee | 1| 7.393]| .0065]

The model being fit here is given in Eq. 15.3, where the independent variable X is dichoto-
mous and measures whether an individual consumes any coffee (X; = Some coffee ) or not
(X; = No coffee ). A unit increase in X represents the difference between coffee consumers
and abstainers, and the estimated odds ratio comparing these two groups is given by

b
e = 60'984 = 2.676.
The coefficients table also provides the 95% confidence interval for this odds ratio, namely,
(D984 (196 X0.388) 0984+(196X0388)) _ () 75 5 730

The p value for testing the null hypothesis (Hy:6; = 0) that coffee consumption is unre-
lated to incidence of pancreatic cancer is 0.0112. This is known as the Wald test, and it is a
test of the relationship between an independent and dependent variables based on the size of
by in relation to the standard error of this estimate. The p value is 0.0065 for the likelihood
ratio test, which compares the likelihood or deviance of the fitted model including Any Cof-
fee as an independent variable with that of a model that does 7oz include it. Both tests suggest
some influence of coffee consumption in pancreatic cancer occurrence.

Note that, since these data agise from g case-control study, the estimated intercept coefficient
should be ignored. In fact, /(146 = 0219, reflecting the frequency of pancreatic
cancer cases amongst coffee abstainers in the dazaser (9/41 = 0.220 ), as designated by the
sampling design, and not the frequency of cases in the population.

Since the variable Any Coffee is a simple dichotomous explanatory variable, the logistic
model, in this case, does not take advantage of any linear assumption. The results above can
thus be directly obtained from the standard 2 x 2 frequency table relating Any Coffee to Case
Outcome, which we can create by adopting variable assignments from the logistic regression
analysis:

* Make sure at least one of the Logistic Regression results is selected (has black handles)

* From the analysis browser under Contingency Table, select Observed Frequencies and
click Create Analysis (or double-click Observed Frequencies)

* Click OK

Observed Frequencies for Any Coffee, Case Outcome
No pancreatic cancer Pancreatic cancer Totals
No coffee 32 9 41
Some coffee 275 207 482
Totals 307 216 523
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Note that the estimated odds ratio comparing pancreatic cancer incidence among coffee con-
sumers and abstainers can be calculated from this table as

32 %207 _
e = 2.676

We now turn to the analysis of a more complex, ordinal variable, Daily Coffee, which takes
the level of an individual’s daily coffee consumption into account. Since this variable is ordinal
and assumes several levels (four), its class is set as continuous. Therefore, the logistic model
now invokes a linearity assumption and the results obtained cannot be calculated simply from
the observed frequencies table on p. 208. To fit the simple logistic model given by Eq. 15.3,
where the independent variable X| now stands for Daily Coffee, we clone the analysis with a
different independent variable:

* Make sure at least one of the Logistic Regression results is selected (has black handles)

¢ In the variable browser, select Daily Coffee and Control-Shift-click (Windows) or Com-
mand-Shift-click (Macintosh) the Independent button

The following results are obtained:

Logistic Summary Table for Case Outcome

Count 523
# Missing 0
# Response Levels 2
# Fit Parameters 2
Log Likelihood -354.163
Intercept Log Likelihood | -354.559
R Squared .001

Logistic Model Coefficients Table for Case Outcome
Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef) 95% Lower 95% Upper
Pancreatic cancer : constant | -.479 .169 | -2.832 8.019 .0046 .619 .445 .863
Daily Coffee .043 .048 .889 791 .3738 1.044 .950 1.148

Logistic Likelihood Ratio Tests Table for Case Outcome
DF Chi-Square P-Value
Daily Coffee | 1 | 791 ] .3737]

As before, the odds ratio associated with a unit increase in Daily Coffee is given by

0043 = 1,044 . Recalling the scale of Daily Coffee, it may be more useful to consider the
odds ratio associated with an increase of 1-2 or 1.5 units (comparing nondrinkers to those
who drink 1-2 cups/day) or 2 units (comparing those who drink 1-2 cups/day to those who
drink 3—4 cups/day, or those who drink 3—4 cups/day to those who drink 5 or more cups/day;
the latter two odds ratio comparisons are assumed equivalent by this logistic regression
model). (You could compare these results to those substituting Daily Coffee.2, the nominal
version of the variable.)

For increases of 1.5 or 2 units in Daily Coffee, the relevant odds ratios are obtained from the
output as ¢!-> 0043 = 1,067 and 20043 = 1,090, respectively.

We can easily obtain a Whole Model Fit Table and Logistic Classification Table:

e Make sure that at least one of the results is still selected (has black handles)
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* In the analysis browser under Logistic Regression, select Whole Model Fit Table and Logis-
tic Classification Table and click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent items

Logistic Whole Model Fit Table for Case Outcome
DF Chi-Square P-Value

Pearson 2 6.462 .0395
Deviance 2 6.828 .0329
Likelihood Ratio | 1 791 .3737

Two measures of goodness-of-fit are provided, based on Pearson or deviance residuals. Since
this dataset contains information on individuals who fall into only four possible independent
variable values (0 cups/day, 1-2 cups/day, etc.), both goodness-of-fit statistics are based on
comparing the fit of the current logistic model to the so-called saturated model that allows the
probability that the outcome variable ¥ = 1 to vary arbitrarily over all distinct levels of the
independent variables. The two p values for the goodness-of-fit tests are sufficiently small,
0.0395 and 0.0329 respectively, to suggest that the logistic model in terms of the continuous
variable Daily Coffee does not fit the data adequately.

Comparing the maximized log likelihoods seen in the summary tables (-350.862 for the
model with Any Coffee, and —354.163 for the model with Daily Coffee) suggests that the
data is better described by the Any Coffee model, which allows the risk of pancreatic cancer to
be higher for coffee drinkers but not to vary with the amount of coffee consumed per day.
However, the noticeable lack of a dose response in the Daily Coffee model casts substantial
doubt on the biological plausibility of the apparent relationship between coffee drinking and
the incidence of pancreatic cancer.

Logistic Classification Table for Case Outcome
Predicted No pancreatic cancer Predicted Pancreatic cancer Percent Correct

Observed No pancreatic cancer 307 0 100.00%
Observed Pancreatic cancer 216 0 0.00%
Overall 58.70%

Finally, we consider the Logistic Classification Table. The results here are the same as they
would be for the model with Any Coffee. In both models, the predicted binary outcomes
given in the table are obtained by calculating for each observation the estimated response
probability Z)x from Eq. 15.4, with the relevant estimated parameter values, 4y and 4], sub-
stituted. For a given case, the predicted outcome is 1 if ]A)x > (0.5 and 0 otherwise. The value
0.5 is often called the prior probability that an observation has the response ¥ = 1. In many
settings, a different prior probability might be more appropriate. Here, all observations have
predicted value 0, in part because about 59% (i.e., 307/ 523 ) of the data are controls with

Y = 0. In this case, the apparent association of coffee drinking with the incidence of pancre-
atic cancer is not sufficiently strong to raise any predicted probability that ¥ = 1 above 0.5.
The predicted responses would change somewhat with the choice of a different prior, but it is
important to note that the overall rate of correct classification (here 58.7%) is not a measure
of goodness-of-fit but a reflection of residual variation—variation in the dependent variable
that remains after accounting for coffee drinking behavior. In this regard, note that a substan-
tial number of coffee drinkers are controls.
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Multiple logistic regression

Our next example illustrates the use of several independent variables in a logistic regression
model. The data arise from a randomly selected subset of 614 participants in the Western Col-
laborative Group study, described in Rosenman ez 2/. (1975) among others. Individual obser-
vations correspond to male employees selected from ten California companies during the
years 1960—61. At recruitment, covariates such as smoking practices and behavior type were
measured for each participant. Subsequently, each study subject was followed for up to nine
years to determine whether an individual had a coronary heart disease (CHD) event as deter-
mined by a medical expert.

* Open WCGS Data from the Sample Data folder

Cigarettes Personality Type| Censor Time
» Type: | Integer Category Integer Integer
» Source : | User Entered User Entered User En...| User E...
> Class : | Continuous MNorminal Nominal | Contin...
» Format:
» Dec. Places:
1 25 ) 1 1664
2 20 B 1 3064
3 0 B 1 3102
4 9 B 0 2426
S 0 ) 1 3070
) 0 A 1 3101
7 n [ 1 z1n1

Cigarettes gives the reported number of cigarettes smoked per day at recruitment. Personality
Type gives a measure of personality type as assessed by interview; this is a nominal variable
where Type A is considered more aggressive and competitive, and Type B is considered more
relaxed and noncompetitive. Censor takes the value 1 if the participant was not subject to cor-
onary heart disease throughout follow up and 0 otherwise. (Censor is not used here but is rel-
evant to a survival analysis of this dataset; see “Exercise,” p. 191 in the “Survival: Regression”
chapter.) Finally, Time measures the number of days from entry into the study until occur-
rence of heart disease or end of follow up, whichever occurs first.

First, we create a new variable, cap Outcome, that recodes the cHD event cases as 1 and the
no CHD event cases as 0.

¢ From the Manage menu, select Formula

¢ Specify this formula and click Compute:
| — Censor

¢ Rename the variable: cap Outcome

* Change its Type from Real to Integer

¢ Change its Class from Continuous to Nominal

Now we analyze the data:
¢ From the Analyze menu, select New View

¢ In the analysis browser under Logistic regression, select Summary Table, Model Coefhi-
cients, and Likelihood Ratio, and then click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent items

* Check the 95% confidence interval option and click OK
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* In the variable browser, select Cigarettes and click Independent

* In the variable browser, select cHp Outcome and click Dependent

Logistic Summary Table for CHD Outcome

Count 614
# Missing 0
# Response Levels 2
# Fit Parameters 2
Log Likelihood -194.587
Intercept Log Likelihood | -196.507
R Squared .010

Logistic Model Coefficients Table for CHD Outcome
Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef) 95% Lower 95% Upper
1 : constant -2.459 .189 | -12.994 168.845 | <.0001 .086 .059 124
Cigarettes .017 .009 2.005 4.021| .0449 1.017 1.000 1.035

Logistic Likelihood Ratio Tests Table for CHD Outcome
DF Chi-Square P-Value
Cigarettes | 1 [ 3.840] .0501]

The coefficient table shows an estimated logistic regression coefficient for “Cigarettes” of
0.017, indicating an odds ratio for cup of ¢¥°17 = 1.017 associated with an increase in con-
sumption of one cigarette per day at study entry. This is not a particularly useful risk group
comparison since a single extra cigarette smoked per day would not be expected to increase an
individual’s risk substantially. The estimated odds ratio associated with an increase of 20 ciga-
rettes per day is easy to compute from the information provided as ¢20 * 9-017 = 1,405,

yielding an approximate increase in risk of 40%.

Now we add the second independent variable Personality Type to see whether this provides
any additional explanatory information.
¢ Be sure at least one of the results is still selected (has black handles)

* In the variable browser, select Personality Type and click Independent

Logistic Summary Table for CHD Outcome

Count 614
# Missing 0
# Response Levels 2
# Fit Parameters 3
Log Likelihood -192.070
Intercept Log Likelihood | -196.507
R Squared .023

Logistic Model Coefficients Table for CHD Outcome
Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef) 95% Lower 95% Upper

1: constant -2.157 .223 -9.679 93.685 | <.0001 .116 .075 .179
Cigarettes .015 .009 1.746 3.048 .0808 1.015 .998 1.032
Personality Type: B -.629 .286 -2.202 4.848 .0277 .533 .304 .933

Logistic Likelihood Ratio Tests Table for CHD Outcome
DF Chi-Square P-Value

Cigarettes 1 2.935 .0867

Personality Type | 1 5.035 .0248
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Note that the estimated odds ratio associated with a pack per day increase in cigarette con-
sumption is now ¢20 *0-015 = 1,350 ; the similarity of this estimate to the one obtained from
the model that only included “Cigarettes” indicates that there is little confounding effect of
Personality Type on our understanding of the relationship between cigarette consumption and
cHD incidence. In other words, the apparent association of cigarette consumption and cHD in
the first model is not “explained away” on the basis of individuals’ personality types. The odds
ratio for CHD associated with being Type A as against Type B, controlling for cigarette con-
sumption, is estimated to be ¢ 0629 = (.533 , with an associated 95% confidence interval of
(1.072, 3.289) = (0.93371,0.3047") . It is usually preferable to describe the odds ratio in
terms of how much greater the risk is in the higher risk group (here, Type A) rather than the
other way around. (To learn how to code your data to get the comparisons you want, see
“Nominal data coding,” p. 206.)

Further analyses of this dataset in the “Survival: Regression” chapter incorporate the Time
variable. See the “Exercises,” p. 207.

Polytomous logistic regression

This exercise illustrates how to fit a polytomous logistic regression model. The data are from a
prospective study of the findings of a colonoscopy screening study on individuals considered
to be at high risk of colon cancer, from Grossman, et al. (1989). The purpose of the study was
to determine the role of past history—for example, a history of previous colon lesions, a fam-
ily history of cancer, age, etc.—in predicting the findings of a current colonoscopy. The cases
considered here correspond to 406 individuals who had adenoma findings in previous colon
examinations and who are therefore considered to be at high risk of a subsequent significant
finding.

¢ Open Colonoscopy from the Sample Data folder

The dependent variable Finding assumes three levels: 2 corresponds to a significant finding on
the screening, namely a large tubular adenoma (>1 cm in diameter) or an advanced neoplasm;
1, to a finding of small tubular adenoma, and 0, to a negative examination. The independent
variable of interest is age at the time of screening. Age ranged from 30-39 years (coded as 35)
to 70 years and older (coded as 75).

e From the Analyze menu, select New View

* In the analysis browser under Logistic regression, select Summary Table, Model Coeffi-
cients, and Likelihood Ratio, and then click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent items

e Check the 95% confidence interval option and click OK
* From the variable browser, select Finding and click Dependent

e From the variable browser, select Age and click Independent
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Logistic Summary Table for Finding

Count 406
# Missing 0
# Response Levels 3
# Fit Parameters 4
Log Likelihood -314.562
Intercept Log Likelihood | -327.030
R Squared .038

Logistic Model Coefficients Table for Finding
Coef Std. Error Coef/SE Chi-Square P-Value Exp(Coef) 95% Lower 95% Upper

1 : constant | -3.911 .810 | -4.828 23.310 | <.0001 .020 .004 .098
Age .045 .013 3.570 12.742 .0004 1.046 1.021 1.073
2 : constant| -6.771 1.415| -4.784 22.890 | <.0001 .001 7.157E-5 .018
Age .074 .021 3.483 12.130 .0005 1.077 1.033 1.123

The Logistic Model Coefficients Table gives an estimate of age effects on colonoscopy findings
in terms of a unit or one-year increase in age. We can calculate the odds ratio associated with a
20-year increase when comparing the chances of a small adenoma (1) against a negative find-
ing (0) as 2020045 = 2 460 . We can calculate the 95% confidence interval for that odds
ratio as (1.02129, 1.07320) = (1.515, 4.093) . Similarly, the odds ratio for an increase of 20
years of age in comparing the chances of a large adenoma or neoplasm (2) versus a negative
finding (0) would be 200074 = 4 393  However, the odds ratio associated with the 20-

year age increase when comparing major (2) to minor (1) findings is only
¢20 % (0.074-0.045) = 1 786 .

We can assess the statistical significance of age in these pairwise comparisons by examining the
two p values given in the Logistic Model Coefficients Table. However, the overall effect of age
on the colonoscopy outcome is best assessed by the likelihood ratio test with two degrees of
freedom, which yields a p value that is less than 0.001.

Logistic Likelihood Ratio Tests Table for Finding
DF Chi-Square P-Value
Age | 2|  24.936 | <.0001 |

In summary, it appears that age is strongly related to the chances of a positive findings on a
colonoscopy screening examination. Given a positive finding, however, increased age is only
moderately associated with an increased chance of a significant finding as against a less major
adenoma.



216 I5 Logistic regression Exerases




Univanate Plots

Univariate plots show the distribution of a variable in a plot with a single numeric axis, the Y
axis. Each observation is plotted along the horizontal axis in the sequence the data appears in
the dataset. You can display the observations as points in a scattergram, as points connected by
lines in a line chart, or as bars in a bar chart. You can plot multiple variables in a single
univariate plot and use split-by variables to distinguish different groups within the variables.
You can also add reference lines to show the variable’s mean plus or minus one or more stan-
dard errors or standard deviations as well as a specified confidence interval. Univariate charts
with standard deviation reference lines are identical to individual measurement quality control
charts.

If you are using split-by variables you can specify whether to display a separate line for each
group or a single line for all groups. This choice is in the Line Plot dialog box (described
below), accessible through the Create Analysis button, or by clicking Edit Analysis when the
entire graph is selected. If a univariate line plot displays information on several groups, the
plot shows separate lines for each group or one line for all groups. To change this setting, click
on one of the points to select just the plot, and click the Edit Display button. You see this dia-
log box:

Line Plot

[ Separate line for each group

[Show] [Cancel] [[ 0K ]]

By default there are no values displayed on the horizontal axis, but you can optionally choose
to display observation numbers on this axis. The observation number ranges from one to 7,
where 7 is the number of non-missing, non-excluded values in the variable. The first such
value has observation number 1, the second observation number 2, etc. For other modifica-
tions you can make to this graph, see “Customizing results,” p. 179 of Using StatView.

Dialog box settings

When you create a univariate plot or edit it using the Edit Analysis button, you see the dialog
box below. You can add lines for the mean, standard deviations, standard error and confidence
intervals.
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Univariate Plot

[J Display lines at the mean and the mean *
aadard prraris}

andard depiationisy

contidende interosd

ihan split shaw lnes farl

® O

If you choose to display lines at the mean, you must also display lines around the mean at a
specified standard error, standard deviation, or confidence interval. The option at the bottom
of the dialog box determines how these lines appear when you assign a split-by variable.

There is an additional setting for univariate plots, found in a separate dialog box. By default,
the horizontal axis has no ticks or values displayed on the axis. You choose to add an axis
whose value ranges from 0 to the count of values for the variable displayed. Select the horizon-
tal axis by clicking on it. Click Edit Display and the Ordinal Axis dialog box appears:

Ordinal Axis

[ Show ticks and values

[Siww] [Cancel] [[ 0K ]]

Click the checkbox to show ticks and values and click OK. To preview the change first, click
the Show button. You cannot modify other aspects of this axis.

Data requirements

Results

Univariate plots can be generated for one or more continuous or nominal variables.

Variable browser buttons

Add To generate a univariate plot, select one or more variables and click Add.
Each additional variable assigned is added to the same plot.

Split By The cells of any nominal variable(s) assigned using the Split By button appear in the legend.

The default univariate plot is a scattergram.

Scattergram Shows observations as points. Lines indicating the mean, standard deviations, standard error and
confidence intervals can be added to the plot with Edit Analysis.
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Line Chart Shows observations as points connected by lines. Lines indicating the mean, standard deviations,
standard error and confidence intervals can be added to the plot with Edit Analysis.

Bar Chart Shows observations as bars. Lines indicating the mean, standard deviations, standard error and
confidence intervals can be added to the plot with Edit Analysis.

Templates

Exercise

The following templates provide univariate plots.

Graphs

Univariate Bar Chart

Univariate bar chart for continuous variable and optional Split By
variable.

Univariate Line Chart

Univariate line chart for continuous variable and optional Split By
variable.

Univariate Scattergram

Univariate scattergram for continuous variable and optional Split By
variable.

In this exercise you create a univariate scattergram to examine the distribution of car weights.
The dataset you will use has measurements of weight, gas tank size, turning circle, horsepower
and engine displacement for 116 cars from different countries.

* Open Car Data from the Sample Data folder

* From the Analyze menu, select New View

¢ In the analysis browser under Univariate Plots, select Scattergram and click Create Analysis

If you did not wish to display additional information you would click OK without checking
any other options. For this example you will add a line at the mean as well as at one standard
deviation above and below the mean.

*  Check Display lines and click OK
* In the variable browser, select Weight and click Add

Univariate Scattergram
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The graph displays the individual observations of each car’s weight along with lines indicating
the variable mean and values at plus and minus one standard deviation. Visual inspection
shows that approximately 50 cars fall outside plus or minus one standard deviation of the
mean.

This dataset also includes a nominal variable identifying the manufacturing country for each
car. We can use this variable to split the observations into different groups.

* Make sure the graph is still selected

* In the variable browser, select Country and click Split By

Univariate Scattergram
Split By: Country
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Observations

The three different countries, Japan, Other, and usa, are distinguished by different plotting
symbols. You can see that most of the Usa cars are heavier than average.

You can display this information as a line chart or bar chart by choosing the appropriate graph
from the analysis browser. You can also draw different mean and standard deviation lines for
each group rather than for the entire variable by clicking the Edit Analysis button and chang-
ing that parameter in the dialog box.



Bivariate Plots

A bivariate plot graphs the relationship between two variables, X and Y. It can display the
observations as points with or without connecting lines.

In a bivariate plot each individual observation Y; is plotted against X; for i = 1 to #, the
number of observations of X and Y. You can plot multiple variable pairs in a bivariate plot and
use split-by variables to distinguish different groups. You can also use nominal variables in a
bivariate plot to construct a point graph that distinguishes the measurements of the groups of
a nominal variable.

You can add a simple regression line to the bivariate plot with or without confidence bands
around the mean and slope of the regression line. Cubic spline, lowess, and supersmoother
fits are also available for bivariate plots. You can plot different subgroups of your data by add-
ing a split-by variable, displaying a single fitted line for the entire graph or displaying separate
lines for each subgroup. You can plot more than one pair of variables on a single graph and
display fitted lines for each.

Edit Display lets you modify the structure and appearance of bivariate plots; see “Customizing
results,” p. 179 of Using StatView.

Fitted lines

StatView offers four curve fits for bivariate plots: cubic spline, lowess smoother, super-
smoother, and regression (with or without confidence bands). We discuss each separately
below, after demonstrating how the various types of fitted lines work in StatView and offering
some general cautions. In this discussion, we'll look at the various ways of fitting curves to a
plot of weight against height from the Lipid Data.

Wight = 1715

linear regression cubic spline lowess supersmoother
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Split-by variables

You can plot different subgroups of your data by adding a split-by variable, displaying a single
fitted line for the entire graph or displaying separate lines for each subgroup.

Scattergram Scattergram
Split By: Gender Split By: Gender
240 e 240 4— L1 1111

220 1 220

200 7 200 7

£180 o male £ 180 o male
g 160 = female g 160 o female

140 140

120 1 120

100 100

57.5 62.5 67.5 72.5 77.5 82.5 57.5 62.5 67.5 72.5 77.5 82.5
Height Height
Weight = -171.555 + 4.763 * Height; R"2 = .487 Weight = 28.77 + 1.501 * Height; R"2 = .066 (female)

Weight = -92.089 + 3.703 * Height; R"2 = .362 (male)

all groups together separate lines for each group

Multiple variables

You can plot more than one pair of variables on a single graph. StatView always displays sepa-
rate fitted lines for each pair.

Scattergram
240

220

N
o
o

[,
®
o

< Weight
o Weight-3yr

Y Variables
=
(2]
o

PR
SIS
o o

100
57.5 62.5 67.5 72.5 77.5 82.5
Height
Weight = -171.555 + 4.763 * Height; R"2 = .487
Weight-3yr = -116.903 + 4.068 * Height; R"2 = .36

Watch out for dissimilar scales

When combining several variable pairings in a single graph, you should beware of misleading
distortions caused by differing scales among the variables. For example, in the plot above, two
Y variables (original weight and weight after three years) can be combined in a single plot
because they measure the same individuals on the same scale, and showing them together
helps us compare the regression line slopes. However, if we include age on the x axis as well,
the dissimilar scales cause all the points for each variable to be squeezed together in thin

bands:
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Scattergram
TN S T T S S NI B
240 ° 5

* Age
o Height

o
100 LA L B B B B
10 20 30 4050 60 70 80 90
X Variables

Weight = -171.555 + 4.763 * Height; R"2 = .487
Weight = 139.786 + .776 * Age; R"2 =.008

This plot is misleading, because it makes it look like height and weight have strong relation-
ships and steep slopes. You can tell from the equations shown below the graph that the fit
actually accounts for relatively little variance and the slopes are not especially steep, but you
shouldn’t count on your readers looking that closely. If variables have dissimilar scales, you
should graph each pair of variables separately.

Less is more

Avoid cramming too much information into a single graph. For example, the second plot of
weight against height split by gender on p. 222 allows us to compare height-weight relation-
ships between men and women, and it suggests that men are heavier than women of the same
height and also that taller men are proportionally heavier than women—neither of which are
surprising, since men generally have broader builds than women. The plot of Weight and
Weight-3yr by height on p. 222 lets us compare the height-weight relationships for subjects at
the outset of a medical study and again after three years. While the subjects as a whole seem to
have lost a slight amount of weight, the relationship between height and weight seems to be
about the same. However, the following plot, which attempts to compare initial and third-
year weights between men and women, attempts too much. Even with different plotting sym-
bols and line types, this plot is difficult to interpret:

Scattergram
Split By: Gender

N
EN
o

N
N
o

N
o
o

Weight: male
Weight-3yr: male
Weight: female
Weight-3yr: female

Y Variables
e
N S (2] «©
o o o o

100
57.5 62.5 67.5 72.5 77.5 82.5
Height
Weight = 28.77 + 1.501 * Height; R*2 = .066 (female)
Weight-3yr = 492.55 - 5.375 * Height; R"2 = .127 (female)
Weight = -92.089 + 3.703 * Height; R"2 = .362 (male)
Weight-3yr = -107.576 + 3.96 * Height; R"2 = .435 (male)
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Linear regression

A regression line is a simple description of the relationship between ¥and X having the gen-
eral form

Y=0+mX,

where & is the intercept (where the line crosses the Yaxis at X = 0), and m is the slope
(change in Y divided by change in X). The exact equation for the line and the value of R
(which tells how much of the variance is accounted for by the model) are shown at the bottom
of the graph.

Scattergram
240 1 | 1 | 1 | 1 1 |

57.5 62.5 67.5 72.5 77.5 82.5
Height
Weight = -171.555 + 4.763 * Height; R"2 = .487

You can add confidence bands for the mean and/or the slope:

Scattergram Scattergram
99% Confidence Bands 99% Confidence Bands

100 T
57.5 62.5 67.5 72.5 77.5 82.5 57.5 62.5 67.5 72.5 77.5 82.5
Height Height
Weight = -171.555 + 4.763 * Height; R"2 = .487 Weight = -171.555 + 4.763 * Height; R"2 = .487
mean slope

A bivariate plot with a regression line is an excellent graph to use in conjunction with regres-
sion analysis to check visually how well a model fits the data. The Regression analysis also
offers a regression plot, but that plot is limited to one independent and one dependent vari-
able. The Bivariate Plot analysis offers more flexibility. You can combine more than one inde-
pendent (X) and dependent (Y) variable in a single plot, with separate regression lines for each
X-Y pairing. You can also plot subgroups of your data by adding a split-by variable, displaying
either a single fitted line for all the points or separate lines for each subgroup of points.

Keep in mind that a scattergram with regression lines is just a scattergram with fitted lines. If
you need to see summary information, an ANova table, residuals, or other such information
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you must perform a regression analysis. For more information, see the chapter “Regression,”

p.51.

Smoothing bivariate plots

Researchers often find it useful to add other types of fitted curves to bivariate plots. StatView
offers three forms of smoothing: cubic spline, lowess, and supersmoother.

Reasons for smoothing a graph are many. Sometimes a fitted curve is useful for reducing dis-
traction from “noise” or random error in a plot and getting an idea of which nonlinear models
might be effective for prediction. Sometimes the goal is to emphasize the shape in a plot, so
that the graph is more effective as a presentation tool. Other times, smoothing is used to help
interpolate values falling between a dataset’s cracks.

Most smoothers work by estimating an “average” value for y a few x values at a time, such as
the first four points, then estimating again for second through fifth points, then the third
through sixth points, etc. (Here, “average” does not necessarily refer to the arithmetic mean
but rather to whichever estimation method is being used.) The points being included in each
calculation are called the window, and the number of points included at a time is the window
width. A wider window produces a “smoother,” stiffer curve. A narrower window produces a
looser curve that clings more tightly to the data points.

StatView’s cubic spline smoother uses a window width of four points. Lowess uses the propor-
tion of the dataset you specify. Supersmoother calculates its own variable window width by
examining local slopes and variances at different regions along the x axis.

Researchers usually find a smoother curve easier to interpret and describe—for example, one
might observe from a downward-sloping linear regression, “As the dose of medication
increases from 0 to 60 mg, the blood pressure drops.” However, a looser fit sacrifices less
detail—for example, from a lowess curve with a low tension setting one might observe,
“Doses between 0 and 5 mg have negligible effect, while doses from 5 to 50 mg cause a steady
decrease in blood pressure, after which the effectiveness of the drug reaches a plateau; doses
above 60mg are toxic.”

Keep in mind that a smoothing is just a simplification of your data; it may or may not make
any sense in the context of the phenomena you are studying. The type of smoothing you
choose, the parameters you set, and the way you interpret the graph should all take into
account what your data mean, what your goal is in smoothing the graph, and what you learn
from other methods of analyzing the data.

Lowess

A more robust smoothing procedure than simple linear regression is locally weighted regres-
sion known as lowess (LOcally WEighted Scatterplot Smoother). StatView offers a least-
squares fit for lowess curves. For details on how lowess is computed, see Cleveland (1981);
simply looking at a few plots will give you an intuitive understanding of the procedure.
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Bivariate Scattergram with Lowess
Tension = 66
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A tension parameter between 1 and 100% controls how tightly the curve follows the data.
The value you specify determines how many of the graph’s points are included in the window
for each computation. A higher tension (e.g., 80) produces a tighter, straighter curve; a lower
tension (e.g., 20) produces a looser curve more strongly influenced by nearby data points. You
should choose a tension high enough to produce a smooth curve but low enough to convey

the shape of the data accurately. The default is 66.

Bivariate Scattergram with Lowess Bivariate Scattergram with Lowess
Tension = 80 Tension = 20
|

240 | | | 1 | | 240 | | | 1 1
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57.5 60 62.5 65 67.5 70 72.575 77.580 82.5 57.5 60 62.5 65 67.5 70 72.575 77.580 82.5
Height Height

No matter what your goals in smoothing a bivariate plot, you would be well advised to start
with a lowess smoothing of your data, so that you don't overlook any patterns that might be
obscured by linear regression or the other smoothers. Notice how the lowess fit of weight by
height calls attention to an S-shape in the data. Another advantage of lowess is its robustness
to outliers.

Supersmoother

Supersmoother is a smoothing method designed to vary its own tension locally to suit the
data. In areas of greater curvature or smaller variance, it uses less smoothing; in areas of lesser
curvature or greater variance, it uses more smoothing. In this way, the supersmoother seeks to
reveal the underlying relationship between x and y values in “signal-noise” data—data where y
values are thought to be some function of x plus random error. Supersmoother uses a local
cross-validation technique to determine how much smoothing (the span of the smoother) is
needed in each region along the x axis.



17 Bivariate Plots Fitted lines 227

Bivariate
1

Scattergram with Supersmoother
|

57.5 60 62.5 65 67.5 70 72.575 77.580 82.5
Height

Supersmoother is especially effective for hiding the noise in y values that are thought to be
some function of the x values. For example, below is a supersmoother fit for data generated by
aformula as y = x3sin(Ttx) plus uniform random noise. Notice that the curve’s shape is
quite close to that of the underlying function itself (from a formula without noise).

Bivariate Scattergram with Supersmoother Bivariate Scattergram with Cubic Spline

.4\ll\\\\\\\\\l\\\\\\\\\l S I T T T S T T T T N T

.35 | o © r
3 -
.25 |
2
> 15 |
1

T
X"3*sin(Tx)

B o e e o e BN e e e 15 T T T T T

0 .2 .4 .6 .8 1 1.2 0 .2 .4 .6 .8 1 1.2
X X

Cubic spline

Cubic spline smoothing fits a series of cubic (third-order) polynomials to fit a moving window
of data, four points at a time. These polynomials are connected to produce a smooth curve
passing through each of the actual data points whenever possible.

Bivariate Scattergram with Cubic Spline
240 I 1 1 L I I I 1
*

100 T T T T T T T T

T
57.5 60 62.5 65 67.5 70 72.575 77.580 82.5
Height

Because the Weight by Height plot has multiple Y values for some values at X, it isn't possible
for cubic spline to connect all points.
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Cubic spline fits are useful for interpolating values between data points, since they usually
connect the actual data points. (Other smoothing methods convey the shape of the plot with-
out necessarily coinciding with any measured values.) For that very reason, however, cubic
splines are only useful when you believe your data measurements contain little or no error,
since large amounts of scatter from the “true” values would unduly influence the shape of the
curve and cause it to be misleading.

Consider how well this spline fitting of just four points chosen at random (using Random
Criteria, discussed under “Criteria pop-up menu,” p. 128 of Using StatView) along the func-
tion y = x3sin(Tx) approximates the actual curve above:

Bivariate Scattergram with Cubic Spline
Inclusion criteria: 10% Rows Included from supersmoother
I 1 I I I I I

.35 -

.25 r

.15 r

X3*sin(Tx)

.05 7 r
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Dialog box settings

When you create a bivariate plot or edit it using the Edit Analysis button, you see the dialog
box below.

Bivariate Plot

Display lines:
@ None
() Cubic spline

O Lowess

() Supersmoother

(O Regression with% confidence for [] Msan

O siepe
iihen spitf, show Haes fon
@ st groups tegether O each group separalely

Cancel

Display lines You can optionally add one of four types of fitted lines to your graph; for a dis-
cussion, see “Fitted lines,” p. 221. For lowess, specify the percentage of the dataset (between 1
and 100) to include in each window. The default is 66%.

If you display regression lines, you can also specify a confidence level and show confidence
bands for the mean of Yas predicted by the regression for a given value of X. You can also
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show confidence bands for the slope of the regression line. The default is 95% confidence, but
you can specify a different percentage.

When split, show lines for When the graph is split by one or more nominal variable(s), val-
ues for each group of subgroup of the data are shown by different plotting symbols, colors, or
fill patterns. You can choose fitted lines (regression, cubic spline, lowess, or supersmoother)
that are computed and drawn separately for each (sub)group or a single fitted line for all the
data. For graphs with more than one X-Y variable pair, fitted lines are always computed and
drawn separately for each pair; this option only applies to split-by variables.

Data requirements

Results

Bivariate plots can be generated for one or more continuous or nominal X variables vs. one or

more continuous or nominal Y variables. Fitted lines are only available for plots of continuous
variables.

If there is a single X variable and more than one Y variable, each Y variable is plotted against
the X variable. The same rule applies if there is a single Y variable and more than one X vari-
able. If multiple X and Y variables are plotted, the first X assigned is plotted against the first Y,
the second X against the second Y, and so on.

Variable browser buttons
X Variable Select one or more variables and click X Variable.
Additional variables are added to the same plot.
Y Variable Select one or more variables and click Y Variable.
Additional variables are added to the same plot.
Split By The groups of any nominal variable(s) assigned using the Split By button appear in the legend.

The default plot is a scattergram.

Scattergram Shows one point for each X-Y pair. Regression lines, confidence bands, and equations, or cubic
spline, lowess, or supersmoother fits may be added for the entire plot or for each group of a split-
by variable.

Line Chart Shows one point for each X-Y pair. The points are connected by lines. Regression lines, confidence
bands, and equations, or cubic spline, lowess, or supersmoother fits may be added.
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Templates

The following templates provide bivariate plots.

Graphs

Bivariate Line Chart

Line chart for continuous X and Y variables and optional split-by
variable.

Bivariate Line Chart
(Groups)

Line chart for nominal X and continuous Y variables and optional split-
by variable.

Bivariate Regression
Plot

Scattergram with regression line and equation for continuous X and Y
variables and optional split-by variable. If you assign a split-by
variable, you get separate regression lines for each group.

Bivariate Scattergram

Scattergram for continuous X and Y variables and optional split-by
variable.

Bivariate Scattergram
(Groups)

Scattergram for nominal X and continuous Y variables and optional
split-by variable.

Cubic Spline Fit

Scattergram with cubic spline fit for continuous X and Y variables and
an optional split-by variable. If you assign a split-by variable, you get
separate fitted lines for each group.

Lowess Curve Fit

Scattergram with lowess curve fit (tension=66%) for continuous X and
Y variables and an optional split-by variable. If you assign a split-by
variable, you get separate fitted lines for each group.

Scatter Matrix 3x3

3x3 matrix of scattergrams, with one scattergram for each X-Y pairing
of continuous variables.

Scatter Matrix 4x4 w
Histograms

4x4 matrix of scattergrams, with one scattergram for each X-Y pairing
of continuous variables; diagonal cells have histograms with normal
aurves.

Scatter w Histograms

Scattergram for continuous variables; has histograms with normal curves
along top and right sides.

Supersmoother Curve
Fit

Scattergram with supersmoother fit for continuous X and Y variables
and an optional split-by variable. If you assign a split-by variable, you
get separate fitted lines for each group.

Exercises

Bivariate scattergram

The dataset used in this chapter’s discussions, Lipid Data, records blood lipid levels and other
cardiovascular risk factors measured for medical students when they were freshmen and again
when they were seniors. In this exercise you examine the relationship between freshmen’s cho-
lesterol counts and those taken three years later, after they had received instruction on reduc-

ing cholesterol through dieting. You will also examine whether this relationship is the same for
male and female students.
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Open Lipid Data from the Sample Data folder

From the Analyze menu, select New View

In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis

Click OK to accept the default parameter settings

In the variable browser, select Cholesterol and click X Variable
Select Chol-3yrs and click Y Variable

The dataset includes a nominal variable which identifies the gender of the student. We can use
this variable to split the observations into the different groups.

* In the variable browser, select Gender and click Split By
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The male and female observations are distinguished by different plotting symbols, colors, or
fill patterns, depending on your Graph Preferences.

Linear regression

To determine whether a different relationship exists between the cholesterol levels for males
and females we can calculate a simple regression and add the fitted line to the graph.

* Click Edit Analysis

We have the option of displaying a single line for all observations or calculating a different
regression for each group. We want separate lines for each group, so we can compare males
and females.

* Choose Regression lines

¢ Choose Each group separately and click OK
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Scattergram
Split By: Gender
| 1 1 1 |

100 140 180 220 260 300
Cholesterol

Chol-3yrs = 60.308 + .584 * Cholesterol; R*2 = .808 (female)
Chol-3yrs = 40.599 + .744 * Cholesterol; R"2 = .501 (male)

Notice that the equation for each line as well as the R* values are added to the bottom of the
graph. You can see there is a slight difference between males and females. The difference is not
significant, which you can see if you add confidence bands for the mean (Click Edit Analysis
to see the dialog box). If we showed the regression line for all groups together there would be
only a single regression line and the simple regression would be calculated using all the data.

Bivaniate plot with nominal data

Bivariate plots can have nominal as well as continuous variables assigned to the X or Y axis.
When assigning a nominal variable, you can construct a graph to compare the different distri-
butions of the data in each of the nominal variable’s groups. The previous example showed a
difference between the cholesterol reduction in male and female students. We can use the
bivariate plot to examine the differences between the weights of the male and female students.

e Make sure that Lipid Data is still open

* Ifany results are still selected, click in the empty area of the view window to turn the selec-
tion off

* In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis
* Click OK to accept the default analysis parameters

¢ In the variable browser, select Gender and click X Variable

*  Select Weight and click Y Variable
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Scattergram

male
Gender

As you might expect, weights for female students are less than those of male students.

Cubic spline

Next we will examine time series data from Neter, Wasserman, and Whitmore (1988). Beer
Sales records monthly sales of beer in hectoliters, along with the average high and low temper-
atures in the region, over a period of five years. First, let’s use a cubic spline to see how beer
sales change over time.

* Open Beer Sales from the Sample Data folder

e From the Analyze menu, select New View

* In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis
* Click OK to accept the default parameters

¢ In the variable browser, select Month and click X Variable

¢ Select Beer Sales (HI) and click Y Variable

Bivariate Scattergram
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It is hard to see much of anything in this plot. Adding a cubic spline is often helpful for visu-
alizing patterns in time series data.

e Make sure the graph is still selected
* Click Edit Analysis
¢ Choose Cubic spline and click OK
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Bivariate Scattergram with Cubic Spline
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Now we can see that the sales follow a pretty clear seasonal pattern each year. However, we can

still make this plot easier to read. Many researchers find it helpful to make plots of time series

data several times wider than they are tall, especially when the data are periodic with several

cycles. For monthly data, they prefer axis ticks at each year.

* Click and drag the selection handles on the right axis to the right to make the graph wider

*  Select the X-axis and click Edit Display

¢ Specify bounds of 0 and 61 for From and To
*  Specify 12 for Major interval width

* Click OK

Bivariate Scattergram with Cubic Spline

120 L T T T T T

0 12 24 36 48 60
Month

Notice how the cubic spline curve guides your eye and makes a seasonal trend apparent.

We

can easily see that beer sales are at their lowest each January, and they tend to rise steadily from

winter to summer, dropping again in the autumn.

Having discovered a seasonal pattern to beer sales, we might want to look for a relationship

between beer sales and temperatures. Do people buy more beer when the weather is hotter?

Let’s clone this cubic spline plot for high and low temperatures.
* Make sure the graph is still selected

* In the variable browser, select both High temp (C) and Low temp (C)
Shift-click or click and drag to select several adjacent variables.

¢ Control-Shift-click (Windows) or Command-Shift-click (Macintosh) the Y Variable but-

ton
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Lowess fit

Next, adjust the size and axis settings for the graph the same way you did on the last plot. You

might also want to use the Draw Palette to choose special plotting symbols, as we did.

Bivariate Scattergram with Cubic Spline
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Beer sales certainly do seem to follow the same pattern as temperatures do over time. Can we
use the temperatures to predict beer sales? Lowess would be a good way to start looking for a

relationship.

* Click in the blank area of the view to make sure nothing is selected

* In the analysis browser under Bivariate Plots, select Scattergram and click Create Analysis

¢ Choose Lowess and click OK

¢ In the variable browser, select High temp (C) and click X Variable

¢ Select Beer Sales (HI) and click Y Variable

* Select Low temp (C) and Control-Shift-click (Windows) or Command-Shift-click (Mac-

intosh) the X Variable button

Bivariate Scattergram with Lowess
Tension = 66
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These lowess curves suggest that temperatures might indeed be a good predictor for beer sales.



236 17 Bivariate Plots Exerases

Supersmoother

Time series data are often so “jaggy” that it is difficult to detect patterns in the data. Smooth-
ing methods such as supersmoother can simplify the plot.

* In the view window, select the plot of Beer sales (HI) by Month
* Click Edit Analysis
* Choose Supersmoother and click OK

Bivariate Scattergram with Supersmoother
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Cell Plots

Cell plots graph means or sums of variables and can show the variability around means. They
are useful for showing the side by side comparison of continuous variables measured for each
of several nominal groups.

When your data fall into groups, it is common to question whether some factor affects the
groups in the same way or affects each group differently. You may know that the means of the
two groups are different, but you also want to know the effect of one or more additional fac-
tors on the relationship. Cell plots present a set of lines, bars or points so you can visually
compare variable to variable and group to group. This is extremely useful in conjunction with
any statistic that tests differences among groups, such as ANova and #tests.

As an example, suppose you have two nominal variables A and B, and a continuous variable Y.
You may know that the mean of Y is different for different levels of A or of B, but the question
remains whether there is any interaction effect, i.e., whether the relationship among the
means for the different levels of A is affected by the level of B and vice versa. In a cell line plot
with A on the axis and B in the legend, the lines will show you whether this interaction is
present or not: if not, the lines will have the same pattern for each level of B; if so, the lines
will show different patterns depending on the levels of B.

Cell plots can depict data as bar charts (often referred to as side-by-side bar charts), line
charts, or point charts. You can choose which graphing variable appears on the horizontal axis
and which appears in the legend. If you are examining means, you have the option of adding
error bars. Edit Display lets you modify the structural appearance of cell line plots; see “Cus-
tomizing results,” p. 179 of Using StatView.

Dialog box settings

When you create a cell plot or edit it using the Edit Analysis button, you see the dialog box
below. Cell plots have two simple statistics associated with them—sums and means. You
choose which to graph for the variables you select. If you select means, you can also specify
whether to display error bars. These choices are found in the Cell Plot dialog box:
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Cell Plot

Display: (@ Means ) Sums

[J Show error bars

wnifarg ereoris}
andard deplationisy
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If you want to show error bars, you must choose Means at the top of the dialog box; you can-
not use error bars with Sums. If you show error bars, they can represent a specified number of
standard errors, a specified number of standard deviations, or confidence intervals at a speci-
fied level. When you display error bars but they do not show in a particular cell, it is because
there is only one observation in that cell.

There is an additional setting for cell line charts, found in a separate dialog box. For plots with
more than one variable, you can eliminate the lines that connect points from different vari-
ables. Select only the plot (not the entire graph) by clicking on a point or line. Click the Edit
Display button and the Cell Line Plot dialog box appears:

Cell Line Plot

[ Connect lines between variables

(oow) (o) ()

Uncheck the option to turn it off and click OK. To preview the change first, click Show.

Data requirements

Cell plots can be generated for one or more continuous variables. Nominal grouping variables
are optional.

Variable browser buttons

Add To generate a cell plot, select one or more continuous variables and click Add. The groups of
any nominal variable assigned using the Add button appear on the horizontal axis.

Each additional continuous variable assigned is added to the same plot. Each additional nominal
variable assigned creates new cells which are shown on the horizontal axis.

Split By The cells of any nominal variable(s) assigned using the Split By button appear in the legend.
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Results

Templates

Exercises

For explanation of the plots, please see the preceding discussion. The default plot is a line

chart.

Point Chart Shows the means or sums of the cells or variables as points. Error bars can be displayed for means.

Line Chart Shows the means or sums of the cells or variables as points connected by lines. Error bars can be
displayed for means.

Bar Chart Shows the means or sums of the cells or variables as bars. Error bars can be displayed for means.

The following templates provide cell plots.

Graphs Cell Bar Chart Cell bar chart for continuous measurement variable, nominal variable

for the horizontal axis, and optional Split By variable for the legend.

Cell Line Chart Cell line chart for continuous measurement variable, nominal variable
for the horizontal axis, and optional Split By variable for the legend.

Cell Point Chart Cell point chart for continuous measurement variable, nominal variable
for the horizontal axis, and optional Split By variable for the legend.

The dataset you will use in this exercise contains measurements of gas tank size for 116 cars of

various types from different countries. You will compare the average size of gas tanks for each

country of manufacture as well as see whether the type of car affects gas tank size.

Open Car Data from the Sample Data folder

From the Analyze menu, select New View

In the analysis browser under Cell Plots, select Bar chart and click Create Analysis
Click OK to accept the default parameters

In the variable browser, select Gas Tank Size and click Add

Cell Bar Chart

Gas Tank Size
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The bar represents the mean size of all 116 gas tanks. We want to compare size for both coun-
try of origin (Japan, Other and usa) and type of car (Small, Sporty, Compact, Medium and
Large). The groups of any nominal variable assigned to the cell plot using the Add button
appear on the horizontal axis. The groups of any nominal variable assigned to the cell plot
using the Split By button appear in the legend, and appear side-by-side within the other
groups in the bar chart. Whether to add a nominal variable or split by a nominal variable
depends on which factor you wish to emphasize in the graph. In this exercise, we are primarily
interested in how the type of car affects the size of the gas tank in a particular country.

* In the variable browser, select Country and click Add

* In the variable browser, select Type and click Split By

Cell Bar Chart
Grouping Variable(s): Country
Split By: Type
22.5
o 20
N
(7}
él?ls [] smal
L ] sporty
@ 12.5 1
& B compact
5 10
Lo . Medium
S 7.5
[
Large
£ W Lo
8 25

o

Japan Other USA

Now you can see for each country of manufacture how the type of car affects the gas tank size.
You can also see how the pattern of the effect of type on gas tank size varies from country to
country. If you were interested in examining gas tank size with the roles of country and type
reversed, you would construct the cell bar chart differently.

* In the variable browser, select Type and Country and click Remove

You will now assign these variables in a different order.

* Select Type and click Add

The horizontal axis has five different tick marks, one for each group, with a single bar repre-
senting the means of the gas tanks sizes for each type of car.

* Select Country and click Split By
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Cell Bar Chart
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Now you can see for each type of car how the country of manufacture affects gas tank size.
You can also see how the pattern of the effect of country on gas tank size varies from type to

type.

By choosing a line chart you can display the different groups as lines with different symbols as
opposed to side-by-side bars.

¢ Make sure the bar chart is still selected
* In the analysis browser under Cell Plots, select Line Chart and click Create Analysis
Cell Line Chart
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Point charts are similar to line charts except they display the value of the mean as a single
point as opposed to a line. Points are not connected with lines and points for a split cell are
displayed side-by-side instead of stacked. They are most useful when you are displaying error
bars as well.

* Click in the empty space of the view to deselect all results
* In the analysis browser, select Point Chart and click Create Analysis

¢ Check Show error bars, choose standard deviation, and click OK
(Accept the default setting of 1 standard deviation.)

* In the variable browser, select Weight and Type and click Add
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Cell Point Chart
Grouping Variable(s): Type
Error Bars: + 1 Standard Deviation(s)
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These examples have compared different groups, but you can also use cell plots to compare
the means or sums of different variables. To do that you would use the Add button to assign
the continuous variables to the cell plot. A bar or point appears for each assigned variable.



Box Plots

A box plot is a graph for displaying the 10th, 25th, 50th, 75th and 90th percentiles of a vari-
able. You can use box plots to compare variable distributions, or to see the distribution of a
single variable. Each box plot is composed of five horizontal lines that display the 10th, 25th,
50th, 75th and 90th percentiles of a variable. All values for the variable above the 90th per-
centile and below the 10th percentile are plotted separately, so box plots are especially useful
for displaying outliers.

The box plot allows you a great deal of flexibility, comparing not only the distribution of an
entire variable or variables but also comparing the distributions of groups defined by nominal
variables. In addition, you can plot the outliers and display notched box plots that represent a
95% confidence interval around the median in addition to the percentiles. Edit Display lets
you modify the appearance of box plots; see “Customizing results,” p. 179 of Using StatView.

Dialog box settings

Box plots have no analysis parameters, but you can choose whether to display notches repre-
senting a 95% confidence interval for the median. Select the interior of the plot and click Edit
Display to display the Box Plot dialog box.

Box Plot

Select a box plot style:

H:::

[Show] [Eancel] [[ 0K ]]
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Data requirements

Box plots can be generated for one or more continuous variables. Nominal grouping variables

are optional.

Variable browser buttons

Add

To generate a box plot, select one or more continuous variables and click Add. The groups of
any nominal variable assigned using the Add button appear on the horizontal axis.

Each additional continuous variable assigned is added to the same plot. Each additional nominal
variable assigned creates new cells which are shown on the horizontal axis.

Split By

The cells of any nominal variable(s) assigned using the Split By button appear in the legend.

Results

For explanation of the plots, please see the preceding discussion.

Box Plot

Shows the [0th, 25th, 50th (median), 75th and 90th percentiles of a variable. Values above the 90th
and below the 10th percentile are plotted as points.

Notched Box Plot

Shows the same information as a Box Plot with the addition of a notch showing the 95% confidence

interval around the median.

Templates

The following template provides box plots.

Graphs

Box Plot

Box plot for continuous measurement variable, nominal variable for the
horizontal axis, and optional Split By variable for the legend.

Exercises

The data used in the following exercises comes from medical students. Blood lipid levels and
other cardiovascular risk factors are evaluated in students as freshmen and later as seniors. In

these exercises you examine the distribution of several of the lipid measurements. You will also
see if there are any differences between the distributions for males and females.

¢ Open Lipid Data from the Sample Data folder

* From the Analyze menu, select New View

* In the analysis browser, select Box Plot and click Create Analysis
¢ In the variable browser, select Cholesterol and Chol-3yrs and click Add
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Units

The box plot allows you to
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compare the distributions of these variables. Box plots work simi-

larly to cell plots discussed above. You can group boxes along the horizontal axis as well as
using the legend to distinguish groups. To examine whether the distributions compare for

males and females:

¢ In the variables browser,
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select Gender and click Split By

Box Plot
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The male and female groups appear next to each other so you can compare their distributions.

You could just as easily add nominal variables which would break the groups out along the
horizontal axis by using the Add rather than the Split By button.
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Compare Percentile Plots

A compare percentiles plot allows you to compare the distributions of two groups of one or
more continuous variables. It graphs 19 corresponding percentiles of one group set against
another group. The percentiles graphed are the 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80,
90, 95, 96, 97, 98, and 99th percentiles.

If either group has less than fifty values, not all percentiles can be calculated, so the plot dis-
plays as many percentiles as can be computed. The plot is designed to compare two groups
only, so the assigned nominal variable can contain only two groups.

Dialog box settings

When you create a compare percentiles plot or edit it using the Edit Analysis button, you see
the dialog box below. The first setting makes the axis lengths equal. The second displays a
diagonal line to makes it easier to see if the percentiles for the two groups are similar. If iden-
tical, they would lie exactly on this line. Both options are checked (turned on) by default:

Compare Percentiles

K Make H & ¥ axes equal
[ Display H = ¥ line

Data requirements

Compare percentile plots are generated using one nominal variable with two groups only and
one or more continuous variables.

Variable browser buttons

Add To generate a compare percentiles plot, select a nominal variable with two groups only and one
or more continuous variables and click Add.

Each additional variable assigned is added to the same plot.

Split B The cells of any nominal variable(s) assigned using the Split By button appear in the legend.
piit by Y g g plit by pp 4
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Results

For explanation of the plot, please see the preceding discussion.

Compare Shows nineteen percentiles of one group on the vertical axis against the corresponding percentiles of
Percentiles Plot | another group on the horizontal axis.

Templates

Exercise

The following templates provide percentile results.

Descriptive Statistics | Percentiles Percentiles summary table and plot for continuous variable.
Graphs Compare Percentiles | Compare Percentiles plot for continuous variable and two-level nominal
variable.

The data used in the following exercise comes from medical students. Blood lipid levels and
other cardiovascular risk factors are evaluated in students as freshmen and later as seniors. In
the following exercises you will compare the distribution of cholesterol values for male and
female freshmen.

¢ Open Lipid Data from the Sample Data folder

* From the Analyze menu, select New View

* In the analysis browser, select Compare Percentiles and click Create Analysis

You have two options which help you analyze the information displayed in the graph. You can
make axes the same size in order to produce a square graph. You can also display a reference
line which fits the line X = Y. If the distributions of both variables is equal, all points fall on
this X = Y line.

* Leave both options selected and click OK

¢ In the variable browser, select Gender and Cholesterol and click Add
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent variables
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Percentile Comparison for Cholesterol
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The 1st, 2nd, 98th, and 99th percentiles are missing in this chart; recall that not all percen-
tiles can be calculated when a group has fewer than fifty values, as is the case with females. The
point in the lower left hand corner of the graph is the 3rd percentile of females plotted against
the third percentile of males. The point at the upper right hand corner is the 97th percentile
of females plotted against the 97th percentile of males. At the 50th percentile the cholesterol
values are almost exactly equal—the value lies almost directly on the X =Y line. Below the
50th percentile, the female cholesterol count is higher than the male at every percentile. How-
ever, between the 50th and 80th percentiles the male cholesterol count is higher than the
female count. At the upper extreme, the 90th to the 97th percentiles, the females once again
exceed the males.
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QC Subgroup Measurements

This chapter, the first of five regarding StatView’s quality control tools, introduces quality
control and statistical process control (spc) in general and then goes on to discuss QC Sub-
group Measurements methods in particular. Subsequent chapters discuss StatView’s other QC
methods: “QC Individual Measurements,” p. 277, “QC P/NR” p. 287, “QC C/U,” p. 299,
and “Pareto Analysis,” p. 309.

Introduction to SPC

Industries employ processes to manufacture products. Laboratory technicians use a process to
sample blood. Educators employ processes to educate students. Baseball players employ a pro-
cess when they swing at a pitched ball. In all of these cases, a process may be regarded as any
series of actions that produces a measurable result. In each case, we can use data about the
results of a process (be these results widgets, student test scores or whether a swatted ball is a
hit or an out) to infer important characteristics about the process itself.

What is statistical process control?

Statistical process control (spc) concerns itself with particular statistical characteristics of pro-
cesses. Whether spc is used to analyze measurements or attributes of items, the goal of most
spc analyses is to evaluate whether a process matches the statistical definition of being in con-
trol. Understanding the statistical concept of control is the key to understanding much of
what quality control statistics are all about.

When is a process in control?

What does it mean for a process to be in control? In the context of spc statistics, an in control
process is one that produces items that vary within the limits proscribed by a particular statis-
tical distribution. Though the distribution that is used depends on the particular process con-
trol statistic (see the “Discussion” sections in each chapter), it is the distributions that provide
the basis for computation of control limits. If the data conform to the assumptions embodied
in these distributions, then an in control process, according to statistical theory, will only very
rarely violate (exceed) the computed control limits. It stands to reason, then, that the most
likely cause of a violation of these limits is that the data do not match the assumptions of the
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statistics. Violations usually indicate that items produced do not come from the distribution
that the particular spc statistic assumes.

There are several reasons why data may not conform to the distribution assumed by a particu-
lar spc statistic. Among the most common reasons are: 1) the process inherently is not well-
modeled by the distribution assumed in the chosen QC statistic, and 2) the process is well-
modeled by the distribution assumed in the chosen QC statistic, but factors presently in the
process cause the items produced to deviate from their expected distribution. This distinction
is rather subtle but very important. A violation due to reason 1 suggests that the process is
behaving properly, but the analyst is not using the correct distribution to model it. Violations
due to reason 2 imply that the analyst is using the appropriate model of the process, but the
process itself is not behaving propetly (i.e., the process is out of control).

Clearly, the analyst must try to distinguish between these 2 possible causes of violations. To
determine if the violation is due to reason 1, the QC analyst should re-examine the data and
the process to make sure that she is using the correct spc statistic and to be certain that the
process can be modeled by any spc statistic. This generally means that the analyst must evalu-
ate whether the data deviate significantly from a particular distribution. After confirming that
the violation is not due to reason 1, the analyst usually concludes that the cause of the viola-
tion is reason 2. Violations due to reason 2 are due to assignable causes. The task of bringing
the process under control then becomes that of isolating and then eliminating any assignable
causes.

Suppose, for instance, that a technician in a chemistry lab is pipetting a culture medium into
petri dishes (this is a process). Measurements of the amounts of medium in each petri dish are
the measurements of items produced. At some point the technician replaces the tip of the
pipette. Because not all pipet tips are identical, the new pipet tip will deliver either more or
less medium than did the original tip. The process has therefore changed. If the process has
changed substantially (i.e., the new pipet tip is significantly larger or smaller than the origi-
nal), then the measurements will very likely violate the control limits. In this case, changing to
a new pipet tip is the assignable cause that causes measurements to violate the control limits.
After changing to a new pipet tip, the technician is sampling from a different distribution, one
with a different mean and probably a different variance than that sampled from the original
pipet tip. The result is an out of control process.

Process control vs. process capability

Up to this point, we have only discussed process control. The concept of control is always
defined in statistical, rather than absolute terms. As mentioned above, if a process is in con-
trol, that means only that the process produces items that vary within the limits proscribed by
a particular statistical distribution. Control is not equivalent to repeatability or precision. For
instance, measurements from an in control process can vary quite substantially as long as they
do not depart from the expectations based on a particular statistical distribution (i.e., the vari-
ance for an in control process can be arbitrarily large, and thus not very precise).

By contrast, the related concept of process capability does place absolute bounds on the range
of acceptable variation in a process. To say that a process is capable means that it is both in
control and that a high percentage of the items it produces are within certain specification
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limits. Specification limits are the upper and lower acceptable values for measurements of the
items produced by a process: items with measurements above or below these limits are
rejected. What constitutes criteria of acceptability could be determined, for instance, by engi-
neers who require that a part match certain specifications to function properly, or by the
demands of the marketplace, which require that products meet certain standards of, say, dura-
bility or performance.

In fact, it is quite possible that a process that produces items well within specification limits
may be out of control and therefore not capable. Below is an example of an individual mea-
surement chart for a process that is out of control, even though the items it produces are
within the specification limits (the latter indicated by the heavy black lines). Along with show-
ing two observations beyond the upper control limit (points labeled 1), these data show other
violations of control as well (indicated by all points labeled with numbers; see “Tests for spe-

cial causes and custom tests,” p. 289).
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Conversely, a process that is in control may be producing items that are not within specifica-
tion limits, as illustrated in the individual measurement chart below. In this case, there are two
measurements (observations 12 and 20) that are beyond the lower specification limit, yet
these are still well within the control limits.
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These examples highlight the relationship between the concepts of process control and process
capability. These characteristics of processes must be examined separately and in sequence.
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An example

First, you must establish that the process is in control; then you can determine whether or not
the process is capable. Obviously, statistical process control involves much than simply pro-
ducing items within specification limits. Processes also must be statistically well-behaved.

Why examine process control and process capability?

Why is it necessary to make the distinction between process control and process capability?
The most important reason is also the most pragmatic: the steps taken to remedy an out of
control process generally differ from those used to remedy an in control process with poor
capability (i.e., the process yields unacceptably few items within specification limits).

For example, when the QC analyst recognizes that a process is out of control, she must
attempt to trace the cause to a specific source of systematic variability (i.e., an assignable, or
special cause) and to eliminate this cause. (The explanations given for each of the eight tests
for special causes are of particular help when initiating such an investigation. See“Tests for
special causes and custom tests,” p. 289.) Examples of systematic causes of variation are:

trends in operator fatigue, systematic occurrence of impurities in manufacturing materials,
drift in the adjustment of manufacturing devices and production of items by different opera-
tors.

When, however, the QC analyst finds that an in control process is not very capable, she uses a
different strategy to correct the problem. Low capability generally has one or both of two
causes: 1) the process is not centered on the target value (the optimal value set by specifica-
tions), or 2) there is too much random variability in the process. The first cause is generally
the easiest to fix: simply adjust the process (often the machinery used) to produce items closer
to the specification target. The second cause is generally more difficult to trace and often more
costly to fix. There are many potential causes of random variability within manufacturing pro-
cesses, but it is precisely because the variation appears random that such causes are so hard to
identify (keep in mind that known causes of variation are, by definition, non-random). One
common cause of random variability is worn production machinery, which, in some cases,
can be remedied only by replacement or costly reconditioning.

Now, we consider the application of StatView’s spc statistics to a real life problem.

The Acme Fastener Company has begun to manufacture bolts. The important properties of a
bolt are its length, its diameter, whether it has any nicks or scratches on the threads, and
whether it has any discolorations.

The first thing Acme wants to do is establish that their production process is in control. In the
language of spc, they want to be sure that what is governing the inevitable variations in length
and diameter of their bolts is a constant-cause system, not assignable causes. Putting it
another way, they want to be sure that the variation in length and diameter of their bolts is
random and centered around a mean—that it follows a normal distribution—rather than
being due to non-random causes such as variation among machines or production by different
operators. At this point, they are not primarily concerned with whether the lengths and diam-
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eters of the bolts are within the desired specification limits. They are mainly concerned with
describing the pattern of variation in length and diameter.

They begin by developing control charts. They produce one series of control charts for length,
and one for diameter. We will concentrate on the diameter charts, but what we say about
them will apply equally well to the length charts.

As a result of reading textbooks on spc, Acme decides that they should measure and record the
diameters of four bolts every half hour. In other words each subgroup will consist of measure-
ments of diameters from four bolts.

They will plot Xbar (sample mean), S (sample standard deviation) and cusum (cumulative
sum) charts. That is, each point on the Xbar chart will be the mean of the four diameter mea-
surements for a subgroup, and each point on the S chart will be the standard deviation of the
four diameter measurements for a subgroup. The cusum chart plots cumulative sums and is
used to complement the information in the Xbar chart. To generate their charts, the QC ana-
lysts at Acme simply choose among the QC Subgroup Measurements items in the StatView
analysis browser.

They measure diameters of bolts from 30 subgroups, and they use these data to establish an
upper control limit (ucL), a lower control limit (LcL), and center line for the Xbar and S
charts. They find that they have to make a few adjustments in their lathes, and that they have
to correct the techniques of several operators, but soon their process is in control. Although
the adjustments took some time, they were able to easily recreate the same analyses; with Stat-
View’s template feature, all they need to do is save the view and then they can rerun the same
analyses whenever they get new data.

Now the Acme management wants to know if the bolt diameters adequately meet specifica-
tions. Long before production ever began, Acme held meetings with design and production
engineers, marketing and customer support personnel to establish specification limits for their
bolt diameter measurements. These limits are intended to enforce production of bolts that
meet market requirements, without resulting in excessive rejection of bolts and a process that
is too costly to implement. Using these specification limits, Acme will now determine if the
bolt production process is capable, i.e., does it produce bolts that meet specifications?

Using the capability analysis supplied within QC Subgroup Measurements, Acme finds that
all of their capability indices are well above 1.33. This means that only a very tiny percentage
of bolts have diameters that do not fall within the specification limits. Acme is quite satisfied
with this result.

They quickly realize, however, that they will be spending a lot of time on their spc analyses if
they continue to analyze every dimension and property of their bolts. There is an alternative.
A less labor-intensive measure of process control is p/np analysis. This analysis allows Acme
simply to count the number of unacceptable bolts, and use these counts to evaluate whether
or not the process is in control.

The big advantage of p/np analyses is that you can use any rejection data, regardless of the
causes of the rejections. So, using p/np analyses, Acme can analyze the entire process by essen-
tally pooling data from a number of observations and measurements. Suppose, for instance,
Acme uses the following criteria for rejection of any bolt:
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if more than one scratch on a thread, reject bolt;
if more than one nick on a thread, reject bolg;
if more than two discolorations, reject bolt;

if bolt diameter greater than D, millimeters or less than D; millimeters reject bolg;

DA A .

if bolt length greater than L, millimeters or less than L, reject bolt.

Using a p chart from StatView, Acme plots the fraction of nonconforming items (i.c., rejected
bolts) per subgroup (each subgroup comprises a subsample of bolts produced in an hour).
Since the values from the various subgroups are expected to follow a particular statistical dis-
tribution, the p chart can plot control limits based on this distribution (or some approxima-
tion of it). As it turns out, none of the subgroup proportions is beyond the control limits, so
Acme concludes that the process is in control.

To make it easier to move bolts to and from the inspection station, Acme now wants to put
the bolts in boxes, each containing 100 bolts. Since it is much easier to record the number of
defective (nonconforming) bolts per box, rather than keep a running count of all of the defec-
tive bolts, Acme shifts to using ¢/« analyses. The c¢/u statistics analyze the numbers of noncon-
formities per inspection unit (in this case, the number of defective bolts per box). Acme
chooses to use # charts, which plot the average number of nonconformities per inspection
unit for each subgroup.

Having standardized on # charts for all of their preliminary spc analyses, Acme creates a u
chart template that uses a preset value of #. This preset value is based on Acme’s production
history; using this historical value allows Acme management to see immediately if the num-
ber of defects per inspection unit has significantly improved or declined relative to the histori-
cal average.

Acme also uses Pareto charts in association with their # charts. Though the # charts do a good
job of tracking the number of nonconformities of @ particular type, it is also essential that
Acme knows the relative frequencies of the various types of nonconformities; this information
is concisely summarized in Pareto charts. If Acme sees that almost all of their defective items
are attributable to just one or two types of defects, then they probably shouldn’t spend much
time trying to improve the incidence of other types of defects. This is just one of the ways that
Pareto charts can help QC analysts and process engineers decide which problems are most
worthy of their attention.

As you can see, a complete quality improvement program can involve a variety of the spc anal-
yses available in StatView. Effective use of all of these analyses is the key to improving quality.
Each is appropriate under specific circumstances. In overview, the measurement analyses
(individual and subgroup analyses) provide very specific information about the results of a
process. These analyses focus on one measurement at a time (e.g., bolt diameter) and are of
great utility when trying to track down specific assignable causes. Attribute analyses (e.g.,
counts of defective bolts) provide less specific information about a process (e.g., bolts can be
defective for any number of reasons), but can be used effectively as a less labor-intensive
means to monitor a process once it is under control. Finally, Pareto charts can be used effec-
tively to identify the most problematic sources of defects in a process. Far from mutually
exclusive, these analyses should be regarded as complementary when trying to establish a com-
plete approach to quality improvement.
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Subgroup measurements

In statistical process control, measurements of items resulting from a process and sampled in
natural subgroups are analyzed with subgroup measurement statistics. What constitutes a nat-
ural subgroup depends on the context in which the data are collected. In some cases, sub-
groups could be blocks of time (e.g., days) or they could represent partitions of items from
different sources (e.g., different machine operators). For background on the application of
subgroup analyses, when to use them and advice on sampling procedures, see the “Discus-
sion,” p. 257, and any standard text, e.g., Grant and Leavenworth (1988).

Another requirement of analyses in this and the next chapter (“QC Individual Measure-
ments,” p. 277) is that the measurements analyzed must be expressed on a continuous scale.
Examples of such continuous measurements are length, weight, velocity or brightness. In gen-

eral terms, a continuous measurement is any quantity that can (in theory) take on any value
within a particular interval. Another way to think of continuous measurements is that they are
not discrete. Values such as Blue, Red, and Yellow, the colors of balloons, are discrete values;
values such as 2.3, 2.4, 1.9, the lengths in centimeters of rivets, are continuous.

Both subgroup and individual measurement analyses are based on similar statistical assump-
tion. They differ in the way in which parameters (such as 0) can be estimated for the two
types of data organization.

Discussion

When performing subgroup or individual measurement analyses, usually the primary concern
of the QC analyst is to evaluate process control and capability (see the preceding “Introduc-
tion to SPC,” p. 251, for an explanation of these terms). Control charts are the primary tools
of the QC analyst in evaluating process control; capability indices are the most commonly
used metrics for the evaluation of process capability.

What are the statistical assumptions that allow useful application of control charts and capa-
bility indices? The central assumption is that the quantities plotted are from a normal (i.e.,
Gaussian) distribution. Some implications of this assumption are discussed in the sections
that follow.

Xbar (subgroup mean) charts

In analysis of subgroup measurements, the QC analyst might begin by plotting an Xbar along
with an R or an S chart (see below). Conventionally, these charts are considered together
because they provide complementary information about process variation.

The Xbar chart provides information about variation among subgroup means. Specifically, Xbar
charts plot the means of the measurements from each of a series of subgroups. Should at least
one of the means be very different from the others, it may be that the process is out of control.
To help the analyst evaluate whether a particular subgroup mean is especially high or low, the
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Xbar chart shows lines indicating the control limits for the process mean. These control limits
define the range of values within which the means should fall for a process that is in control.

How are these control limits determined? This is largely a matter of judgment and experience.
The analyst sets the parameters for calculation of the control limits so that subgroup means
beyond these limits are relatively unlikely if the process is in control. By convention, these
limits are based on the 3-sigma rule; in statistical terms, this rule means that the upper and
lower control limits are placed 3 estimated standard deviations above and below the expected
value of the mean (or center line) for each subgroup. Formulas for these computations are in

“Algorithms,” p. 433.

As suggested above, Xbar charts require that the means from the subgroups are normally dis-
tributed. This requirement is not as restrictive as it might seem. In fact, there is a statistical
maxim known as the Central Limit Theorem, which predicts that the means from subgroups
should be normally distributed even when the measurements in these subgroups are not.
(This is true as long as all subgroups are drawn from the same population.) For this reason,
subgroup Xbar charts often can be used when individual measurement charts (I charts) can-
not.

Considerations when setting k-sigma

The statistical interpretation of 3-sigma limits is that there is a probability of 0.0027 (i.e.,
about 3 times out of 1,000) that any individual subgroup mean will exceed these limits.It is
important to recognize that this is not equivalent to the probability that a7y subgroup mean
in a Xbar chart will exceed the control limits. A conservative estimate of that probability when
using 3-sigma control limits is 0.0027 times the number of subgroups. For a chart with 20
subgroups plotted with 3-sigma limits, the probability that at least one subgroup mean will
exceed the control limits (assuming that the means are normally distributed) is

0.0027 x20 = 0.054.

This highlights a potential problem with the unexamined use of 3-sigma control limits within
all control charts, especially when plotting results from many subgroups. The problem is that
the probability of a false out of control signal increases as you add more subgroups. (A false
out of control signal is one that is not due to any assignable cause, but just happens by
chance.) Suppose, for instance, you always chart 50 subgroups on your Xbar charts, and you
want the probability of a false out of control signal to be no more than 0.05. This means that
the probability of exceeding the control limits would be 0.05/50 = 0.001 for each individ-
ual subgroup mean. If you do all of the necessary calculations, you will find that you should
use control limits based on 3.29 times sigma to achieve this probability. Though this doesn’t
seem like much of a difference, using 3.0 as the sigma multiplier instead of 3.29 actually
increases the probability of false out of control signals nearly 2.7 fold! This demonstrates one
important reason why the user has control over the sigma multiplier for all spc analyses in
StatView.
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R (subgroup range) charts

The Xbar chart tells only part of the story about process control. Many QC analysts create R
(range) charts along with their Xbar charts, because the R chart provides information about
the magnitude of variation among measurements within subgroups, information that is also
essential for evaluating process control.

Why do QC analysts need such a measure of variation within subgroups? The reason is that if
variation within subgroups differs substantially among subgroups, then it is unlikely that the
causes of these differences are random, i.e., the process is probably out of control.

As suggested by its name, an R chart plots the range of the measurements from each subgroup
for a series of subgroups. (Range is defined as the absolute value of the difference between the
high and low measurements in each subgroup.) As with Xbar charts, R charts also plot
expected values (center lines) and control limits for the ranges from each subgroup. “Algo-
rithms,” p. 433, gives the formulas for these computations. The cautions regarding the unex-
amined application of 3-sigma control limits in Xbar charts pertain to R charts as well.

Since the range is based only on two values, it is a fairly rough estimate of the variation among
measurements within a subgroup. The popularity of this chart is probably due to the relative
ease with which subgroup ranges can be computed by hand.

§ (subgroup standard deviation) charts

Many analysts now prefer the S (standard deviation) chart over the R chart, because subgroup
standard deviations usually provide a more accurate estimate of variation within subgroups.
Should you wish to create an S chart whenever you create an Xbar chart, you may find it easi-
est to create a template that combines these two results.

S charts plot the standard deviation of the measurements within each subgroup for each of a
series of subgroups. As with Xbar and R charts, S charts also plot the expected value (center
line) and the control limits for the standard deviation from each subgroup. Since these
expected values and control limits are based on theoretical distributions of standard deviations
from normal populations, you should examine your data carefully to evaluate the assumption
of normality.

Tests for special causes

Tests for special causes are intended to detect particular sorts of non-random patterns in Xbar,
L, p/np and c¢/u results, any one of which might indicate that the process is out of control. Due
to conventions in how the tests are calculated, both the standard and custom tests are only
available when subgroups are of equal size.

The standard suite of tests in StatView is a refinement by Nelson (1984, 1985) of the original
Western Electric rules (Western Electric, 1956). With the exception of rule 1, none of these
tests should be assumed to have well-determined probabilities for false signals. It should be
kept in mind, however, that the greater the number of tests used simultaneously, the greater
the probability of a false signal for any given chart.
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Accordingly, Nelson (1985) recommends that combinations of the standard tests should be
applied judiciously. In particular, tests 1-4 compose a good suite for detection of many com-
mon assignable causes, while tests 5-8 generally should be left for more advanced diagnoses of
specific problems.

As mentioned previously, all 8 of the standard tests are also applicable to I charts (see the next
chapter, “QC Individual Measurements,” p. 277). Tests 1—4 are usually applicable to p/np and
¢/u charts as well; for more information, see the chapters, “QC P/ND” p. 287, and “QC C/

U,” p. 299.

Standard tests for special causes

Below are the descriptions and interpretations for each of the eight standard tests for special
causes. Note that these tests refer to zones A, B and C in control charts. These zones are
defined as bands of constant width where zone A is between 2 and 3 sigmas above and below
the center line, zone B is between 1 and 2 sigmas above and below the center line, and zone C
is between 0 and 1 sigma above and below the center line.

1. 1 point beyond zone A detects a shift in the process mean, |, an increase in the estimated
standard deviation, O, or a single aberration.

2. 9 consecutive points above or below center line detects a shift in the process mean.
3. 6 consecutive increasing or decreasing points detects a trend or drift in the process mean.

4. 14 consecutive alternating points detects systematic alternating effects, such as alternating
use of different machines, operators or materials.

5. 2 of 3 consecutive points in zone A or beyond detects a shift in the process mean, or an
increase in the standard deviation. The 2 points must be in the same A band (i.e., above or
below the center line).

6. 4 of 5 consecutive points in zone B or beyond detects a shift in the process mean. The 4
points must be in the same B band (i.e., above or below the center line).

7. 15 consecutive points in zone C detects stratification of subgroups when the observations
in a single subgroup come from various sources with different means. The points must be
on both sides of the mean.

8. 8 consecutive points outside zones C detects stratification of subgroups when the observa-
tions in one subgroup come from a single source, but subgroups come from different
sources with different means. The points must be on both sides of the mean.

Custom tests for special causes

Some users may find that their work requires modifications of the parameters that are used in
defining the standard suite of special causes tests. For instance, you may prefer rule 5 to be
defined as “3 of 4 consecutive points beyond 2 sigma.” StatView allows you to customize the
parameters used to define these tests.

All eight of the custom tests for special causes have the same logical structure as the standard
tests. Their difference from the standard tests is that the custom tests let you define the num-
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ber of points used in the calculation of a violation and define critical values with arbitrary
multiples of sigma rather than with zones about the center line.

If you commonly reuse the same suite of custom tests, you may find it easiest to create an
analysis with your custom suite of tests and then save this analysis as a template. You can then
use this template for all subsequent analyses.

CUSUM (cumulative sum) charts

Another important, though less frequently used tool for evaluating process control is the
cusuM (cumulative sum) chart, sometimes referred to as a cscc (Cumulative Sum Control
Chart). When used with the rir (Fast Initial Response) option, some experts prefer it to Xbar
charts for detecting particular types of out of control processes (Ryan, 1989).

Each cusum chart plots two cumulative sums. These are the high (Sg;;)and low (S;;) sums
of the standardized deviates of subgroup means from the process mean. An increase in the
High sum indicates an increase in the process mean; an increase in the Low sum indicates a
decrease in the process mean. Should either of these sums exceed the cusum control limit (4),
the process is out of control.

Enabling the Fir (Fast Initial Response) option generally increases the sensitivity of cusum to
shifts in the process mean, without unduly increasing the probability of false out of control
signals. In fact, for detecting shifts in the process mean, FIR cusum generally outperforms
Xbar charts (Ryan, 1989). It should be noted, however, that cusum analyses generally are not
sensitive to other sorts of assignable causes, such as those that increase variation among or
within subgroups. Therefore, you should use cusum analyses in conjunction with Xbar and R
or S charts whenever you cannot exclude other sources of variation.

Capability indices

Once you have established that a process is in control, you can generate a table of capability
indices. These indices measure how well a stable process meets specifications. Maximization of
process capability is an ongoing effort and is often regarded as the ultimate goal of any quality
improvement program.

StatView offers a variety of capability indices, each appropriate and useful in particular cir-
cumstances. In general, these indices tell you different things about the distribution of your
measurements relative to specifications. If you require a single capability index, Cp is
favored when a target value is specified, while Coi generally is preferred when it is not. For-
mulas for these indices are in “Algorithms,” p. 433.

While capability standards vary widely among applications and processes, conventionally, a
Cot index of 1.33 is regarded as the minimum acceptable value in manufacturing. Assuming
that the measurements are normally distributed (an assumption that is central to the proper
application of capability indices), a Coi index of 1.33 implies that, on average, only 6 items
out of 100,000 are beyond specification limits.
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Unacceptable capability values can be due to two causes. Either the measurements are not
centered relative to the specifications, and/or there is excessive variability among measure-
ments. If the centering index, £, is close to 0, the measurements are well centered relative to
specifications. In such a case, an unacceptable capability index is probably due to excessive
variation, which is reflected in a high value of O relative to the range of the specification limits.

Dialog box settings

QC Subgroup Measurements dialog box

QC Subgroup Measurements
Base sigma on | subgroup SDs ¥

Base control limits on
Special causes tests to perform:

[ pisplay zones in Hbar charts

specify: [ tasts | (CusUM | [ Lines ] [ cAPA ]

The settings in this dialog box apply to all subgroup measurement analyses. Some analyses
have additional parameters that are set in dialog boxes accessed by clicking Specify buttons.

Base sigma on This pop-up menu allows you to set a calculation method or a value for
sigma, the estimate of the process standard deviation. The default calculation method of O is
based on subgroup standard deviations, i.e., it is the square root of a weighted average of the
subgroup variances. Alternately, 0 may be computed from subgroup ranges, in accordance
with the formula shown in “QC Subgroup Measurements,” p. 473, by choosing subgroup
ranges. A third alternative is that you can specify a value for 0 by choosing Specify and enter-
ing a value in the text field.

Base control limits on This pop-up menu allows you to specify the values for 4 or alpha that
are used to compute ucL and LcL. By default, control limits are computed with 4-sigma (the
default value of £ is 3). Alternately, you can base the control limits on alpha. The default value
of alpha is 0.002; it is the Type I error probability of exceeding the control limits if the process
is in control. (If you use other values of alpha, please see the note on alpha-based calculation
of the range, p. 475.) It is important to note that 4 and alpha are mutually exclusive: only one
can be used for any analysis. If you want to set the control limits directly as constants or as
variables taken from a dataset, click on the Lines button (see “QC Line Parameters dialog
box,” p. 266).

Special causes tests to perform This pop-up menu allows you to perform either the standard
tests for special causes or the custom tests. When None is chosen (the default) the Tests button
is dimmed and no tests will be performed. If you choose Standard or Custom, the Tests but-
ton is activated. See “Tests,” p. 263, “Tests for Special Causes dialog box,” p. 263, and “Cus-
tom Tests dialog box,” p. 264, for more information.
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Display zones in Xbar charts When enabled, this checkbox causes display of zones A, B, and
C in Xbar control charts. It is important to note that zones can be displayed only when sub-
group sizes are equal. By default, this option is disabled.

Tests If Standard is chosen from the Special causes tests to perform pop-up menu, this button
opens the Tests for Special Causes dialog box. If Custom is chosen from Special causes tests to
petform, this button opens the Custom Tests dialog box. These dialog boxes are described
under “Tests for Special Causes dialog box,” p. 263, and “Custom Tests dialog box,” p. 264.

CUSUM This button opens the cusum Parameters dialog box; see “CUSUM Parameters
dialog box,” p. 264. Note that cusuM results are displayed only if you create a cusum result

from the analysis browser.

Lines This button opens the QC Line Parameters dialog box, which allows you to set values
for the center line, ucL and LcL for all control charts. See “QC Line Parameters dialog box,”
p. 266.

CAPA This button opens the capa Parameters dialog box; see “CAPA Parameters dialog
box,” p. 267

Tests for Special Causes dialog box

With Standard chosen from Special causes tests to perform, this dialog box appears when you
click the Tests button in the QC Subgroup Measurements or QC Individual Measurements
dialog boxes. A modified version of this dialog box showing only tests 1—4 appears when you
click the Tests button in the QC P/NP or QC C/U dialog boxes.

Tests for Special Causes

J 1) 1 point beyond zone A

[ 2) 9 consecutive points above or below center line
[ 3) 6 consecutive increasing or decreasing points
[ 4) 14 consecutive alternating points

[ 5) 2 of 3 consecutive points in zone A or beyond
[ 6) 4 of 5 consecutive points in zone B or beyond
[ ?) 15 consecutive points in zones C

[ 8) 8 consecutive points outside zones C

[ show definitions table []Tables show violations only

Among subgroup measurement analyses, the settings in this dialog box apply only to Xbar
charts. The same tests are available for I charts in individual measurement analyses. Tests 1-4
are available for p, np, ¢ and u charts. See the following chapters, “QC Individual Measure-
ments,” p. 277, “QC P/NP” p. 287, and “QC C/U,” p. 299.

Checking the box before each test activates that test. By default, all tests are checked.

Show definitions table When this checkbox is enabled, the active tests and their definitions
are listed in a results table in the view. By default, this setting is disabled.

Tables show violations only When this checkbox is enabled, results tables show results only
for those subgroups that violate the special causes tests. By default, this setting is disabled.

None Clicking this button disables all eight of the tests.
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All Clicking this button enables all eight of the tests.

Custom Tests dialog box

With Custom chosen from Special causes tests to perform, this dialog box appears when you
click the Tests button in the QC Subgroup Measurements or QC Individual Measurements
dialog boxes. A modified version of this dialog box showing only tests 1-4 appears when you
click the Tests button in the QC P/NP or QC C/U dialog boxes.

Custom Tests "irc"c="———————o——

X 1) 1 point beyond sigma

K29 consecutive points above or below center line
K3)(6 consecutive increasing or decreasing points
X414 consecutive alternating points

K5)|2 of |3 consecutive points beyond |2 ig
K64 of |5 consecutive points beyond |1 ig

X155 consecutive points within Dsigma
x18)8 consecutive points outside * Dsigma

[J Show definitions table []Tables show violations only

As with the standard tests for special causes, the settings for the custom tests apply only to
Xbar charts among the subgroup measurement analyses. The same tests are also available for I
charts in individual measurement analyses. Tests 1—4 are available for p, np, c and u charts. See
the following chapters, “QC Individual Measurements,” p. 277, “QC P/ND” p. 287, and
“QC C/U,” p. 299.

The text boxes in this dialog box allow you to specify both the number of points and the crit-
ical number of sigmas used to define each test. The default values are those for the standard
tests for special causes. All text fields for numbers of points must be given positive integer val-
ues; those for multiples of sigma can take any positive real values.

All other settings in this dialog box work just like those in the Tests for Special Causes dialog
box, above.

CUSUM Parameters dialog box

The cusum Parameters dialog box appears when you click the cusum button in the QC Sub-
group Measurements or QC Individual Measurements dialog boxes.
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CUSUM Parameters

Mean shift: E} Control limit: D

[ Charts show violations []Tables show violations only

X Invert lower sum [J Specify process mean:

[Juse FIR

On violation: @ do nothing (O reset

Initial value: D

The options you choose in this dialog box establish the parameters for a cusum analysis.
However, no results are displayed unless you choose a cusum result from the analysis browser.
If you want to do a cusum analysis on individual measurements, choose a cusuM result under
QC Individual Measurements in the analysis browser.

Mean shift This text field allows you to enter the mean shift, in standard units, that you wish
to detect with the cusum procedure. For instance, enter 1.5 if you want to detect a mean shift
of 1.5 standard deviations. The default value is 1.

Control limit This text field allows you to specify A, the cusum out of control threshold. The
default value of / without FIRr enabled is 4; with FIR, the default is 5.

Charts show violations If you enable this checkbox, charts will display an H symbol next to
points that violate the upper control limit and an L symbol next to those that violate the lower
control limit. By default, this option is enabled.

Tables show violations only If you enable this checkbox, the cusum results table will display
information only for those observations/subgroups which are beyond the upper or lower con-
trol limits. If not checked, these tables will display information for all subgroups. By default,
this option is disabled.

Invert lower sum If you enable this checkbox, then §; ; is displayed as the negative of S ; as
described in “Algorithms,” p. 433. By default, this option is enabled.

Specify process mean This checkbox and associated text field allow you to specify a value for
the process mean used in the cusum calculations. If not checked (the default), the calculated
value of the process mean is used.

Use FIR This checkbox allows you to enable FIr. With FIr enabled, values of Sg;; and §;; are
set to A/2 both initially and following a violation (i.e., when either value exceeds /). When not
checked (the default), values of Sy;; and S;; are set to 0 initially, and are not reset following a
violation. This option cannot be used with the On violation radio buttons.

On violation These radio buttons allow you to choose what cusum does after a violation
occurs. The Do Nothing option (the default) leaves the values of Sj;; and §;; unchanged.
The Reset option changes these to the initial value. Note that enabling FIR is equivalent to
choosing Reset and an initial value of A/2.

Initial value This text field allows you to specify the initial value of Sp;; and S;; if either On
violation: radio button is enabled. If On violation: Reset is enabled, the value in this text field
is also the reset value.
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QC Line Parameters dialog box

The QC Line Parameters dialog box appears when you click the Lines button in the QC Sub-
group Measurements, QC Individual Measurements, QC P/NP or QC C/U dialog boxes.

QC Line Parameters

Chart: | Hbar Chart ¥

Center line:

Calculated V|

ucL:

Calculated V|

LCL:

Calculated ¥ ]

This dialog box permits you to specify constants or variables for center lines, ucts and LcLs on
all control charts.

In the following options, if you select Variable, you cannot then edit the corresponding text
box, because variables can be specified only in the Variables dialog box. For this reason, names
of variables in these text boxes are dimmed.

Chart Use this pop-up menu to select the particular control chart to which you want to apply
the options in this dialog box. It is important to note that the line parameters for one chart do
not carry over to the other charts when you change the Chart pop-up. If this dialog box is
accessed through the QC Subgroup Measurements dialog box, the pop-up shows Xbar Chart,
R Chart and S Chart. If accessed through the QC Individual Measurements dialog box, the
pop-up shows I Chart and MR Chart. If accessed through the QC P/NP dialog box, the pop-
up shows P Chart and NP Chart. If accessed through the QC C/U dialog box, the pop-up
shows C Chart and U Chart.

Center line This pop-up menu and associated text field allow you to calculate or to assign a
constant or a variable for the center line or the currently selected chart. A constant is any
numerical value you enter. If you choose to assign a variable, you get the Variables dialog box,
explained under “Variables dialog box,” p. 267.

UCL, LCL These pop-up menus and associated text fields allow you to calculate or to assign
constants or variables for the control limits. By default, these values are calculated from the
data, as indicated by the Calculated choice. You also have a choice for how to assign a constant
or a variable to these lines. When (abs) follows constant or variable, the values used are the
actual values of the constant or of the cases in the variable. For choices in which (rel) follows
Constant or Variable, the values are measured relative to the center line, with positive values
measured above the center line, and negative values measured below.

Cancel This This button returns all settings to their previous values for the current chart
selected in the Chart pop-up menu. It has no effect on the settings for any other charts that
have been edited since clicking the Lines button.
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Cancel All This button returns all settings to their previous values for all charts that have
been edited since clicking the Lines button.

Variables dialog box

Uariables

Choose a variable for
the center line

Data: | Tube Angle Data
Order: | Dataset order I

Seat tube angles

@
Date o]

&

©]

If you choose variables for any of the line specifications, you will get the Variables dialog box.
This dialog box has a format and function that is very similar to the variable browser.

Data This pop-up menu enables you to select the dataset from which the variables are cho-
sen. It gives you access to open datasets, or allows you to open a closed dataset. Normally, the
dataset you choose here will be different from the one that is used for the analysis itself.

Order This pop-up menu allows you to select between dataset, alphabetical, class and usage
orderings of the variables that appear in the scrolling list. This option only affects the order of
variables in the scrolling list; it has no effect on which variables appear in this list.

Choose a variable This scrolling list allows you to choose a variable from those contained in
the selected dataset. Either double-click on the variable, or select a variable and click Use to
assign that variable to a line. Note that if there are 7 subgroups in the analyzed data, only the
first # rows in any line variable are used.

CAPA Parameters dialog box

The capra Parameters dialog box appears when you click the cara button in the QC Subgroup
Measurements or QC Individual Measurements dialog boxes.
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CAPA Parameters

Display:
[ Basic CAPA statistics
[ % outside USL, LSL

Speoify
st
Ost
Otarge:

The capability analysis table is displayed in the view only if one or both of the Display check-
boxes is enabled. When either Display checkbox is enabled, the OK button is not activated
unless one or more specification parameters are entered.

Basic cara statistics This checkbox allows you to display, in the capability analysis table, the
various C, indices and the centering index, 4. These values will be computed only if the
appropriate specifications are entered.

% outside UsL, LsL This checkbox allows you to display in the capability analysis table the
percentage of observations outside the usL and LsL. These values are computed only if the
specification parameters are entered.

usL Enabling this checkbox requires you to specify a value for the usL (upper specification
limit) in the text box. You must specify either USL or LSL to compute a capability index. The
value of USL must be greater than the Target and the Lst.

LsL Enabling this checkbox requires you to specify a value for the LsL (lower specification
limit) in the text box. You must specify either USL or LSL to compute a capability index. The
value of LSL must be less than the Target and the UsL.

Target Enabling this checkbox requires you to specify a value for the specification target in
the text box. This value is required only for computation of C o The value for the Target
must be between those for the UsL and the LsL.

When only usL or LsL is entered, all calculated minima are the quantities computed for the
limit that is specified, i.e., the unspecified limit is ignored. See “Capability analyses,” p. 476
for more on computation of capability indices.

Data requirements

QC subgroup measurement analyses require one continuous and one nominal variable. These
are referred to as the measurement and subgroup variables, respectively. The measurement
variable has the measurements that are the object of analysis, e.g., bolt lengths. The subgroup
variable indicates the subgroup from which each measurement is taken, as pictured below.
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Measurement Subgroup

» Type: | Real String

» Source: | User Entered User Entered
> Class: | Continuous MNorninal
>
»

Format: | Free Format Fi..| ®
Dec. Places: | 2 .

20.10 | Week 1
20.43 | Week 1
2017 | Week 1
20.57 | Week 2
19.95 | Week 2
20.04 | Week 2
19.11 | Week 3
19.46 | Week 3
19.77 | Week 3

Lol Lol BN Dol (O B () DN

Please note the following when assigning variables to these analyses:

1. The number of measurements is determined by the total number of included cases (rows)
in the measurement variable.

2. Subgroup sizes are determined by the number of cases with a particular value of the sub-
group variable.

3. The ordering of subgroups in any subgroup measurement result is determined by the
alpha-numeric values within the subgroup variable.

If all of your subgroups have the same number of measurements, you can probably use a for-
mula to generate the values of the subgroup variable. This will save you repetitive and poten-
tally inaccurate typing of subgroup names. For instructions, see “How can I generate
subgroup and labeling variables?,” p. 242 of Using StatView.

Variable browser buttons

Add Select one measurement variable (continuous), and one subgroup variable (nominal), then click
the Add button.

Each additional measurement variable creates a new analysis using the original subgroup
variable. Each additional subgroup variable creates a new analysis using the original
measurement variable.

Split By When you assign one or more split-by variables (nominal) to a subgroup measurement analysis,
results are displayed separately for each cell defined by the split-by variable(s).

Results

Xbar Statistics results

Xbar charts can be plotted as line, point, needle, or bar plots. You make this choice in the
analysis browser. The default result is a line chart.
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When the Tables show violations only option is checked in the Tests for Special Causes or
Custom Tests dialog boxes, this table shows results only from those subgroups that violate one
or more of the chosen tests.

Xbar charts

Plotted points

Give the mean for each subgroup.

Center, UCL and LCL
lines

Center line gives the mean of all measurements (the process mean, 1),
or the value specified in the Lines dialog box. UCL and LCL lines give
the upper and lower control limits about the mean for each subgroup,
or the values specified in the Lines dialog box.

Xbar table

Count Gives the number of measurements in each subgroup.

Mean Gives the mean from each subgroup.

Center Gives the mean of all measurements (the process mean, L), or the
value specified in the Lines dialog box.

udL, LCL Gives the upper and lower control limits about the mean for each

subgroup, or the values specified in the Lines dialog box.

Other contents

Labels to the left of each row are subgroup names as specified by the
subgroup variable. Numbers to the right of each row are the numbers
of any violated special causes tests that are currently enabled.

Special Causes Definitions table

This is a rather unusual result table because it displays no computed results. These definitions
are displayed mainly to aid the interpretation of violations that appear on control charts. This
table is displayed only if Show definitions table is enabled in the Tests for Special Causes or
Custom Tests dialog box.

Contents Gives the definitions for those tests enabled in either the Tests for Special Causes or the Custom
Tests dialog box, depending on which is chosen from the Special causes tests to perform pop-up
menu.

R Statistics results

R charts can be plotted as line, point, needle, or bar plots, depending upon which items are
selected in the analysis browser. The default graph is a line chart. Both the center line and the
control limits for R charts will vary among subgroups if subgroup sizes vary

R charts Plotted points Give the range for each subgroup.

Center, UCL and LCL | Center line gives the predicted value of the range for each subgroup, or
lines the value specified in the Lines dialog box. UCL and LCL lines give the
upper and lower control limits about the range for each subgroup, or
the values specified in the Lines dialog box.
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R table

Count Gives the number of measurements in each subgroup.

Range Gives the range for each subgroup.

Center Gives the predicted value of the range for each subgroup, or the value
specified in the Lines dialog box.

UcL, LCL Gives the upper and lower control limits about the range for each

subgroup, or the values specified in the Lines dialog box.

Other contents

Labels to the left of each row are subgroup names as specified by the
subgroup variable.

§ Statistics results

S charts can be plotted as line, point, needle, or bar plots, depending upon which items are
selected in the analysis browser. The default graph is a line chart. Both the center line and the
control limits for S charts will vary among subgroups if subgroup sizes vary.

§ chart Plotted points Give the standard deviation for each subgroup.
Center, UCL and LCL | Center line gives the predicted value of the standard deviation for each
lines subgroup, or the value specified in the Lines dialog box. UCL and LCL
lines give the upper and lower control limits about the standard
deviation for each subgroup, or the values specified in the Lines dialog
box.
§ table Count Gives the number of measurements in each subgroup.
Std. Dev. Gives the standard deviation for each subgroup.
Center Gives the predicted value of the standard deviation for each subgroup,
or the value specified in the Lines dialog box.
UL, LaL Give the upper and lower control limits about the standard deviation

for each subgroup, or the values specified in the Lines dialog box.

Other contents

Labels to the left of each row are subgroup names as specified by the
subgroup variable.

CUSUM Statistics results

cusuM charts can be plotted as line, point, needle, or bar plots. These are available within the

cusuM Statistics heading in the analysis browser. When the Tables show violations only

option is checked in the cusum Parameters dialog box, this table shows results only from

those subgroups with values of Sg;; or §;; that exceed the control limits.

CUSUM chart

Plotted points

Give the high and low cumulative sums for each subgroup. These are
keyed in the legend.

Center line

Gives the zero cumulative sum.

Upper and lower
broken lines

Give the control limits for the SHi (high sum) and SLi (lower sum). If
the Invert lower sum option is disabled in the CUSUM Parameters dialog
box, the upper line gives the control limit for both sums.




272

21 QC Subgroup Measurements Results

CAPA table

CUSUM table

Count Gives the number of measurements in each subgroup.

1 Gives the standardized deviate of each subgroup mean from the process
mean.

SH, SL Gives the values of SHi and SLi for each subgroup. If the Invert lower

sum option is disabled in the CUSUM Parameters dialog box, SLi is
positive.

Other contents Labels to the left of each row are subgroup names as specified by the
subgroup variable. H or L appear to the right of any row for which SHi

or SLi exceeds the control limit.

The capability analysis table is displayed in the view only if specification parameters are
entered in the capa Parameters dialog box.

Cp, Cpm, CPU, CPL, Give the values for the various capability indices.
Cpk
k Gives the process centering index.

% > USL, % < LSL

Give the percentage of observations above USL and below LSL.

Norm % > USL,
% < LSL

Give the percentage of observations from a normal population (mean=L, standard
deviation=0), that are above the USL and below LSL.

Summary Table

The summary table shows the following.

K sigma Gives the sigma multiplier that is used to determine control limits. A missing value ( .)
indicates that alpha, rather than k-sigma, is used to compute control limits.

Alpha Gives alpha, the Type | probability of exceeding the control limits. A missing value ( .)
indicates that k-sigma, rather than alpha, is used to compute control limits.

Sigma Gives the estimate of sigma as specified in the QC Subgroup Measurements dialog box.

Xbar Center

Gives the value of |, the process mean.

R Center, S Center

Give weighted estimates of the process range and standard deviation, respectively. A missing
value ( .) indicates that subgroup sizes are unequal; see R and § results tables instead.

# Groups, # Obs, #

Missing

Give number of subgroups, included rows, and missing cases, if any, in the analysis.
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Templates

Exercise

The following templates provide QC subgroup measurement analyses.

QC Analyses Subgroup Box plot; Xbar and § line charts with 3-sigma control limits; FIR CUSUM
Measurements Analysis |line chart; summary table; histogram with normal curve; and
descriptive statistics with notes on interpretation.

Xbar & R Charts Xbar and R line charts with 3-sigma control limits; summary table.
Xbar & § Charts, Xbar and § line charts with control limits given by continuous variables
Specify Lines you specify; and summary table.

Xbar, § & CUSUM Xbar and § line charts with 3-sigma control limits; FIR CUSUM line
Charts chart; and summary table.

Suppose that you are in charge of the quality control effort at a bicycle manufacturer that spe-
cializes in limited production frames. The most popular model your company produces is a
day touring model called the “Arribe!”, which is a racing-style frame for weekend warriors.
This is the product that we will analyze in this example.

The seat tube angle of a bicycle frame can dramatically affect the finished bicycle’s handling
characteristics. This is the angle formed by the intersection of the tube that holds the seat post
(the seat tube) with the top horizontal frame tube (the top tube). Typically, a small seat tube
angle (less than 72°) endows the frame with forgiving (soft) handling characteristics. Weekend
warriors want frames that are responsive and quick; they prefer frames with steep seat tube
angles (c. 74°). The “Arribe!” is manufactured with these specifications in mind.

In this exercise, we will use the subgroup measurement statistics to see if the frame manufac-
turing process is in control and capable.

* Open Tube Angle Data from the Sample Data folder

Scroll through the dataset to examine its contents. You'll notice that for each of ten days (two

work weeks), a technician measured and recorded the seat tube angles from all ten frames pro-

duced in the shop.
* Select New View from the Analyze menu
* (Optional) In the analysis browser under Show, choose Quality Control

* In the analysis browser under QC Subgroup Measurements, select Xbar Statistics, S Statis-
tics, and cusum Statistics
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent results.

* Click Create Analysis
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-7 QC Subgroup Mea

r St

ti...
Summary Table
B Ar Individual Mea

* For Special causes tests to perform, choose Standard

e Click cusum
¢ Check Use FIr and click OK
¢ Click OK

This creates empty Xbar, S and cusum charts in the view.
* In the variable browser, select “Seat tube angles” and “Date” and click Add
The Seat tube angles variable is the measurement variable; it appears in the variable browser

with an X usage marker. The Date variable is the subgroup variable; it appears with a G usage
marker. The analysis calculates and the three completed results appear in the view.

Xbar Line Chart
Control Limits: 3 Sigma

74.12 4 L ucCL = 74.124
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The Xbar line chart that appears at the top of the view indicates that the overall mean of the
seat tube angles for the frames in this sample is 74.04 degrees. Because the sample size in each
subgroup is the same (10), the control limits (74.12 and 73.96 for the uct and LcL, respec-
tively) are constant across subgroups. Since there are no test labels next to any of the plotted
points, we know these data violate none of the tests for special causes.

Scroll down the view to the S and cusum charts. The S chart shows that the estimates of the
subgroup standard deviations are above average from 3/15-3/17, then decline on 3/18 to
below average values from 3/19-3/23 (the 2 day gap in the sequence is a weekend), then
increase from 3/24-3/26. All of these estimates of variation within subgroups are well within
the control limits. Corroborating what was indicated in the Xbar chart, the cusum chart does
not show any indications of a shift in the process mean. From all available evidence, this pro-
cess appears to be in control.
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S Line Chart

Control Limits: 3 Sigma
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The next step is to see if the process is capable, i.e., is it producing frames within specification
limits? You will now create a capability analysis to answer this question.

Click one of the results to select it

Click Edit Analysis (the button at the top of the view)

Click cara

In the capra Parameters dialog box, check all the boxes (turn all the options on)

Specify 74.3, 73.7 and 74 for the usL, LsL, and Target values and click OK
(These values are derived from an independent engineering analysis of the variation in seat
tube angle that yields acceptable performance characteristics.)
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CAPA Parameters

Display:
[ Basic CAPA statistics
X % outside USL, LSL

Specify:

ust:
st
X Target:

() @I

¢ Click OK

Capability Analysis for Seat tube angles
Grouping Variable: Date

USL: 74.3

LSL: 73.7

Target: 74

Cp 1.182
Cpm 1.048
CPU 1.009
CPL 1.355
Cpk 1.009
k .146
% > USL 1.000
Norm. % > USL .124
% < LSL 0.000
Norm. % < LSL .002

The somewhat low values for C , C, and C -k May not be acceptable. Assuming that the
data are normally distributed, approximately 12 frames out every 10,000 will have seat tube
angles greater than the specification limits (Norm % > ust = 0.124). Since the value of £ is
not close to 0 and since cpL is appreciably greater than cru, the relatively low values of the
capability indices are due, at least in part, to the fact that the process mean (see Xbar chart) is
somewhat greater than the specification target value (i.e., the data are not centered relative to
specifications). Though these results do not suggest drastic revision of the production process,
the production manager may want to check the alignment of the frame jig and perhaps adjust
it slightly.



QC Individual Measurements

This chapter, the second of five regarding StatView’s quality control tools, discusses QC Indi-
vidual Measurements methods. For a general introduction to quality control, see the previous
chapter, “QC Subgroup Measurements,” p. 251. Subsequent chapters discuss StatView’s other
QC methods: “QC P/NDB” p. 287, “QC C/U,” p. 299, and “Pareto Analysis,” p. 309.

Discussion

As with subgroup measurement analyses, individual measurement analyses are used to evalu-
ate whether a process that produces items with continuous measurements is in control and
capable. Unlike the analyses in the previous chapter, “QC Subgroup Measurements,” p. 251,
individual measurements analyses require that measurements are not grouped with other mea-

surements. Put another way, each subgroup has only a single measurement. Criteria for decid-
ing when to use individual measurements are discussed in standard texts such as Ryan (1989).

Most of the considerations reviewed in the discussion of subgroup measurement statistics per-
tain also to individual measurement statistics. Individual measurement statistics require that
the measurements be normally distributed. With the help of StatView’s formula capabilities,
you can perform analyses to help you decide when your data are not normally distributed.
These techniques are summarized in “Normality Test,” p. 233 of Using StatView.

The main differences between individual and subgroup measurement statistics are due to dif-
ferences in how certain key parameters are estimated. Because there is no within subgroup
variation for individual measurement analyses, the methods used to estimate process variation
(embodied in the parameter sigma) are different from those used in subgroup measurement
analyses. Furthermore, the lack of subgroups means that there can be no range or standard
deviation charts for individual measurements. In individual measurement analyses, these sub-
group charts are replaced by the moving range chart.

| (individual measurement) charts

In a QC analysis of individual measurements, an I chart together with an MR chart is often
the focus of inspection. As with Xbar and R or S charts, I and MR charts are often considered
together because they provide complementary information about process variation.
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The I chart is essentially the individual measurement equivalent of the Xbar chart: it provides
information about variation among measurements. If there are large differences among mea-
surements, the process might be out of control. As with any control chart, the I chart also
shows lines indicating the control limits and the center line for the process.

Statistically, the control limits in I charts are based on the same assumptions and are calcu-
lated in the same way as control limits for Xbar charts. Accordingly, the interpretations and
cautions mentioned in the discussion of Xbar charts apply to I charts as well. For more infor-
mation, please read “Xbar (subgroup mean) charts,” p. 257.

MR (moving range) charts

As noted above, QC analysts often create MR charts along with their I charts. The MR chart
provides additional information about the magnitude of variation among measurements in a
sample. As such, MR charts take the place in individual measurement analyses of R or S charts
in subgroup measurement analyses.

As suggested by its name, an MR chart plots the moving range among measurements in a
sample. The moving range is defined as the absolute value of the difference between mini-
mum and maximum values of measurements in a sequence. Typically, this difference is
between consecutive measurements (range span = 2), though other range spans can be used as
well. MR charts also plot the expected value (center line) and control limits for the moving
ranges among measurements.

Tests for special causes

Both the standard and the custom tests for special causes for I charts are identical in definition
and interpretation to those applied to Xbar analyses; see “Tests for special causes,” p. 259.

If you are involved in clinical spc, you probably use a variation of the Westgard rules (West-
gard and Barry, 1986). With the exception of the R, Westgard rule, these can be easily coded
as custom tests as follows:

1. The 15, rule is equivalent to test 1 with a 3 sigma setting.
2. The 2, rule is equivalent to test 5 with 2 of 2 consecutive points beyond 2 sigma.

3. The 4, rule is equivalent to test 6 with 4 of 4 consecutive points beyond 1 sigma.
4. The 10

«bar Tule is equivalent to test 2 with 10 consecutive points.

If you would also like to check the R rule, we suggest that you use the following dataset for-
mula for a nominal string variable:

if Range("Measurement variable", OnlylncludedRows) > 4 * "sigma"
then "violation"
else .

Construct this formula using the value of sigma from the individual measurements summary
table. When computed, this formula returns “violation” if the range of the measurement vari-
able exceeds 4 times the estimate of sigma.
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CUSUM charts

The individual measurement cusum procedure is identical to that used for subgroup measure-

ments with one exception: the sums plotted for individual measurements are the cumulative
sums of the adjusted standardized deviate of each measurement (rather than subgroup means)
from the process mean. (For more information, please see“CUSUM (cumulative sum)

charts,” p. 261.) In general, most experts recommend that cusum analyses be applied in con-
junction with I and MR charts for the broadest detection of assignable causes.

Capability indices

The capability indices for individual measurements are computed just as they are for sub-
group measurements. Please read “Capability indices,” p. 261 for more information regarding
the application of these indices.

Dialog box settings

QC Individual Measurements dialog box

QC Individual Measurements
Base sigma on | overall sd V|

Base contral imits on -

Range span:
Special causes tests to perform:

[J pisplay zones in | charts

specify: [ tYests | (CusuM | [ Lines | [ cAPA |

The settings in this dialog box apply to all individual measurement analyses. Some analyses
have additional parameters that are set by clicking the Specify buttons in this dialog box.

Base sigma on This pop-up menu allows you to set a calculation method or a value for
sigma, the estimate of the standard deviation. If calculated, sigma can be based on the stan-
dard deviation of all the measurements (overall standard deviation, the default) or on the aver-
age moving range (average MR), as described in “Sigma,” p. 477. Alternately, you can assign a
value to sigma by choosing specify.

Base control limits on This item functions identically to the pop-up menu of the same name
in the QC Subgroup Measurements dialog box. For more information, please see “QC Sub-
group Measurements dialog box,” p. 262.
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Range span This text field allows you to specify the value of s (range span), which is the
number of cases used in calculating moving ranges (see “MR analyses,” p. 477). The default
value is 2.

Special causes tests to perform This item functions identically to the pop-up menu of the
same name in the QC Subgroup Measurements dialog box. For more information, please see
“QC Subgroup Measurements dialog box,” p. 262.

Display zones in I charts When enabled, this checkbox causes display of zones A, B, and C
in I control charts. By default, this option is disabled.

All the Specify buttons and the dialog boxes they access are identical to the corresponding
items in the QC Subgroup Measurements dialog box. See “QC Subgroup Measurements dia-
log box,” p. 262.

Data requirements

Individual measurement analyses require one continuous and, optionally, one nominal vari-
able. These are referred to as the measurement and labeling variables, respectively. The mea-
surement variable holds the measurements that are the object of analysis, e.g., bolt diameter.
The optional labeling variable is used to identify the measurement data, as pictured here:

Measurement Labeling

> Type: | Real Date/Time

» Source: | User Entered User Entered

» Class: | Continuous MNominal

» Format: | Free Format Fi...| 12:00 &M

> Dec. Places: | 2 .
1 20.10 9:00 &AM
2 20.43 10:00 &M
3 2017 11:00 &AM
4 20.57 12:00 PM
S 19.95 1:00 PM
6 20.04 2:00 PM
7 19.11 3:00 PM

The following conventions apply to variable use in all individual measurement analyses:

1. The number of observations is equal to the total number of included cases in the measure-
ment variable.

2. The ordering of cases in any QC individual measurement result is determined by the
order of the measurements in the dataset.

Variable browser buttons

Add Select one measurement variable (continuous) and, optionally, one labeling variable (nominal),
then click the Add button.

Each additional measurement variable creates a new analysis using the original labeling
variable. Each additional labeling variable creates a new analysis using the original
measurement variable.

Split By When you assign one or more split-by variables (nominal) to an individual measurement
analysis, results are displayed separately for each cell defined by the split-by variable(s).
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Results

| Statistics results

I charts can be plotted as line, point, needle, or bar plots. You make this choice in the analysis
browser. The default graph is a line chart.

When the Tables show violations only option is checked in the Tests for Special Causes or
Custom Tests dialog boxes, this table shows results only from those measurements that violate
one or more of the chosen tests.

| chart

Plotted points

Give the value for each measurement.

Center, UCL and LCL
lines

Center line gives the mean of all measurements (the process mean, L1),
or the value specified in the Lines dialog box. UCL and LCL lines give
the upper and lower control limits about the process mean, or the
values specified in the Lines dialog box.

| table

0bs Gives the value of each measurement.

Center Gives the mean of all measurements (the process mean, L1), or the
value specified in the Lines dialog box.

UL, LCL Gives the upper and lower control limits about the process mean, or

the values specified in the Lines dialog box.

Other contents

Labels to the left of each row are case numbers or measurement names
as specified by the labeling variable. Numbers to the right of each row
are those of any violated special causes tests that are currently
enabled.

Special Causes Definitions tables

This table is identical to the corresponding table available within subgroup measurements.
Please see “Special Causes Definitions table,” p. 270.

MR Statistics results

MR charts can be plotted as line, point, needle, or bar plots, depending upon which items are

selected in the analysis browser. The default graph is a line chart.

MR chart

Plotted points

Give the value for each moving range.

Center, UCL and LCL
lines

Center line gives the average moving range, or the value specified in
the Lines dialog box. UCL and LCL lines give the upper and lower
control limits about the average moving range, or the values specified
in the Lines dialog box.
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MR table

Mov. Range Gives the value for MR; as defined in “MR analyses,” p. 477. With
range span = 3, for instance, the first 2 values in this table are
missing.

Center Gives the average moving range, or the value specified in the Lines
dialog box.

UL, LCL Gives the upper and lower control limits about the average moving

range, or the values specified in the Lines dialog box.

Other contents

Labels to the left of each row are case numbers or measurement names
as specified by the labeling variable.

CUSUM Statistics results

cusuM charts and tables for individual measurements are identical to those created with sub-

group measurements with the following exceptions: individual measurement cusum charts

and tables show the value of the range span in their titles, and individual measurement cusum
tables do not have a Count column. Please see “CUSUM Statistics results,” p. 271, for more

information.

CAPA results

The individual measurement Capability Analysis results table is identical to that created for
subgroup measurements, except that the individual measurement table shows the value of the
range span in its title. Please see “CAPA results,” p. 282, for more information.

Summary table

The summary table shows the following.

K sigma

Gives the sigma multiplier that is used to determine control limits. A missing value ( .)
indicates that alpha, rather than k-sigma, is used to compute control limits.

Alpha

Gives alpha, the Type | probability of exceeding the control limits. A missing value ( .)
indicates that k-sigma, rather than alpha, is used to compute control limits.

Sigma

Gives the estimate of sigma as specified in the QC Individual Measurements dialog box.

Xbar

Gives the value of |, the process mean.

MRbar

Gives the average of the moving ranges.

# Obs, # Missing

Give number of included rows and missing cases in the analysis.
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Templates

Exercise

The following templates provide QC individual measurement analyses.

QC Analyses Ind & Moving Range [l and MR line charts with 3-sigma control limits; and summary table.
Charts
Ind & MR Charts with |1 and MR line charts with 3-sigma control limits; and summary table
Westgard with Westgard rules.
Ind & MR Charts, [ and MR line charts with control limits given by continuous variables
Specify Lines you specify; and summary table.
Ind Measurements [ and MR line charts with 3-sigma control limits; FIR CUSUM line chart;
Analysis summary table; histogram with normal curve; and descriptive statistics

with notes on interpretation.

Ind, MR & CUSUM [ and MR line charts with 3-sigma control limits; FIR CUSUM line chart;
Charts and summary table.

Previously, you completed an exercise to evaluate whether a bicycle frame manufacturing pro-
cess was in control and capable, with respect to the seat tube angle measurement (see “Exer-
cise,” p. 273). You might recall that although the process appeared to be in control, the
capability analysis indicated that the process was not as capable as it could be. In response to
your findings, the production manager made a slight adjustment to the frame jig in an
attempt to bring the seat tube angles closer to their target value of 74°. In this exercise, you
will use individual measurement analyses to see if the process, after adjustments, is still in con-
trol.

* Open Tube Angle Data Post Adj from the Sample Data folder

These are data only from the day following the adjustments to the frame jig. The seat tube
angle from one frame was measured each hour.

* Select New View from the Analyze menu

¢ In the analysis browser under QC Individual Measurements, select I Statistics, MR Statis-
tics, and cusuM Statistics and click Create Analysis
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent items

¢ For Special causes tests to perform, select Standard

¢ Check Display zones in I charts

¢ Click cusum

* In the cusum Parameters dialog, check Use Fir and click OK
¢ Click OK

This creates empty I, MR and cusum charts in the view.

* In the variable browser, select Seat tube angles and Time and click Add
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The Seat tube angles variable is the measurement variable; it appears in the variable browser
with an X usage marker. The Time variable is the labeling variable; it appears with a G usage
marker. The analysis calculates and the three completed results appear in the view.

I Line Chart
Range Span: 2
Control Limits: 3 Sigma
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The I chart at the top of the view gives no indication that the process is out of control.
Though the 3 and 4 PM measurements are farther from the mean than the other measure-
ments, all are still well within the control limits. Since no test numbers appear in the plot, we
know there are no violations of the tests for special causes.

MR Line Chart
Range Span: 2
Control Limits: 3 Sigma
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FIR Cusum Line Chart
Range Span: 2

Mean Shift: 1

Control Limit: 4
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On the other hand, a quick look at the MR chart (pictured above with the cusum chart) sug-
gests that the process might be out of control. In particular, the moving range for the 4 PM
measurement (which is the difference between the 3 and 4 PM measurements) is slightly
beyond the uct. Since the I and cusum charts do not suggest a shift in the process mean, this
could indicate an increase in variation.

After you relay this information to the production manager, he finds that one of the clamps
on the frame jig is not as tight as it could be. Though it is difficult to tell from the data when
the problem began, the I chart suggests that the clamp might have come loose between 2 and
3 PM. Luckily, even though the process might have been out of control, the frames produced
in the late afternoon are still within specification limits.
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QC P/NP

This chapter, the third of five regarding StatView’s quality control tools, discusses QC p/np
analyses. For a general introduction to quality control, see the preceding chapter, “QC Sub-
group Measurements,” p. 251. Other chapters discussing StatView’s QC methods are “QC
Individual Measurements,” p. 277, “QC C/U,” p. 299, and “Pareto Analysis,” p. 309.

Discussion

Because it is not always possible, practical or desirable to evaluate measurements from items,
QC analysts sometimes gather and analyze data based on item attributes. An attribute typi-
cally is some descriptive characteristic of items, rather than a measurement. Typically, these
attribute data are in the form of counts of items with particular characteristics.

The most common types of count data for the purposes of quality control are tallies of obser-
vations that do not meet the criteria of acceptability, e.g., numbers of nonconforming (i.e.,
defective) items, or numbers of nonconformities (i.e., defects) per item from a larger sample
of items. While both p/np and ¢/u analyses are used to analyze attribute data, they have differ-
ent applications: p/np statistics are used to analyze numbers or proportions of nonconforming
items; the next chapter, “QC C/U,” p. 299 discusses ¢/u statistics used to analyze data on the
numbers of nonconformities per inspection unit from a sample of inspection units.

In p/np analyses, the data for individual items can have only one of two values, typically defec-
tive/not defective. Accordingly, these data follow a binomial distribution.

Although the form of the data is different, p/np analyses, like analyses based on continuous
measurements, rely heavily on control charts. Accordingly, the interpretation of p/np control
limits is very similar to that for measurement charts. It should be unlikely that, due simply to
random effects, points will lie beyond control limits. Therefore, points beyond control limits
are attributed to assignable causes, and require corrective action.

By convention, most p/np charts use 3-sigma limits. Unfortunately, these limits often do not
approximate the intended probabilities of the binomial distribution. This is because the nor-
mal approximation limits (i.e., those based on 4-sigma) are symmetrical and the binomial dis-
tribution is not. A rule of thumb for minimum subgroup size when using £-sigma limits is: if
n; is the number of items in a subgroup, and p is the proportion of nonconforming items

over all subgroups, then both 7;p and 7,(1 —p) should be greater than 5. See Ryan (1989)
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for details. Because the data available often do not meet these requirements, many analysts
prefer control limits based on alpha rather than those based on multiples of sigma.

Typically, analysis of attribute data in a quality improvement program is carried out for a
number of reasons (Grant and Leavenworth, 1988), among them:

1. To quantify the average of and the variation in the proportion of nonconforming items
produced by a process over time.

2. To discover an increase in the number of nonconforming items so that the process can be
corrected.

3. To discover a decrease in the number of nonconforming items, which can indicate relaxed
inspection standards or point to causes of quality improvement which could be integrated
into the process.

4. To suggest places for the use of measurement charts to diagnose quality problems.

Arguably, reason 3 is one of the more important motivations of any quality improvement pro-
gram. In many cases, however, p cannot fall below the 3-sigma lower control limit, because
this limit is 0 (StatView sets the LcL to 0 whenever its computed value is < 0). In fact, the 3-
sigma LcL will be 0 whenever p <9/(9 +#,;) (Ryan, 1989).

Accordingly, if it is important to detect a significant decrease in the number of nonconforming
items, you might have better results if you base the control limits on alpha, rather than on 4-
sigma. Since control limits based on alpha are derived from cumulative probabilities of the
binomial distribution, they are asymmetrical, with the lower tail being shorter than the upper
tail. For practical purposes, this means that the alpha-based lower control limit often will be
greater than 0 when a comparable 4-sigma lower control limit would be less than 0. Since no
subgroup can have fewer than 0 nonconforming items, the alpha-based control limits improve
the chances of detecting a significant decrease in the number of nonconforming items.

p (proportion defective) charts

In an spc analysis of counts of nonconforming items, a p chart is a good place to start. The p
chart summarizes how the proportion of nonconforming items per subgroup compares
among subgroups. If there are large differences among subgroups in the proportion of non-
conforming items, the process might be out of control. As with any control chart, the p chart
also shows lines indicating the control limits and the center line for the process.

Statistically, the control limits and center lines in p and 7p charts are based on estimates of the
expected patterns of variation in a sample of binomial observations. As noted above, due to
the asymmetry of this distribution, the interpretations of 4-sigma and alpha-based control
limits differ substantially.

np (number defective) charts

The np chart summarizes how the number (rather than the proportion) of nonconforming
items per subgroup varies among subgroups. The 7p chart is often used with the p chart
whenever the number of items sampled is constant among subgroups, or the actual number of
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nonconforming items per subgroup is of special interest. Along with the number of noncon-
forming items, 7p charts show the usual lines indicating the control limits and the center line
for the process.

Most analysts recommend 7p charts only when sample sizes are constant among subgroups.
As mentioned above, the statistical bases of calculations for the center line and control limits
for np charts are the same as those for p charts. However, because 7p charts plot center lines
corresponding to expected numbers, rather than proportions, center lines in 7p charts will vary
among subgroups with differing sample sizes.

Tests for special causes and custom tests

Of the eight tests for special causes used with Xbar and I charts, only the first four are applica-
ble to p and 7p charts (Nelson, 1984). Below are the descriptions and interpretations for each
of the four standard tests for special causes as applied to p and 7p charts.

Note that these tests refer to zones A, B and C. These zones are defined as bands of constant
width where Zone A is between 2 and 3 sigmas above and below the center line, Zone B is
between 1 and 2 sigmas above and below the center line, and Zone C is between 0 and 1
sigma above and below the center line. Due to the requirement that zones be of constant
width, tests for special causes can be performed only on data for which all subgroups are of
equal size.

1. 1 point beyond zone A detects a shift in the proportion of nonconforming items, p, an
increase in the estimated standard deviation in the production of defects, or a single aber-
rant subgroup.

2. 9 consecutive points above or below center line detects a shift in the proportion of non-
conforming items.

3. 6 consecutive increasing or decreasing points detects a trend or drift in the proportion of
nonconforming items.

4. 14 consecutive alternating points detects systematic alternating effects, such as alternating
use of different machines, operators or materials.

It should be kept in mind that a positive result for any of the four tests could be caused by

changes in inspection standards that have nothing to do with the process, per se. Therefore,
standardization and uniform application of criteria for the identification of nonconforming
items are critical to the effective application of these tests.

As is true for measurement analyses, the four custom tests for special causes in p/np analyses
have the same logical structure as the standard tests. Their difference from the standard tests is
that the custom tests give the you the ability to define the number of points involved in the
calculation of a violation and they allow you to define critical values with arbitrary multiples
of sigma rather than with zones about the center line.
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Dialog box settings

QC P/NP dialog box

ac P/NP
Base control limits on
[ specify p
Special causes tests to perform:

[ pisplay zones in charts

Base control limits on This item functions identically to the pop-up menu of the same name
in the QC Subgroup Measurements dialog box. For more information, please see “QC Sub-
group Measurements dialog box,” p. 262.

Specify p This checkbox and associated text field allow you to specify a value for p, the pro-
portion of nonconforming items over all subgroups. If no value is specified (the default), p is
calculated from the data.

Special causes tests to perform This item functions identically to the pop-up menu of the
same name in the QC Subgroup Measurements dialog box. For more information, please see
“QC Subgroup Measurements dialog box,” p. 262.

Display zones in charts When enabled, this checkbox causes display of zones A, B, and C in
2 and np control charts. It is important to note that zones can be displayed only when sub-
group sizes are equal. By default, this option is disabled.

All the Specify buttons and the dialog boxes they access are identical to the corresponding
items in the QC Subgroup Measurements dialog box. See “QC Subgroup Measurements dia-

log box,” p. 262.

Data requirements

Data for p/np analyses can be in one of two formats. All p/np analyses require one continuous
variable, referred to as the nonconformity variable. At least one other variable is also required.
If your data are in format 1, then a nominal variable called the subgroup variable is required.
If your data are in format 2, another continuous variable called the item count variable is
required.

1. If your data are in format 1, every row has the data for a single item inspected. The non-
conformity variable indicates whether each item is conforming (value=0) or nonconform-
ing (value=1). The subgroup variable indicates the subgroup from which each item is
taken. If, for instance, the values in one row for the nonconformity and subgroup variables
are 1 and 3 pm, then this indicates a nonconforming item from the 3 pm subgroup. In
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Format |

Format 2

another row, values of 0 and 11 am indicate a conforming item from the 11 am subgroup.

2. In the second format, each row has data for a number of items inspected. In this case the
nonconformity variable is a count of numbers of nonconforming items. The item count
variable is the total number of items inspected for each number of nonconforming items.
The subgroup variable is optional; it indicates the subgroup from which each number of
nonconforming items is taken. If, for instance, the values in one row of the nonconformity,
item count and subgroup variables are 14, 205 and March 3, then there are 14 noncon-
forming items out of 205 items inspected from the March 3 subgroup.

To summarize, if the nonconformity variable indicates whether each item is or is not a non-
conforming item (i.e., it is in binomial form, with all values either 0 or 1) then you must use a
subgroup variable and you cannot use an item count variable. This is format 1. If, however,
the nonconformity variable is a count of nonconforming items, then you must use an item
count variable; you can, but are not required to use a subgroup variable. This is format 2.

If all of your subgroups are represented with the same number of rows, you can probably use a
formula to generate the values of the subgroup variable. This will save you repetitive and
potentially inaccurate typing of subgroup names. See “How can I generate subgroup and
labeling variables?,” p. 242 of Using StatView.

In Format 1, the number of cases is equal to the total number of items in the entire sample.
Subgroup sizes are determined by the number of cases in each subgroup. The ordering of sub-
groups on the cell axis is determined by the alpha-numeric value of the subgroup variable.

Variable browser buttons

Add Select one nonconformity variable (continuous) and one subgroup variable (nominal), then click
Add.

Each additional nonconformity variable creates a new analysis using the original subgroup and
item count variables. Each additional subgroup variable creates a new analysis using the
original nonconformity and item count variables.

Item Count No variables should be specified with the ltem Count button.

Split By When you assign one or more split-by variables (nominal) to a p/np analysis, results are
displayed separately for each cell defined by the split-by variable(s).

In Format 2, the number of cases must always be less than or equal to the total number of

items inspected. In lieu of the optional subgroup variable, each case in the dataset is a separate
subgroup, and subgroup sizes are the item counts for each row. If a subgroup name appears in
more than one row of the dataset, nonconformity counts and item counts are summed for all
rows having that subgroup name. The ordering of subgroups in any p/np result is determined
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Results

p results

either by the ordering of cases in the dataset, or by the alpha-numeric value of the optional
subgroup variable.

Variable browser buttons

Add Select one nonconformity variable (continuous) and, optionally, a subgroup variable (nominal),
then dlick Add.

Each additional nonconformity variable creates a new analysis using the original subgroup and
item count variables. Each additional subgroup variable creates a new analysis using the
original nonconformity and item count variables.

Item Count Select an item count variable (continuous), then click the Item Count button.
Each additional item count variable creates a new analysis using the original nonconformity and
subgroup variables.

Split By When you assign one or more split-by variables (nominal) to a p/np analysis, results are
displayed separately for each cell defined by the split-by variable(s).

When using Format 2, p/np analyses exclude all cases for which the value of the nonconfor-
mity variable divided by the item count variable is greater than 1. If no item count variable is
assigned, Format 1 is assumed, and any cases for which the value of the nonconformity vari-
able is greater than 1 are excluded.

A p chart can be plotted as a line, point, needle, or bar plot. The choice is made in the analysis
browser. The default graph is a line chart.

Since the center line is the overall proportion of nonconforming items across all subgroups, it
is a constant. The ucL and LcL, however, depend upon subgroup sample sizes and so might
vary from subgroup to subgroup. These limits are wider for subgroups with fewer observa-
tions (see “p analyses,” p. 478).

When the Tables show violations only option is checked in the Tests for Special Causes or
Custom Tests dialog boxes, this table shows results only from those subgroups that violate one
or more of the chosen tests.

P chart Plotted points Give proportion of nonconforming items for each subgroup.

Center, UCL and LCL | Center line gives the overall proportion of nonconforming items, or the
lines value specified in the Lines dialog box. UCL and LCL give the upper and
lower control limits about the average proportion of nonconforming
items, or the values specified in the Lines dialog box.
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np results

P table

293
Item Count Gives the number of items in each subgroup.
Proportion Gives the fraction of sampled items that do not conform for each
subgroup.
Center Gives the overall proportion of nonconforming items, or the value
specified in the Lines dialog box.
UcL, LCL Gives the upper and lower control limits about the overall proportion

of nonconforming items, or the values specified in the Lines dialog box.

Other contents

Labels to the left of each row are either row numbers or the subgroup
names specified by the subgroup variable. Numbers to the right of each
row are the numbers of any violated special causes tests that are
currently enabled.

An np chart can be plotted as a line, point, needle, or bar plot. The choice is made in the anal-

ysis browser. The default graph is a line chart.

In contrast to p charts, the center line, as well as the ucL and the LcL for np charts can all vary

among subgroups depending on the number of items in each subgroup.

When the Tables show violations only option is checked in the Tests for Special Causes or

Custom Tests dialog boxes, this table shows results only from those subgroups that violate one

or more of the chosen tests.

NP chart Plotted points Give the number of nonconforming items for each subgroup.
Center, UCL and LCL | Center line gives the expected number of nonconforming items for each
lines subgroup, or the value specified in the Lines dialog box. UCL and LCL
lines give the upper and lower control limits about the expected
number of nonconforming items, or the values specified in the Lines
dialog box.
NP table Item Count Gives the number of items in each subgroup.
Number Gives the number of nonconforming items for each subgroup.
Center Gives the expected number of nonconforming items for each subgroup,
or the values specified in the Lines dialog box.
UL, LCL Gives the upper and lower control limits about the expected number of

nonconforming items, or the values specified in the Lines dialog box.

Other contents

Labels to the left of each row are either row numbers or the subgroup
names specified by the subgroup variable. Numbers to the right of each
row are the numbers of any violated special causes tests that are
currently enabled.

Special Causes Definitions table

This table displays no computed results. These definitions are displayed mainly to aid the
interpretation of violations that appear on control charts. The contents of this table are dis-
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played only if Show definitions table is checked in the Tests for Special Causes or Custom

Tests dialog boxes.

Contents Gives the definitions for those tests enabled in either the Tests for Special Causes or the Custom
Tests dialog box, depending on which is chosen from the Special causes tests to perform pop-up
menu.

Summary table

The summary table shows the following.

K sigma Gives the sigma multiplier that is used to determine control limits. A missing value ( .)
indicates that alpha, rather than k-sigma, is used to compute control limits.

Alpha Gives alpha, the Type | probability of exceeding the control limits. A missing value ( .)
indicates that k-sigma, rather than alpha, is used to compute control limits.

P Gives P, the overall proportion of nonconforming items across all subgroups, or the value
specified in the QC P/NP dialog box.

Num Groups, Total Give number of subgroups, items, and missing cases, if any, in the analysis.

Item Count, Num

Missing

Templates

The following templates provide QC p/np analyses.

QC Analyses P NP, 3 Sigma, For format | data, P and NP line charts with 3-sigma control limits;
Format | summary table.
P NP, 3 Sigma, For format 2 data, P and NP line charts with 3-sigma control limits;
Format 2 summary table.

P NP, Alpha, Format | |For format | data, P and NP line charts with alpha=0.0027 control
limits; summary table.

P NP, Alpha, Format 2 |For format 2 data, P and NP line charts with alpha=0.0027 control
limits; summary table.

Exercise

Exercises in previous chapters evaluate whether a bicycle frame manufacturing process is in
control and capable, with respect to the seat tube angle measurement. Sometimes, though, it
just isn’t practical to measure and analyze every single characteristic of an item to see if a pro-
cess is in control. Instead, it is often more cost-effective to simply evaluate whether an item is
defective or not and to use this information to evaluate process control.
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In this exercise, you will analyze this sort of data recorded from frame tubes prior to assembly.
Frame tubes need to be meticulously filed, mitered and sanded before they are joined (usually
brazed) into a complete frame. The tube ends are then inspected to assure that they fit
together properly. Rather than base your analyses on each of the measures that affect whether
tubes fit together, you will analyze a single characteristic, specifically whether each individual
tube is defective (i.e., is a nonconforming item) or not.

e Open Tube Defects Data from the Sample Data folder
These are data for frame tubes prepared over a 10 week period. Over this period, between 88

and 105 frame tubes per week were prepared and inspected. The Nonconformity? variable
codes whether each frame tube inspected is defective (scored as 1) or not (scored as 0).

* Select New View from the Analyze menu

* In the analysis browser under QC P/NP’s P Statistics subheader, select Line Chart and
Results Table

Control-click (Windows) or Command-click (Macintosh) to select nonadjacent results
* Click Create Analysis
¢ Click OK to accept the default analysis parameters
This creates an empty p line chart and results table in the view.

¢ In the variable browser, select Nonconformity? and Week and click Add

Nonconformity? appears in the variable browser with an X usage marker; the subgroup vari-
able Week appears with a G usage marker. The analysis calculates and the two completed
results appear in the view.

P Line Chart
Control Limits: 3 Sigma
.18
o 16 e — Tua
2 144 L
£
S .12 r
c
8 1 o\ —°
2 084 —5 o} 7 Center = .075
5 .06 r
_5 .04 7 / r
§L .02 r
< 0 rLCL
a

-.02
1 2 3 4 5 6 7 8 9 10
Week

The center line of the p chart at the top of the view indicates that 7.5% of all tubes inspected
are nonconforming (defective). This is not a huge number, but it definitely leaves room for
improvement.

One thing to check before proceeding is whether £-sigma gives a reasonable estimate of the
control limits. According to our rule of thumb for using the normal approximation (see the
“Discussion,” p. 287), no subgroup should have fewer than 5/0.075 067 items. A quick
look at the p results table shows that the fewest number of items sampled is 88 in week 3,
which is well above the suggested minimum.
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P Results Table for Nonconformity?
Grouping Variable: Week
Control Limits: 3 Sigma

Item Count Proportion Center UCL LCL

1 97 .103 .075 | .155| 0.000
2 94 .074 .075 | .157| 0.000
3 88 .068 .075 | .159| 0.000
4 103 .078 .075 | .153| 0.000
5 98 .071 .075 | .155| 0.000
6 93 .075 .075 | .157| 0.000
7 94 .011 .075 | .157| 0.000
8 93 .065 .075 | .157| 0.000
9 95 .095 .075 | .156| 0.000
10 105 .105 .075 | .152| 0.000

On the other hand, we see from this table that there were not enough tubes inspected in any
week to give an LcL > 0 when using 3-sigma limits (the minimum is 9/0.075 -9 = 111 ;
see the “Discussion,” p. 287). This means that there is no way to see if, for instance, the
improvement seen in week 7 is significant: there can be no proportions < LcL when Lct is 0.

This is important, because if the decline in defective items seen in week 7 is significant, you
would like to identify the assignable cause for that improvement and incorporate it into the
tube preparation process.

You can get a better estimate of the actual binomial probability for the week 7 result if you
create a p chart using alpha-based, rather than sigma-based, control limits. Let’s suppose that
you want the probability of an out of control signal to be about equal to that from 3-sigma
limits. 3-sigma limits are equivalent to a Type I error probability of approximately 0.0027 for
each subgroup. Therefore, you will recompute the analysis with control limits based on an
alpha of 0.0027.

* Click either the p line chart or the p results table to select it
* Click the Edit Analysis button at the top of the view

¢ Select alpha from the Base control limits on pop-up menu, then specify 0.0027 for its

value
¢ Click OK
P Line Chart P Results Table for Nonconformity?
Control Limits: Alpha =.003 Grouping Variable: Week
.18 T Control Limits: Alpha =.003
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Week 10 105 .105 | .075.166 | .016

These results show that the decline in defective items seen in week 7 is slightly below the LcL
for that week. You can therefore conclude that there were assignable causes at work in week 7.
Unlike assignable causes identified in measurement analyses, those below the LcL in p/np anal-
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yses are desirable because they indicate a significant decline in the production of nonconform-
ing items. These results suggest that you should thoroughly investigate the production process
in week 7, try to identify any assignable causes that could account for the improvement and
take steps to integrate these causes into the production process.
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QC (U

This chapter, the fourth of five regarding StatView’s quality control tools, discusses QC ¢/u

analyses. For a general introduction to quality control, see the preceding chapter, “QC Sub-
group Measurements,” p. 251. Other chapters discussing StatView’s QC methods are “QC
Individual Measurements,” p. 277, “QC P/NP” p. 287, and “Pareto Analysis,” p. 309.

Discussion

Like p/np analyses, ¢/u analyses are also used to analyze item attributes. Unlike p/np statistics,
¢/u statistics are used to analyze counts of some attribute from items (or inspection units) in a
sample, where the attribute is a particular #hing, usually a kind of defect, e.g., numbers of bub-
bles in glass beakers, or numbers of scratches on polished mirrors. It is also appropriate to use
¢/u statistics in situations where the inspection unit is, say, a box of items, so long as there is
very nearly the same number of items in each inspection unit.

As with the other analyses already described, ¢/# analyses use control charts for evaluating
whether or not a process is in control. Control limits are computed such that points that lie
beyond them are attributed to assignable causes which should either be eliminated from the
process if the point is > UCL, or incorporated into the process if the point is < LCL.

Like the binomial distribution for p/np charts, the Poisson distribution on which ¢/« charts are
based is asymmetrical. Conventionally, the normal approximation to the Poisson that is
implied by using 4-sigma control limits is considered adequate only when the mean count per
inspection unit (#) is greater than 5 (Ryan, 1989). Furthermore, for the 3-sigma LcL to be
greater than 0, the average number of nonconformities per subgroup (7;#) must be greater
than or equal to 9. Therefore, it may be more appropriate in many situations to use alpha-
based control limits rather than 4-sigma limits.

Occasionally, QC analysts use ¢/« charts to analyze combined counts of different types of non-
conformities. In general, this is not appropriate because the resulting distribution often is not
approximated by the Poisson. Even when counts of the individual nonconformities each come
from a Poisson distribution, the combined counts generally will not (Ryan, 1989).
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¢ (count of defects) charts

When analyzing the number of nonconformities from individual inspection units, it is con-
ventional to use a ¢ chart. The ¢ chart summarizes how the total number of nonconformities
varies among subgroups. When there is only a single inspection unit per subgroup, the plotted
points in this chart are equivalent to the number of nonconformities per inspection unit. If a
few subgroups have many more or far fewer nonconformities than others, this may indicate
that the process is out of control.

As with any control chart, the ¢ chart also shows lines indicating the control limits and the
center line for the process. Because the center lines in ¢ charts correspond to expected counts
of nonconformities from each subgroup, center lines will vary among subgroups that com-
prise different numbers of inspection units.

Statistically, the control limits and center lines in ¢ and # charts are based on estimates of the
expected patterns of variation from samples taken from a Poisson distribution. As noted
above, due to the asymmetry of the Poisson, the limits predicted by 4-sigma and alpha-based
estimates can differ substantially.

u (average number of defects) charts

If the number of inspection units is not constant among subgroups, a # chart probably should
be used along with or instead of a ¢ chart. The # chart summarizes how, for each subgroup, the
average of the number of nonconformities per inspection unit (rather than the total number

of nonconformities) compares for all subgroups.

Like other control charts, # charts show the usual lines indicating the control limits and the
center line for the process. As mentioned above, the statistical bases of the center line and the
control limits for # charts are the same as those for ¢ charts. However, because # charts plot
center lines corresponding to expected averages per inspection unit, rather than expected total
counts, center lines in # charts do not vary among subgroups, even when they have different
sample sizes.

Tests for special causes and custom tests

Below are the descriptions and interpretations for each of the four tests for special causes as
applied to ¢ and # charts. As with p/np charts, only the first four of the eight tests for special
causes are applicable.

Note that these tests refer to zones A, B, and C. These zones are defined as bands of constant
width where Zone A is between 2 and 3 sigmas above and below the center line, Zone B is
between 1 and 2 sigmas above and below the center line, and Zone C is between 0 and 1
sigma above and below the center line.

1. 1 point beyond zone A detects a shift in the average number of nonconformities per
inspection unit, #, an increase in the estimated standard deviation in the production of
nonconformities, or a single aberrant subgroup.

2. 9 consecutive points above or below center line detects a shift in the average number of
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nonconformities per inspection unit.

3. 6 consecutive increasing or decreasing points detects a trend or drift in the average num-
ber of nonconformities per inspection unit.

4. 14 consecutive alternating points detects systematic alternating effects, such as alternating
use of different machines, operators, or materials.

As with p/np charts, a positive result for any of the four tests could be caused by changes in
inspection standards that have nothing to do with the process, per se. Therefore, standardiza-
tion and uniform application of criteria for the identification of nonconformities are critical
to the effective application of these analyses.

The four custom tests for special causes have the same logical structure as the standard tests.
Their difference from the standard tests is that the custom tests give the you the ability to
define the number of points involved in the calculation of a violation and they allow you to
define critical values with arbitrary multiples of sigma rather than with zones about the center
line.

Dialog box settings

QC C/U dialog box

ac c/u
Base control limits on [ k sigma V|
[ specify u
Special causes tests to perform:

[ pisplay zones in charts

Base control limits on This item functions identically to the pop-up menu of the same name
in the QC Subgroup Measurements dialog box. For more information, please see “QC Sub-
group Measurements dialog box,” p. 262.

Specify u This checkbox and associated text field allow you to specify a value for #, the aver-
age number of nonconformities per inspection unit for the process. If no value is specified
(the default), # is calculated from the data.

Special causes tests to perform This item functions identically to the pop-up menu of the
same name in the QC Subgroup Measurements dialog box.For more information, please see
“QC Subgroup Measurements dialog box,” p. 262.

Display zones in charts When enabled, this checkbox causes display of zones A, B, and C in
¢ and # control charts. It is important to note that zones can be displayed only when subgroup
sizes are equal. By default, this option is disabled.
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All the Specify buttons and the dialog boxes they access are identical to the corresponding
items in the QC Subgroup Measurements dialog box. See “QC Subgroup Measurements dia-

log box,” p. 262.

Data requirements

All QC ¢/u analyses require only one continuous variable, referred to as the nonconformity
variable. Optionally, these analyses may accept either or both a nominal variable and another
continuous variable, the latter specified using the Unit Count button. These variables are
called the subgroup and unit count variables, respectively. An example dataset with all 3 vari-
ables is pictured below.

Nonconformity Subgroup Unit Count

» Type: | Integer Date/Time Integer

» Source: | User Entered User Entered User Entered

> Class: | Continuous Norninal Continuous

» Format: | e 171 .

> Dec. Places: | @ . .
1 32 4/1 23
2 32 4/1 24
3 36 4/1 24
4 36 4/ 2 22
5 40 4/ 2 21
& 40 4/ 2 21
7 40 4/ 3 22
g 35 4/3 22
9 35 4/ 3 20

For each row in the dataset, the nonconformity variable gives a number of nonconformities. If
no unit count variable is specified, then the value in the nonconformity variable is assumed to
be for a single inspection unit. If the unit count variable is specified, then the value in the
nonconformity variable is the number of nonconformities for the number of inspection units
in the unit count variable. If no subgroup variable is specified, then each row is assumed to be
from a different subgroup. If a subgroup variable is specified, then counts from the noncon-
formity and unit count variables are summed for all cases with the same value of the subgroup
variable.

If all of your subgroups have the same number of measurements, you can probably use a for-
mula to generate the values of the subgroup variable. This will save you from repetitive and

potentially less accurate typing. See “How can I generate subgroup and labeling variables?,”
p. 242 of Using StatView.

Variable browser buttons

Add Select one nonconformity variable (continuous) and, optionally, a subgroup variable (nominal).
Then click the Add button.

Each additional nonconformity variable creates a new analysis using the original subgroup and
unit count variables. Each additional subgroup variable creates a new analysis using the original

nonconformity and unit count variables.
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Results

¢ results

Unit Count Optionally, you can select a unit count variable (continuous), then click the Unit Count button.

Each additional unit count variable creates a new analysis using the original nonconformity and
subgroup variables.

Split By When you assign one or more split-by variables (nominal) to a ¢/ analysis, results are

displayed separately for each cell defined by the split-by variable(s).

Because two of the three data variables are optional, there are four distinct scenarios that
determine how the variables are interpreted in any ¢/x analysis:

1.

Only the nonconformity variable is specified. In this scenario, the number of cases equals
the number of subgroups which equals the number of inspection units, i.e., there is one
inspection unit per subgroup.

. Only the nonconformity and the subgroup variables are specified. In this scenario, each

case is a separate inspection unit, and the number #; of inspection units in each subgroup
is determined by the number of cases with the same value of the subgroup variable.

. Only the nonconformity and unit count variables are specified. In this scenario, each case

represents the totals from a subgroup, with the unit count variable indicating the number
n; of inspection units in each subgroup.

. The nonconformity, subgroup and unit count variables are all specified. In this scenario,

the number #; of inspection units in each subgroup is the sum of the values for the unit
count variable for each level of the subgroup variable. The number of cases in the dataset
does not correspond necessarily to either the number of inspection units or the number of
subgroups.

A ¢ chart can be plotted as a line, point, needle, or bar plot. The choice is made in the analysis

browser. The default graph is a line chart. For ¢ charts the center line, uct and LcL vary among

subgroups of different sizes.

When the Tables show violations only option is checked in the Tests for Special Causes or

Custom Tests dialog boxes, this table shows results only from those subgroups that violate one

or more of the chosen tests.

C chart Plotted points Give the number of nonconformities for each subgroup.

Center, UCL and LCL | Center line gives the expected number of nonconformities from each
lines subgroup, or the value specified in the Lines dialog box. UCL and LCL
lines give the upper and lower control limits about the expected
number of nonconformities, or the values specified in the Lines dialog
box.
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C table Unit Count Gives the number of inspection units in each subgroup.

Count Gives the number of nonconformities in each subgroup.

Center Gives the expected number of nonconformities for each subgroup, or
the value specified in the Lines dialog box.

UcL, LCL Gives the upper and lower control limits about the expected number of
nonconformities, or the values specified in the Lines dialog box.

Other contents Labels to the left of each row are either row numbers or the subgroup
names specified by the subgroup variable. Numbers to the right of rows
are those of any violated special causes tests that are currently
enabled.

u results

A u chart can be plotted as a line, point, needle, or bar plot. The choice is made in the analysis

browser. The default graph is a line chart. Unlike ¢ charts, for # charts only the uct and rct,
but not the center line, vary with the number of items in each subgroup.

When the Tables show violations only option is checked in the Tests for Special Causes or
Custom Tests dialog boxes, this table will show data only from those subgroups that violate
one or more of the chosen tests.

U chart Plotted points Give the average number of nonconformities per inspection unit for
each subgroup.
Center, UCL and LCL | Center line gives the expected number of nonconformities per inspection
lines unit for each subgroup, or the value specified in the Lines dialog box.
UCL and LCL lines give the upper and lower control limits about the
expected number of nonconformities per inspection unit, or the values
specified in the Lines dialog box.
U table Unit Count Gives the number of inspection units in each subgroup.
Count/Unit Gives the number of nonconformities per inspection unit in each
subgroup.
Center Gives the expected number of nonconformities per inspection unit for
each subgroup, or the value specified in the Lines dialog box.
UL, LCL Gives the upper and lower control limits about the expected number of

nonconformities per inspection unit, or the values specified in the Lines
dialog box.

Other contents

Labels to the left of each row are either row numbers or the subgroup
names specified by the subgroup variable. Numbers to the right of rows
are those of any violated special causes tests that are currently
enabled.
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Special Causes Definitions table

This table displays no computed results. These definitions are displayed mainly to aid the
interpretation of violations that appear on control charts. This table is displayed only if Show
definitions table is checked in the Tests for Special Causes or Custom Tests dialog boxes.

Contents Gives the definitions for those tests enabled in either the Tests for Special Causes or the Custom
Tests dialog box, depending on which is chosen from the Special causes tests to perform pop-up
menu.

Summary Table

The summary table shows the following.

K sigma Gives the sigma multiplier that is used to determine control limits. A missing value ( .)
indicates that alpha, rather than k-sigma, is used to compute control limits.

Alpha Gives alpha, the Type | probability of exceeding the control limits. A missing value ( .)
indicates that k-sigma, rather than alpha, is used to compute control limits.

u Gives u, the average number of nonconformities per inspection unit across all subgroups, or the
value specified in the QC C/U dialog box.

Num Groups, Total Give the number of subgroups, inspection units, and missing cases, if any, in the analysis.

Unit Count, Num

Missing

Templates

The following templates provide QC ¢/x analyses.

QC Analyses (/U, 3 Sigma Limits  |C and U line charts with 3 sigma control limits; summary table.

(/U, Alpha Limits C and U line charts with alpha=.003 control limits; summary table.

Exercise

Previously, you analyzed the proportion of nonconforming (defective) frame tubes from the
tube preparation process (see “Exercise,” p. 294). This is one way of using an item attribute to
evaluate process control. Of course, individual items (or inspection units) always have more
than a single attribute. For instance, none of the frame tubes inspected was perfect, i.e., each
one had at least a few imperfections, such as stray file marks, a few burrs or an imperfectly
mitered butting surface. Data such as these can also be useful for evaluating process control.

In this exercise, you will use ¢/« statistics to analyze the most common type of defect, the
number of stray file marks per frame tube, to see if the filing process is in control.

* Open File Mark Data from the Sample Data folder
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These are data for the same frame tubes that were analyzed earlier. Rather than show data
from individual tubes, these data are summary counts for the total number of file marks for all
of the tubes inspected in a given week.

* Select New View from the Analyze menu

* In the analysis browser under QC C/U, select C Statistics and U Statistics and click Create
Analysis

¢ Click OK to accept the default parameters

The empty ¢ and # line charts appear in the view.
* In the variable browser, select Stray file marks and Week and click Add
Control-click (Windows) or Command-click (Macintosh) to select nonadjacent variables

* Select # tubes inspected and click Unit Count

Stray file marks appears in the variable browser with an X usage marker; the variable Week
appears with a G usage marker and # tubes inspected appears with a C usage marker. The
analysis calculates and the two completed results appear in the view.

C Line Chart
Unit Count Variable: # tubes inspected
Control Limits: 3 Sigma
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The ¢ line chart that appears at the top of the view plots the total number of nonconformities
and their associated control limits for each week. Though there is no statistical reason why
you should not look at the data in this way, the fact that each week has a different value of the
center line (owing to the different numbers of inspection units in each week) makes this a
rather difficult chart to read. Instead, consider the # chart just below it:

U Line Chart
Unit Count Variable: # tubes inspected
Control Limits: 3 Sigma
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Since the data plotted are the average numbers of nonconformities per inspection unit for
each week, the center line is constant. This means that the plotted values from week to week
can be compared directly to one another.

The u chart gives you some insight into stray file marks as a potential criterion of defective-
ness. Recall (from “Exercise,” p. 305) that there were significantly fewer defective tubes pre-
pared in week 7. The # chart above is consistent with this, showing for week 7 a fairly low
average number of stray file marks per tube. It also shows, however, that the average number
of stray file marks per tube is even lower for week 8, a value that is below the LcL for the pro-
cess. In tandem with the p/np results, this chart suggests that it would be worthwhile to take a
closer look at any assignable causes in both weeks 7 and 8, and to try to integrate these into
the process.
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Pareto Analysis

This chapter, the last of five regarding StatView’s quality control tools, discusses Pareto analy-
ses. For a general introduction to quality control, see the preceding chapter, “QC Subgroup
Measurements,” p. 251. Other chapters discussing StatView’s QC methods are “QC Individ-
ual Measurements,” p. 277, “QC P/NP” p. 287, and “QC C/U,” p. 299.

Discussion

In quality control work, sometimes very simple summaries of data can be very valuable. Pareto
charts are a case in point. Frequently, Pareto analyses are used to create an easily interpretable
summary that can be used to make decisions about where effort should go to improve product
quality. A Pareto analysis is simply a frequency distribution of types of defects, with the order-
ing of the defects determined by their frequency (ordered most to least frequent).

Since types of defects are ordered on a Pareto chart from most to least frequent, identifying
the most prevalent types of defects is a simple matter: they are the ones on the left of the
graph. Since particular types of defects often are closely related to specific procedures or treat-
ments in the manufacturing process, the Pareto chart gives a good indication of where in the
process to concentrate the quality improvement effort.

Dialog box settings

Pareto Analysis

Charts show: @) Counts ) Percents

< Cumulative curve

Tables show: [X Counts [ Cumulative counts

[ Percents [J Cumulative percents

Counts/Percents These radio buttons allow the user to display in the Pareto chart either
counts or percentage frequencies for each type of defect.
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Cumulative curve If this checkbox is enabled (the default), the Pareto chart will plot a curve
charting the cumulative frequency of observations across the types of defects.

Counts If this checkbox is enabled (the default), the Pareto table will display counts for each
type of defect.

Percents If this checkbox is enabled, the Pareto table will display the percentage of observa-
tions attributable to each type of defect. By default, this option is not checked.

Cumulative counts If this checkbox is enabled (the default), the Pareto table will display the
cumulative sum of observations attributable to the types of defects, from most to least fre-
quent.

Cumulative percents If this checkbox is enabled, the Pareto table will display the cumulative

percentage of observations attributable to the types of defects, from most to least frequent. By
default, this option is not checked.

Data requirements

Pareto analyses require one nominal variable (the defect type variable) and, optionally, a con-
tinuous variable (the defect count variable).

If the defect count variable is not specified, each row in the dataset is tabulated as a single
defect of the type indicated in the defect type variable. The total number of rows in the
dataset is then equal to the total number of defects observed. An example of such data is pic-
tured below.

Defect Type

1 | Misaligned threads
2 Too long
3 | Misaligned threads
4 Too weak
S Scratches
6
7
8

Scratches
Distortions
Too long

9 Too long
10 Too long
11 Scratches
12 Distortions
13 | Misaligned threads
14 Distortions
15 Scratches

If specified, the values of the defect count variable are summed for all rows with a particular
value for the defect type variable. An example dataset with both variables is pictured below.
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Defect Type Defect Count
1| Too weak 322
2| Too long 317
3 | Misaligned threads 425
4 | Scratches 182
5 | Distortions 180
Variable browser buttons
Add Select one defect type variable (nominal) and, optionally, one defect count variable (continuous).

Then dick the Add button.

Each additional defect type variable creates a new analysis using the original defect count
variable. Each additional defect count variable creates a new analysis using the original defect
type variable.

Split By When you assign one or more split-by variables (nominal) to a Pareto analysis, results are
displayed separately for each cell defined by the split-by variable(s).

Results

Pareto charts and tables show the following,.

Pareto chart Plotted bars Give the incidence (as counts or percentages) of each defect type.
Cumulative curve Gives the cumulative sum or percentage of defects attributable to the
defect types, summed from most to least frequent.
Pareto table Count Gives the number of defects attributable to each defect type.
Percent Gives the proportion of all defects attributable to each defect type.
Cum Count Gives the cumulative sum of the number of defects attributable to each
defect type, summed from most to least frequent.
Cum Percent Gives the cumulative proportion of all defects attributable to each
defect type, summed from most to least frequent.
Other contents Labels to the left of each row are specified by the defect type variable.

Templates

The following template provides Pareto results.

|QC Analyses Pareto Chart & Table |Pareto chart and table.

Exercise

In previous chapters (see “Exercise,” p. 294, and “Exercise,” p. 305), you analyzed defect
attribute data to evaluate whether the frame tube manufacturing process is in control. Along
the way, however, these analyses suggested that some assignable causes may have been at work
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in weeks 7 and 8. In this exercise, you will use Pareto analysis to look at the differences in the
frequencies of types of tube defects between weeks 7 and 8. This information can help you
diagnose the assignable causes of the p/np and c/u results.

Inspection of prepared frame tubes typically reveals five common types of defects: stray file
marks, vise marks, oval cross-section, metal burrs and poor mitering. Of course, these defects
are not necessarily equivalent. It may be acceptable for a tube to have fifteen or more relatively
superficial file marks, but only the most minor of mitering defects.

You will use the information from the Pareto analysis to see if the pattern of defects is the
same for weeks 7 and 8.

*  Open Types of Defects Data from the Sample Data folder

This dataset has two variables, one with a random sample of 1000 nonconformities recorded

from all frames in week 7 (Week 7 defects), the other with the corresponding data from
week 8 (Week 8 defects).

¢ Select New View from the Analyze menu

* In the analysis browser under Pareto Analysis, select Pareto Chart and Results Table
* Click Create Analysis

¢ Uncheck Cumulative counts

¢ Check Percents

¢ Click OK

Pareto Analysis

Charts show: @ Counts ) Percents

(<] Cumulative curve

Tables show: [X] Counts [J Cumulative counts

(< Percents [J Cumulative percents

(o) (D

The empty Pareto chart and results table now appear in the view.
¢ In the variable browser, select Week 7 defects and Week 8 defects and click Add

This generates two analyses with the same parameters, one for Week 7 defects, the other for
Week 8 defects.
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Pareto Chart Pareto Chart
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Week 7 defects Week 8 defects
Pareto Table for Week 7 defects Pareto Table for Week 8 defects
Count Percent Count  Percent
Stray file marks | 493 | 49.300 Vise marks 352 | 35.200
Burrs 258 | 25.800 Stray file marks | 341 | 34.100
Vise marks 172 | 17.200 Poor mitering 131 | 13.100
Oval X-section 40 4.000 Oval X-section 115 | 11.500
Poor mitering 37 3.700 Burrs 61 6.100

These charts and tables make clear that the relatively innocuous defects, like stray file marks
and metal burrs, occur with higher relative frequency in week 7 than in week 8, while poor
mitering, a quite serious defect, has a higher relative frequency in week 8 than in week 7.
These results suggest that whatever changes to the process in week 8 that caused the favorable
decline in stray file marks and burrs could be correlated with an increase in mitering defects. If
this is so, it may be wise to try to incorporate into the process whatever assignable causes
appeared in week 7, and to exclude those that appeared in week 8.

Certainly, you cannot conclude from the Pareto charts alone what the differences are between
the processes in the two weeks. The differences between week 7 and week 8 could, for
instance, have a very simple basis: a frame technician in week 8 may spend more time on filing
and other finish work at the expense of time spent on mitering the tubes. This is just one of
many possibilities. The Pareto analysis can only give you a better idea of where to look for the
sources of defects. Neither it, nor any other QC statistic can be a substitute for first-hand
knowledge of the production process.
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Formulas

Overview

StatView’s Formula, Recode, Series, and Random Numbers commands let you create, manip-
ulate, and transform data. Various Criteria commands let you control which data are used for
analyses. All these features share a common mathematical expression language as well as a
large set of operations, relations, date/time functions, text functions, and numerical functions.
This reference chapter discusses that expression language and introduces each of the opera-
tions, relations, and functions.

This chapter does noz discuss the Formula, Recode, Series, and Random Numbers commands
themselves. If these are unfamiliar, please consult the chapter “Managing data,” p. 107 of

Using StatView.

The section “Introduction,” p. 317, discusses general concepts: working with variable types
and formats, rules about arguments and syntax, how formulas and criteria are evaluated, and
special discussions of the date/time and text functions.

Subsequent sections detail the various types of functions. A table on the next page lists which
functions are discussed in each section. The function types are those seen in function browsers
(the scrolling function lists seen in many of StatView’s data management windows). You may
also view function lists in alphabetical order.

Order: Order:
> Date /Time ArcCos(?)

[> Logical ArcCosh(?)

[> Mathematical ArcCot(?)

[> Probabilities AreCse(?)

[> Randorn Numbers ArcSec(?)

> Series ArcSin(?)

[> Special Purpose ArcSinh(?)

|> Statistical ArcTan(?)

A complete index appears at the back of the book.

Section Function type |Functions discussed
“Operators,” p. 332 Mathematical +,= 500, %%, unary +, unary —
“Sets, intervals, and | Special Purpose {LOLED < <5>=>
ranges,” p. 336
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|

Relations and logical |Logical
operators,” p. 338

<, <=, =, >z >, <> NOT, AND, ElementOf, IS, ISNOT, OR, XOR,
false, if. . .then. . .else, IsMissing, IsRowExcluded, IsRowIncluded, NOT,
true

«

‘Functions,” p. 347 Date/Time

Date, DateDifference, Day, DayOfWeek, DayOffear, Hour, Minute, Month,
Now, Second, Time, Weekday, WeekOffear, Year

Mathematical

Abs, Average, AveragelgnoreMissing, Ceil, Combinations, CumProduct,
CumSum, CumSumSquares, Difference, Div, DotProduct, e, Erf, Factorial,
Floor, Lag, Ln, Log, LogB, Mod, MovingAverage, Norm, Percentages,
Permutations, Pi, Remainder, Round, Sqrt, Sum, SumlgnoreMissing, Trunc

Probabilities

ProbBinomial, ProbChiSquare, ProbF, ProbNormal, Probt,
ReturnChiSquare, Returnf, ReturnNormal, ReturnT

Random Numbers

RandomBeta, RandomBinomial, RandomChiSquare, RandomExponential,
RandomF, RandomGamma, RandomGaussian, RandomNormal,
RandompPoisson, RandomT, RandomUniform, RandomUniformInteger

Series

BinomialCoeffs, CubicSeries, ExponentialSeries, FibonacciSeries,
GeometricSeries, LinearSeries, QuadraticSeries, QuarticSeries, RowNumber

Special Purpose

ChooseArg, VariableElement

Statistical

BoxCox, CoeffOfVariation, Correlation, Count, Covariance, GeometricMean,
Groups, HarmonicMean, LogOdds, MAD, Maximum, Mean, Median,
Minimum, Mode, NumberMissing, NumberOfRows, OneGroupChiSquare,
Percentile, Range, Rank, StandardDeviation, StandardError,
StandardScores, SumOfColumn, SumOfSquares, TrimmedMean, Variance

Text

Concat, Find, Len, Substring

Trigonometric

ArcCos, ArcCosh, ArcCot, ArcCsc, ArcSec, ArcSin, ArcSinh, ArcTan, ArcTanh,
Cos, Cosh, Cot, Csc, DegToRad, RadToDeg, Sec, Sin, Sinh, Tan, Tanh

Examples in this chapter

If you try examples shown in this chapter, your results may look a little different from ours,

because we choose variable attributes that make the effects of each formula easier to see at a

glance. We often:

1. set decimal places to O (or as few as necessary)

2. close the attribute pane, or scroll it down to show summary statistics

3. increase or decrease the width of columns

Usually we keep the default type and format: real and free format fixed.

For instance, our example for division looks like this:

A B A/B A3

-4 S| -800| -1.333

-3 -2| 1.500| -1.000
. 4 . .
0 . . 0.000
1 0 . 333
S 4] 1.250 1.667
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But if you changed A+3’s type to integer, the results would look different. And if you didn’t
change the decimal places for A and B, didn’t make the columns narrower, and didn’t close the
attribute pane, the whole window would look different:

A B LY A3
» Type: | Real Real Real Integer
» Source: | User Entered| User Entered| Dynamic Fo... | Dunamic For...
> Class: | Continuous | Continuous Continuous Continuous
4 Format: | Free Form... | Free Forma...[ Free Format...|
> Dec. Places: | 3 3 3 .
1 -4.000 5.000 -.800 -1
2 -3.000 -2.000 1.500 -1
3 . 4.000 . .
0.000 . . 0
1.000 0.000 . 0
6 5.000 4.000 1.250 2

Date/time formatting varies according to system software and international configuration.
Examples in this manual use a variety of formats.

Finally, be aware that StatView does calculations in the fullest precision of the machine you
are using, and results can differ slightly between platforms.

Warning!

To make dataset illustrations easy to read, we often name our variables by actual formula defi-
nitions, such as “A+B.” We do this so that you can easily identify what each column demon-
strates. In practice, though, you should not give variables names thar match existing function
names or category level names. If you have ambiguous expressions, StatView may not interpret
your formulas quite the way you intend. Always give your variables unique, meaningful names.
All function names appear in the table of contents.

Introduction

This section is a general introduction to StatView’s expression language, which you may use in
the following areas of StatView:

* The Recode command in the Manage menu (see “Recode data,” p. 117 of Using StatView)
lets you convert the values of an existing variable to nominal values and lets you change
missing values in a variable to some new value. It relies on mathematical and statistical
functions, which are discussed in the “Functions” section.

* The Series command in the Manage menu (see “Series,” p. 121 of Using StatView) lets you
generate new variables containing special types of series. Series functions are discussed in
the “Functions” section.

* The Random Numbers command in the Manage menu (see “Random numbers,” p. 123
of Using StatView) lets you generate new variables with random data from various distribu-
tions. Random Numbers functions are discussed in the section “Functions,” p. 347.

* The Create Criteria and Edit/Apply Criteria commands in the Manage menu (see “Create
criteria,” p. 124 and “Edit/Apply Criteria,” p. 129 of Using StatView) and items in the Cri-
teria pop-up menu in the dataset window let you use logical expressions to determine
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whether rows are included in statistical and graphical analyses. Criteria rely on functions
discussed in “Sets, intervals, and ranges,” p. 336, and “Relations and logical operators,”

p. 338.

* The Formula command in the Manage menu (see “Formula,” p. 109 of Using StatView) is

the most flexible tool for creating and transforming data. Nearly all of StatView’s expres-
sion language is found in the Formula window.

Variable types and formats

StatView works with seven types of variables. Numeric data types are real, integer, and long
integer. Most of StatView’s functions are intended for manipulating these numeric types.
Numeric data also have text representations, and these representations can be manipulated
with text functions; see “Text functions,” p. 331.

Text data types are string and category. StatView provides several text functions for manipulat-
ing string data; see “Text functions,” p. 331.

Date/time and currency data have both numeric content and text representation, and they can
be manipulated with both numeric functions and text functions. Also, StatView provides a
special set of functions for handling date/time data; see “Date and time functions,” p. 330.

Below, we discuss how variable types are handled for the numeric functions that comprise
most of the StatView expression language. Text and date/time functions—and their handling
of various data types—are discussed separately in the subsequent sections,“Text functions,”
p. 331, and “Date and time functions,” p. 330. For details on setting and changing data
attributes, see “Variable attributes,” p. 73 of Using StatView.

Real

Most of StatView’s functions are numeric. They expect numeric arguments and produce
numeric results with type real.

Numeric functions automatically convert all numeric arguments to real numbers before doing
any computations. Since type real accepts the greatest range of numbers and allows the great-
est precision in calculations, this conversion has no harmful consequences. However, if you
change variables produced by formulas to types other than real, you may be surprised by some
of the consequences. See the discussions of each data type, below.

You may also use text functions to manipulate character representations of real data; see “Text
functions,” p. 331.
Integer and long integer

Integers are whole numbers (no digits after the decimal), so changing results to integer can
make them appear “wrong.” Real numbers are rounded up or down to the nearest integer
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when you change to type integer. Also, real numbers that exceed the limits of integers or long
integers are converted to missing values:

—32767 < integers < 32767
—2147483647 < long integers < 2147483647

In this dataset, variables B and C have been set to be A in their formulas, but we also changed
their types, so out of range values are missing and fractional values are rounded:

A B C
Type: | Real Integer Long Integer
Source: | User Entered | Dynamic Form... | Dynamic Form...
Class: | Continuous Continuous Continuous
Format: | Free Format ...[ @ .
Dec. Places: | 1 . .
1 -32768.0 . -32768
2 -32767.0 -32767 -32767
3 32767 .0 32767 32767
4 32768.0 . 32768
5|-2147483648 . .
6 |-2147483647 . -2147483647
7| 2147483647 . 2147483647
8| 2147483648 . .
9 1.5 2 2
10 -3.2 -3 -3

The text functions can be used to manipulate character representations of integer and long
integer variables; see “Text functions,” p. 331.

String

String variables can be manipulated with StatView’s text functions, ChooseArg, Concat, Find,
Len, and Substring. These are discussed in “Text functions,” p. 331.

If you convert numeric function results to string, the current format’s character representation
is copied exactly. This is seen below in variable D, which began as a real variable (with the
default three decimal places) set by a formula to be the same as A.

If you convert string results to numeric, or if you use a formula to set a variable equal to a
string variable, the values are changed to missing, except those values that happen to be valid
numeric values. This is seen in variable F, which is set by formula to be the same as E but has
the default type, real:

A D E F
Type: | Real String String | Real
Source: | User Entered | Dynamic Form... | User E...| Dyna...
Class: | Continuous MNorninal Morninal | Contin...
Format: | Free Format ...[ @ . FreeF...
Dec. Places: | 1 . . 3
1 -32768.0 | -32768.0 the o
2 -32767.0 [ -32767.0 quick .
3 32767.0 | 32767.0 brown .
4 32768.0 | 32768.0 fox .
5 |-2147483648 | -2147483648.0| jumped .
6 |-2147433647 | -2147483647.0| over .
7| 2147483647 | 2147483647.0 | the .
8| 2147483648 | 2147483648.0 | 4 4.000
9 15(15 lazy .
10 -32|-32 dogs. .
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Similarly, if you convert string to currency or date/time, only those values that happen to be
valid in the new type are kept, and all others are missing.

Category

Category variables may be manipulated with text functions (see “Text functions,” p. 331),
relations, and logical operators (see “Relations and logical operators,” p. 338). Category vari-
ables are introduced in “Categories,” p. 80 of Using StatView.

Using category variables with numeric functions works in one of two ways, depending on
whether you first create the variable and then change its type to category, or you first set its
type to category and then create its values:

1. Ifyou first create a variable and then change it from real to category, it is given initial group
names that are “Group for” and the character representation of the numbers in their origi-
nal numeric format. This is seen below in B, which was first set to the formula A and then
changed from real (and the default three decimal places) to category.

2. If you first set a variable to category and then create its values with a formula, values are
mapped onto group names according to the underlying integer “indices” of the group
names. This is seen below in variable C. Our category definition has groups “Small,”
“Medium,” and “Large,” so values 1, 2, and 3 are changed to those groups, respectively;
1.5 is rounded to 2 and changed to “Medium,” and all other values are missing.

A B C
Type: | Real Category Category
Source: | User Entered Dynamic Formula | Dynamic Form...
Class: | Continuous MNorninal MNorninal
Format: | Free Format Fi..| ® .
Dec. Places: | 3 . .
1 -1.000 | Group for -1.000 .
2 0.000 Group for 0.000 .
3 1.000 Group for 1.000 Small
4 2.000 Group for 2.000 Medium
S 3.000 Group for 3.000 Large
3 5.000 Group for 5.000 .
7 1.500 Group for 1.500 Medium

Currency

Currency data are numeric data with special formatting options. See the Format pop-up
menu in the attribute pane for choices available.

In every other regard, currency data are the same as real data. The numeric content of cur-
rency variables can be manipulated with numeric functions according to the same rules
described above for type real. Below, G is set by formula to A, and then changed to have type
currency and Japanese yen format. While the numbers ook different, they behave the same.
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A G
Type: | Real Currency
Source: | User Entered | Dynamic Formula
Class: | Continuous Continuous
Format: | Free Format ...| (¥1,234 567.890) (Japan)
Dec. Places: | 1 3
1 -32768.0 (¥32,768.000)
2 -32767.0 (¥32,767.000)
3 32767.0 ¥32,767.000
4 32768.0 ¥32,768.000
5 |-2147483648 (¥2,147 483 648.000)
6 |-2147483647 (¥2,147 483 ,647.000)
7| 2147483647 ¥2,147,483 ,647.000
8| 2147483648 ¥2,147,483 ,648.000
9 1.5 ¥1.500
10 -3.2 (¥3.200)

You may use text functions to manipulate character representations of currency data.

Date/Time

Date/time data are numeric data with special formatting options. Special functions for work-
ing with date/time values are discussed separately in the section “Date and time functions.”
(The exact formats available may vary according to your installation of system software; see
the Format pop-up menu in the attribute pane for choices available to you.)

Date/time data keep time by counting the number of seconds elapsed since midnight of 1 Jan-
uary 1904. Their numeric contents are positive integers ranging from 1 to 4,294,967,295,
inclusive. Any values outside this range are replaced with missing values, and any fractional
parts are discarded. (If you attempt to enter an invalid date in a date/time data cell, you get an
error message.) Within these limitations, you may apply numeric functions as you see fit.

Be sure you understand what you're asking formulas to do. This bizarre formula is perfectly
valid, although it may not be meaningful to divide dates by seven seconds and then add four
seconds:

"Some times"/7 + 4

Some times Bizarre
Type: | Date/Time Date/Time
Source : | Dynamic For... [ Dunamic Formula
Class: | Continuous Continuous
Format: | 12:00:00 AM | 01.01.04 00:00:00
Dec. Places: | @ .
1] 01:03:59 AM Q1 A7A717:17:47
2| 02:05:00 AM| O1.17.17 17:26:30
3| 03:06:01 AM| 01.17.1717:35:13
4| 04:07:02 AM| 01.17.17 17:43:56
5| 05:08:03 &AM 011717 17:52:39

You may also use text functions to manipulate character representations of date/time data; see
“Text functions,” p. 331.

Casewise and columnwise operations

For each function, we specify its direction of operation: whether the function works horizon-
tally or vertically—casewise or columnwise. When functions work columnwise, we specify
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whether they produce the same result for every row or whether results differ from row to row.
(Some terms: A case is a horizontal row of data. A variable is a vertical column of data. A sin-
gle case of a single numeric variable is a number, or constant. A number you specify—such as
7—is also a constant.)

(Casewise

Many functions operate horizontally on a casewise basis, producing a separate result for each
case of the new variable based on the values in that case of the variable(s) specified as argu-
ment(s) to the function. For example, adding two variables produces a new variable, which is
a column of sums for each row. Here, the variable A+B is produced by adding across A and B
once for each row:

A+B

L) B | A+B
1 -4 S 1
2 -3| -2| -5
3 . 4 .
4 0 . .
S 1 0 1
& S 4 )

Casewise operations are “refreshed” between rows. That is, StatView adds —4 and 5 on row 1,
records its answer of 1 in the new variable, and starts “fresh” for row 2 by adding —3 and -2.
(It does not carry the answer from the previous row into the new operation—that is, it does
not add —4, 5, -3, and -2 to get its answer for row 2.)

Columnwise

Other functions operate vertically on a columnwise basis. Columnwise functions work with
all the values (and the length) of a column to compute a new column result. Columnwise
functions do 7ot “refresh” between rows.

That new variable may be a single answer repeated down a column. An example of this is
Mean, which computes the mean of the variable you specify, basing its computations upon all
cases (rows) of that variable:

Mean(A, AllRows)

A Mean of &
-4 -2
-3 -2
. -2
0 -2
1

S

=2
=2

Or, that variable may be a variable of different numbers. An example of this is CumSum,
which adds each value to the next, recording its “sum in progress” down the new variable:

CumSum(A)
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Arguments

A CurnSurn of &
-4 -4
-3 -7

. .
0 -7
1 -6
S -1

What this means. ..

A casewise function is always evaluated across rows, and a result in one row does not depend
on a result in a previous row. If a value in one row of an argument variable changes, only that
row of the formula variable is recomputed.

A columnwise function is one that is evaluated downwards, where results are related to results
in the rows above, or where the same result fills every row of the column. A columnwise func-
tion must be calculated all at once, and it must be recalculated if any value in an argument
variable changes.

An important rule: columnwise functions do 7ot accept any expressions or other functions as
arguments. You may, however, combine casewise and columnwise functions in an expression,
and you may nest columnwise functions inside casewise functions. For example, you may
multiply (casewise) two sums (columnwise):

SumOfColumn(A, AllRows) * SumOfColumn(B, AllRows)

And you may nest columnwise and casewise functions inside other casewise functions:

Sum(Mean(A, AllRows), StandardDeviation(A, AllRows)

But you may not put an expression or function inside a columnwise function:
EumProduct(Mean{B-AlRows))
(We occasionally use strike-throughtext to show formulas that would produce errors.)

If you need to combine functions that do not work together, you can set an intermediate vari-
able to the result of one function, and then apply the other function to that variable, e.g.:
A*B
SumOfColumn(C)

Mean(D, AllRows)
CumProduct(E)

StatView functions are applied to the arguments you specify. The argument is the object of
the action. In the formula A+7, + is the function and A and 7 are the arguments of the func-
tion. StatView represents arguments—things you must specify—with question marks.
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Placeholders

In this manual, we use more meaningful placeholders for arguments than the question marks
you see in the program. For example, we say that var — var2 does casewise subtraction of var2
from var. Usually we indicate with these placeholders what sort of argument is expected:

Placeholder |What you should supply in its place

var, vard, ... variables such as A or Weight—usually constants are also acceptable

value, valuel, ... |constant values—numbers, or a date/time values, or text strings

nmt ... constants—usually integers

X ) 2 a b, ... |constants—usually real numbers

p a probability or percentage—a number between 0 and I, or perhaps a variable containing such
numbers

text a text value (a string constant) or perhaps a variable containing text values

date a date/time variable or a date/time value in quotation marks and formatted to match any format
in the format pop-up menu

expr any valid expression—any complete combination of functions, relations, and arguments that can be
evaluated, such as “Log(A)+7" or “Log(A)>T" or “Log(A)>T7 AND Sin(B)=0"

Commas

Many functions take several arguments. For example, the RandomNormal(mean, stdev) func-
tion generates a series of random numbers from the normal distribution with the mean given
by the first argument and the standard deviation given by the second:

RandomNormal(1.5, 3.0)

A comma separates the arguments. However, many international number formats use comma
for the decimal character, so StatView must use a different character to separate arguments.
For example, French Canadian numeric formatting uses commas for decimals and semi-
colons between arguments:

RandomNormal(l,5; 3,0)

StatView adapts automatically to the numeric formatting you specify in the Regional Settings
(Windows) or Numbers (Macintosh) control panel. If you have difficulty opening a dataset
created on a foreign system, make sure any formulas use separator characters appropriate to
your configuration.

Variables and constants

Most StatView functions work with variables and constants alike as columns. StatView usu-
ally interprets a constant as being a column filled all the way down with that number. For
example, you could specify A+7, which is interpreted as “the column of numbers stored in
variable A plus a column of sevens.” In simpler terms, think of it as “in each row, add the
value of A and the value 7.”
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A A+T
-4 3
-3 4

. .
0 ¥
1 g
S 12

Quotation marks

Any variable name or string value that contains spaces or special characters should be enclosed
in quotation marks. Also use quotation marks with any variable name or constant value that is
the same as a function or operator name. For example, if you want the constant string value
“e” instead of the constant 2.718..., use quotation marks. If you use the buttons and browsers
in the formula and criteria editing windows, most of the quotation marks you need are pro-

vided automatically.

The following is valid:
if "Turning Circle" > 40
then "very large"
else "typical"

But this would cause problems:

A quoted single word is always interpreted as a string value, even if the word is a function or

« »

variable name. Quote single words (such as “Weight” or “¢”) with caution!

Expressions

In many cases an argument can also be a longer expression. For example, ?+? means that you
can specify a variable or constant in place of each question mark:

A+7

However, you could also replace each question mark with a larger expression:

A*B + C*8

Row inclusion

Many columnwise functions have a final argument that controls which rows of the column
are used for computations. For example, Mean(A, AllRows) computes the mean of the vari-
able A, including all rows of A in its computations.

AllRows is the default setting for all such functions—you don't even need to type it, because
StatView types it for you automatically when you double-click Mean in the function browser
or when you begin typing Mean and it finishes the typing for you.
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If, however, you have included or excluded certain rows, you may want to restrict computa-
tions to those rows you've chosen to include, or to those you've chosen to exclude. You may do
so by replacing the default AllRows argument with OnlyIncludedRows or OnlyExcluded-

Rows.

Row numbers are dimmed in the dataset window for all rows that are excluded, whether by
criteria or by manual exclusion. Here we see the results of three Mean formulas, one with each
row inclusion argument, when rows 4 and 5 are excluded:

Mean(A, AllRows)
Mean(A, OnlyExcludedRows)
Mean(A, OnlylncludedRows)

) Mean All [Mean Excl| Mean Incl
1 -4 -.200 .500 - 667
2 -3 -.200 .500 =667
3 . -.200 .500 - 667
- 0 -.200 .500 -667
$ 1 -.200 .500 - 667
6 S -.200 .500 - 667

How do you include and exclude rows? By using criteria, by double-clicking row numbers in
the dataset, or by selecting rows and using the Include and Exclude commands in the Manage
menu. These are discussed in detail under Include and exclude rows [p. 108] and “Create cri-
teria,” p. 124 of Using StatView.

Missing values

Missing values in a variable usually propagate themselves into the new variables created by for-
mulas—cases having missing values in any of the variables listed as arguments to the function
usually get a missing value as a result for that row. In a few cases, a single missing value causes
missing values for every result of a function.

Missing values propagate missing values for most logical evaluations (except those using 1s,
1sNOT, and IsMissing), and any evaluation of missing in a criterion results in row exclusion.

For each function, we specify how missing values affect computations.

Several functions are provided specifically to handle missing values: 1s, 1sN0T, IsMissing, Aver-
agelgnoreMissing, NumberMissing, and SumIgnoreMissing.

Order of operations

StatView obeys the rules of algebra in evaluating expressions. Operations are performed in this
order:

1. Functions without arguments, such as RowNumber
. NOT, unary minus (negative), and unary plus (positive)
. Functions with arguments, such as Log(?)

. Exponentiation

N W N

. Multiplication and division
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6. Addition and subtraction
7. Comparisons
8. Logical conjunctions

9. Parentheses

Since parentheses are evaluated last, you can use parentheses to override the normal order of
operations. This causes anything inside parentheses to be evaluated before it is “used” by any
other operation.

For example, multiplication is usually performed before addition:
1+3%4
=1+12
=13

But if we group 1+3 inside parentheses, the addition is performed first, because the multipli-
cation step *4 must wait for the contents of the parentheses:

(1+3)*4

=4*4

=16

If more than one set of parentheses are used, expressions are evaluated “inside” first:
(1+(3 )4
=(1+12)*4
=13%4
=52

A more complicated example lets us show every possible step in the hierarchy of operations.

NOT (RowNumber*Log(C) = BAA—4) AND B+C/D < A

A B C D |Result
1 -4 S 1 S 0
2 -3 -2 2 S 0
3 S 4 3 4 1
4 0 8 4 3 0
S 1 0 S 2 0
& S 4 ) 1 0

Result is a dynamic variable with the formula shown above. On row 1, the formula is evalu-
ated in this sequence of steps:

Step Explanation
NOT (RowNumber*Log(C) = B”A—4) AND B+(/D < A

=NOT (I*Log(C) = BA—4) AND B+C/D < A RowNumber=1
=NOT (1*0 = B*A-4) AND B+(/D < A Log(()=0

(NOT would ordinarily be executed in this step, but it has
to wait for its argument, and parentheses are last in the
order of operations.)

=NOT ("0 = 0.0016—4) AND B+C/D < A B*A=0.0016
=NOT (0= 0.0016—4) AND B+0.2 < A 1*0=0, (/D=0.2




26 Formulas Introduction

=NOT (0 = —3.9984) AND 5.2< A 0.0016—4=-3.9984, B+0.2=5.1
=NOT (0) AND 0 0=-3.9984 is false; 5.2<—4 is false (I is true, 0 is false)
= AND 0 “NOT false” is true. (The parentheses are finally done,

leaving NOT and AND to be evaluated. NOT takes
precedence over AND.)

=0 “true AND false” is false

Similarly, on row 3:

Step Explanation

NOT (RowNumber*Log(C) = B”A—4) AND B+(/D < A

=NOT (3*Log(C) = B™A—4) AND B+(/D < A RowNumber=3

=NOT (3*0.477= B/A—4) AND B+C/D < A Log(C)=0.477

=NOT (3*0.477 = 0.0016—4) AND B+C/D < A BAA=1024

=NOT (1.431= 1024—4) AND B+0.75 < A 3*0.477=1.431 (/D=0.75

=NOT (1.431= 1020) AND 4.75< A 1024—4=1020, B+0.75=4.75
=NOT (0) AND | 1.431=1020 is false; 4.75<5 is true
=| AND | “NOT false” is true

=1 “true AND true” is true

Left to right evaluation

Exponentiation is performed right to left, meaning that XAYAZ is interpreted as XA (YAZ). All
other operations of equal precedence are performed from left to right. If you need to force
right-to-left evaluation, use parentheses.

In many cases, the results would be the same right-to-left as left-to-right, but there are excep-
tions. For example, this series of logical evaluations yields opposite results when parentheses
change the sequence (1 is true and 0 is false):

I ORI AND O
| AND O
0

| OR (I AND 0)
| OR O
|

Another example is when multiplying and dividing with zero. Here, if we use parentheses to
evaluate right to left, we get division by zero, which is undefined, and the result is a missing
value:

1/3%0

.333*%0

0

1/(3%0)

1/0
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When in doubt, use parentheses to be sure operations are performed in the order you want.

Remarks

You can embed remarks or comments in formulas to document what the formula does. Sim-
ply begin your remark with a forward slash and an asterisk (/*) and end it with an asterisk and
a forward slash (*/). You can also begin it with left parenthesis and asterisk and end it with
asterisk and right parenthesis. For example,
/* recode Country into foreign or domestic */
/* 3 March 1996 */
if Country ElementOf {Japan, Other}
then "foreign" /* this groups all imports under "foreign" */
else if Country=USA
then "domestic"  (* this groups all American cars under "domestic" *)
else "XXX"
/* the else expression flags any rows that don't match Japan, Other, or USA
with "XXX" in case | missed something in my dataset */

A remark may be several lines long. StatView ignores any characters it finds in between the /*
and */ strings, even if they are valid expressions. You may place a comment anywhere in a for-
mula where a space could be, excepr inside a pair of parentheses. For example, you cannot
place a comment inside the argument list for the function Mean:

Mean{A—OnylnchidedRowsf o i

Static and dynamic formulas

You can create variables with two different types of formulas: static formulas and dynamic for-
mulas. Variables with static formulas are computed once from the current state of the dataset
and only updated if you reopen the formula dialog and click Compute. Variables with
dynamic formulas are computed from the current state of the dataset, and they are updated
whenever any changes are made to the dataset that affect the variable.

For example, suppose you create both a dynamic variable and a static variable with the same

formula:
A+B
A B A+B Dynamic A+B Static
Type: | Real | Real | Real Real
Source: | Use...| Us... | Dynamic Formula | Static Formula
Class: | Con...| Co... | Continuous Continuous
Format: | Fre...| Fre...| Free Format Fix...| Free Format Fi...
Dec. Places: | O 0 0 0
1 -4 S 1 1
2 -3 -2 -5 -5
3 . 4 . .
4 0 . . .
S 1 0 1 1
[ S 4 9 9
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Then you realize that the first two values in A are wrong—they should be positive. You correct
those values, and the dynamic variable updates. The static variable does not.

A B A+B Dynamic A+B Static
Type: | Real | Real | Real Real
Source: | Use...| Us... | Dynamic Formula | Static Formula
Class: | Con...| Co... | Continuous Continuous
Format: | Fre...| Fre...| Free Format Fix...| Free Format Fi...
Dec. Places: | O 0 0 0
1 4 S 9 1
2 3 -2 1 -5
3 . 4 . .
4 0 0 . .
S 1 0 1 1
& S 4 9 9

Formula and Recode create dynamic variables by default. Series and Random Numbers create
static variables by default (for more information, see the chapter “Managing data,” p. 107 of
Using StatView). To switch any variable from one to the other, use the Source pop-up menu in
the variable attribute pane.

Date and time functions

StatView provides a set of functions designed for manipulating date/time values in the Grego-
rian calendar. The date/time functions are: Date(?, 2, ?) [p. 369], DateDifference(?, 2, ?

[p. 370], Day(?) [p. 371], DayOfWeek(?) [p. 372], DayOfYear(?) [p. 372], Hour(?) [p. 382],
Minute(?) [p. 389], Month(?) [p. 391], Now [p. 393], Second(?) [p. 419], Time(?, 2, ?)

[p. 427], Weekday(?) [p. 430], WeekOfYear(?) [p. 431], and Year(?) [p. 431].

Date/time data measure time by counting the number of seconds elapsed since midnight of
1 January 1904, C.E. The numeric contents of date/time variables are positive integers rang-
ing from 1 to 4,294,967,295, inclusive. Any values outside this range are replaced with miss-
ing values, and any fractional parts are discarded. Within these limitations, you may apply any
numeric functions you see fit.

Date/time variables have special formatting options for translating numbers of seconds into
recognizable dates and times. StatView provides a set of functions designed specifically for
working with date and time values. These functions properly interpret 60 seconds as a
minute, 60 minutes as an hour, 24 hours as a day, etc.

It is important to understand how date and time values are interpreted and displayed. See
Type [p. 73] and “Format,” p. 79 of Using StatView.

Formats

The formats available to you in the Format pop-up menu of the variable attribute pane will
vary according to your system and international configuration. For example, if you choose the
French Canadian date and time formats, you see the Format choices shown at the left. If you
choose the default U.S. formats, you see the choices shown at the right.
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12 am 12 &AM
12:00 am 12:00 &AM
12:00:00 am 12:00:00 AM
0o 0
00:00 0:00
00:00:00 0:00:00
01/01 171
01/04 1/04

» Format: | 01/ 1/ 1/04
0Rjanv Jan 1
janv 04 Jan 04
1 janv 1904 Jan 1, 1904
Vend 1 janv 1904 Fri, Jan 1, 1904
01 janvier January 1
janvier 04 January 04
1 janwvier 1904 January 1, 1904

Vendredi 1 janvier 1904
01701704 12:00:00 am
01/01/04 00:00:00

1 janv 1904 12:00:00 am Jan 1, 1904 12:00:00 AM

Vend 1 janv 1904 12:00:00 am Fri, Jan 1, 1904 12:00:00 AM

1 janv 1904 00:00:00 Jan 1, 1904 0:00:00

Vend 1 janv 1904 00:00:00 Fri, Jan 1, 1904 0:00:00

1 janwvier 1904 12:00:00 am January 1, 1904 12:00:00 AM
Vendredi 1 janvier 1904 12:00:00 am Friday, January 1, 1904 12:00:00 AM
1 janwvier 1904 00:00:00 January 1, 1904 0:00:00

‘endredi 1 janvier 1904 00:00:00 Friday , January 1, 1904 0:00:00

Changing data types

Converting date/time variables to type integer or long integer risks loss of data. For example,
4,294,967,295 is too large a number to be stored as integer or long integer, so it is replaced
with a missing value. Switching back to date/time variables does not recover the value from
missing (but you can Undo the conversion).

Converting date/time values to type category risks loss of data, also. Category variables are
limited to 255 levels, so if you have more than 255 different values in a date/time variable,
you will lose data.

Converting to types string, currency, and real is safe.

Arguments

When specifying a date/time value as an argument to a function, you may write the value in
any format you see in your Format pop-up menu. The formats illustrated above and the exam-
ples in this manual may not be valid. Always enclose date/time values in quotation marks.

Direction

All date and time functions are casewise—they are evaluated separately for each case.

Text functions

StatView provides a set of functions designed for manipulating text values. These functions
are mostly useful with text variables—those with type string and category. Their behavior with
text values is straightforward. StatView’s text functions are Concat, Find, Len, and Substring.
ChooseArg is a special purpose function that is also useful with text variables.
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Informative variables

StatView formulas and criteria may only be based on nominal and continuous variables, so if
you want to manipulate informative string variables, you must first change their class to nom-

inal.

Numeric formats

Text functions may also be used to manipulate numeric variables—those with type real, inte-
ger, long integer, currency, and date/time. Text results are based on the current character rep-
resentation for the numeric variable, as set by that variable’s current format.

For instance, C is a string variable given by the formula A. Since A has free format fixed and
one decimal place, C also shows free-formatted numbers with one decimal place:

A C
Type: | Real String
Source: | User Entered | Dynamic Form...
Class: | Continuous MNorninal
Format: | Free Format...| ®
Dec. Places: | 1 .

1 -32768.0 | -32768.0
2 -32767.0 | -32767.0
3 32767.0 | 32767 .0
4 32768.0 | 32768.0
5 |-2147483648 | -2147483648.0
6 |-2147483647 | -2147483647.0
7| 2147483647 | 2147483647 .0
S| 2147483648 | 2147483648.0
9 15(15

10 -32|-32

Changing data types

All formulas produce variables with type real by default. In most cases you will want to change
text function results to have type string or category.

Direction

All text functions are casewise—they are evaluated separately for each row.

Operators

Most of StatView’s operators appear in the keypad area of the Formula window. You may also
type them by hand. Operators are used with numeric variables.
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The plus sign does casewise (horizontal) addition of variables and constants. That is, for each
case, the values from each column are added to produce a value for that case in the new col-
umn. Missing values propagate further missing values when added:

A+B
A+B+7
A B A+B | A+B+7
-4 5 1 8
-3 -2 -5 2
. 4 . .
0 . . .
1 0 1 =]
S 4 9 16

You can also use Sum, which accepts multiple variable or constant arguments; Sum(A,B,C,7)
is equivalent to A+B+C+7. SumlIgnoreMissing is the same, except that missing values are
ignored unless a row is missing in every variable.

For columnwise (vertical) addition, see SumOfColumn(?, AllRows) [p. 424] or CumSum(?)
[p. 368].

The minus sign does casewise subtraction of variables or constants. Missing values propagate
further missing values when subtracted:

A-B
A-B-3
N 4B | A-B-3
-4 5 -9 -12
3| -2 -1 -4
L4 4 . Ld
1] . . .
1 0 1 -2
s 4 1 -2

You can also use Sum with negative arguments, e.g., Sum(A, —B, —C); see Sum(?, ...) [p. 423].
For columnwise subtraction (subtracting a previous case from each case all the way down a
column, etc.), see Difference(?, 1, 1) [p. 373].

P or??

The asterisk does casewise multiplication of variables or constants. You can also list two adja-
cent arguments for multiplication—this is like the 26 notation for #*4. Missing values propa-
gate further missing values when multiplied.

A*B

A=l)
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mn

M or 77

A B A*B [A(-1)
-4 S| -20 4
-3 -2 6 3

. 4 . .
0 . . 0
1 0 0] -1
S 4 20| -5

For columnwise multiplication, use CumProduct, which multiplies all the cases of a variable
and returns the product “in progress” down the rows of a new variable; see CumProduct(?)

[p. 367].

The slash sign does casewise division of variables or constants. Missing values and division by
zero propagate missing values.

A/B
A+3
A B A/B A3
-4 S| -800| -1.333
-3 -2| 1.500| -1.000
. 4 . .
0 . . 0.000
1 0 . 333
S 4] 1.250 1.667

A/B has a missing value on row 5 because division by zero is undefined.

The caret A and double asterisk ** signs do casewise exponentiation. To raise one argument (a
variable or constant) to the power of another, link them with either symbol. Missing values
propagate missing values.

A"B
) B A'B
-4 5 -1024.000
-3 -2 11
3 4 .
1} . .
1 1] 1.000
S 4 625.000

You can compute the reciprocal of a power by using a negative exponent. The second row
above illustrates this:

-2 _ 1 _
(_3) - 2 =
(=3)
You can compute the #th root of an argument by raising it to the power 1/z. For example, you
can compute the square root of A by computing A*(1/2), or the cube root with AA(1/3), etc.
Square roots are also built-in with Sqre(?) [p. 420].

O |—
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The plus sign + before an argument does casewise unary addition. This is a “positive” sign. Its
argument may be a variable, a constant, or another function. Missing values are unchanged.

+A

+B
A B | Positive A | Positive B
-4 5 -4 5
-3 -2 -3 -2
. 4 [ 4
0 . 1] .
1 0 1 0
S 4 S 4

The “positive” function does 7ot make negative values positive. What, then, does it do? It sim-
ply allows you to include an explicit positive sign so that formulas are easier to read. You
might want to include explicit positives in a case like this:

(—Debits)*12/((+Credits)*12)
Use absolute value if you need to convert negative values to positive values; see Abs(?)

[p. 348].

The minus sign — before an argument does casewise unary subtraction. This is a “negative”
sign. Its argument may be a variable, a constant, or another function. Missing values are
unchanged.

-A
-B

A B |Negative & | Negative B

-4 S 4 -5

-3| -2 3 2

. 4 . -4

0 . ] .

1 0 -1 1]

5 4 -5 -4

The negative of a positive value is negative, but the negative of a negative value is positive.
Zero is without sign.

Since StatView can ignore missing values with addition but not subtraction, you might com-
bine SumlgnoreMissing (see SumlIgnoreMissing(?, ...) [p. 424]) and unary subtraction:

SumlgnoreMissing(A, —B, —-C, —-D)
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Parentheses are used to show grouping and control order of evaluation. (Order of operations

[p. 326] discusses this in detail.) If you want to override the normal order of operation, use
parentheses to group quantities to be evaluated first. For example:

1+3%x4 =13
(1+3)%x4 =16

If more than one set of parentheses are used, expressions are evaluated “inside” first:

(1+(3x4))x4 = (1+12)x4 = 13x4=52

Parentheses are also used to delimit arguments for many functions, e.g., log(A) or cos(B).
Don’t worry about typing these parentheses; StatView does it for you when you select func-
tions from the list or the keypad.

A formula definition using parentheses might look like this:
Log(A)*(B—C)

In this example, the first set of parentheses delimits the argument for the log function (Stat-
View inserts these automatically when you click the log button). The second set forces Stat-
View to subtract B and C before multiplying by the log; without parentheses, the
multiplication would be performed before the subtraction (and after the log).

Sets, intervals, and ranges

..

)

Set, interval, and range functions may be used with both numeric and text data. They are usu-
ally used to define criteria or to define conditional transformation formulas.

Braces create a set containing the elements you list. Its arguments should be values.

For example, Car Data in the Sample Data folder has a nominal variable Type whose values
are Small, Sporty, Compact, Medium, and Large. Suppose you only wanted to work with
those cars that belong to the Compact, Medium, or Large categories. You could create this cri-
terion:

Type ElementOf {Compact, Medium, Large}
Or, you might use set membership as a test inside if...then to control how a transformation is
done:

if Type ElementOf {Compact, Medium, Large}
then Weight*'Turning Circle"/Mean("Turning Circle", AllRows)
else Weight

See if ? then ? else ? [p. 341] and the relation ? ElementOf ? [p. 345].
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), 27, (7], )

You can indicate numeric intervals in StatView by using colons and grouping marks. Use a
colon to separate two endpoint numbers. Use parentheses to indicate an open interval and
brackets to indicate a closed interval. You may describe an interval that is half open (open on
one end and closed on the other) by using a parenthesis on the open end and a bracket on the
closed end.

What do we mean by “open” and “closed”? An open endpoint is one where you want the val-
ues that are strictly greater than or less than buz not equal to your endpoint. A closed endpoint
is one where you want the endpoint included.

Expr Interval
(13) | <x<3
[1:3) l<x<3
(113] I <x<3
[13] l<x<3

Such ranges are useful for testing whether a variable’s values belong to a range you specify.
Suppose, for instance, you have body temperature readings and want to transform those that
are greater than or equal to 36.5° but strictly less than 38° Celsius to their Fahrenheit equiva-
lents. You might use a formula like this:
if Temperature ElementOf [36.5:38)
then Temperature®9/5 + 32

else .
Termperature| Fahrenheit
379 100.2
376 99.7
36.4 .
373 99.1
370 986
36.7 98.1
380 .
38.1 .
39.1 .
382 .

See if ? then ? else ? [p. 341] and the relation ? ElementOf ? [p. 345].

A relation sign followed by an argument returns a range. You may type<= or =< for “less than
or equal to,” and you may type >= or => for “greater than or equal to.”

Expr Range
<z (—oo, n)
> p (71, _oo)
<=z (_oo, 7]
>=y [n, oo)
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The range notation is mostly useful in combination with set notation (braces) for criteria; see
{...} [p. 336] and “Create criteria,” p. 124 of Using StatView.

Suppose you have angle measurements and want to study only those cases whose angles are
strictly greater than pi radians. You could create a criterion:

Angles ElementOf {>pi}
Or, if you wanted the cases whose angles are strictly outside the range between plus and minus
pi radians, you could create this criterion:

Angles ElementOf {<—pi, >+pi}

Other ways of writing this criterion include:
Abs(Angles) > pi
Angles <—pi OR Angles > pi

Or, you may prefer to use the graphic interface built into the Criteria dialog box:

Criteria 1 of “arcsec”

Criteria name: |Criteria 1 |

Criteria definition:

Angles <-3.142 OR Angles >[3.142

B

&l

Select values to include

Ot @1

®( 103

Min Value: Selected Dalue: Max Value:
-5.760 5531 9.948

[ Save ][ Select ][[ Apply ]

Relations and logical operators

StatView’s relations and logical operators can be used with Formula and Criteria. The result of
any logical expression is an evaluation “true” or “false.” They can be used with both text and
numeric data. For text data, comparisons such as “less than” and “greater than” mean “before”
and “after” in ascir order, which is how text values are compared.

Relations and logical operators work somewhat differently with formulas than with criteria.
Formulas create Boolean (true/false) variables, and Criteria create inclusion conditions. For
more information about formulas and criteria, see the chapter “Managing data,” p. 107 of

Using StatView.

Formulas

With Formula, you use logical expressions to create new Boolean variables; these variables
contain ones for those cases where the expression evaluates to true, zeros where it evaluates to
false, and missing values (. if numeric, blank if string) where either side of the expression is
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missing. (See ? IS ? [p. 346], 2 ISNOT ? [p. 347], and IsMissing(?) [p. 343] for special han-

dling of missing values.) You can use if...then.. .else formulas to recode variables; see if ? then
2 else ? [p. 341].

With Formula, you may place variables, constants, or expressions on either side of the rela-
tion. Following are some valid formulas:

A<7

8 Log(A) >=B + C

91=A

A<-7ORA>+8
B>-3ANDB<5

if B>=A AND (B>| OR B<-3)

then "This"
else "That"
(ntena

If you are creating or editing criteria, cases where the comparison evaluates to true are
included (or selected, if you click the Select button). Cases where the comparison evaluates to
false or missing are excluded and their row numbers are dimmed in the dataset window. See ?
IS ? [p. 346], 2 ISNOT ? [p. 347], and IsMissing(?) [p. 343] for special handling of missing

values.

With Criteria, the first argument (the left side of the comparison) must be a variable. The sec-
ond argument (the right side of the comparison) may be a variable, a constant, or some larger
expression. Following are some valid criteria:

A<7

A=9I

A <-70RA>=+7
B>>=-3ANDB<3

B>=A AND (B>l OR B<-1)

Truth tables

The tables below use formulas to show the results of all possible comparisons of positive, neg-
ative, zero, and missing values. The same expressions used for criteria would result in formula
rows with trues (1) being included and formula rows with falses (0) or missings ( . ) excluded.
1s and 1sNOT handle missing values differently than = and # do; see ? IS ? [p. 346] and 2

ISNOT ? [p. 347].
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A | B | A | AE| A=E | A2B | AB | A%E |A IS B| A ISNOT B
S 1] o] 1] 1] 1] o] o] 1 0
o] 1] 1| o] o] o] 1] o 1
S 1| 1| 1] o] o] o] 1] o 1
-1 . . . . . . . 0 1
o] 1| o] o] o] 1] 1] 1] o 1
o] o] ol 1] 1] 1] o] o] 1 o
o] 1] 1] 1] o] o] o] 1] o 1
0 . . . . . . . 1] 1
1 1] o] o] ol 1] 1] 1] o 1
1 ol o] o] ol 1] 1] 1] o 1
T 1] o] 1] 1] 1] o] o] 1 0
1 . . . . . . . 1] 1
. -1 . . . . . . 0 1
. 0 . . . . [ [ 1] 1
. 1 . . . . [ [ 1] 1
. . . . . . . . 1 0
Remember, negative numbers of greater magnitude are less than negative numbers of lesser
magnitude, e.g., —4 is less than —3. If you want to compare magnitude without regard to sign,
use Abs for absolute values. All comparisons return missing values ( . ) if either or both argu-
ments are missing.
A B |AANDE| AORE| NOT A |AXORE| true | false
1 1 1 1 0 0 1 0
1 0 0 1 0 1 1 0
1 D . 1 0 . 1 0
0 1 0 1 1 1 1 0
0 0 0 0 1 0 1 0
0 . . . 1 . 1 0
. 1 . 1 . . 1 0
. 0 . . . . 1 0
. . . . . . 1 a

R
n

A “less than” comparison uses the < symbol and returns true (1) if the first argument is strictly
less than the second argument. “Less than” returns false (0) if the first argument is equal to or
greater than the second argument. Missing values propagate missing values. Logical expres-
sions are evaluated casewise.

A “less than or equal to” comparison uses the <= or =< symbols and returns true (1) if the first
argument is less than or equal to the second argument. “Less than or equal to” returns false (0)
if the first argument is strictly greater than the second argument. Missing values propagate
missing values. Logical expressions are evaluated casewise.

An “equal to” comparison uses the = symbol and returns true (1) if the first argument is
exactly equal to the second argument. “Equal to” returns false (0) if the first argument is less
or greater than the second argument. Missing values propagate missing values. Logical expres-
sions are evaluated casewise.



26 Formulas Relations and logical operators 341

Y

You may not specify missing ( . ) as an argument to =, e.g.:

To check for missing values, either use IS or IsMissing:
if IsMissing(A)
then "unknown"
else "recorded"

ifAIS.
then "unknown"
else "recorded"

You can “fill in” missing values in one variable with values from another variable by using a

formula such as this (see NOT(?) [p. 345]):

If NOT IsMissing(A)
then A
else B

A “greater than or equal to” comparison uses the >= or => symbols and returns true (1) if the
first argument is greater than or equal to the second argument. “Greater than or equal to”
returns false (0) if the first argument is strictly less than the second argument. Missing values
propagate missing values. Logical expressions are evaluated casewise.

A “greater than” comparison uses the > symbol and returns true (1) if the first argument is
strictly greater than the second argument. “Greater than” returns false (0) if the first argument
is equal to or less than the second argument. Missing values propagate missing values. Logical
expressions are evaluated casewise.

A “not equal to” comparison uses the <> symbol and returns true (1) if the first argument is
less or greater than the second argument. “Not equal to” returns false (0) if the first argument
is exactly equal to the second argument. Missing values propagate missing values. Logical
expressions are evaluated casewise.

if ? then ? else ?

If expr then expr2 else expr3 clauses do conditional formulas. The “if expr” phrase usually uses
a logical expression such as
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if Weight > 150

or
if Weight>150 AND Gender=male
For rows whose result of the If... test is true (1), the “then expr2” phrase
then "Typical"
or

then Age*Log(Cholesterol)

sets the value of the new variable on that row. When the “if...” test evaluates to false (0), the
“else...” phrase

else "Low"
or
else Age + Cholesterol”2

sets the value on that row.

When the “if...” test evaluates to missing, the result is missing. Therefore, you may want to
consider using functions designed for missing values, such as IsMissing(?) [p. 343], 2 IS ?
[p. 346], and ? ISNOT ? [p. 347]. Logical expressions are evaluated casewise.

Following are some examples. This transformation creates pre- and post-retirement categories
based on 65 as retirement age (don’t forget to change the formula variable to type string):
if Age<65
then "Working age"
else "Retirement age"

Age Retired?
29 | Working age
30 | Working age
67 | Retirement age
54 | Working age
72 | Retirement age

This transformation assigns every third row to a different group. It does so by testing whether
the row number divides evenly by 3 (see Mod(?, ?) [p. 390]):
if Mod(RowNumber, 3)=0
then "Group3"
else if Mod(RowNumber, 3)=2
then "Group2"
else "Group "

groups

Groupl
Group2
Group3
Groupi
Group2
Group3
Groupi
Group2
Group3
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You can use if...then.. .else to recode continuous variables into nominal groups. This formula
recodes a continuous variable, Age, into a nominal variable with string values. The final else...
statement puts any “leftover” cases that haven’t yet been assigned into the group “teenager.”

if Age<5
then "toddler"
else if Age<I3
then "child"
else "teenager”

A better, safer way to recode variables is to specify exactly what should go in the last group
(teenager) and then set any “leftover” cases to a value such as “ZZZ.” After computing the
variable, either look at a frequency distribution summary table or sort on the variable and
look for any ZZZ values. If you find any, you might need to fix your formula.

if Age<5
then "toddler”
else if Age<I|3
then "child"
else if Age<20
then "teenager"
else "ZZZ"

IsMissing(?)

IsMissing(var) returns true (1) for every case that is missing in the variable you specify. IsMiss-
ing returns false (0) for all other cases. Logical expressions are evaluated casewise.

IsMissing(A)
A [IsMiss(A)
-4 0
-3 0
. 1
0 0
1 0
S 0

Above, we see that the missing value in the third row for A puts a 1 (true) in the second col-
umn; all other cases are nonmissing and therefore 0 (false).

IsMissing is useful for Criteria when you don’t want to exclude rows with missing values on
your test variable. Suppose you want to exclude cases with extreme weight values, but you
don’t want to exclude cases where Weight is missing:

Weight<300 OR IsMissing(Weight)

IsRowExcluded

IsRowExcluded returns true (1) for every case that is currently excluded in the dataset.
IsRowExcluded returns false (0) for any row that is currently included. IsRowExcluded takes
no arguments. Logical expressions are evaluated casewise.
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IsRowExcluded

A IsRowIncluded | IsRowExcluded
1 -4 1 0
Z -3 0 1
3 . 1 0
-3 0 0 1
$ 1 ] 1
6 S 1 1]

Inclusion and exclusion are the combined effect of any criteria in effect and any manual
Include and Exclude commands. Excluded rows’ numbers are dimmed (grayed) in the dataset
window.

IsRowExcluded is the complement of IsRowlncluded, p. 344.

IsRowIncluded

IsRowIncluded returns true (1) for every case that is currently included in the dataset. IsRow-
Included returns false (0) for any row that is currently excluded. IsRowIncluded takes no
arguments. Logical expressions are evaluated casewise.

IsRowlncluded

A IsRowIncluded | IsRowExcluded
1 -4 1 [}
Z -3 0 1
3 . 1 0
5 0 1] 1
8 1 0 1
= S 1 0

Inclusion and exclusion are the combined effect of any criteria in effect and any manual
Include and Exclude commands. Excluded rows’ numbers are dimmed (grayed) in the dataset
window.

You might want to use IsRowIncluded or IsRowExcluded to record an inclusion or exclusion
you create by hand. Remember, besides using criteria, you can select rows and use the Include
and Exclude commands in the Manage menu. Also, you may double-click any row number to
toggle the row between included and excluded.

Suppose, for example, you first use a criterion Gender=male and then double-click certain
individual cases whose Weight measurements were extremely low or extremely high. Some-
times this is more efficient than putting together complex criteria. Now, you can record this
combination of activities for future use with IsRowlncluded or IsRowExcluded. For example,
you might set a variable “Typical cases” to IsRowlncluded or a variable “Outliers” to IsRowEx-
cluded. You'll probably want to set the variable to be a static formula (or change it to user
entered after computing).

See also IsRowExcluded [p. 343] for the complement of IsRowlncluded.
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NOT()

false

true

? AND ?

The logical operator NOT reverses true/false values. NOT(expr) returns true (1) if the expression
evaluates to false, false (0) if the expression evaluates to true, and missing (. or blank string) if
the expression evaluates to missing. Logical expressions are evaluated casewise.

The operator “false” returns the value false (0) for every case. False takes no arguments. Logi-
cal expressions are evaluated casewise.

The operator “true” returns the value true (1) for every case. True takes no arguments. Any
nonzero, nonmissing value is interpreted as true. Logical expressions are evaluated casewise.

The logical conjunction AND does intersection. Two expressions joined with AND return true
(1) if the expressions on both sides are both true; they return false (0) if either or both sides are
false. Missing values on either side propagate missing values. Logical expressions are evaluated
casewise.

? ElementOf ?

A var ElementOf ser or a var ElementOf interval comparison returns true (1) when values of
the var are members of the set or interval you specify and false (0) when they are not. The first
argument should be a variable, and the second argument should be either a set or a range.
Missing values propagate missing values. Logical expressions are evaluated casewise.

A ElementOf {1,2,3}

A& | Alsin{1,2,3}
0

s (NO
L3 =] (=] Ed

ElementOf is especially useful when recoding nominal data, such as this example with Car
Data (see if ? then ? else ? [p. 341]):

if Country ElementOf {Japan, Other}
then "foreign"
else if Country=USA
then "domestic"
else "XXX"
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?

1S

?

Country | import?
Japan | foreign
Japan | foreign
Other | foreign
Other | foreign
Other | foreign
Other | foreign
Other | foreign

USA | domestic

USA | domestic
1124 | darnactic

We use the final else “XXX” to double-check that Country has no other values that could
incorrectly be recoded to domestic. A quick glance at Maximum in the variable attribute pane
confirms that the new variable has no rows with XXX, so we know no other Country values
were present.

ElementOf is also useful for criteria based on nominal data. This criterion would include only
those rows with values Japan and Other, and rows with USA (or missing values, if there were
any) would be excluded:

Country ElementOf {Japan, Other}
A set is either a range or a list of elements separated by commas and enclosed by “{” and “}.”

An interval is a pair of endpoints separated by a colon “:” and enclosed in parentheses “ () ”
p p P y p
or brackets “ [ ] ” as discussed in “Sets, intervals, and ranges,” p. 336.

An 15 comparison is an “equal to” comparison that also considers two missing values to be
equal to each other. 1s returns true (1) if the first expression is equal to the second argument or
if both expressions are missing. 1s returns false (0) if the arguments are unequal or if only one
expression is missing. 1s is useful with nominal data. Logical expressions are evaluated case-
wise.

Ordinarily, a missing value on either side of a relation causes that case to be missing, because,
for example, two unreported ages or weights or names cannot be assumed to be equal (or
unequal) just because they were both unrecorded. StatView provides 1s and 1snxor for those
situations in which missing values can be considered to “match.”

You might want to use 1s rather than = when setting a variable according to the values of more
than one other variable, as below. We might expect the first formula to produce values of true
for rows 3 and 4 (where X=3) and row 1 (where Y=4). Why do we get missing on row 1?

Because X is missing on row 1, the first if... test (see if ? then ? else ? [p. 341]) has already eval-
uated that row to be missing. The second formula uses 1s and gets the desired result: row 1 is
also true.
if X=3
then |
else if Y=4
then |
else 0

if XIS 3
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? ISNOT ?

Functions

then |
else if Y=4
then |
else 0
® Y with = | with IS
1 [ 4 . 1
2 2 1 0 0
3 3 3 1 1
4 3 . 1 1
5 5 3 0 0

An 1SNOT comparison is a “not equal to” comparison that considers two missing values to be
equal. 1sNOT returns true (1) if the first expression is strictly less or greater than the second
expression. ISNOT returns false (0) if both expressions are exactly equal or both expressions are
missing. 1SNOT is useful with nominal data. Logical expressions are evaluated casewise.

Ordinarily, a missing value on either side of a relation causes that case to be missing, because,
for example, two unreported ages or weights or names cannot be assumed to be equal (or
unequal) just because they were both unrecorded. StatView provides 1s and 1sNxor for those
situations in which missing values can be considered to “match.”

You might want to use 1sNOT rather than # in situations like the example shown for ? IS ?

[p. 340].

The logical conjunction or does union. Two expressions joined with or return true (1) if
either or both expressions are true; they return false (0) if both expressions are false; and they
return missing values (. or blank strings) if one is false and the other missing, or if both are
missing. Logical expressions are evaluated casewise.

The logical conjunction xor does exclusive or. Two expressions joined with XOR return true
(1) if one is true and the other false; they return false (0) if both are true or both are false; and
they return missing values (. or blank strings) if either or both are missing. Logical expressions
are evaluated casewise.

StatView provides an array of date/time functions for working with date/time date; text func-
tions for manipulating text data and character representations of numeric data; mathematical,
statistical, probabilistic, and trigonometric functions for generating and transforming data;
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Abs(

and random data and series functions for generating data. Functions appear in alphabetical
order.

Abs(var) returns the casewise absolute value of the variable you specify. Missing values are
unchanged.

Abs(A)
Abs(A+B)
A B | lal [la+El
-4 5 4 1
-3 =2 3 S
. 4 . .
0 . i} .
1 1] 1 1
5 4 S 2

Absolute value is often written with vertical bars. Absolute value is defined by:

I

xforall x=0
—x forall x<0

Casually, absolute value removes negative signs from the quantity it contains, but it does so
after evaluating the quantity inside. In the example below, the first case for Abs(A+B) is evalu-

ated |—4+5| = |1| =1, not |—4+5| =4+5=9

Absolute values are often used for studying “absolute magnitude’—that is, you want to know
how large some numbers are, but you don’t care whether the numbers are negative or positive.
For example, you might want to work with absolute residuals from a regression. Absolute val-
ues are also useful with functions that require non-negative arguments. For instance, you may
want to examine the square root of a variable. Square roots, however, are undefined for nega-
tive numbers, so you must first apply the absolute value then the square root, e.g.,
Sqrt(Abs(A)). Otherwise, missing values result.

Researchers often use a Likert scale, where multiple-choice answers indicate a range of
response, such as 1-5 being a scale from “strongly agree” to “strongly disagree.” Other ques-
tions might reverse the scale, so that the survey doesn’t seem to encourage one opinion over
another. To reverse scores from one direction to the other, take the absolute difference
between the score and the maximum, and add one. For example, to flip 1-5 to 5-1, use this
formula:

| + Abs(Likert—5)

Likert Reverse

LU0 B Ll Ll Bl D B B L0 |
bl LSl LB B L Bl L L0l B2 ()]
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ArcCos(?)

ArcCosh(?)

Grouping parentheses are allowed both inside and outside the absolute value argument, e.g.,
(A—Abs(B-C) and Abs(A—(B-C)); see (?) [p. 336]. StatView asks you to correct any mistakes

you make before it will compute any formula.

ArcCos(var) returns the arccosine in radians of a variable or constant. Missing values propa-
gate missing values. The function works casewise.

ArcCos(Cosine)

Radians 77 | Radians | Cosine [ArcCos(Cosine)
zero 0.000 1.000 0.000
n/6 524 866 524
n/3 1.047 .S00 1.047
/2 1.571 0.000 1.571
2n/3 2.094 -.500 2.094
Sn/6 2618 -.866 2618
n 3.142 | -1.000 3.142
nie 3.665 -.866 2618
4mi3 4.189 -.500 2.094
Iniz 4.712 0.000 1.571
S1/3 5.236 .500 1.047
117/6 5.760 866 524
2n 6.283 1.000 0.000

Arccosine is often denoted by cos™!x, because it is the inverse function of the cosine func-
tion. The arccosine of x is any angle whose cosine is x. Since cosine is a periodic function,
many angles have any given cosine, so arccosine is usually understood to mean the “principal
value” for a given cosine, which is by convention the angle falling between 0 and Tthaving that
cosine. A graph of arccosine against cosine shows this relationship.

Scattergram Scattergram
1.25 | | | | | | 3.5 T I | | I I |
25 N . o 3 =
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@ .25 - 2
2 Q1.5 -
O -25 - -8 1 L
i . . - Q 5 B
-75 o o<
i . L 0
-1.25 T T T T T T -5 T T T T T T
-1 01234567 -1.25 -5 .25 1
Radians Cosine

ArcCos returns angles expressed in radians. You can convert radians to degrees with RadTo-
Deg(?) [p. 405]. You may specify the value Ttwith Pi [p. 400].

ArcCosh(var) returns the hyperbolic arccosine of a variable or constant. Missing values propa-
gate missing values. The function works casewise.

ArcCosh(Cosh)
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X Cosh | ArcCosh(Cosh)
-5 | 74.210
-4 | 27.308
-3 10.068
-2 3.762
-1 1.543

1.000

1.543

3.762
10.068
27.308
74.210

NN = O =N [

A NN =0

Hyperbolic arccosine is often denoted by cosh™ x, because it is the inverse function of the
cosh function. If coshx = y, then cosh™! y = x. As hyperbolic functions are constructed
from exponential functions and exponents inverse to logs, inverse hyperbolic cosine has a log-
arithmic expression:

cosh'x = In(x% N 1)

where x> 1 and the plus in # is used for the principal value. (Either value for ArcCosh would
be valid; just as ArcCos takes its preferred “principal value” from the interval between 0 and Tt
so ArcCosh takes its principal value from the result of the plus sign rather than the minus
sign.) Graphs of cosh and arccosh echo their exponential and logarithmic meanings and show
the effects of the principal value convention:

Scattergram Scattergram
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ArcCot(?)

ArcCot(var) returns the arccotangent in radians of a variable or constant. Missing values prop-
agate missing values. The function works casewise.

ArcCot(Cotangent)
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ArcCse(?)

Radians 77| Radians | Cotangent | ArcCot(Cot)
zero 0.000 . .
nie 524 1.732 524
ni3 1.047 577 1.047
ni2 1.571 0.000 1.571

2m/3 2.094 -577 -1.047
5T/6 2618 -1.732 -.524
7 3.142 . .
/6 3665 1.732 524
41/3 4.189 577 1.047
3Nz 4712 0.000 1.571

ST/3 5.236 -577 -1.047
117/6 5.760 -1.732 -.524
2n 6.283 . .

Arccotangent is often denoted by cot ' x, because it is the inverse function of the cotangent
function. The arccotangent of x is any angle whose cotangent is x. Since cotangent is a peri-
odic function, many angles have any given cotangent, so arccotangent is usually understood to
mean the “principal value” for a given cotangent, which is by convention the angle falling
between —TU2 and TU2 having that cotangent. A graph of arccotangent against cotangent
shows this relationship.

Scattergram Scattergram
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ArcCot returns angles expressed in radians. You can convert radians to degrees with RadTo-
Deg(?) [p. 405]. You may specify the value Ttwith Pi [p. 400].

ArcCsc(var) returns the arccosecant in radians of a variable or constant. Missing values propa-
gate missing values. The function works casewise.

ArcCsc(Cosecant)
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Radians 7 | Radians | Cosecant | ArcCsc(Csc)
zero 0.000 . .
6 524 2.000 524
i3 1.047 1.155 1.047
iz 1.571 1.000 1.571
21/3 2.094 1.155 1.047
Sn/6 2618 2.000 524
b 3.142 . .
inie 3665| -2.000 -.524
41 /3 4189 | -1.155 -1.047
3Nz 4712 | -1.000 -1.571
ST/3 5236 | -1.155 -1.047
17/6 S5.760 | -2.000 -.524
2n 6.283 . .

Arccosecant is often denoted by csclx, because it is the inverse function of the cosecant
function. The arccosecant of x is any angle whose cosecant is x. Since cosecant is a periodic
function, many angles have any given cosecant, so arccosecant is usually understood to mean
the “principal value” for a given cosecant, which is by convention the angle falling between
—TU/ 2 and TU2 having that cosecant. A graph of arccosecant against cosecant shows this rela-

tionship.
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ArcCsc returns angles expressed in radians. You can convert radians to degrees with RadTo-

Deg(?) [p. 405]. You may specify the value Ttwith Pi [p. 400].

ArcSec(?)

ArcSec(var) returns the arcsecant in radians of a variable or constant. Missing values propagate
missing values. The function works casewise.

ArcSec(Secant)
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ArcSin?)

Radians 77| Radians | Secant | ArcSec(Sec)
zero 0.000 1.000 0.000
/6 524 1.155 524
i3 1.047 2.000 1.047
/2 1.571 . .
21/3 2.094 -2.000 2.094
ST/6 2618 -1.155 2618
b 3.142 -1.000 .
/e 3.665 -1.155 2618
41/3 4.189 -2.000 2.094
3n/2 4.712 . .
ST/3 5.236 2.000 1.047
117m/6 5.760 1.155 524
27 6.283 1.000 0.000

Arcsecant is often denoted by sec ' x, because it is the inverse function of the secant function.

The arcsecant of x is any angle whose secant is x. Since secant is a periodic function, many

angles have any given secant, so arcsecant is usually understood to mean the “principal value”

for a given secant, which is by convention the angle falling between 0 and Tthaving that

secant. A graph of arcsecant against secant shows this relationship.
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Deg(?) [p. 405]. You may specify the value Ttwith Pi [p. 400].

5 15 25

ArcSin(var) returns the arcsine in radians of a variable or constant. Missing values propagate

missing values. The function works casewise.

ArcSin(Sine)

Radians 77 | Radians Sine ArcSin(Sine)
zero 0.000 0.000 0.000
n/6 524 .500 524
n/3 1.047 866 1.047
/2 1.571 1.000 1.571
2n/3 2.094 866 1.047
Sn/6 2618 .500 524
n 3.142 0.000 0.000
nie 3.665 -.500 -.524
4mi3 4.189 -.866 -1.047
Ini2 4712 | -1.000 -1.571
S1/3 5.236 -.866 -1.047
117/6 5.760 -.500 -.524
2n 6.283 0.000 0.000
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ArcSinh(?)

Arcsine is often denoted by sin~!x, because it is the inverse function of the sine function. The
arcsine of x is any angle whose sine is x. Since sine is a periodic function, many angles have

any given sine, so arcsine is usually understood to mean the “principal value” for a given sine,
which is by convention the angle falling between —TU/ 2 and +TV2 having that sine. A graph of

arcsine against sine shows this relationship.
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ArcSin returns angles expressed in radians. You can convert radians to degrees with RadTo-

Deg(?) [p. 405]. You may specify the value Ttwith Pi [p. 400].

ArcSinh(var) returns the hyperbolic arcsine of a variable or constant. Missing values propagate
missing values. The function works casewise.

ArcSinh(Sinh(x))

X Sinh | ArcSinh(Sinh)

-5 [ -74.203 -5

-4 | -27.290 -4

-3 | -10.018 -3

-2| -ze27 -2

-1 -1.175 -1
0| 0000 i
1 1.175 1
2| ze27 2
3| 10018 3
4| 27290 4
5| 74203 5

Hyperbolic arcsine is often denoted by sinh™ x, because it is the inverse function of the sinh
function. More precisely, if sinhx = y, then sinh™'y = x. As hyperbolic functions are con-
structed from exponential functions and exponents inverse to logs, inverse hyperbolic sine has
a logarithmic expression:

sinh!x = In(x+ Ji + 1)

Graphs of sinh and arcsinh echo their exponential and logarithmic meanings:
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Arcfan(?)

Scattergram

80 L

Sinh

ArcSinh(Sinh)

Scattergram
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ArcTan(var) returns the arctangent in radians of a variable or constant. Missing values propa-
gate missing values. The function works casewise.

ArcTan(Tangent)

Radians 7 [ Radians | Tangent |ArcTan(Tangent)
zZero 0.000 0.000 0.000
/6 524 577 524
/3 1.047 1.732 1.047
/2 1.571 . .
2n/3 2094 | -1.732 -1.047
Sn/e 2618 -577 -.524
n 3.142 0.000 0.000
nie 3665 577 524
4n/3 4.189 1.732 1.047
Ini2 4.712 . .
S1/3 5.236 | -1.732 -1.047
117/6 5.760 -577 -.524
21 6.283 0.000 0.000

Arctangent is often denoted by tan™!x, because it is the inverse function of the tangent func-

tion. The arctangent of x is any angle whose tangent is x. Since tangent is a periodic function,

many angles have any given tangent, so arctangent is usually understood to mean the “princi-

pal value” for a given tangent, which is by convention the angle falling between —T/2 and

TV 2 having that tangent. A graph of arctangent against tangent shows this relationship.
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ArcTan returns angles expressed in radians. You can convert radians to degrees with RadTo-

Deg(?) [p. 405]. You may specify the value Ttwith Pi [p. 400].

ArcTanh(?)

ArcTanh(var) returns the hyperbolic arctangent of a variable or constant. Missing values prop-
agate missing values. The function works casewise.

ArcTanh(Tanh(x))
X Tanh | ArcTanh(Tanh)
-5 | -1.000 -5
-4 -.999 -4
-3 -.995 -3
-2 -.964 -2
-1 -762 -1
0 0.000 0
1 762 1
2 964 2
3 995 3
4 999 4
S 1.000 S

Hyperbolic arctangent is often denoted by tanh™ x, because it is the inverse function of the
tanh function. If tanhx = y, then tanh™'y = x. As hyperbolic functions are constructed
from exponential functions and exponents inverse to logs, inverse hyperbolic functions have a
logarithmic expression:

Sl 1, O +a0
tanh™ x = 2lnm

where |« <1.

Graphs of tanh and arctanh echo their exponential and logarithmic meanings:
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Average(, .. .)

Average(var, var2, ...) computes the casewise average of the values in the variables you specify.
Missing values propagate missing values. The function works casewise.

Average(Quiz, Homework, Test)
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Student Quiz Homework Test AveScore
Pebbles 67 74 93 78
BamBam . 72 93 .
Wilma 67 74 98 80
Fred 70 77 95 81
Betty 83 82 93 86
Barney 30 92 98 [0

Average is the sum of all values, divided by the number of values. The average, like the mean,
is a measure of central tendency of a set of observations. If you record students’ grades for a
series of assignments, tests, and quizzes in a series of variables (columns), you might use the
Average function to compute the average score for each student for the school term.

Average also accepts constants as arguments. If you specify only constants, the result is a vari-
able filled with a single answer, e.g., Average(3,1,8) produces a column of 4s. You might also
specify several variables and one number. For instance, you might average the students’ scores
with a single “high” score as a way of adding grace points to their final scores:

Average(Quiz, Homework, Test, 95)
Average is a casewise (horizontal) function. If you want a columnwise average, use Mean(?,

AllRows) [p. 388]. If one or more of the variables has missing values and you want an average
computed for every case using as many values as are present, use AveragelgnoreMissing(?, ...)

[p. 357].

AveragelgnoreMissing(?, .. .)

AveragelgnoreMissing(var, var2, ...) computes the casewise average of the nonmissing values
in the variables you specify. That is, for each row, AveragelgnoreMissing adds the nonmissing
values of the variables (or constants) you specify, and then divides by the number of values
that were nonmissing. If every variable being averaged is missing, a missing value results. By
contrast, the Average function returns a missing value whenever any value on that case was
missing. The function works casewise.

AveragelgnoreMissing(Quiz, Homework, Test)

Student Quiz Homework Test AveScore
Pebbles 67 74 93 78
BamBam . 72 93 82
Wilma 67 74 98 80
Fred 70 77 95 81
Betty 83 82 93 86
Barney 30 92 98 [0

Compare the AveScore results obtained here using AveragelgnoreMissing with those in the
Average example, above. Since BamBam had no score for the quiz (perhaps he was out sick
that day), he got no final grade. Here, he gets a final grade computed from just his homework
and test scores.

Average(?, ...) [p. 356] and AveragelgnoreMissing are casewise (horizontal) functions. If you

want columnwise averages, use Mean(?, AllRows) [p. 388].
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BinomialCoeffs

BinomialCoeffs generates the series of binomial coefficients of order 71, where 7 is the num-
ber of rows in the dataset. BinomialCoeffs takes no argument. The function works column-
wise; results differ from row to row.

BinomialCoeffs

Binom Coeffs

Binomial coefficients of order 7 are the coefficients of terms of x in the polynomial expansion
of (1+x) to the nth power. Above we see the ten binomial coefficients of order 9. Specifically,
the binomial coefficients are the results of the combinatorics in the following expansion:

(1+x)" = %x0+%ﬁxl + %xﬂ o %x”

The binomial coefficients of order 7 are the numbers in the (7+1)th row of Pascal’s triangle:

1
11
121

1331
14641
15101051

1615201561
. ete. ...

You can compute specific coefficients with the Combinations function. Don’t confuse bino-
mial coefficients with the binomial distribution, which is featured in ProbBinomial(?, 2, ?
[p. 401] and RandomBinomial(?, ?) [p. 406].

BoxCox(?, ?)

BoxCox(var, y) computes the Box-Cox transformation of order y of the variable you specify.
The first argument must be a variable, and the second argument must be a constant. Missing
values propagate missing values. BoxCox is a casewise transformation.

BoxCox(Cholesterol, 2)

Cholesterol [BoxCox order 2
197 19404.0
181 16380.0
190 18049.5
131 8580.0
172 147915
a7z ESTPY IS
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The Box Cox transformation can be used to make certain nonlinear models linear. The value
of the transformed variable is defined on each case as

(%), where yZ 0
Inx, wherey = 0

In the first row above, the order 2 Box-Cox transformation of cholesterol is calculated by

197°—1 _ 388091 _ 38808

3 > 5 - 19404

Ceil(?)

Ceil(var) rounds values of the variable you specify to the next greater integer. Missing values
propagate missing values. The function works casewise.

Ceil(A)
A Rounded A Truncated& | Floor of & Ceil of A
-1.200 -1.000 -1.000 -2.000 -1.000
-3.915 -4.000 -3.000 -4.000 -3.000
. . . . .
051 0.000 0.000 0.000 1.000
1.238 1.000 1.000 1.000 2.000
4.800 5.000 4.000 4.000 5.000

The ceiling of any number is the next greater integer, regardless of the size of its fractional part
and regardless of sign. Thus, the ceiling of —1.2 is —1, even though 0.2 is less than one-half,
and even though the ceiling of +1.2 is 2. Remember, for negative numbers, “greater” and
“lesser” can seem backwards: —1 is greater than —2. As do all computations, Ceil works with
actual stored values rather than the way values are displayed. For example, the value —1.9 is
displayed in a format with no decimal places as —2, but its ceiling is —1.

Related functions are Round(?) [p. 416], Trunc(?) [p. 429], and Floor(?) [p. 380]; a detailed
comparison of Round, Trunc, Floor, and Ceil is made in the discussion of Round.

ChooseArg(?)

ChooseArg(var, valuel, value2, value3, ...) uses values in the index var to choose from the
argument values you specify. The values you specify needn’t be unique. The values may be vari-
able names, in which case that variable’s value on a row is used as the new variable’s value. Text
values must be enclosed in quotation marks. (Variable names containing spaces must also be
enclosed in quotation marks.) The function works casewise.

ChooseArg uses the values of the variable you specify as an index to the values you list. Choo-
seArg’s behavior varies according to variable type:

If the index variable is categorical and a row has the nth category name, that row in the new
variable has the nth item in your replacement list. If the index var has more values than the
number of replacement values you list, missing values result.
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If the index variable is numeric (real, integer, long integer, currency, or date/time) each row’s
value is rounded to the nearest integer 7, and the new variable has the #th item in your
replacement list. (Date/time values are converted to real numbers of seconds; see the discus-
sion of date/time functions for details.) If the index var has negative, zero, or missing values,
or values that exceed the number of replacement values, missing values result.

If the index variable is string, missing values result.

ChooseArg(Country, "Foreign", "Foreign", "Domestic")

Country us?
Japan | Foreign
Japan | Foreign
Other | Foreign
Other | Foreign
Other | Foreign
Other | Foreign
Other | Foreign
USA | Domestic
USA | Domestic

e & | Pomrmnmdin

Above, we combine a three-level categorical variable to two levels. We join Japan (the first cat-
egory level) and Other (the second category level) in a single level by specifying “Foreign” as
the new value for both. Notice that the variable browser in the Formula window shows the
ordered values of categorical variables. If you click the triangle to the left of the variable’s
name, you can easily determine what sequence your new, replacement values should take.

Formula of “US?”
Formula variable definition:

hhooseArg(Countrg, “Foreign”, "Foreign”, "Domestic")

Order: | by Usage I
[ Country
Japan
Other
usa
[ Country Type

Jlanan Paranaet

If your variable is numeric and has fractional or negative values or a wide range, you may pre-
fer to use as indices ranks of the values rather than the values themselves:

ChooseArg(Rank(var, AllRows), value, value2, value3, ...)

Don’t forget to change the formula variable to a type appropriate to the replacement values.

CoeffOfVariation(?, AllRows)

CoeffOfVariation(var, AllRows) computes the coefficient of variation of the variable you spec-
ify; by default, calculations are based on AllRows, but you may instead specify OnlyIncluded-
Rows or OnlyExcludedRows as the second argument. Missing values are ignored. The
function works columnwise and produces the same result for every row.

CoeffOfVariation(A, AllRows)
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A CY of A

Coeff. of Yariation: | -17.819 | 0.000
Minimum: | -4.000 | -17.819

1] -4.000 -17.819
2] -3.000 -17.819
3 . -17.819
4 0.000 -17.819
S 1.000 -17.819
) S5.000 -17.819

Coefficient of variation is a measure of relative variability. It is standard deviation divided by
mean. If the mean is near zero, the quotient may tend to be large, even if the variation is not.
Coefficient of variation is also shown in the summary pane.

Related functions are Mean(?, AllRows) [p. 388] and StandardDeviation(?, AllRows) [p. 420].

Combinations(?, ?)

Concat(?)

Combinations(7, 7) computes the casewise unordered combinations of 7 objects taken rat a
time, where 7 and 7 can be variables or constants. Cases with 7 greater than 7, negative values,
or missing values are missing. The function works casewise.

Combinations(n, r)

Permutations(n, r)

n r  [Comb(n,r)|Permin,r)

=2 1 . .
3 [ [ 3
4 3 4 24
S 1 S S
S 2 10 20
S 3 10 60
S 6 . .

Combinations(7, 7) computes the number of 7-object unordered subsets that can be taken
from 7 objects, or

b _ 7!
OO ™ A(n =)

For example, Combination(5,3) on the second to last row is 10, which means that you could
choose 10 distinct committees of 3 people from a group of 5 people:

For ordered combinations, see Permutations(?, ?) [p. 399]. Both Combinations and Permuta-
tions rely on the use of factorials (such as 7!), which can be computed individually with Facto-
rial(?) [p. 377]; factorials are defined in that entry.

Concat(zext, text2, ...) concatenates or combines the text strings you specify. Unless the results
are numeric, you should change the resulting variable to have type string. The arguments zexz,
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text2, etc., may be variables or constants; constants must be enclosed in quotation marks.
(Variable names containing spaces must also be enclosed in quotation marks.) If you supply a
variable as argument, Concat uses its exact values in the current format’s display. Changing
formats can change results. The function works casewise.

Concat(Country, " ", Type)

Country Type Country Type

Japan Small | Japan Small

Japan | Medium | Japan Medium
Other | Mediumn | Other Medium
Other | Compact | Other Compa...

Other | Compact | Other Compa...
MNihar Caransat | Nthar Carans

Concat can be used as an alternative to Groups(?, ...) [p. 381] for merging two category vari-
ables into one. (Do not forget to change the type of the new variable to category.) Usually
Concat is used with string variables, but other variable types also work.

Correlation(?, 7, AllRows)

Correlation(var, var2, AllRows) computes the Pearson correlation coefficient of the two vari-
ables you specify; by default, it uses AllRows of the variables, but you may instead specify
OnlyIncludedRows or OnlyExcludedRows as the third argument. Cases with missing values
on either variable are excluded from calculations. The function works columnwise and pro-
duces the same result for every row.

Correlation("Chol-3yrs", "LDL-3yrs", AllRows)

Chol-3yrs LDL-3yrs | CorrChol-LDL
182 145.8 965
151 102.1 965
169 1306 965
133 4.8 965
166 1238 965
“%a 100 2 ace

Pearson correlation measures the degree of linear relationship between two variables. A posi-
tive correlation means that as one variable increases, so does the other. A negative correlation
means that as one increases, the other decreases, and vice versa. Correlations range from zero
(no consistent relationship) to one (absolutely consistent relationship). However, correlation
coefficients are meaningless unless you verify (with a scattergram, perhaps) that the relation-
ship is linear and the data are bivariate normal (that is, the points fall roughly in an ellipse).

The high positive correlation (0.965) of cholesterol and low density lipoproteins (LDL) in
Lipid Data shows that cholesterol and LDL increase and decrease together, and a scattergram
confirms that the relationship is linear. However, the point cloud is not particularly elliptical.
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Cos(?)

Scattergram
I I I ) |

100 140 180 220 260 300
Cholesterol

You may use the Lag function to lag a variable and then correlate the variable against its lag to
test autocorrelation (the degree to which values depend on preceding values, as might be the
case with time series data).

A related function is Covariance(?, ?, AllRows) [p. 365]. The correlation and covariance anal-

yses (see “Correlation and Covariance,” p. 43) provide additional statistics useful for assessing

linear relationships. Also see the Spearman and Kendall rank order correlation analyses in
“Nonparametrics,” p. 119.

Cos(var) returns the cosine of a variable or constant. The angle measurements in var are
assumed to be in radians. Missing values propagate missing values. The function works case-
wise.

Cos(Radians)

Radians 77| Radians | Cosine
zero 0.000| 1.000
/6 524 866
/3 1.047 .500
/2 1.571 | 0.000
2n/3 2.0%4 | -500
ST/ 2618 -.866
b 3.142 | -1.000
Tnie 3665 | -866
4n/3 4189 | -.500
In/2 4712 | 0.000
ST/3 5.236 500
117/6 5.760 866
27 6.283 | 1.000

Sines, cosines, and tangents relate angles to the coordinates of points in planes. The cosine of
an angle in a right triangle is the ratio of the length of the leg adjacent to the angle to the
length of the hypotenuse.

If you have angles measured in degrees, you can convert them to radians with DegToRad(?)
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may
specify the value Ttwith Pi [p. 400].
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Cosh(?)

Cosh(var) returns the hyperbolic cosine of a variable or constant. Missing values propagate
missing values. The function works casewise.

Cosh(x)

X Cosh

-5| 74.210

-4 | 27.308

-3 | 10.068

-2 3762

-1 1.543
0 1.000
1 1.543
2 3.762
3| 10.068
4| 27308
S| 74.210

The hyperbolic trigonometric functions (sinh, cosh, and tanh, sometimes pronounced “sinch,

cosh, and tanch”) are analogous to the trigonometric functions sine, cosine, and tangent. They
. X —X . . .

are constructed from the functions ¢ and ¢ = and bear a relationship to the unit hyperbola

that is analogous to the trigonometric functions’ relationship to the unit circle.

The hyperbolic cosine is defined by

X —X
e +e
coshx = ——
2

and like cosine, cosh(x) has value 1 at x = 0. Cosh is defined for all real numbers and ranges
from 1 to infinity.

Cot()

Cot(var) returns the cotangent of a variable or constant. The angle measurements in var are
assumed to be in radians. Missing values propagate missing values. The function works case-

wise.
Cot(Radians)
Radians 77| Radians | Cotangent
zero 0.000 .
/e 524 1.732
ni3 1.047 577
T2 1.571 0.000
27/3 2.094 -577
ST/6 2618 -1.732
) 3.142 .
6 3.665 1.732
41 /3 4.189 577
In/2 4712 0.000
51/3 5.236 -577
1171/6 5.760 -1.732
2n 6.283 .

The cotangent of an angle in a right triangle is the ratio of the length of the leg adjacent to the
angle to the length of the leg opposite. Recall that the tangent of an angle in a right triangle is
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the ratio of the length of the leg opposite the angle to the length of the leg adjacent. There-
fore, the cotangent is the reciprocal of the tangent:

Recall that tangents approach plus or minus infinity asymptotically as their arguments
approach values TU2, 3TU2, etc., so cotangents converge to zero at these points and approach
minus infinity as angles approach Tt, 2Tt etc. Cotangents at these points are undefined, so Cot
produces missing values. (On some platforms, differences in the numerics environments may
produce extreme values rather than missing values.)

If you have angles measured in degrees, you can convert them to radians with DegToRad(?)
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may
specify the value Ttwith Pi [p. 400].

Count(?, AlRows)

Count(var, AllRows) computes the number of nonmissing values (often represented as 7 in
formulas for statistics) in a variable. By default, Count uses AllRows of the variable, but you
may instead specify OnlyIncludedRows or OnlyExcludedRows as the second argument. The
function works columnwise and produces the same result for every row.

Count(A, AllRows)

A |CountOfé

—
Count: | 4 6
Missing Cells: | 2 0

Lol L) B0 L) [N
L]
B RS B B B B

Count is the number of cases in a variable minus the number of cases that have missing values
(.). Counts are also shown in the summary pane. Most statistics are computed from formulas
that involve the count of cases in the variable(s) being analyzed. For instance, mean is defined
as the sum of the nonmissing cases divided by the count.

The Count function is useful for computing your own statistics. See examples shown in the
discussions of Percentile, StandardDeviation, and Variance for some ideas.

NumberOfRows [p. 394] gives the number of cases in a variable, whether missing or non-
missing. NumberMissing(?, AllRows) [p. 393] gives the number of missing values. Count(var,
AllRows) and NumberMissing(var, AllRows) sum to NumberOfRows.

Covariance(?, 7, AllRows)

Covariance(var, var2, AllRows) computes the covariance coefficient of the two variables you
specify; by default, it uses AllRows of the variables, but you may instead specify OnlyInclud-
edRows or OnlyExcludedRows as the third argument. Cases with missing values on either
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Gse(?)

variable are excluded from calculations. The function works columnwise and produces the
same result for every row.

Covariance("Chol-3yrs", "LDL-3yrs", AllRows)

Chol-3yrs LDL-3yrs [CovarChol-LDL
182 145.8 1339.114
151 1021 1339.114
169 130.6 1339.114
133 4.8 1339.114
166 1238 13329.114

Covariance is a measure of joint variance that, like correlation, measures the degree of rela-
tionship between two variables. A positive covariance means as one variable increases, the
other also increases; a negative covariance means as one increases, the other decreases. Covari-
ance of the variables X and Y is given by the formula

> (=Hx) (0 —Hy)

i=1

n—1
where x; and y; are values on each case, 7 is the count, and Hy and Uy are sample means.

Related functions are Variance(?, AllRows) [p. 430] and Correlation(?, ?, AllRows) [p. 362].
Also, the correlation and covariance analyses provide additional statistics useful for assessing

linear relationships.

Csc(var) returns the cosecant of a variable or constant. The angle measurements in var are
assumed to be in radians. Missing values propagate missing values. The function works case-

wise.
Csc(Radians)
Radians 77| Radians | Cosecant
zero 0.000 .
/e 524 2.000
T3 1.047 1.155
T2 1.571 1.000
21/3 2.094 1.155
ST/6 2618 2.000
) 3.142 .
niE 3.665| -2.000
4n/3 4.189 -1.155
32 4712 | -1.000
51/3 5236 | -1.155
117/6 5.760 | -2.000
2n 6.283 .

The cosecant of an angle in a right triangle is the ratio of the length of the hypotenuse to the
length of the leg opposite the angle. Recall that the sine of an angle in a right triangle is the
ratio of the length of the leg opposite the angle to the length of the hypotenuse. Therefore, the
cosecant is the reciprocal of the sine:

1
cscx = ——
sinx
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As the angle (Radians) approaches Ttand 2Tt (and so on), sine approaches zero, and thus cose-
cant approaches plus or minus infinity. Cosecant is undefined at these points, so Csc produces
missing values. (On some platforms, differences in the numerics environments may produce
extreme values rather than missing values.)

If you have angles measured in degrees, you can convert them to radians with DegToRad(?)
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may
specify the value Ttwith Pi [p. 400].

CubicSeries(1, 0, 0, 1)

. . . 2 3 .
CubicSeries(a, b, ¢, d) generates a series of values equal to 2 + bx + cx” + dx” , where x is
one less than the row number. By default, the arguments are 1, 0, 0, 1, but you may specify
any constants. The function works columnwise; results differ from row to row.

CubicSeries(1, 0, 0, 1)

Cubic

1

2

9
28
65
126
217
344
S13
730

[=13 E¥e Focll B L) 0 O D00 DOV Eo

. . . 2 .
In each row 7 of the new variable, the quantity 2+ bx+cx™ + dx® s evaluated for
x = i—1 , and that result is the value for the row. For example, the fourth row above is com-
puted by:

1+0x3+0x3°+1x3% = 1+0+0+27 = 28

See also QuadraticSeries(1, 0, 1) [p. 404] and QuarticSeries(1, 0, 0, 0, 1) [p. 405].

CumProduct(?)

CumProduct(var) computes the cumulative product of all nonmissing values in a variable. On
each row in the new variable is the “product in progress,” and the final row shows the cumula-
tive product based on all rows. Missing values are marked with missing values in the new vari-
able, but they do not affect the cumulative product. The function works columnwise; results
differ from row to row.

CumProduct(A)
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A CurnProd of A
-1 -1
-2 2

. .

720
-4320
-30240

3
2
3
4 144
5

-6
=

For the first case, the cumulative product is the first value, —1. Since —1*(-2)=2, the cumula-
tive product on the second case is 2. The third case is missing, and the cumulative product is
marked by missing, but for the fourth case we resume where we left off: 2*3 is 6. On the final
row, we see the final result.

For casewise multiplication, use the asterisk (*), e.g., A*B; see 2*? or 2 ? [p. 333].

CumSum(?)

CumSum(var) computes cumulative sums of all nonmissing values in a variable. Each row in
the new variable shows the “sum in progress,” and the final row shows the cumulative sum of
all rows. Missing values are marked with missing values in the new variable, but they do not
affect the cumulative sum. The function works columnwise; results differ from row to row.

CumSum(A)

A CurnSurn of A
-1 -1
-2 -3

. .

LA Lol B KVl (4 | V) L]

7 1

For the first case, the cumulative sum is the first value, —1. Since —1 + —2 is —3, the second case
is —3. The third row shows a missing value, since A is missing, but the sum-in-progress
resumes in the fourth: =3 + 3 = 0. On the final row, we see the final cumulative sum result, so
“1+-2+3+2+3+4+5+-6+71is15.

For casewise addition, see 2+? [p. 333], Sum(?, ...) [p. 423], or SumlgnoreMissing(?, ...)

[p. 424]. Sum adds values for each row on all the variables you specify. SumIgnoreMissing is
the same except that missing values are ignored. Also see SumOfColumn(?, AllRows)

[p. 424], which fills a new variable with a single sum.

CumSumSquares(?)

CumSumSquares(var) computes cumulative sums of squares of all nonmissing values in a
variable. On each row in the new variable is the sum of squares “in progress,” and the final
row shows the cumulative sum of squares on all rows. Missing values are marked with missing
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Date(

777)

0y o9 o

values in the new variable, but they do not affect the sum in progress. The function works col-
umnwise and produces the same result for every row.

CumSumSquares(A)
SumOfSquares(A, AllRows)

A CumSSq SSq
T -
Sum:| 15 433 15320
Sum of Squares: | 153 | 41973 | 234090
1 -1 1 153
2 -2 S 153
ES . . 153
4 3 14 153
S 2 18 153
& 3 27 153
7 4 43 153
8 5 68 153
9 -6 104 153
10 7 153 153

In the example above, the first row is simply (-1 )2 or 1. The second row is

(—1)2 + (—2)2 = 5 , the third is missing, the fourth is (—I)2 + (—2)2 +3% = 14 , etc.
The last row of CumSSq, 153, is the final sum of squares. That final result is the Sum of
Squares shown in the summary pane, and it fills all rows of the variable SSq, created with
SumOfSquares; see SumOfSquares(?, AllRows) [p. 425].

Date(year, month, day) returns the exact second at midnight of the year, month, and day you
specify. Date is casewise. Notice that year comes first, then month, then day. The function
works casewise.

Date(Yr, Mo, Dy)

Yr Mo Dy Nice dates
1994 24 24 Jan 1994

1
1992 4 30 30 Apr 1992
1984 ) 2 2 Jun 1934
1970 2 7 7 Feb 1970

The example above shows how to use Date to combine year, month, and date values stored in
separate columns. Data imported from other programs may have date/time values separated

into several numeric-type columns, and Date puts those columns together into date/time val-
ues. (Don't forget to change the type of the new variable to date/time and choose a format you

like.)

Other programs store date values as text strings. You can use the Substring (p. 422) and Date
(p. 369) functions to convert these to dates:

Date(1900+Substring(Text, 5, 2), Substring(Text, |, 2), Substring(Text, 3, 2))

Text Dates

012494 | Monday, 24 January 1994
043092 Thursday , 30 April 1992
060284 Saturday, 2 June 1984
020770 | Saturday, 7 February 1970
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Or, suppose you need to group date values together by month (see Year(?) [p. 431] and
Month(?) [p. 391]):
Date(Year(mydates), Month(mydates), 1)

You may also build dates with formulas such as this one (see RowNumber [p. 417]):
Date(1970+RowNumber, RowNumber, RowNumber)

Some dates
21 09.21.92
22 10.22.93
23 11.23.94
24 12.24.95
25 01.25.97
26 02.26.98
herd N7 27 aa

This example shows how invalid dates are reinterpreted. Consider the computations for row
25, where month=25 carries a 2 into the years value:

year=1970+25, month=25, day=25
year=1970+25+2, month=1, day=25
year=1997, month=1, day=25

Carrying happens whenever the number of days is greater than the length of the current
month (28, 29, 30, or 31), or whenever the number of months is greater than 12.

DateDifference(?, 2, ?)

DateDifference(datel, date2, units) subtracts datel from date2, in the time units specified
(1=years, 2=months, 3=weeks, 4=days, 5=hours, 6=minutes, 7=seconds). The first two argu-
ments may be date/time variables or date values enclosed in quotation marks and the third
argument must be a number 1, 2, 3, 4, 5, 6, or 7. The resulting variable has values that are a
real number of the unit you specify in the third argument. The function works casewise.

For example, suppose we want to know how long the Berlin Wall divided East and West Ber-
lin. We could do this a number of ways. First, we could enter variables for the day construc-

tion of the wall was completed, 17 Aug 1961, and for the day the Brandenburg Gate reopened
in Berlin on 22 December 1989. Then, we could use the formula to make a third variable, yrs

Berlin divided:
DateDifference("Gate opens", "Berlin Wall completed", 1)

Berlin Wall completed | Gate opens| yrs Berlin divided
> Type: | Date/Time Date/Time| Real
> Source: | User Entered User Ent... | Dynamic Formula
> Class: | Continuous Continuous| Continuous
> Format: | 01.01.04 12:00:00 AM | 01.01.04 | Free Format Fixed
> Dec. Places: | @ . 3

Notice several things. The first two variables have type date/time and two different formats.
The third variable counts a number of years and is not date/time but real.

We could instead supply both date values as arguments directly:
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Day(

DateDifference("Dec 22, 1989", "08/17/61", 1)

Many ways of typing a date are valid, but always enclose dates in quotation marks. This time,
we list the earlier date first (for a negative difference) and set the third argument to 2 for
months:

DateDifference("08/17/61", "Dec 22, 1989", 2)

Difference
1 -340.172

Dynamic formulas fill only as many rows as already exist in the dataset, so we must insert a
row: Control-click (Windows) or Command-click (Macintosh) the border between the vari-
able-name row and the empty data area. The answer found in the Difference variable, —-340
months, is negative because our formula specifies the earlier date first.
Of course, you can also compute the differences between entire columns of dates:
DateDifference("Some dates", "Other Dates", |)
DateDifference("Some dates", "Other Dates", 3)
DateDifference("Some dates", "Other Dates", 6)

Some dates Other dates | Diff yrs | Diff days Diff mins
19 07.19.90 07.19.95 -5 -261 -2629440
20 08.20.91 08.20.95 -4 -20%9 -2103840
21 09.21.92 09.21.95 -3 -156 -1576800
22 10.22.93 10.22.95 -2 -104 -1051200
23 11.23.94 11.23.95 -1 -52 -525600
24 12.24.95 12.24.94 1 52 525600
25 01.25.97 01.25.95 2 104 1052640
26 02.26.98 02.26.95 3 157 1578240
27 03.27.99 03.27.95 4 209 2103840
28 04.28.00 03.21.95 S 266 2685600

Caution: StatView assumes a fixed month-length of the number of seconds in a year divided
by twelve, but months actually have differing lengths. Therefore, DateDifference results in
months (third argument 2) can be misleading.

Day(date) returns the day number (1-31) of the date specified. The date argument may be a
variable or constant. (Remember, all date/time values are an exact second of an exact day, and
unspecified dates are assumed to be the current date.) The function works casewise.

Day("Other dates")

Other dates Day
01.01.95
02.02.95
03.03.95
04.04.95
05.05.95
06.06.95

Lol [0 B2 D) LN B
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DayOfWeek(?)

DayOfWeek(date) returns an index indicating the day of the week (1=Sunday, 2=Monday,
etc.) of the date specified. The date argument may be a variable or constant. (Remember, all
date/time values are an exact second of an exact day, and unspecified dates are assumed to be

the current date.) The function works casewise.

DayOfWeek("Other dates")

Other dates

‘Weekday

01.01.95

02.02.95

03.03.95

04.04.95

05.05.95

O || [ | =

If you want day names, change the variable to category, and edit the category to have levels

Sunday, Monday, Tuesday, ..., Saturday.

‘Weekday

Sunday

Thursday

Friday

Tuesday

Friday

Weekday(?) [p. 430] is synonymous.

DayOffear(?)

DayOfYear(date) returns the number of the day of the year (1-360) of the daze specified. The
date argument may be a variable or constant. For example, 62 means that 3 March is the sixty-
second day of a non-leap year. The function works casewise.

DayOfYear("Other dates")

TummAnan

Weekday

Sunday

Thursday

Friday

Tuesday

Friday

DegloRad(?)

DegToRad(var) converts angle measurements in a variable (or a constant) from degrees to
radians. Missing values propagate missing values. The function works casewise.

DegToRad(Degrees)

Tuommdnn
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Difference(?,

Radians 7| Degrees | Radians
zero 0| 0.000
/e 20 524
ni3 60| 1.047
iz 90| 1571
2mi3 120 2.094
Sn/i6 150 | 2618
7 180 | 3.142
Ffi 210 | 3665
41 /3 240 | 4.189
3n/2 270 4712
SN/3 300 | 5.236
1171/6 330 | 5.760
2n 360 | 6.283

StatView’s trigonometric functions work with measurements in radians, so DegToRad conver-
sions are necessary if you ordinarily work with data measured in degrees. A circle has 360
degrees or 2T radians (2 x 3.1416... = 6.2832... radians). Above, Radians Ttis an informa-
tive variable entered by hand to make the Radians values easier to read.

To convert radians back to degrees, use RadToDeg(?) [p. 405]. StatView’s trigonometric func-
tions are Sin(?) [p. 419], Cos(?) [p. 363], Tan(?) [p. 426], Sec(?) [p. 418], Csc(?) [p. 366],
Cot(?) [p. 364], ArcSin(?) [p. 353], ArcCos(?) [p. 349], ArcTan(?) [p. 355], ArcSec(?)

[p. 352], ArcCsc(?) [p. 351], and ArcCot(?) [p. 350].

1)

Difference(var, n, j) computes the difference between a variable var and its lag at 7 places,

repeating that operation ; times over. The argument # may be any integer, negative or positive;
j must be a positive integer. The function works columnwise; results differ from row to row.

Difference(A, 1, I)
Difference(A, 1, 2)
Difference(A, 2, 1)
Difference(A, 2, 2)
Difference(A, -1, 1)

A [Lag(a,1)[Lag(a,2)| Diff(a,1,1) | Diff(A,1,2) | Diff(a,2,1) [Diff(a,2,2)[Diff(A,-1,1)]
1 . . . . . . -1
2 1 . 1 * Ld * -2
4 2 1 2 1 3 . -3
7 4 2 3 1 S . -4

11 7 4 4 1 7 4 -5

16 11 7 5 1 9 4 -6

22 16 11 [ 1 11 4 =7

29 22 16 7 1 13 4 -8

37 29 22 8 1 15 4 -9

46 37 29 9 1 17 4 .

Differencing is useful for removing additive trends from time series data. It is best defined by
example. Consider the series A and its first and second lags. Difference(A,1,1) differences A by
one cell, one time. This amounts to the casewise subtraction A — Lag(A,1): 1-. is missing in
the first row, 2—1 is 1 in the second, 4-2 is 2, etc.

Similarly, Difference(A,1,2) differences A by one cell, two times; in other words, it differences
A by one cell, and then differences it by one cell again. This is the same as A — 2*Lag(A,1) +
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Div(’,

Lag(A,2). Or to put it another way: if B is Diff(A, 1, 1), then Diff(A, 1, 2) is Diff(B, 1, 1). We
also show the results of Difference(A,2,1), Difference(A,2,2), and Difference(A, —1, 1); notice

how a negative 7 argument differences “up.”

See Lag(2,1) [p. 382] if you need to do other transformations involving lagged variables. Also
useful with time series data is MovingAverage(, ?) [p. 391].

Div(var, var2) does casewise division of var by var2 and returns the integer part of the quo-
tient. Both arguments can be variables or constants. Missing values or division by zero propa-
gate missing values.

Div(A, B)

& B | Div(AB)

-12 5 -2.0

-3 -2 1.0

. 4 .

0 3 0.0

1 0 .

15 4 3.0

Div truncates a quotient to its integer part, discarding all digits after the decimal place. You
could get the same result by using Trunc(A/B). For example in row 1, —12/5 is —2.4, so the
result is —2.

Mod(, ?) [p. 390] and Remainder(?, ?) [p. 413] return the remainder after dividing. Mod and
Remainder are synonymous for positive arguments; for negative arguments, they differ. See

the discussions of each for details.

DotProduct(?, )

DotProduct(var, var2) computes the dot product of the two vectors (variables) you specify.
The result of any dot product is a constant, so the function returns a variable with the con-
stant on every row. Any row with a missing value for either variable is ignored. The function
works columnwise and produces the same result for every row.

DotProduct(A, B)

A B AdotB
1 & 0
-2 3 0

The dot product (also called scalar product or inner product) is a linear algebra operation that
reduces a horizontal (row) vector and a vertical (column) vector to a single constant by multi-
plying the first numbers of each vector, the second numbers of each vector, etc., and then add-
ing those products. One interesting property: if the dot product of two vectors is 0, then the
two vectors are orthogonal, meaning that the lines connecting the points to the origin are per-
pendicular to each other in space.

For example, consider the vectors (1, —2) and (6,3). These points represent lines from the ori-
gin (0,0). Their dot productis (1% 6)+(-2x3) = 6—6 = 0 , so we know the vectors
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are perpendicular. We could instead examine a graph: we transpose the data cells to place X
coordinates in one column and Y coordinates in another, plot the points in a bivariate scatter-
gram, and then use drawing tools to connect them to the origin.

Scattergram
T R

oOr N W A
|
T

X

Computing the dot product is more practical (and more precise) than scrutinizing graphs,
especially with vectors in many-dimensional space.

Another use of DotProduct is shown in “How can I estimate the survival function at other
covariate values?,” p. 245 of Using StatView. Norm(?, AllRows) [p. 392] is also useful for lin-
ear algebra computations.

The function e produces the constant ¢, which is approximately 2.71828... Unless you use e
in combination with other functions, it returns a variable in which every case is ¢, so we call it
a constant. The function works casewise.

e
A+e
e(RowNumber-1)

Ln(e®(RowNumber-1))

A e Ate Powers of e| Lns of powers

1 -4 2718 -1.282 1.000 0
2 -3 2718 -.282 2718 1
3 . 2718 . 7.389 2
4 0 2718 2718 20.086 3
S 1 2718 3718 54.598 4
& S 2718 7.718 148.413 5
7 34 2718 | 36.718 403 .429 &
8 =72 2718 |-69.282 | 1096.633 7
9 . 2718 e | 2980.958 g
10 3 2718 5.718| 8103.084 9

You can use ¢ in combination with other functions as seen above.

This example illustrates the inverse relationship between ¢" (often represented as “exp(x)”)
and the natural logarithm (also known as the base ¢ logarithm; see Ln(?) [p. 385]). The rela-
tionship is better seen in graphs. The second plot uses a log e vertical scale to “straighten” the
relationship between Powers and Lns.
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Scattergram Scattergram

9000 I I I S | 8103.08 I I S I S S |
N r 2980.96 - . -
7000 - I 1096.63 : B
2 T B % 403.43 . -
o 5000 7 - @ 14841 . -
Qo g 54.6 : n

_ . L =

§ 3000 _ L £ 20.09 . -
1000 . L 7.39 . =
- 272 | - -

'1000 T T 7T T T T T T 1 T 1T T 1T T T T

11 3 5 7 9 11 3 5 7 9

Lns of powers Lns of powers

ExponentialSeries(1) [p. 376] produces a variable in which each case is e times the value of the

previous case, beginning with the first case equal to the argument; for example, Powers of e
above could be given by ExponentialSeries(1).

Erf(var) computes the error function of var. The argument var may be either a constant or a
variable. Missing values are ignored. The function works casewise.

Erf(RowNumber)

Erf(RowMNurn)

843

995
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

O (0|00 [=d |0 [ |8 [N =

The error function is a special case of the incomplete gamma function and is related to the
normal cpr. Erf(x) is defined as follows.

_ 2
erf(x) = ﬁ_%ey

ExponentialSeries(1)

E())(ponentialSeries(x) generates a series whose values are x times the powers of e, starting with
e . By defaulg, x is 1, but you may specify any constant. The function works columnwise;
results differ from row to row.

ExponentialSeries(1)

ExponentialSeries(2)
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Factorial(?)

Expo-1 Expo-2
1 1.000 2.000
2 2718 5.437
3 7.389 14.778
4 20.086 40.171
5 54.598 109.196
& 148.413 296.826
7 403.429 806.858
=] 1096 .633 2193.266
9 2980.958 5961.916
10 8103.084 16206.168

. . . . —1 . . .
Row 7 of the ExponentialSeries(x) is equal to xe' " . Above, ExponentialSeries(1) is the pow-
ersof e st%rtin% in r(2)w 1 with ¢, theninrow2 ¢, inrow 3 ¢", etc. ExponentialSeries(2) has
values 2¢°, 2¢ ,2¢", ...

Also see e [p. 375], for the constant e.

Factorial(var) does casewise factorials of the variable you specify. If you specify a constant,
Factorial returns a variable whose values are all that number factorial. Cases with negative or
missing values are missing. The function works casewise.

Al
B!
7

& Al B B! Seven!

-4 . 1 1 5040

-5 . 2 2 5040

. . 3 & 5040

. . 3 6 5S040

1 1 6 720 5040

S 120 S 120 5040

S 120 8| 40320 5040

& 720 7 5040 5040

Factorial is a basic operation used for many probability computations. It is usually represented
by an exclamation point (!) and defined as follows:

n = n(n—1)! ,where =20, 0! = 1,and 1! = 1;

n
or nl = I_l i, where n>0.

i=1

Factorials are used to count the ordered permutations of 7 objects in which repetition is not
allowed; for example, how many ways can you rearrange the letters in the word Boar into dis-
tinct four-letter words? There are 4 possibilities for the first letter (B, O, A, or T), times 3 pos-
sibilities for the second letter (the three letters you didn’t use already), times 2 possibilities for
the third letter (the two letters you haven’t used), times 1 possibility for the last letter (the one
letter still left); hence, 4 X3 x2x1 = 4! = 24,

Related functions are Permutations(?, ?) [p. 399] and Combinations(?, ?) [p. 361].
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FibonacciSeries

FibonacciSeries generates the Fibonacci series. The number of Fibonacci values that are gener-
ated depends on the number of rows you specify if you use the Series command, or the num-
ber of rows in the dataset if you use the Formula command. This function takes no
arguments. The function works columnwise; results differ from row to row.

FibonacciSeries

Fibonacei

By definition, the first two values of the Fibonacci series are 1, and each subsequent value is
the sum of the previous two. Thus we have 1, 1, 1+1=2, 1+2=3, 2+3=5, 3+5=8, etc. An inter-
esting property of the Fibonacci series is that if you difference the series (subtract from each
value its previous value), then the ratio of each difference to the previous difference (which we
compute by dividing the differenced series by the lag of the differenced series) approaches the
golden ratio (1.6180339887...) as RowNumber (p. 417) approaches infinity:

FibonacciSeries
Difference(Fib, I, I)

Lag(Diff, 1)
Diff/Lag
Line Chart
- - - 2.2
Fib Diff Lag Diff/Lag
1 1 . . [ 2
2 1 0 . .
3 2 1 0 . 18 -
4 3 1 1 [1.000000000 F16
5 5 2 1 |2.000000000 =
- - = A T+ cannnnnnn 14
a
2 DC 12 1C OCIO | 1. .DIOUDD202 1.2 —
96 SE19 2E19 1E19 [1.618033959
97 SE19 3E19 2E19 |1.618033989 1
98 1E20 SE19 3E19 [1.618033989
99 2E20 SE19 SE19 |1.618033989 8 T T T T T T 1
100 4E20 1E20 SE19 |1.618033989 3 5 7 9 11
RowNumber

If you want a variation on the Fibonacci series, you may include the function in a larger
expression:

Log(FibonacciSeries*7)
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Find(?, 2, ?, false)

Find(var, findstring, n, false) searches var’s values for findstring and returns the position of its

first occurrence after the nth character (or 0 if it is not found). The 7 argument must be a pos-
itive integer. The fourth argument specifies whether the search should be case-sensitive; the
default is false for case-insensitive searching, but you may specify true instead. If you supply a
variable as the findstring argument, Find uses its exact values in the current format’s display;
changing formats can change results. If you supply a constant, you must enclose it in quota-
tion marks. An optional fourth argument (1 or 2) specifies whether to handle text values as
single-byte or double-byte strings; see below. The function works casewise.

Find(Model, "a", 1, false)

Model ‘Where is a?

Acura Integra
Acura Legend V6
Audi 100

Audi 80

Audi 90

BMW 325i

BMWw 535i

Buick Century
Buick Electra V6

Dus

|mlololo|=|=|=|=|=

I o Coken UE

Above, we find the first occurrence of the letter “a” at or after the first character in each value
of Model in Car Data. (Model is an informative variable. To use it in a formula such as this,
you must first change its class to nominal.) We can search for the second “a” by specifying the
position of the first occurrence plus 1 as the starting point:

Find(Model, "a", Find(Model, "a", I, false)+1, false)

Model Where is 2nd a?
Acura Integra S
Acura Legend V& S
Audi 100 0
Andi 20 n

In practice, it may be faster (and easier) to save the results of one Find in a variable and use
that variable as the 7 argument:

Find(Model, "a", 1, false)
Find(Model, "a", "Where is a!"+1, false)

You may include an optional fourth argument for specifying whether to handle text values as
single-byte or double-byte strings. Find assumes a fourth argument 1 for single-byte strings
(English, German, French, Spanish, etc. all use single-byte characters); specify 2 to use Find
with strings containing double-byte characters, such as Japanese, Chinese, or Arabic charac-
ters. This example shows how to use Find with both single-byte (English) and double-byte

(Japanese) characters.
Find(Teaching, "c", |, false, I)
Find"#&XE","8" |, false, 2)
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Floor(?)

Teaching wHELE Finde | Find &
1 Control | &<(#lL

2 Control | &<kl

2| Instructions | HBABE {15
4| Instructions | SREABE {15
S

6

Lecture | #B 3 05
Lecture | #E3 05

oot [~ |~ |=|—=
=1 =1 N =1 =)

See Substring(?, 2, ?) [p. 422] and Len(?) [p. 383] for more Find examples.

Floor (var) rounds values of the variable you specify to the next lesser integer. Missing values
are propagated. The function works casewise.

Floor(A)
A Rounded 4 TruncatedA | Floor of & Ceilof A
-1.200 -1.000 -1.000 -2.000 -1.000
-3.915 -4.000 -3.000 -4.000 -3.000
. . . . .
051 0.000 0.000 0.000 1.000
1.238 1.000 1.000 1.000 2.000
4.800 5.000 4.000 4.000 5.000

The floor of any number is the next lesser integer, regardless of the size of its fractional part
and regardless of sign. Thus, the floor of —1.2 is —2 even though 0.2 is less than one-half and
even though the floor of +1.2 is 1. Remember, for negative numbers, “greater” and “lesser”
can seem backwards: —2 is less than —1. As do all computations, Floor works with actual
stored values rather than the way values are displayed. For example, the value 1.9 is displayed
in a format with no decimal places as 2, but its floor is 1.

Related functions are Round(?) [p. 416], Trunc(?) [p. 429], and Ceil(?) [p. 359]; a careful
comparison of Round, Trunc, Ceil, and Floor is made in the entry for Round.

GeometricMean(?, AllRows)

GeometricMean(var, AllRows) computes the geometric mean of the variable you specify; by
default, GeometricMean bases its calculations on AllRows of the variable, but you may
instead specify OnlyIncludedRows and OnlyExcludedRows as the second argument. The geo-
metric mean is undefined for variables containing negative or zero values. Missing values are
ignored. The function works columnwise and produces the same result for every row.

GeometricMean(A, AllRows)

A GeoMean of A[HarMean of &
1 1.237 1.940 1.829
2 2.687 1.940 1.829
3 2719 1.940 1.829
4 1.342 1.940 1.829
S 2.268 1.940 1.829

The geometric mean is a measure of position typically used with ratio data. It is defined as the
nth root of the cumulative product of values in a variable, where 7 is the number of nonmiss-
ing values in the variable (Count). In the example above, 1.940 is the fifth root of the cumula-
tive product. You can build your own formula for cumulative geometric means:



26 Formulas Functions

CumProduct(A)*(1/Count(A, AllRows))

The difference is that such a formula shows cumulative geometric means, whereas Geometric-

Mean shows a single, final answer in all rows of the new variable.

A similar measure of position is the HarmonicMean(?, AllRows) [p. 382], which is useful with

difference data.

GeometricSeries(1, 2)

GeometricSeries(4, b) generates a series with initial value # and each subsequent value at a
common ratio & to the previous value. Both arguments 2 and & must be constants; they are 1
and 2 by default. The function works columnwise; results differ from row to row.

GeometricSeries(1,2)

S12

. . . . . i—1
Row 7 of the geometric series with # and bis 26" .

To generate a series in which each value is the sum (rather than the product) of the previous

value and a given constant, use LinearSeries(1, 1) [p. 384].

Groups(?, .. .)

Groups(var, var2, ...) computes the groups or cells formed by combining several grouping
variables. Missing values propagate missing values. The function works casewise.

Groups(Gender, Employment)

Gender | Employment | SubGroups | MamedSubs
Type: | Category | Category Real Category
Source: | User En...| User Ente... | Dynamic ...| Dynamic For...
Class: | Nominal | Momninal Norninal Norninal
1 Male Ermployed 1 Male-Empl
2 Male | Unemployed 2 | Male-Unempl
3 Male Employed 1 Male-Empl
4 Fernale | Unerployed 4 | Femn-Unempl
S Female Employed 3 Fern-Empl
3 Ferale | Unemployed 4 | Fem-Unempl
7 Male Erployed 1 Male-Empl
g Male | Unemployed 2 | Male-Unempl
9 Female Employed 3 Fern-Empl

Groups shows how several grouping variables nest with each other. You might collapse several
rouping variables into one to simplify analyses, or you may use the new variable as a visual

aid.
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The example above shows how Gender and Employment might be nested together to form a
new grouping variable, SubGroups. The NamedSubs variable shows how you might use
named categories for these subgroups. (For illustration purposes, we worked with a copy of
the SubGroups variable, but you could change the SubGroups variable itself to have type cat-

egory.)

HarmonicMean(?, AllRows)

Hour()

Lag(?,])

HarmonicMean(var, AllRows) computes the harmonic mean of the variable you specify; by
default, HarmonicMean bases its calculations on AllRows of the variable, but you may instead
specify OnlylncludedRows and OnlyExcludedRows as the second argument. The harmonic
mean is undefined for variables containing negative or zero values. Missing values are ignored.
The function works columnwise and produces the same result for every row.

HarmonicMean(A, AllRows)

A GeoMean of &[HarMean of A
1 1.237 1.940 1.829
2 2.687 1.940 1.829
3 2719 1.940 1.829
4 1.342 1.940 1.829
S 2.268 1.940 1.829

The harmonic mean is a measure of position typically used with difference data. It is defined
as the count divided by the sum of reciprocals of the values.

GeometricMean(?, AllRows) [p. 380] is a similar measure of position typically used with ratio
data.

Hour(date) returns the hour number (0-23) of the date specified. The date argument may be
a variable or a constant. (Remember, all date/time values are an exact second of an exact day,
and unspecified times are assumed to be exactly midnight.) The function works casewise.

Hour("Some times")

Some times | Hour |Minute [ Second
01:03:59 &AM 1 3 59
02:05:00 AM 2 5 0
03:06:01 AM 3 & 1
04:07:02 AM 4 7 2
05:08:03 &AM S =] 3
06:09:04 &AM 6 9 4

Lag(var, n) lags the variable you specify by the number of cells 7 you specify. Leading values
are filled in with missings. Missing values within a variable are copied at the lag just as non-
missing values are. The function works columnwise; results differ from row to row.

Lag(A, 1)
Lag(A, 2)
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Len()

Lag(A, -2)
A Lag(A,1) | Lag(4,2) |Lag(h,-2)
2 . . g
4 2 . 16
g 4 2 32
16 8 4 64
32 16 g 128
64 32 16 256
128 64 32 512
256 128 64 1024
512 256 128 .
1024 512 256 L

Lagging moves a variable “down” the column one or more places. Above, Lag(A,1) effectively
copies the cells in A and then pastes them a notch lower in the new variable. Lag(A,2) moves

the values down two notches. The leading values (as many values as you specify in the second
argument) are filled with missings, and as many values are chopped off the bottom of the vari-
able. That is, a lagged variable will never be “longer” than the original. Lag(A, —2) moves the

variable two notches “up” the column.

Lagging is a useful step in many sorts of variable transformations, especially when working
with time series data. See also Difference(?, 1, 1) [p. 373], which subtracts from a variable its
lag at the number of places you specify (and repeats that operation as many times as you spec-

ify).

Len(zext) returns the length in characters of the zext you specify. The zext argument may be
either a variable or constant. If you supply a variable as the zexr argument, Len returns the
number of characters (letters, numbers, spaces, etc.) in the current format’s display of each
value; changing formats can change results. If you supply a constant, you must enclose it in
quotation marks. An optional second argument (1 or 2) specifies whether to handle text val-
ues as single-byte or double-byte strings; see below. The function works casewise.

Len(Model)

Model Length of Model
Acura Integra 13
Acura Legend V& 15
Audi 100 8
Audi 80 7
Audi 90 7
DM THOES o

Len “measures” the length of a variable’s values. Usually Len is used with string variables, but
other variable types also work. Above, we compute the length of each model name in the sam-
ple dataset, Car Data. (Model is an informative variable. To use it in a formula such as this,
you must first change its class to nominal.)

Len is most useful in combination with other text functions such as Find, Substring, Concat.
For example, we can combine Substring, Find, and Len to separate model names from the
Model variable:

Substring(Model, Find(Model, " ", 1, false)+1, Len(Model))
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Model Model name
Acura Integra Integra
Acura Legend V& Legend V&
Audi 100 100
Audi 80 80
Audi 90 90
DV THES zoes

This example finds the substring of Model starting right after the first space and including up
to as many characters as the total length of Model. (You must change the formula variable to

have type string.)

You may include an optional second argument for specifying whether to handle text values as
single-byte or double-byte strings. Len assumes a second argument 1 for single-byte strings
(English, German, French, Spanish, etc. all use single-byte characters); specify 2 to use Len
with strings containing double-byte characters, such as Japanese, Chinese, or Arabic charac-
ters. This example shows how to use Len with both single-byte (English) and double-byte

(Japanese) characters.
Len(Teaching, I)
Len("$# 5% ".1)
Len("®&#H KE "2)

Teaching 1byte TLen HHELE 1byte ¥len | 2byte ¥len
1 Control 7| &<l 10 5
2 Control Tl eLickl 10 S
2| Instructions 12 | RBABF (15 12 6
4| Instructions 12 | $RBABF (15 12 3
5 Lecture TI#HBIO0H 10 S
[ Lecture TI#HBIO0H 10 S

LinearSeries(1, 1)

LinearSeries(a, 6) creates a series with initial value # and each subsequent value 4 greater than
its predecessor. The function works columnwise; results differ from row to row.

LinearSeries(1, 2)

Linear-1,2

Row 7 of the linear series with zand bis a2+ 6(i—1) .

To generate a series in which each value is the product (rather than the sum) of the previous
value and a given constant, use GeometricSeries(1, 2) [p. 381].
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Ln(?)

Logl)

Ln(var) returns the base ¢ logarithm (“natural logarithm”) of the argument, where ¢ is a con-
stant whose value is approximately 2.718. Logarithms of negative numbers and zero are unde-
fined; these and missing values produce missing values. The function works casewise.

Ln(A)

A Ln(A)
1.000
2.718
7.389

20.086
54.598
1458413
403.429

Lol [ B D20 LN Bl ]

Logarithms are defined as the inverse of exponents—for instance, Ln(2.718)=1 means that

e = 2.718. Therefore, exponentiating the log of an argument returns the argument. Loga-
rithms are useful because they reduce multiplication, division, and exponentiation to simpler
operations, addition, subtraction, and multiplication:

In(xy) = Inx+ Iny
ln% = lnx—Iny

In(x") = nlnx

Thus, logging data can “simplify” or “straighten” the relationship of two variables in an analy-
sis. When scattergrams show curved or spreading relationships between variables, it is often
useful to try logging one or both variables. This is illustrated in the discussion of the ¢ func-
tion.

See e [p. 375] for the constant ¢, Log(?) [p. 385] for common (base 10) logarithms and
LogB(?, ?) [p. 386] for logarithms to other bases.

Log(var) returns the base 10 logarithm (“common logarithm”) of the constant or variable you
specify. Logs of negative numbers and zero are undefined; these and missing values produce
missing values. The function works casewise.

Log(A)

A Log(A)
-100
-10

L ]

0

10

100

N|—=|e|e|e|e

Properties of logarithms are discussed under Ln(?) [p. 385], which produces natural (base ¢)
logarithms. If you need logarithms to other bases, use LogB(?, ?) [p. 386].
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Log(, )

LogOdds()

LogB(var, b) returns the base & logarithm of the variable or constant you specify. Logs of neg-
ative numbers and zero are undefined; these and missing values produce missing values. The
function works casewise.

Log(A, 2)

A LogBase2 of &
125 -3.000
.250 -2.000
.500 -1.000

1.000 0.000
2.000 1.000
4.000 2.000
8.000 3.000
16.000 4.000
32.000 5.000
64.000 6.000

Properties of logarithms are discussed under Ln(?) [p. 385], which produce natural (base ¢)
logarithms. For common (base 10) logarithms, see Log(?) [p. 385].

LogOdds(var) computes the log odds transformation of the variable or constant you specify.
Missing values propagate missing values. The function works casewise.

LogOdds("Prop heads")

Heads in 5| Prop heads [Log(Odds ratio)
-.405
-1.386
-1.386
1.386
1.386
-1.386
-1.386
-.405
405

L ]

(L1 [0 (N1 B B FN N B B [N
= [ N [NY N3 0 ) [N [N KN

The log odds transformation is useful for stabilizing the variance of response data that are
expressed as a proportion of successes. The value of the transformed variable is defined on
each case as

lﬂl:lxl:l

where x is the value of the original variable on that case.

The example shows a log odds transformation for a variable recording proportions of successes
in a coin-toss experiment. The first variable counts the number of times 5 coin tosses pro-
duced heads. The second column converts this to proportions, where the numbers of heads
are divided by 5 tosses. The third column shows the log-odds transformation of those propor-
tion data. The first row, for instance, shows that the first trial had an outcome of 2 heads (or
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successes) from 5 tosses. The second row converts this to 0.4, meaning 40% of the trials were

heads (successes), by dividing 2 by 5. The third row is obtained by:

m%-ﬂ-—gzg = m% = In(0.666...) = —0.405...

The last case of the transformed variable is missing because division by zero is undefined.

MAD(?, AllRows)

MAD(var, AllRows) computes the median absolute deviation from the median of the variable
you specify; by default, MaD bases calculations on AllRows of the variable, but you may
instead specify OnlyIncludedRows or OnlyExcludedRows as the second argument. Missing
values are ignored. The function works columnwise and produces the same result for every
row.

MAD(A, AllRows)

A MedianOf4 MADofA

-4 -1.500 4.500

-5 -1.500 4.500
. -1.500 4.500
. -1.500 4.500
1 -1.500 4.500
S -1.500 4.500

The MAD is a measure of variability (or spread) analogous to the standard deviation. As stan-
dard deviation averages the variability of actual points from the mean, MaD takes the median
of differences between points and the median; and, as median is less vulnerable to extreme
data points than the mean, MAD is less vulnerable to outliers than standard deviation.

Related functions are Mean(?, AllRows) [p. 388], Median(?, AllRows) [p. 388], and Standard-
Deviation(?, AllRows) [p. 420].

Maximum(?, AllRows)

Maximum(var, AllRows) identifies the largest value in the variable you specify; by default,
Maximum is based on AllRows, but you may instead specify OnlylncludedRows or OnlyEx-
cludedRows as the second argument. Missing values are ignored. The function works column-
wise and produces the same result for every row.

Maximum(A, AllRows)

A MaxOf4
Minimurn: | -4 S
Maxirmum: | 5 S

1 -4 S

2 -3 5

3 . S

4 . S

S 1 S

3 S 5
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Maximum is also shown in the summary pane. The Maximum function can be useful in com-
bination with other functions and operators or when you need to have the value available as a
variable to some analysis.

Understand that “maximum” is the greatest value. Even negative values of great magnitude (for
example, —1,000) are smaller than positive values of small magnitude (for example, 0.001). If
you want to know the number of greatest magnitude, use absolute values, e.g., set B to Abs(A),
then do Maximum(B, AllRows).

Mean(?, AllRows)

Mean(var, AllRows) computes the mean of the variable you specify; by default, Mean is based
on AllRows, but you may instead specify OnlyIncludedRows or OnlyExcludedRows as the
second argument. Missing values are ignored. The function works columnwise and produces
the same result for every row.

Mean(A, AllRows)

A MeanOf4

Mean: | -.250 -.250
Std. Deviation: | 4.113 0.000

1 -4.000 -.250
2| -3.000 -.250
3 . -.250
4 . -.250
S 1.000 -.250
) 5.000 -.250

Mean is a measure of the central tendency of a variable and is defined as the sum of all non-
missing values divided by the number of nonmissing values, so Mean(A) is the same as
SumOfColumn(A)/Count(A). Mean is also shown in the summary pane for each variable; the
Mean function is mostly useful for computing other statistics or when you need to have the
mean available as a variable to some analysis.

Mean is a columnwise (vertical) function. If you want a casewise mean (the mean for each row
of several variables), use Average(?, ...) [p. 356] or AveragelgnoreMissing(?, ...) [p. 357].

Median(?, AllRows)

Median(var, AllRows) computes the columnwise median of the variable you specify; by
default, Median is based on AllRows, but you may instead specify OnlylncludedRows or
OnlyExcludedRows as the second argument. Missing values are ignored. The function works
columnwise and produces the same result for every row.

Median(A, AllRows)

A MedianOf A
-4.000 -1.000
-3.000 -1.000

. -1.000
. -1.000
1.000 -1.000
5.000 -1.000
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Median, like mean, is a measure of the central tendency of a variable. Median is defined as the
middle value of a variable if all the values are listed in order of size. (So, for a variable with 7
values, the median is the 4th largest value.) If a variable has an even number of values, the
median is the mean of the two middle values. (So, for a variable with 8 values, the median is

the sum of the 4th and 5th value, divided by two.)

To find other percentile values, see the discussion under Percentile(?, 2, ?) [p. 398].

Minimum(?, AllRows)

Minute(!)

Minimum(var, AllRows) identifies the least value in the variable you specify. By default, Min-
imum is based on AllRows, but you may instead specify OnlyIncludedRows or OnlyExclud-
edRows as the second argument. Missing values are ignored. The function works columnwise
and produces the same result for every row.

Minimum(A, AllRows)

A MinOf&
Minimum: | -4 -4
Maximum: | S -4

1] -4 -4

2 -3 -4

3 . -4

4 . -4

S 1 -4

6 S -4

Minimum is also shown in the summary pane. The Minimum function can be useful in com-
bination with other functions and operators or when you need to have the value available as a
variable to some analysis.

Understand that “minimum” is the smallest value. Even negative values of great magnitude
(for example, —1,000) are smaller than positive values of small magnitude (for example,
0.001). If you want to know the number of smallest magnitude, use absolute values, e.g., set B

to Abs(A) and then do Minimum(B, AllRows).

Minute(date) returns the minute number (0-59) of the date specified. The date argument may
be a variable or a constant. (Remember, all date/time values are an exact second of an exact
day, and unspecified times are assumed to be exactly midnight.) The function works casewise.

Minute("Some times")

Some times | Hour |Minute [ Second
01:03:59 &AM 1 3 52
02:05:00 AM 2 5 0
03:06:01 AM 3 & 1
04:07:02 AM 4 7 2
05:08:03 AM S g 3
06:09:04 AM 3 9 4
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Mod(, 7

Mod(var!, var2) computes varl modulo var2, which is the remainder after dividing var! by
var2 to an integer result. Both arguments may be constants or variables. Missing values in
either argument or division by zero propagates missing values. The function works casewise.

Mod(A, B)

A B |Div(A,B)| Mod(A,B) | Rem(A B)
-5 2 -2 -1 -1.0
=7 2 -3 -1 1.0

-12 7 -1 -5 2.0
-3 -2 1 -1 1.0

. 4 . . .
1] 3 0 0 0.0
1 [i] . . .
17 4 4 1 1.0

Ordinarily, division is computed to as many decimal places as is necessary for an exact answer,
within the limits of the variable’s precision. For instance, 5/3 is 1.6666... (an infinite series of
6s after the decimals). Mod(5,3) stops dividing when it reaches the decimal point and then
records the remainder, or the leftover part—this is the way children learn long division:

1r2
3)5
3

2

Children are taught to divide until the amount at the bottom is smaller than the divisor, and
then write that leftover part as “remainder 2.” This casual definition is sufficient for positive
numbers, but for negative numbers, a more precise definition is needed. Mod(varI, var2) is
formally defined as var/—(Trunc(vari/var2))*var2.

Remainder(?, ?) [p. 413] is the same as Mod for positive arguments, but for negative argu-
ments, Remainder and Mod are different. The formal definition of Remainder is
n—(Round(n/m))*m. See Trunc(?) [p. 429] and Round(?) [p. 416] for details; briefly, rounding
goes up or down to the nearest integer, whereas truncation deletes digits after the decimal.

Finally, see Div(?, ?) [p. 374] for the integer part of a quotient.

Mode(?, AllRows)

Mode(var, AllRows) identifies the value that occurs most often in the variable you specify; by
default, Mode is based on AllRows, but you may instead specify OnlylncludedRows or Only-
ExcludedRows as the second argument. Missing values are ignored. When no single mode
exists, missing values result. The function works columnwise and produces the same result for
every row.

Mode(A, AllRows)
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Month(?)

) Mode of &

B B LN L) Ll VR LV N el B
BR[NNI IR [N [N R[N

Mode can be used as a measure of central tendency for variables that can take a limited num-
ber of values, or where the values clump together.

Month(date) returns the month number (1-12) of the date specified. The date argument may
be a variable or a constant. (Remember, all date/time values are an exact second of an exact
day, and unspecified dates are assumed to be the current date.) The function works casewise.

Month("Other dates")

Other dates | Month
01.01.95
02.02.95
03.03.95
04.04.95
05.05.95
06.06.95

Lol DO B DOl LN B

If you want month names instead of numbers, change the variable to type category and edit
the category to have values January, February, etc.

MovingAverage(?, ?)

MovingAverage(var, n) computes a moving average for the variable you specify as the first
argument, averaging # neighboring rows at a time. A missing value on any row propagates
missing values on that row and the next #—1 rows. The function works columnwise; results
differ from row to row.

MovingAverage(A, 3)

A Smooth| Time
138 . 1
971 . 2
1.103 738 3
1.159 | 1.078 4
.801 | 1.021 S
1.439 | 1.133 &
77al 1 nn& 7

A moving average with a window of 3, for example, averages the first three values and records
that answer in the third case of the new variable. Then, it averages the second, third, and
fourth values and records that is the fourth case of the new variable. The third, fourth, and
fifth values are averaged for the fifth case, etc. For a window of width #, the first #—1 values of
the new variable are missing.
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Moving averages are often used with time series data. Usually measurements taken over time
will show, along with any long-term trends, some random short-term fluctuation. For
instance, toy sales data may have a long-term tendency to increase near holidays, but weekly
totals will tend to bob up and down a small amount. It can be helpful to smooth this “noise”
by using moving averages.

The data above seem to follow a periodic function; smoothing these data with MovingAver-
age(A,3) makes the trend more apparent. (In fact, these data are values along a sine wave with
random uniform noise added.)

Line Chart Line Chart
1.5 J - 15 - -
1 - 1 -
<
o
< O S 0
-5 - P 5]
-1 - -1 -
-1.5 T T -1.5 T T
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

For casewise (horizontal) averages, see Average(?, ...) [p. 356] and AveragelgnoreMissing(?,
...) [p. 357]. For a single average on an entire variable, use Mean(?, AllRows) [p. 388] or see
Mean in the summary pane. Other functions useful with time series data are Difference(?, 1,
1) [p. 373], Lag(2,1) [p. 382], and the date/time functions.

Norm(?, AllRows)

Norm(var, AllRows) computes the Euclidean norm of the variable you specify; by default,
Norm uses AllRows of the variable, but you may instead specify OnlylncludedRows or Only-
ExcludedRows as the second argument. Missing values are ignored. The function works col-
umnwise and produces the same result for every row.

Norm(A, AllRows)

A MNorm of A
-4 7141
-3 7141
. 7141
0 7141
1 7141
S 7141

Euclidean norm is a linear algebra function; the norm of a vector is its magnitude, or length.
It is computed by squaring all its values, adding them, and then taking the square root of that
sum. Norm is equivalent to Sqrt(SumOfSquares(var, AllRows)).

DotProduct(?, ?) [p. 374] is another linear algebra function.
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Now

Now returns the current date and time, at the time you click Compute in the Formula win-
dow. Now takes no arguments. The function works casewise.

Now

A Mow from history
Date/Time
Dynamic Formula
Continuous
Friday, 1 January 1904 00:00:00
.
Wednesday , 3 May 1995 15:21:33
Wednesday , 3 May 1995 15:21:33

‘Wednesday , 3 May 1995 15:21:33
Wadnacdan T Man 1945 1521 -2

As do all the functions, Now creates a variable with type Real. Be sure to change its type to
Date/Time and choose an appropriate format. Also be sure that your Date & Time control
panel is set correctly.

Now is only current at the exact second you click Compute. Even in a dynamic formula
involving other variables that may change, the value of Now does not update itself; however, if
you reopen its formula window (by selecting Static or Dynamic Formula from the source pop-
up menu in the attribute pane) and click Compute again, it is updated.

Shortcut You may enter 0 in a date/time data cell to get the current date at midnight.

NumberMissing(?, AllRows)

NumberMissing(var, AllRows) counts the number of cases in a variable that have missing val-
ues. By default, NumberMissing uses AllRows of the variable, but you may instead specify
OnlyIncludedRows or OnlyExcludedRows as the second argument. The function works col-
umnwise and produces the same result for every row.

NumberMissing(A, AllRows)

A |NumMiss|NumRows| CountOfA
Count: | 4 & & &
Missing Cells: | 2 0 0 0

1 -4 2 & 4

2 -5 2 & 4

ES . 2 [ 4

4 . 2 & 4

5 1 2 & 4

3 S 2 [ 4

NumberMissing shows the same result as Missing Cells in the summary pane for the variable.
Its complement is Count(?, AllRows) [p. 365], which counts the number of zonmissing values
and is also shown in the attribute pane. NumberMissing(var, AllRows) and Count(var,
AllRows) sum to NumRows, which counts all cases in the dataset, whether missing or non-
missing.
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NumberOfRows

NumberOfRows counts the number of rows in the dataset. NumberOfRows takes no argu-
ment. If you provide one by mistake, e.g., NumberOfRows(A), it is interpreted as multiplica-
tion. NumberOfRows produces the same result for every row.

NumberOfRows

A |NumMiss|NumRows| CountOf4

Count: | 4 & 6 &

Missing Cells: | 2 u] 0 u]
1 -4 2 & 4
2 -5 2 6 4
3 . 2 & 4
4 . 2 3 4
5 1 2 [ 4
6 S 2 & 4

Since all variables in a dataset must by definition have the same number of rows, “shorter”
variables are padded with missing values at the bottom. If analyses show missing values you
didn’t expect, check whether NumberOfRows is greater than the number of observations you
recorded for the variable you're studying.

Count(?, AllRows) [p. 365] shows the number of nonmissing values in a specific variable, and
NumberMissing(?, AllRows) [p. 393] shows the number of missing values. Count(var,
AllRows) and NumberMissing(var, AllRows) add to NumberOfRows.

OneGroupChiSquare(?, 2, ?)

OneGroupChiSquare(obsvar, expvar, n) computes a one group chi-square test comparing
observed counts in the obsvar against expected counts in the expvar. If you set 7 to 0, the for-
mula computes the chi-square statistic. If you set 7 to any nonzero number, the formula com-
putes the probability for the chi-square test. Missing values are ignored. The function works
columnwise and produces the same result for every row.

OneGroupChiSquare(Observed, Expected, 0)
OneGroupChiSquare(Observed, Expected, 7)

Gender |Observed| Expected| ChiSq P
Males 70 20 8.889 .003
Females 110 20 8.889 .003

Chi-square tests compare observed data with expected outcomes if the null hypothesis is true.
Above we compare the number of female and male graduates from nursing school. Our null
hypothesis is that an equal number of men and women graduate. Obviously more women
than men graduated in this case, but is the difference significant? The one group chi-square
test returns a chi-squared value of 8.889 and a probability of 0.003, so we can reject the null
hypothesis that this nursing school produces an even mix of graduates.

Suppose we suspect that the national mint has been producing “unfair” coins—coins that are
more likely to land heads than tails. To test this, we toss a coin ten times and record the num-
ber of times we get heads, and we repeat that experiment with one thousand coins. Since a

“fair” coin toss follows a binomial distribution, our null hypothesis is that the probability dis-
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tribution is binomial with count 10 and probability 0.5. (If you'd like to generate fake data to
try this problem yourself, use the Series command with RandomBinomial(10, 0.5) and 1000
rows (see RandomBinomial(?, ?) [p. 406]). Your numbers may differ from ours, but the test
outcome should be similar.)

#Heads

bl LB (0 Bl OV (e Dol B (A (o) (4]

The first thing we need to do is convert these data to frequency data. We open a new view and
create a Frequency Summary Table for #Heads, where we specify even intervals of width 1 and
initial value 0, and we choose to include highest values (we’ll see why in a moment):

Frequency Distribution

Number of intervals: [J Show normal comparison

Do you wish to enter your own interval information?

O no @yes width: l:] initial ualue:D
Intervals indicate: include: [ Highest value ¥

Tables show: [ Counts []Percents []Relative frequencies
Histograms show:

We get a table something like this, which we can Copy and Paste into a new dataset:

Frequency Distribution for #Heads Column 1 Column 2 Column 3
From(>)  To(s) Count Type: | String String String
0.000 1.000 8 Source: | User Ente.red User Entfred User En(gred
1.000 | 2.000 53 1 | Frequency ...
2.000 3.000 117 2| From () To () Count
3.000 | 4.000 | 212 3]0.000 1.000 8
4000 | 5000 | 218 ; ;-ggg §<ggg 53?
: . 11
5.000 6.000 211 6| 3.000 4.000 212
6.000 | 7.000 | 112 7| 4.000 5.000 218
7.000 | 8.000 59 2| 5.000 6.000 211
8.000 9.000 10 9] 6.000 7.000 112
9.000 | 10.000 0 10| 7.000 8.000 59
Total | 1000 11]8.000 9.000 10
12| 9.000 10.000 0
13 Total 1000

Next, we select and delete the first column, the first two rows, and the last row, and we change
the data types to real (or integer):
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#Heads | Counts
Type: | Real Real

Source: | User ... | User ...
1 1 8

2 2 53

3 3 117

4 4 212

S S 218

[ & 211

7 7 112

8 8 59

9 9 10

10 10 0

Next, we can use the binomial cumulative distribution function ProbBinomial (see ProbBino-
mial(?, ?, ?) [p. 401]) to generate the probabilities we should expect for each outcome if our

null hypothesis (that the data follow a binomial distribution with parameters 10 and 0.5) is
true. Remember, the cDF functions compute the proportion of data falling az or below the
value you specify. So, we generate ProbBinom with the formula ProbBinomial(#Heads, 10,

0.5).
ProbBinomial(#Heads, 10, 0.5)

Since our counts are not cumulative, we want the probabilities for exactly each number of
heads. To do this, we could use Difference(ProbBinom, 1, 1), but that would leave a missing
value in the first case. So would subtracting a lagged version of the variable from the variable.
Instead, we use SumlgnoreMissing(ProbBinom, —Lag(ProbBinom, 1)); see SumlgnoreMiss-
ing(?, ...) [p. 424]. Finally, we multiply these expected probabilities by sample size (1000) to

get expected counts:
SumlgnoreMissing(ProbBinom, —Lag(ProbBinom, 1))
DiffProb*1000

#Heads | Counts | ProbBinom | DiffProb | Expected | ChiSq P

1 8| 010742 010742 107 12547 | 184
2 53| 054688 043945 439 | 12547 ) 184
3 17| 171875 A17188 117.2) 12547 | 184
4 212 376953 205078 2051 ) 12547 | 184
S 218 | 623047 .246094 2461 | 12547 | 184
) 211 828125 205078 2051 ) 12547 | 184
¥ 112 ] 945312 A17188 117.2) 12547 | 184
8 59| .989258 043945 439 | 12547 ) 184
9 10| 999023 009766 9.8 12547 | 184
10 0] 1.000000 000977 1.0 12547 ) 184

Now we're ready to compare observed counts with the expected counts we've computed. We'll
use OneGroupChiSquare twice; once with the third argument set to 0 for the chi-square sta-
tistic, and again set to 1 for the test probability:

OneGroupChiSquare(Counts, Expected, 0)
OneGroupChiSquare(Counts, Expected, 1)
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#Heads | Counts | ProbBinom | DiffProb | Expected | ChiSq P

1 8] 010742 010742 107 12547 | 184
2 53| 054688 043945 439 | 12547 ) 184
3 117 171875 A17188 117.2] 12547 | .184
4 212 | 376953 205078 2051 ) 12547 | 184
S 218 | 623047 246094 2461 | 12547 | 184
) 211 828125 205078 205.1 ) 12547 | 184
¥ 112 ] 945312 A17188 117.2) 12547 | 184
8 59| 989258 .043945 439 | 12547 | 184
9 10| 999023 009766 98112547 | .184
10 0] 1.000000 000977 1.0 12547 ) 184

Since P is well above the most liberal criterion 0.05, we cannot reject the hypothesis that our
experiments follow a binomial distribution for count 10 and probability 0.5. The coins must

be fair.

Percentages(?, AllRows)

Percentages(var, AllRows) returns for each row that row’s percentage contribution to the sum
of the column specified. By default, percentages are computed on AllRows of the variable, but
you may instead specify OnlyIncludedRows or OnlyExcludedRows as the second argument.
Missing values are ignored. The function works columnwise; results differ from row to row.

Percentages(A, AllRows)

A percentage of A
Missing Cells: | O 1]
Sum: | 55.000 100.000

1 1.000 1.818

2 2.000 3.636

3 3.000 5.455

4 4.000 7.273

S 5.000 9.091

[ 6.000 10.909

7 7.000 12.727

8 £.000 14.545

9 9.000 16.364

10 10.000 18.182

For example, the Sum in the attribute pane for A shows that the Sum of A (the total if you add
all the values in the variable) is 55. The values of the “percentage of A” variable are equal to
the value of A for that row divided by 55 and multiplied by 100. Simply, 1 is 1.818 percent of
55, 2 is 3.636 percent of 55, etc.

Percentages are one way to standardize values for variables with different magnitude. Suppose,
for example, that you are comparing annual income, meal expenses, and clothing expenses
valued in German marks. However, since income likely falls in the tens of thousands and the
expenses might be closer to a few thousand, it would be misleading to use the variables
together in a regression or a factor analysis. The magnitude of the income values would over-
whelm the significance of other variables. Converting each variable to show values as percent-
ages of a whole makes the variables more comparable.

Do not confuse percentages with percentiles. Remember, Percentage translates each value into
a percentage of the sum. Percentile(?, ?, ?) [p. 398] gives the number below which a given per-
centage of the other values lie.
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Percentile(?, ?, ?)

Percentile(var, p, AllRows) computes the value at the pth percentile for the variable you spec-
ify. By default, the percentile is computed from AllRows of the variable, but you may instead
specify OnlyIncludedRows or OnlyExcludedRows as the third argument. The var and p argu-
ments may be variables or constants. Missing values are ignored. The function works column-
wise; results differ from row to row.

Percentile(Cholesterol, 50, AllRows)

Cholesterol| CholPercentile
197 191.000
181 191.000
190 191.000
131 191.000
179 1a1 Ann

It is difficult to give a strict definition of percentile that makes sense. For most purposes, a per-
centile answers the question, “What value is the cut-off point, where such-and-such percent-
age of the cases are equal to or smaller than that value?” So, the 10th percentile of a variable is
a number that 10 percent of the values are as small as or smaller than. A given percentile is not
necessarily a value in the variable. For instance, with an even number of cases, the 50th per-
centile (the median) is in between the middle two cases. Another exception is when many of
the values in a variable repeat themselves.

With the Lipid data above, Percentile(Cholesterol, 50, AllRows) fills a new column with the
value 191, which is the 50th percentile of the variable Cholesterol when using all rows of the
variable. Consider a percentiles plot of the same variable. This graph plots each value in the
variable against its percentile, and draws lines at the 10th, 25th, 50th, 75th, and 90th percen-
tiles. The 50th percentile line intersects the curve of data points at the y-value 191, just as the
Percentile function reports.

Percentiles Plot
|

300

260 S

220 - -

180 -~ -

Cholesterol
|
T

140 =

100

0 20 40 60 80 100
Percentile

To find several percentiles of a variable in one step, create a variable with the percentile values
you want, then supply that variable as the p argument. For example, we could produce every
20th percentile of Cholesterol this way:

Percentile(Cholesterol, %levels, AllRows)
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Cholesterol | Blevels | %Riles
197 20| 160.000
181 40| 180.000
190 60| 197.000
131 80| 217.000
172 . .
233 . .
1Qd L] -

You can convert raw scores to their percentile equivalents by writing your own formula com-
bining the Rank and Count functions. For example, with Car Data, you may convert Weight
values to percentiles:

(Rank(Weight, AllRows)—0.5)/Count(Weight, AllRows)*|00

Weight | Wt Rile
2700 32.328
3265 69.397
2935 52155
2670 28.448

2790 40.086
2005 4é aaz

To convert raw scores to their nearest nth percentile, first convert scores to their percentile
equivalents, as above, then use the Round function to find the nearest-nth “clump” of percen-
tiles. For example, suppose you want to see the percentile equivalents of Weight values in 10-
percentile increments:

(Round("Wt %ile"/10))*10

Weight | Wt %ile [Wtnrst 10%ile
2700 32.328 30
3265 69.397 70
2935 52.155 S0
2670 28.448 30
27an 4n Naa 4an

You could combine those formulas into a single step if you preferred. Be aware that clumping
percentiles into intervals as in this examples does produce “100th percentile” values.

Do not confuse percentiles with percentages. Remember, the Percentile function gives the
number below which a given percentage of the values lie. Percentages(?, AllRows) [p. 397]
translates each value into a percentage of the variable’s sum. To find the #th largest raw value
of a variable, see VariableElement.

Permutations(?, ?)

Permutations(, ) computes the casewise permutations of 7 objects taken 7 at a time, where 7
and 7 can be variables or constants. Cases with » greater than 7, negative values, or missing val-
ues are missing. The function works casewise.

Permutations(n, r)

n r  [Perm(n,r)

-2 1 .
3 . .
4 3 24
S 1 S
S 2 20
S 3 60
S 3 .
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Permutations(, r) computes the number of 7-object ordered combinations taken from 7
objects (such as the number of four letter words taken from a set of nine letters), or

7!
(m=7)

For example, Permutations(5,3) on the second to last row is 60, which means that you could
assign a president, vice-president, and secretary combination of three people in 60 different
ways if you had a group of five people to choose from:

St - 50 - 120 _

(5-3) 2! 2

For unordered combinations, see the Combinations(?, ?) [p. 361] function. Both Permutations
and Combinations rely on the use of factorials (such as 7!), which can also be computed indi-
vidually with the Factorial(?) [p. 377] function; factorials are defined in that entry.

Pi returns the constant Pi, which is approximately 3.14159... Unless you use Pi in combina-
tion with other functions, it returns a variable in which every case is TU The function works
casewise.

pi
A + pi
A Fi A+Pi

1 -4.000 314159 - 85841
2 -2.000 214159 14159
3 D 314159 .
4 0.000 314159 3.14159
s 1.000 214159 4.14159
& 5.000 314159 8.14159

You can use Pi in combination with other functions, as seen in examples for the trigonometric
functions Sin, Cos, Tan, etc., which take arguments in radians (which are multiples and frac-
tions of TI).

For the trig function examples, we generated Radians values with the formula
(RowNumber — 1)/6*pi
and we entered by hand the values of the informative string variable “Radians TU” These famil-

iar values are provided to make the examples easier to read. The other variables are created by
formulas using Radians as argument:

Sin(Radians)
Cos(Radians)
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Radians 7 | Radians Sine Cosine
1] zero 0.000 | 0.000 1.000
2| nie 524 .500 866
3| n/3 1.047 866 .500
4| niz 1.571 1.000 0.000
S|2n/3 2.094 866 -.500
6| 5n/6 2618 .500 -.866
i & 3.142| 0.000 -1.000
g|nie 3665 -.500 -.866
9] 4n/3 4.189 -.866 -.500
10) 3n/2 4712 | -1.000 0.000
11| 50/3 5.236 -.866 .S00
12 1171/8 5.760 -.500 866
13|20 6.283| 0.000 1.000

These data points are classic examples in the study of the unit circle. Pi is formally defined as
the ratio of a circle’s circumference to its diameter and is commonly seen in the formulas:

Td
2
114

Circumference
Area

ProbBinomial(?, ?, ?)

ProbBinomial(x, 7, p) computes the cumulative distribution function at x of a binomial ran-
dom variable with count 7 and probability p. The arguments may be variables or constants;
results are computed casewise. All three arguments should be positive; illegal or missing values
in any argument propagate missing values.

ProbBinomial(A, 5, 0.5)

A CDF Binom 5, .5
031
188
500
812
963

1.000

A (HIN =[O

A cumulative distribution function computes the probability that a random value from that
distribution falls below a value x you provide. In other words, a cDF returns the proportion of
the distribution that is less than x. cpF functions are useful for creating your own statistical
tests, e.g., type | errors.

In the example above, we computed the cDF at A for a binomial random variable with 5
events and probability 0.5 of each event being a success. We can interpret the results for the
second-to-last case, for example, as follows: 96.9% of the values of a normal binomial variable
fall at or below the value 4. Another way of stating this is that we have a 0.969 probability of
having four or fewer successes in five trials of an experiment having equal chances for success
and failure, such as five fair coin tosses.

To generate random Binomial data, see RandomBinomial(?, ?) [p. 406]. Also note that the
Bernoulli distribution is a special case of the binomial distribution in which »=1.
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ProbChiSquare(?, I)

ProbChiSquare(x, 4f") computes the cumulative distribution function at x of a chi-square
random variable with df degrees of freedom. The arguments may be variables or constants;
results are computed casewise. Both arguments should be greater than zero, and df must be
integer; negative, zero, fractional, and missing values propagate missing values.

ProbChiSquare(A, 1)
ReturnChiSquare("CDF chi-sq", I)

A | CDF chi-sq| InvCDF chi-sq

-4 . .

-3 . .
. . .
0 . .
1 683 1
S 975 S

A cumulative distribution function computes the probability that a random value from that
distribution falls at or below a value x you provide. In other words, a cDF returns the propor-
tion of the distribution that is less than or equal to x. cDF functions are useful for creating
your own statistical tests, e.g., type I errors.

In the example above, we computed the cDF at A for a chi-square random variable with 1
degree of freedom; then we computed the inverse cpF by applying ReturnChiSquare to the
cDF chi-sq values. Applying the inverse cDF to the cDF returned the original values from A.
We can interpret the results for the last case, for example, as follows: 97.5% of the values of a
chi-square random variable fall at or below the value 5. Another way of stating this is that we
have a 0.975 probability of choosing at random a value that is 5 or less from a chi-square ran-
dom variable with 1 degree of freedom.

For the inverse cDF, see ReturnChiSquare(?, ?) [p. 414]. To generate random chi-square data,
see RandomChiSquare(1) [p. 407].

ProbF(?, I, I)

ProbF(x, df; df2) computes the cumulative distribution function at x of an F random variable
with df degrees of freedom in the numerator and df2 degrees of freedom in the denominator.
The arguments may be variables or constants, and degrees of freedom must be positive inte-
gers; results are computed casewise. All three arguments should be greater than zero; negative,
zero, and missing values propagate missing values.

ProbF(A, 1, 1)
ReturnF("CDF F", 1, I)

A CDF F InvCDF F
-4.0 o .
399 .900 399
6478 975 6478
4052.0 990 4052.0
161.4 950 161.4
16211.0 995 16211.0
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A cumulative distribution function computes the probability that a random value from that
distribution falls at or below a value x you provide. In other words, a cDF returns the propor-
tion of the distribution that is less than or equal to x. cpF functions are useful for creating
your own statistical tests, e.g., to compute p for an F test.

In the example above, we computed the cpF at A for an F random variable with 1 and 1
degrees of freedom; then we computed the inverse cpr by applying ReturnF to the cpk F val-
ues. Applying the inverse cDF to the cDF returned the original values from A. We can interpret
the results for the last case, for example, as follows: 99.5% of the values of an F random vari-
able fall at or below the value 16211. Another way of stating this is that we have a 0.995 prob-
ability of choosing at random a value that is less than or equal to 16211 from an F random
variable with 1 and 1 degrees of freedom.

For the inverse cDF, see ReturnF (2, 1, 1) [p. 415]. To generate random F data, see Ran-
domF(1, 1) [p. 407].

ProbNormal(?, 0, 1)

ProbNormal(x, mean, stdv) computes the cumulative distribution function at x of a normal
random variable with mean mean and standard deviation szdv. The arguments may be vari-

ables or constants; results are computed casewise. The mean and stdv are 0 and 1 by default,
but you may supply other values. Missing values in any argument propagate missing values.

ProbNormal(A, 0, I)
ReturnNormal("CDF Normal", 0, 1)

A CDF Mormal InvCDF Normal
-4 .00003 -3.99958
-3 .00135 -2.99997
. . .
0 50000 .00007
1 84134 999582
S 1.00000 4.99923

A cumulative distribution function computes the probability that a random value from that
distribution falls at or below a value x you provide. In other words, a cDF returns the propor-
tion of the distribution that is less than or equal to x. cpF functions are useful for creating
your own statistical tests, e.g., type I errors.

In the example above, we computed the cDF at A for a normal random variable with mean 0
and standard deviation 1; then we computed the inverse cDE by applying ReturnNormal to
the cor Normal values. Applying the inverse cDF to the cDF returned (almost) the original
values from A. We can interpret the results for the second-to-last case, for example, as follows:
84% of the values of a normal random variable fall at or below the value 1; since 1 is the stan-
dard deviation, this is not surprising. Another way of stating this is that we have a 0.84 prob-
ability of choosing at random a value that is less than or equal to 1 from a Normal random
variable with mean 0 and standard deviation 1.

For the inverse cDF, see ReturnNormal(?, 0, 1) [p. 415]. To generate random Normal data, see
RandomNormal(0, 1) [p. 410].
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Probt(?, 1)

Probt(x, df) computes the cumulative distribution function at x of a # random variable with
df degrees of freedom. The arguments may be variables or constants, and df must be a positive
integer; results are computed casewise. Missing values in either argument propagate missing
values.

Probt(A, I)
ReturnT("CDF t", 1)

A CDF t InvCDF t
-4 078 -4
-3 102 -3

. . .

0 .500 0

1 730 1

S 937 S [

A cumulative distribution function computes the probability that a random value from that
distribution falls at or below a value x you provide. In other words, a cDF returns the propor-
tion of the distribution that is less than or equal to x. cpF functions are useful for creating
your own statistical tests, e.g., to compute p for a #-test.

In the example above, we computed the cDF at A for a # random variable with 1 degree of free-
dom; then we computed the inverse cDr by applying ReturnT to the cDF  values. Applying
the inverse cDF to the cDF returned the original values from A. We can interpret the results for
the last case, for example, as follows: 93.7% of the values of a # random variable fall at or
below the value 5. Another way of stating this is that we have a 0.937 probability of choosing
at random a value that is less than or equal to 5 from a r random variable with 1 degree of free-
dom.

For the inverse cDF, see ReturnT(?, 1) [p. 416]. To generate random 7 data, see RandomT (1)
[p. 411].

QuadraticSeries(1, 0, 1)

. . . 2 .
QuadraticSeries(4, b, ¢) generates a series of values equal to @ + bx + ¢cx” , where x is one less
than the row number. By default, the arguments are 1, 0, 1, but you may specify any con-
stants. The function works columnwise; results differ from row to row.

QuadraticSeries(l, 0, 1)

Quad-1,0,1

O [0 00 | =[O A | [N =
n
[
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In each row 7 of the new variable, the quantity « + bx + cx” is evaluated for x = i—1 and
that result is the value for the row. For example, the fourth row above is computed by
1+0%x3+1x 32 = 1+0+9 = 10 because we used the default values z=1, =0, c=1.

See also CubicSeries(1, 0, 0, 1) [p. 367] and QuarticSeries(1, 0, 0, 0, 1) [p. 405].

QuarticSeries(l, 0, 0,0, 1)

. . . 2 3 4
QuarticSeries(a, b, ¢, d, ¢) generates a series of values equal to 4+ bx+ cx™ +dx” +ex
where x is one less than the row number. By default, the arguments are 1, 0, 0, 0, 1, but you
may specify any constants. The function works columnwise; results differ from row to row.

QuarticSeries(1, 0,0, 0, I)

Quar-1,0,0,0,1
1
2
17
82
257
626
1297
2402
4097
6562

O [0 |00 [~ |0 [ | [N =

In each row 7 of the new variable, the quantity 4+ bx + o+ d + ex4 is evaluated for

x = i—1 and that result is the value for the row. For example, the fourth row above is com-
puted by 1+0x3+0x3%+0x3°+1x3% = 140+0+0+81 = 82, because
we used the default values 2=1, =0, ¢=0, d=0, ¢=1.

See also CubicSeries(1, 0, 0, 1) [p. 367] and QuadraticSeries(1, 0, 1) [p. 404].

RadToDeg(?)

RadToDeg(var) converts angle measurements in the variable (or constant) you specify from
radians to degrees. Missing values propagate missing values. The function works casewise.

RadToDeg(Radians)
Radians 7| Degrees | Radians
zero 0| 0.000
/e 20 524
ni3 60| 1.047
iz 90| 1571
2mi3 120 2.094
51/6 150 | 2618
7 180 | 3.142
Ffi 210 | 3665
4n/3 240 | 4.189
3n/2 270 4712
51/3 300 | 5.236
1171/6 330 | 5.760
2n 360 | 6.283

StatView’s trigonometric functions work with measurements in radians, so RadToDeg conver-
sions are necessary if you prefer to interpret results or do further analyses using measurements
in degrees. A circle has 360 degrees or 2Ttradians (2 X 3.1416... = 6.2832... radians).



406

26 Formulas Functions

Above, Radians Ttis an informative variable entered by hand to make the Radians values easier
to read.

To convert degrees to radians, use DegToRad(?) [p. 372]. StatView’s trigonometric functions
are Sin(?) [p. 419], Cos(?) [p. 363], Tan(?) [p. 426], Sec(?) [p. 418], Csc(?) [p. 366], Cot(?)
[p. 364], ArcSin(?) [p. 353], ArcCos(?) [p. 349], ArcTan(?) [p. 355], ArcSec(?) [p. 352],
ArcCsc(?) [p. 351], and ArcCot(?) [p. 350].

RandomBeta(1, 1)

RandomBeta(p, g) generates a series of random numbers from the beta distribution with
parameters p and ¢. You may supply a random number generator seed, if you wish, as an
optional third argument. All arguments must be constants; p and g are 1 by default. The func-
tion works columnwise; results differ from row to row.

RandomBeta(3, 3)

RandBeta-3,3

136
401
228
645
6386
428
352
383
423
214

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.

RandomBinomial(?, ?)

RandomBinomial(, p) generates a series of random numbers from the binomial distribution
with count 7 and probability p. You may supply a random number generator seed, if you
wish, as an optional third argument. All arguments must be constants. The function works
columnwise; results differ from row to row.

RandomBinomial(5, 0.5)

RandBinom

Lavl B Ll ) L) VR D) Rl DOl B

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.
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The Bernoulli distribution is a special case of the binomial distribution. For random Bernoulli
numbers, set z to 1.

RandomChiSquare(1)

RandomChiSquare(df’) generates a series of random numbers from the chi-square distribu-
tion with df degrees of freedom. You may supply a random number generator seed, if you
wish, as an optional second argument. Both arguments must be constant, and 4f must be a
positive integer; the default is 1 degree of freedom. The function works columnwise; results
differ from row to row.

RandomChiSquare(1)

RandChi-1

2373
508
.028
494
337
951

1.593

1.354
315
302

RandomExponential(1)

Randomf ([,

RandomExponential(#) generates a series of random numbers from the exponential distribu-
tion with rate z. You may supply a random number generator seed, if you wish, as an optional
second argument. Both arguments must be constant, and 4f'should be a positive integer; the
default is 1 degree of freedom. The function works columnwise; results differ from row to
row.

RandomExponential(2)

RandExp-2
490
066
671

1.035
044
.293
066

1.148
340
496

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.

)

RandomF(df, df2) generates a series of random numbers from the F distribution with df
degrees of freedom in the numerator and df2 degrees of freedom in the denominator. You may
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supply a random number generator seed, if you wish, as an optional third argument. All argu-
ments must be constants, and degrees of freedom must be positive integers. The function
works columnwise.

RandomF(2, 3)

RandF-2,3
588
1.736
102.028
1.763
1.385
225
677
1.438
21.405
477

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.

RandomGamma( 1)

RandomGamma(#) generates a series of random numbers from the gamma distribution of
order . You may supply a random number generator seed, if you wish, as an optional second
argument. All arguments must be constants; the default is order 1. The function works col-
umnwise; results differ from row to row.

RandomGamma(5)

RandGamn-5

2926
£62
2.858
2.861
1.239
579
865
1.160
2.400
2.081

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.

RandomGaussian(0, 1)

RandomGaussian(mean, stdv) generates a series of random numbers from the normal, or
Gaussian, distribution with mean mean and standard deviation szl. You may supply a ran-
dom number generator seed, if you wish, as an optional third argument. All arguments must
be constants; the defaults are mean 0 and standard deviation 1. The function works column-
wise; results differ from row to row. RandomGaussian is synonymous with RandomNormal.

RandomGaussian(0, 1)
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RandMNorm-0,1
-.280
270
-.151
1.256
1.467
2291
-.148
773
2.061
-1.092

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.

RandomInclusion(?)

RandomlInclusion(p) does random sampling from your dataset by including any row at prob-
ability p. You may supply a random number generator seed, if you wish, as an optional second
argument. All arguments must be constants. The function works columnwise; results differ
from row to row.

This function is not used with Formula, Random Numbers, Series, or Create Criteria. Rather,
it works in the background when you select Random... from the Criteria pop-up menu. The
only time you ever see this function is when you Edit Criteria and select a criterion previously
created with Random... Such a criterion might be called “60% Rows Included.” So, if you
need to do something fancy with a random selection:

* Select Random... from the Criteria pop-up menu in the dataset window

* Specify a probability (type 50 for 50%; 0.5 means 0.5%) and click OK

* From the Manage menu, select Edit/Apply Criteria

* Select the “p% Rows Included” criterion and click Edit

* Edit the complex criteria definition

When rows are excluded, their row numbers are dimmed. Also, the Criteria pop-menu reflects

the inclusion in effect. Any analyses in the View window are then confined to those cases that
remain, which is noted in its title.

Descriptive Statistics
Inclusion criteria: 5S0% Rows Included from Lipid Data

Cholesterol —
Mean 199718 | | Lipid
Std. Dev. 31.981 Compact I Expand l Criteria:
Std. Error S5.121 =
Count 9 —— Sh;ame Gem:lerl Ag292 Wexg‘hZ:S Choles
. . Suds male

Minimurn 115.000 2| T wilson female | 22 115
Maximum | 267.000 | D.5. Quintent male | 22 190
*# Missing 0 | R. Beal female | 22 115

G| R. James male 25 160

£ L= ST P LY PN bede] 1€n

You may also do inclusion and exclusion by manually double-clicking row numbers, or by
selecting rows and using the Include and Exclude commands from the Manage menu; see
“Include and exclude rows,” p. 108 of Using StatView.
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If, instead, you want to include at random some percentage p of all rows, create a random
variable with the distribution of your choice, sort on that variable, and include the first p per-
cent of the rows. (If you need to avoid losing the original sort order of the dataset, see
RowNumber [p. 417].)

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random inclusion in which all students should get the
same results, direct your students to specify a certain number as the seed.

RandomNormal(0, 1)

RandomNormal(mean, stdv) generates a series of random numbers from the normal, or Gaus-
sian, distribution with mean mean and standard deviation szdv. You may supply a random
number generator seed, if you wish, as an optional third argument. All arguments must be
constants; the defaults are mean 0 and standard deviation 1. The function works columnwise;
results differ from row to row. RandomNormal is synonymous with RandomGaussian.

RandomNormal(0, 1)

RandMNorm-0,1
-.280
270
-.151
1.256
1.467
2.291
-.148
773
2.061
-1.092

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.

RandomPoisson(1)

RandomPoisson(mean) generates a series of random numbers from the Poisson distribution
with mean mean. You may supply a random number generator seed, if you wish, as an
optional second argument. Both arguments must be constants, and mean must be positive.
Poisson random variables take integer values. The function works columnwise; results differ
from row to row.

RandomPoisson(l)

RandPois-1

S

B LS L L) [ B () LN )
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Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.

RandomT(1)

RandomT(df') generates a series of random numbers from Student’s # distribution with 4f’
degrees of freedom. You may supply a random number generator seed, if you wish, as an
optional second argument. Both arguments must be constants, and 4f must be a positive inte-
ger; the default for 4fis 1. The function works columnwise; results differ from row to row.

RandomT(3)

RandT-3

-.456
1.712
1.732
-.323
-1.001
197
-2.527
-3.305
242
-719

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.

RandomUniform(0, 1)

RandomUniform(n, m) generates a series of uniform random numbers from the interval
between 7 and 2, inclusive. You may supply a random number generator seed, if you wish, as
an optional third argument. All arguments must be constants; the default interval is (0,1).
The function works columnwise; results differ from row to row.

RandomUniform(0, 2)

RandUnif-0,2
324
963

1.463
744
1.704
1.128
1.582
412
941
698

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.
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RandomUniforminteger(?, ?)

RandomUniformlInteger(n, ) generates a series of uniform random integers from the inter-
val between 7 and m, inclusive. You may supply a random number generator seed, if you wish,
as an optional third argument. All arguments must be constants, and 7 and 7 should be inte-
gers. The function works columnwise; results differ from row to row.

RandomUniformInteger(40, 50)

RanUnifInt-40,50

Specifying a random number generator seed ensures consistent results. For example, if you
want to assign homework involving random numbers in which all students should get the
same results, direct your students to specify a certain number as the seed.

RandomUniformInteger can produce repeated values. If you need a variable of unique ran-
dom integers, create a variable of consecutive integers with RowNumber or LinearSeries, cre-
ate a random variable with RandomNormal, then sort on the random variable. (Be sure to use
a static formula so that the random normal values don’t update.) You now have a column of
unique integers in random order.

RowNumber
RandomNormal(0, 1)

Ranints| RanNorm

4 -.243
) -.100
10 346
S 782
9 788
1 897
2 904
7
3
8

1.068
1.643
1.686

O [0 |00 (= |0 [ | [N =

If you want to avoid sorting your dataset, create these variables in a separate dataset, Copy the
random integers, and Paste them into your main dataset. Remember, StatView lets you have
multiple datasets open at once. Or, see RowNumber [p. 417] for “unsorting” tips.

Range(?, AllRows)

Range(var, AllRows) computes the range of the variable you specify; by default, Range is
based on AllRows, but you may instead specify OnlyIncluded Rows or OnlyExcludedRows as
the second argument. Missing values are ignored. The function works columnwise and pro-
duces the same result for every row.

Range(A, AllRows)
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A Range of &

Minirurm: | -4 2.0
Maxirumn: | S 2.0

Range:| 9 0.0

1 -4 9.0
2 -3 9.0
3 . 9.0
4 0 9.0
S 1 9.0
) S 9.0

Range is the most basic measure of spread, equal to the difference between the maximum and
minimum values. All three statistics are also shown in the summary pane for the variable.

See also Minimum (2, AllRows) [p. 389] and Maximum(?, AllRows) [p. 387] and “Descriptive
Statistics,” p. 1.

Rank(?, AlRows)

Rank(var, AllRows) computes the rank of each value in the variable you specify; by default,
Rank uses AllRows of the variable, but you may instead specify OnlyIncludedRows or Only-
ExcludedRows as the second argument. Tied values have tied ranks (as shown below). Missing
values propagate missing values; they cannot be ranked. The function works columnwise;
results differ from row to row.

Rank(A, AllRows)

A RankOfé&
-4.000 2.0
-5.000 1.0

. .
. .
1.000 30
5.000 4.5
5.000 4.5
6.000 6.0

Ranks are the row numbers that would result if you sorted all the values in ascending order
(least to greatest). Tied ranks are averaged, as seen above.

Many nonparametric statistics, such as sign test and Spearman rank order correlation, are
based on rank values rather than raw values. It is often helpful to examine ranks alongside raw
values when interpreting the results of such statistics; see “Nonparametrics,” p. 119.

Remainder(?, ?)

Remainder(varl, var2) gives the remainder result of var divided by var2. Both arguments may
be constants or variables. Missing values in either argument or division by zero propagates
missing values. The function works casewise.

Remainder(A, B)
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A B |Div(A,B)| Mod(A B) | Rem(A,B)
-5 2 -2 -1 -1.0
-7 2 -3 -1 1.0

-12 7 -1 -5 2.0
3| -2 1 -1 1.0

. 4 L[] L] .
i 3 0 i 0.0
1 0 . . .
17 4 4 1 1.0

Ordinarily, division is computed to as many decimal places as necessary for an exact answer,
within the limits of the variable’s precision. For instance, 5/3 is 1.6666... (an infinite series of
6s after the decimals). Remainder(5,3) stops dividing when the quotient reaches the decimal
point and then records the remainder, or the leftover part—this is the way children learn long
division:

r2

(SY)

Children are taught to divide until the amount at the bottom is smaller than the divisor, and
then write that leftover part as “remainder 2.” This casual definition is sufficient for positive
numbers, but for negative numbers, a more precise definition is needed. Formally, Remain-
der(varl, var2) is defined as varl—(Round(varl/var2))*var2.

The Mod(2, ?) [p. 390] function is the same as Remainder for positive arguments, but for neg-
ative arguments, Remainder and Mod are different. The formal definition of Mod(varl, var2)
is varl—(Trunc(varl/var2))*var2. See Trunc(?) [p. 429] and Round(?) [p. 416] for details;
briefly, rounding goes up or down to the nearest integer, whereas truncation deletes digits

after the decimal. Finally, see Div(?, ?) [p. 374] for the integer part of a quotient.

ReturnChiSquare(?, ?)

ReturnChiSquare(alpha, df’) computes the inverse cumulative distribution function at proba-
bility alpha of a chi-square random variable with df degrees of freedom. The arguments may
be variables or constants; results are computed casewise. The values for alpha should be
between 0 and 1, and df'should be positive integers; for illegal values or missing values in

either argument, missing values are propagated.
ProbChiSquare(A, 1)
ReturnChiSquare("CDF chi-sq", I)

A |CDF chi-sq| InvCDF chi-sq
-4 . .
-3 . .
. . .
0 . .
1 683 1
S 975 S

An inverse cDF gives the critical value at or below which the proportion afpha of the distribu-
tion lies. In other words, it returns the value x at which we have an alpha probability of choos-
ing at random from the distribution a value less than or equal to x.
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For the cpF, see ProbChiSquare(?, 1) [p. 402]. To generate random chi-square data, see Ran-
domChiSquare(1) [p. 407].

Returnf(%, 1, I)

ReturnF(alpha, df; df2) computes the inverse cumulative distribution function at probability
alpha of an F random variable with df degrees of freedom in the numerator and 42 degrees of
freedom in the denominator. The arguments may be variables or constants; results are com-

puted casewise. The values for alpha should be between 0 and 1, and dfand 4f2 should be

positive integers; for illegal values or missing values in any argument, missing values are prop-

agated.
ProbF(A, I, 1)
ReturnF("CDF F", I, I)
A COFF_| InvCDFF
40 . .
333 900 399
478|975 6473
40520] 990 4052.0
161.4] 950 1614
16211.0]  995] 162110

An inverse cDF gives the critical value at or below which the proportion alpha of the distribu-
tion lies. In other words, it returns the value x at which we have an alpha probability of choos-
ing at random from the distribution a value less than or equal to x.

For the cpF, see ProbF(?, 1, 1) [p. 402]. To generate random F data, see RandomF(1, 1)

[p. 407].

ReturnNormal(?, 0, 1)

ReturnNormal(alpha, mean, stdv) computes the inverse cumulative distribution function at
probability alpha of a normal random variable with mean mean and standard deviation sz
The arguments may be variables or constants; results are computed casewise. The values for
alpha should be between 0 and 1; mean is 0 and stdv is 1 by default, but you may specify other
values. Missing values in any argument propagate missing values.

ProbNormal(A, 0, I)
ReturnNormal("CDF Normal", 0, 1)

A CDF Mormal InvCDF Normal
-4 .00003 -3.99958
-3 00135 -2.99997
. . .
0 50000 .00007
1 84134 999582
S 1.00000 4.99923

An inverse cDF gives the critical value at or below which the proportion alpha of the distribu-
tion lies. In other words, it returns the value x at which we have an alpha probability of choos-
ing at random from the distribution a value less than or equal to x.
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ReturnT(?, )

Round(?)

Suppose you want to know if a variable A is normally distributed. You may build a normality
test using the ReturnNormal function. First, generate an “ideal” normal variable that has the
same mean and standard deviation as your variable:

ReturnNormal(Rank(A, AllRows)/Count(A, AllRows), Mean(A, AllRows),
StandardDeviation(A, AllRows))

Next, combine A and the new variable in a compact variable with two levels. You might name
these “actual” and “ideal.” Finally, do a Kolmogorov-Smirnov test on the compact variable (K-
S is found in the analysis browser under Nonparametrics). If p is significant, you may con-
clude that the variables are from different distributions—in other words, that A is not nor-
mally distributed. The QC Analyses/K-S normality test template performs this test.

For the cpF, see ProbNormal(?, 0, 1) [p. 403]. To generate random normal data, see Random-
Normal(0, 1) [p. 410].

ReturnT (alpha, df’) computes the inverse cumulative distribution function at probability
alpha of a t random variable with 4f degrees of freedom. The arguments may be variables or
constants; results are computed casewise. The values for afpha should be between 0 and 1, and
df'should be a positive integer. Illegal or missing values in either argument propagate missing

values.
Probt(A, I)
ReturnT("CDF t", 1)
& | COFt | InvCDF t
2| __ors 3
=1 T =
L [ ] L ]
o] soo 0
i 750 i
5| 97 s

An inverse CDF gives the critical value at or below which the proportion alpha of the distribu-
tion lies. In other words, it returns the value x at which we have an alpha probability of choos-
ing at random from the distribution a value less than or equal to x.

For the cpF, see Probt(?, 1) [p. 404]. To generate random ¢ data, see RandomT(1) [p. 411].

Round(var) rounds each value of the variable or constant you specify to the nearest integer.
Numbers with fractional parts greater than 0.5 are rounded up or down to the nearest ever
integer. Numbers with fractional parts exactly equal to 0.5 are rounded up or down to the
nearest evern integer. Missing values are propagated. The function works casewise.

Round(A)
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A Rounded A Truncatedd | Floor of & Ceil of A
-1.200 -1.000 -1.000 -2.000 -1.000
-3.915 -4.000 -3.000 -4.000 -3.000
. . . . .
.051 0.000 0.000 0.000 1.000
1.238 1.000 1.000 1.000 2.000
4.2800 5.000 4.000 4.000 S5.000

Rounding removes decimal portions of numbers by increasing to the next greater whole num-
ber whenever the fraction is greater than or equal to one-half, and by decreasing to the next
smaller whole number whenever the fraction is less than one-half. As do all computations,
Round computes from the actual stored values of numbers rather than the displayed values.
For example, the value 3.495 displays with one decimal place as 3.5, but it rounds to 3, not 4.

This example shows how numbers exactly halfway between integers are rounded either up or
down to the nearest even integer.

Round(A)

A Round(A)
-4.5 -4
-3.5 -4
-25 -2
-1.5 -2
-5 0
S 0
1.5 2
25 2
35 4
4.5 4

Negative numbers round the same as positive numbers—for example, 3.4 rounds to 3, and
—3.4 rounds to -3 (not —4). Remember, for negative numbers “greater” and “lesser” can seem

backwards: —3.4 is greater than —3.6, and -3 is greater than —4.
Related functions are Trunc(?) [p. 429], Floor(?) [p. 380], and Ceil(?) [p. 359]. Whereas the

behavior of Round differs according to the size of the fractional part, Trunc, Floor, and Ceil

all ignore the size of the fractional part. Trunc truncates all decimal portions—it chops off the
digits after the decimal, regardless of the size of that fractional value. (Thus, truncation varies
by sign: it rounds negative numbers to the next greater integer and positive numbers to the
next Jesser integer.) Floor converts all values to the next lesser integer regardless of sign and the
size of the fractional part. Ceil (short for ceiling) converts all values to the next greater integer
regardless of sign and the size of the fractional part. (Thus, the floor of —1.2 is the next /esser
integer, —2; the ceiling of —1.2 is the next greater integer, —1. The floor of +1.2 is 1; the ceiling,
2.)

RowNumber

RowNumber shows the number of each row. RowNumber takes no arguments. If you provide
one by mistake, e.g., RowNumber(A), it is interpreted as multiplication. The function works
columnwise; results differ from row to row.

RowNumber

A — RowNumber
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Sec(?)

A #* | A minus ®#
-5
=
.
.
4
-1

Lol DU B D) L B
Lol (O B (20 LN

RowNumber merely fills a new variable with the same information seen in the first column of
the dataset window. RowNumber is usually used in combination with other functions, as in A
minus #, which subtracts the value of # (the current row number) from each case of A.

One common use for RowNumber is in “unsorting” a dataset. The Sort command in the
Manage menu lets you sort rows of a dataset according to one or more key variables. If you
might want to return to the original dataset order, before sorting you should create an index
variable containing the current RowNumber values. (Do this with a static formula or else
change the variable to user entered so that when you sort, the RowNumber values are not
updated.) Sort the dataset. When you are ready to return to the original order, Sort on the
index variable you created.

Sec(var) returns the secant of a variable or constant. The angle measurements in var are
assumed to be in radians. Missing values propagate missing values. The function works case-

wise.
Sec(Radians)

Radians 7| Radians | Secant

zero 0.000 1.000
/e 524 1.155
ni3 1.047 2.000
T2 1.571 .
27/3 2.094 -2.000
Sn/é 2618 -1.155
i 3.142 -1.000
6 3.665 -1.155
41 /3 4.189 -2.000
In/2 4.712 .
51/3 5.236 2.000
1171/6 5.760 1.155
2n 6.283 1.000

The secant of an angle in a right triangle is the ratio of the length of the hypotenuse to the
length of the leg adjacent to the angle. Recall that the cosine of an angle in a right triangle is
the ratio of the length of the leg adjacent to the angle to the length of the hypotenuse. There-
fore, the secant is the reciprocal of the cosine:

1
secx = ——
cosx

As the angle (Radians) approaches TV2 and 3TV2 (and so on), cosine approaches zero, and thus
secant approaches plus or minus infinity. Secants are undefined at these points, so Sec pro-
duces missing values. (On some platforms, differences in the numerics environments may
produce extreme values rather than missing values.)
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Second(?)

Sin()

Sinh(?)

If you have angles measured in degrees, you can convert them to radians with DegToRad(?)
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may
specify the value Ttwith Pi [p. 400].

Second(date) returns the second number (0-59) of the date specified. The date argument may
be a variable or a constant. (Remember, all date/time values are an exact second of an exact
day, and unspecified times are assumed to be exactly midnight.) The function works casewise.

Second("Some times")

Sorne times | Hour |Minute [ Second
01:03:59 &AM 1 3 52
02:05:00 AM 2 S 0
03:06:01 AM 3 & 1
04:07:02 &AM 4 7 2
05:08:03 &AM S =] 3
06:09:04 AM [ 9 4

Sin(var) returns the sine of a variable or constant. The angle measurements in var are assumed
to be in radians. Missing values propagate missing values. The function works casewise.

Sin(Radians)

Radians 77| Radians [ Sine
zZero 0.000 | 0.000
/e 524 .500
i3 1.047 866
ni2 1.571 | 1.000
21/3 2.094 866
S/ 2618 .500
) 3.142| 0.000
nie 3665 | -.500
41/3 4189 | -866
In/2 4712 | -1.000
Sn/3 5.236 | -.866
1171/6 5.760 | -.500
27 6.283 | 0.000

Sines, cosines, and tangents relate angles to the coordinates of points in planes. The sine of an
angle in a right triangle is the ratio of the length of the leg opposite the angle to the length of
the hypotenuse.

If you have angles measured in degrees, you can convert them to radians with DegToRad(?)
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may
specify the value Ttwith Pi [p. 400].

Sinh(var) returns the hyperbolic sine of a variable or constant. Missing values propagate miss-
ing values. The function works casewise.

Sinh(x)
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X Sinh
-5 | -74.203
-4 | -27.290
-3 | -10.018
-2 | -3627
-1 -1.175
0 0.000
1 1175
2 3.627
3| 10.018
4| 27.2%0
S| 74.203

The hyperbolic functions (sinh, cosh, and tanh, sometimes pronounced “sinch, cosh, and
tanch”) are analogous to the trigonometric functions sine, cosine, and tangent. They are spe-
cial combinations of the exponential functions ¢* and ¢ and bear a relationship to the unit
hyperbola that is analogous to the trig functions’ relationship to the unit circle.

The hyperbolic sine is defined by

&=
sinhx = ———
2

and like sine, sinh(x) has value 0 at x=0. Sinh is defined for all real numbers and ranges from
plus to minus infinity.

Sqrt(?)

Sqrt(var) produces the positive square root of a variable or constant. Missing values propagate
missing values. The function works casewise.

Sqrt(Abs(A))
Sqrt(B)
A B Sqrt|al) Sqrt(B)

1 -4 5 2.000 2.236
2 -3 -1 1.732 .
3 . 4 . 2.000
4 0 . 0.000 o
5 1 0 1.000 0.000
6 5 4 2.236 2.000

Square roots of negative numbers are undefined for real numbers, so StatView returns missing
values for negative arguments. If you are studying magnitude of a variable without regard to
its sign, it may be appropriate to use absolute values, as shown above, to prevent missing val-
ues from negative arguments.

Square root 2produc:es by definition positive square roots. That is, 64 is equal to not only 8
but also =87, but Sqrt(64) is only 8.

StandardDeviation(?, AllRows)

StandardDeviation(var, AllRows) computes the standard deviation of the variable you specify;
by default, StandardDeviation is based on AllRows of the variable, but you may instead spec-
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ify OnlyIncludedRows or OnlyExcludedRows as the second argument. Missing values are
ignored. The function works columnwise and produces the same result for every row.

StandardDeviation(A, AllRows)

A sigma
Mean: | -.750| 4.646
Std. Deviation: | 4.646| 0.000

1| -4 4.646
2] -5 4.646
3 . 4.646
4 . 4.646
5 [1.000 4.646
& |5.000 4.646

Standard deviation is a measure of variability; unlike variance, it is expressed in the same unit
of measurement as the original variable. Standard deviation is formally defined as the square
root of variance. Normally distributed data have 95% of the observations falling within 1.96
standard deviations to either side of the mean. Standard deviation is also shown in the sum-
mary pane for each variable.

StatView uses 7#—1 in the denominator, which is preferred for sample standard deviation. For
population standard deviation, # is often preferred. If you want 7 instead of #-1, you can
compute your own standard deviation:

Sqrt((SumOfSquares(A, AllRows)— Count(A, AllIRows)*Mean(A, AllRows)*2)
/Count(A, AllIRows))

Variance(?, AllRows) [p. 430] function also uses n—1; however, in the Descriptive Statistics
analysis (see “Descriptive Statistics,” p. 1), you may compute Variance with either 7 or n—1, so
you could use a formula to take the square root of that result. Still another option would be to
use a formula to multiply Variance by its usual denominator of #-1, divide by the one you

want, 7, and then take the square root of that:

Sqrt(Variance(A, AllRows)*(Count(A, AllRows)—1)/Count(A, AllRows))

StandardError(?, AllRows)

StandardError(var, AllRows) computes the standard error of the mean of the variable you
specify; by default, StandardError is based on AllRows of the variable, but you may instead
specify OnlylncludedRows or OnlyExcludedRows as the second argument. Missing values are
ignored. The function works columnwise and produces the same result for every row.

StandardError(A, AllIRows)

A StdErr of A

Std. Deviation: | 4.646 | 0.000
Std. Error:| 2.323 | 0.000

1] -4.000 2323
2] -5.000 2323
3 . 2323
4 . 2323
S| 1.000 2323
6] S5.000 2323

The standard error of the mean is a measure of the variability of the mean. Sometimes called
SEM, it is computed from the standard deviation (above, 4.646) divided by the square root of
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the count (2); the result, 2.323, is also shown in the summary pane for the variable. The sem
shows how much variability you should expect among sample means if you take multiple sam-
ples from the same population.

Related functions are Mean(?, AllRows) [p. 388], StandardDeviation(?, AllRows) [p. 420],
and Count(?, AllRows) [p. 365].

StandardScores(?, AllRows)

StandardScores(var, AllRows) standardizes each case of the variable you specify; by default,
StandardScores is based on AllRows of the variable, but you may instead specify OnlyInclud-
edRows or OnlyExcludedRows as the second argument. Missing values propagate missing val-
ues. The function works columnwise; results differ from row to row.

StandardScores(A, AllRows)

A Z scores
-4.000 -.700
-5.000 -915

. .
. .
1.000 377
5.000 1.238

Standard scores, sometimes called standardized values or z-scores, are obtained by dividing the
difference between each value and the mean by the standard deviation. Standardizing a vari-
able gives it mean 0 and standard deviation 1 and makes it easier to compare variables of dis-
similar magnitude.

You could also standardize data by building a formula with Mean(?, AllRows) [p. 388] and
StandardDeviation(?, AllRows) [p. 420] functions:

(A — Mean(A, AllRows))/StandardDeviation(A, AllRows)

Substring(?, 2, ?)

Substring(zext, n, m) reads the text you specify and returns the m-character substring starting
at the nth character. If the zext is fewer than 7+m—1 characters long, it returns fewer than m
characters. The source fext may be either a variable or a constant, and 7 and 7 must be posi-
tive integers. If you supply a variable as the zext argument, Substring uses its exact values in the
current format’s display; changing formats can change results. If you supply a constant, you
must enclose it in quotation marks. If 7 is negative or greater than the length of zexz, missing
values result. An optional fourth argument (1 or 2) specifies whether to handle text values as
single-byte or double-byte strings; see below. The function works casewise.

Substring(Model, 3, 6)

Model Sub 3,6
Acura Integra ura In
Acura Legend V6 urale
Audi 100 di 100
Audi 80 di 80
Audi 90 di 90
BMW 3251 W 325i




26 Formulas Functions 423

Sum(, ...)

Substring is used to extract part of a text value. Usually, the zexr argument is a string variable,
although the function also works with other variable types.

Above, we use substring to extract six characters from the middle of each Model value in Car
Data, starting from the third character and moving six to the right. Each letter, number,
space, and symbol in a string counts as a character. The fourth and fifth rows have values
fewer than six characters long, since the Model values were fewer than eight characters long.
(Change Model from class informative to nominal so you can use it in a formula, and change
the formula variable to have type string.)

Substring is usually used in combination with other text functions such as Len and Find. For
example, we can use Find to locate the position of the first space in Model names, then read
the next 99 characters after that space, thus extracting all characters after the first word. (The
“1, false” arguments to Find specify that the search should start on the first character of each
Model value, and that case-sensitivity should be “off.”) This gives us model names without
makes. (We've scrolled down to find some multi-word models.)

Substring(Model, Find(Model, " ", 1, false)+1, 99)
Model Model only
20 | Chevrolet Caprice V8 Caprice ¥8
21 | Chevrolet Cavalier Cavalier
22 | Chevrolet Corvette Y3 Corvette ¥8
23 | Chevrolet Lumina Lumnina
24 | Chevrolet Lumina APY V6 | Lumina APY V&
25 | Chrysler Imperial V& Imperial Y6
26 | Chrysler Le Baron Coupe | Le Baron Coupe

Specifying 99 as the number of characters to read is a brute-force way to read to the end of the
string. No values are actually that long—99 is just an arbitrarily large number.

You may include an optional fourth argument for specifying whether to handle text values as
single-byte or double-byte strings. Substring assumes a fourth argument 1 for single-byte
strings (English, German, French, Spanish, etc. all use single-byte characters); specify 2 to use
Substring with strings containing double-byte characters, such as Japanese, Chinese, or Arabic
characters. See Find(?, 2, ?, false) [p. 379] and Len(?) [p. 383] for examples handling double-
and single-byte characters.

Sum(var, var2, ...) does casewise addition of the variables or constants you specify. Summing
arguments is a shorthand equivalent to linking arguments with plus (+) signs. Missing values
propagate missing values.

Sum(A, B)
Sum(A, B, 7)
A+B
A+B+7
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A B | Sum(A,B) [Sum(aB,7)| A+B | a+B+7
-4 S 1 8 1 8
-3 -2 -5 2 -5 2

. 4 . . . .
0 . . . . .
1 0 1 8 1 8
S 4 9 16 9 16

For casewise addition in which missing values are ignored, use SumIgnoreMissing(?, ...)

[p. 424]. For columnwise (vertical) addition, see Sum(?, ...) [p. 423]; Sum in the data
attribute pane summary statistics; CumSum(?) [p. 368], which computes cumulative sums of
the rows of a variable; and SumOfColumn(?, AllRows) [p. 424], which fills a new variable

with a single sum.

SumlignoreMissing(?, .. .)

SumlgnoreMissing(var, var2, ...) does casewise addition of the variables or constants you
specify. Missing values are ignored.

Sum(A, B)
SumlgnoreMissing(A, B)

A B Sum(A,B)  |SumignoreMiss

-4 S 1 1

A -4 -4
. 4 . 4
. . . .
1 0 1 1
S 4 9 9

SumlgnoreMissing is the same as Sum except that missing values are ignored unless every vari-
able is missing for a case, as seen in the fourth case above. For Sum, a missing value in any
variable produces a missing value in the new variable, as seen in the third and fourth cases
above.

For columnwise addition, see Sum(?, ...) [p. 423]; Sum in the data attribute pane summary
statistics; CumSum(?) [p. 368], which computes a cumulative sum for each row; or SumOf-
Column(?, AllRows) [p. 424], which fills a new variable with a single sum.

SumOfColumn(?, AllRows)

SumOfColumn(var, AllRows) adds the values of the variable you specify to produce a single
sum in a new variable. (This sum is also shown in the summary pane for the variable.) By
default, AllRows are used in the calculations, but you may instead specify OnlylncludedRows
or OnlyExcludedRows as the second argument. Missing values are ignored. The function
works columnwise; results differ from row to row.

SumOfColumn(A, OnlyIncludedRows)
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A SumnOfCol of A|CumSumn of A

1 -1 8 -1
2 -2 8 -3
3 . 8 .
4 3 8 0
S 2 8 2
& 3 g S
7 4 8 9
8 S =] 14
9 -6 8 g
7 8 15

The row number for row 10 is dimmed, meaning it has been excluded. Since =1 + -2 + 3 + 2
+3+4+5+—61is 8, the new variable is 8.

Compare this result with that of the CumSum function. First, CumSum shows the “sum in
progress” on each row, whereas SumOfColumn shows only a single answer. Second, CumSum
always uses AllRows, so the 7 on the last row is included for a final sum of 15.

For casewise addition, use ?+? [p. 333], Sum(?, ...) [p. 423], or SumlgnoreMissing(?, ...)
[p. 424]. Sum adds values for each row on all the variables you specify. SumlIgnoreMissing is
the same except that missing values are ignored.

SumOfSquares(?, AllRows)

SumOfSquares(var, AllRows) adds the squares of the nonmissing values of the variable you
specify in the first argument; by defauls, it uses AllRows of the variable, but you may instead
specify OnlylncludedRows or OnlyExcludedRows as the second argument. Missing values are
ignored. The function works columnwise and produces the same result for every row.

SumOfSquare(A, AllRows)

A S5q
TS LRSS 4 U
Sum:| -3 402

Sum of Squares: | 67 26934
1 -4 67
2 -5 67
3 . &7
4 . &7
S 1 67
& S 67

Sum of squares is also shown in the summary pane. The computation for A is

(—4)*+ (=5)° +1%2+5% = 16+25+1+25 = 67

Sum of squares is used in computation of many statistics (and other functions, such as Vari-
ance(?, AllRows) [p. 430] and StandardDeviation(?, AllRows) [p. 420]), and you may find
occasion to use it in formulas to compute special statistics not provided by StatView’s analyses.

For cumulative sums of squares, use the CumSumSquares(?) [p. 368] function. For a horizon-
tal sum of squares, use a formula such as A*2 + BA2 + ..., or Sum(A”2,BA2,...).
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Tan())

Tanh(?)

Tan(var) returns the tangent of a variable or constant. The angle measurements in var are
assumed to be in radians. Missing values propagate missing values. The function works case-

wise.
Tan(Radians)

Radians 7| Radians | Tangent
zero 0.000| 0.000
ni6 524 577
/3 1.047 1.732
/2 1.571 .
2n/3 2.094 | -1.732
ST/6 2618 -577
1'1 3.142| 0.000
nie 3665 577
4n/3 4189 | 1.732
In/2 4712 .
ST/3 5.236 | -1.732
1171/6 5760 | -577
27 6.283 | 0.000

Sines, cosines, and tangents are used to relate angles to the coordinates of points in planes.
The tangent of an angle in a right triangle is the ratio of the length of the leg opposite the
angle to the length of the leg adjacent to the angle.

Tangents approach plus or minus infinity asymptotically as their arguments approach 102,
3102, etc. Tangents are undefined at these values, so Tan produces missing values. (On some
platforms, differences in the numerics environments may produce extreme values rather than
missing values.)

If you have angles measured in degrees, you can convert them to radians with DegToRad(?)
[p. 372]. Radians, in turn, can be converted to degrees with RadToDeg(?) [p. 405]. You may
specify the value Ttwith Pi [p. 400].

Tanh(var) returns the hyperbolic tangent of a variable or constant. Missing values propagate
missing values. The function works casewise.

Tanh(x)

X Tanh

-5| -1.000

-4 -.9939

-3 -.995

-2 -.964

-1 -762
0| 0.000
1 762
2 964
3 995
4 999
S 1.000

The hyperbolic trigonometric functions (sinh, cosh, and tanh, often pronounced “sinch, cosh,
and tanch”) are analogous to the trigonometric functions sine, cosine, and tangent. They are
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Time(

777)

ITIRTIRY

. X —X . . .
constructed from the functions ¢ and ¢ ~ and bear a relationship to the unit hyperbola that
is analogous to trigonometric functions’ relationship to the unit circle.

The hyperbolic tangent is defined by

sinhx
tanhx = —=
coshx

and like tangent, tanh(x) has value 0 at x=0. Tanh is defined for all real numbers and ranges
from -1 to 1.

Time (hour, minute, second) returns the time specified on the current date. You must change
the formula variable to type date/time and choose an appropriate format. The function works
casewise.

Time(Hr, Min, Sec)

Hr | Min | Sec Nice times

01:03:59 AM
02:05:00 AM
03:06:01 &M
04:07:02 AM
05:08:03 AM
06:09:04 &M

a

BN = O D

Lol [ ) B D20 DN B
AVoll Loch B Lol () (0]

The example above shows how to use Time to combine hour, minute, and second values
stored in separate columns. Data imported from other programs may have date/time values
separated into several numeric-type columns, and Time puts those columns together into
date/time values. (Don't forget to change the type of the new variable to date/time and to
choose a format you like.)

Other programs store time values as text strings. You can use Substring(?, ?, ?) [p. 422] and
Time(?, 2, ?) [p. 427] to convert these to times:

Time(Substring(Text, I, 2), Substring(Text, 3, 2), Substring(Text, 5, 2))

Text Times
010359 | 01:03:59
020500 | 02:05:00
030601 03:06:01
040702 | 04:07:02
050803 | 05:08:03
060904 | 06:09:04

You may also build times with formulas such as this one:

Time(RowNumber, RowNumber+3, RowNumber-2)
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Some times

01:03:59 &M
02:05:00 &AM
03:06:01 AM
04:07:02 &AM
05:08:03 &M
06:09:04 AM
07:10:05 AM
08:11:06 &AM
09:12:07 AM
10:13:08 AM

O 0|00 [ = O [ | O | =

This example shows how invalid times are reinterpreted. Consider the first case, where
RowNumber-2 would have been —1. This is reinterpreted as:
hour=1, minute=4, second=—1

hour=1, minute=3, second=59

This sort of carrying also happens when hours are greater than 23 or minutes or seconds are
greater than 59.

TnmmedMean(?, 2, AllRows)

TrimmedMean(var, p, AllRows) computes the trimmed mean of var using the percentage p
you specify. The value for p must be less than 50 and greater than or equal to zero. By default,
TrimmedMean is based on AllRows, but you may instead specify OnlyIncludedRows or
OnlyExcludedRows as the third argument. Missing values are ignored. The function works
columnwise and produces the same result for every row.

TrimmedMean(A, 10, AllIRows)

A Trim10% Mean of A
-4 -.200
-3 -.200
. -.200
0 -.200
1 -.200
S -.200

Trimmed mean is a measure of central tendency similar to the mean, except that trimmed
mean is based on only the “inner” portion of the data after trimming the top and bottom p
percent of values. In a variable with 100 values, a 10% trimmed mean discards the ten small-
est and the ten largest values, and then computes the average (sum divided by 80) of the val-
ues remaining. When p=0, the trimmed mean is equal to the mean. As p approaches 50, the
trimmed mean approaches the median.

Trimmed means offer an advantage over the mean for variables with extreme values on either
end. For example, the mean salary of all people living in a neighborhood may be drastically
influenced up or down by a few extremely wealthy residents or a few homeless residents with
negligible income, but the trimmed mean gives a realistic sense of the average income among
the most typical residents.

See also the Mean(?, AllRows) [p. 388], Median(?, AllRows) [p. 388], and Mode(?, AllRows)
[p. 390], and “Descriptive Statistics,” p. 1.
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Trunc(?)

Trunc(var) truncates the fractional portion from the values of the variable you specify. Missing
values are propagated. The function works casewise.

Trunc(A)
A Rounded 4 TruncatedA | Floor of & Ceilof A
-1.200 -1.000 -1.000 -2.000 -1.000
-3.915 -4.000 -3.000 -4.000 -3.000
. . . . .
051 0.000 0.000 0.000 1.000
1.238 1.000 1.000 1.000 2.000
4.800 5.000 4.000 4.000 5.000

Truncation removes all digits after the decimal point. Thus, the behavior of truncation varies
by sign: it effectively rounds negative numbers to the next greater integer and positive num-
bers to the next /esser integer. As do all computations, Trunc works with actual stored values
rather than the way values are displayed. For example, the value 1.9 is displayed in a format
with no decimal places as 2, but it truncates to 1.

Related functions are Round(?) [p. 416], Floor(?) [p. 380], and Ceil(?) [p. 359]; a careful
comparison of Round, Floor, Ceil, and Trunc is made in the entry for Round.

VariableElement(?, ?)

VariableElement(var, n) returns the current character representation of the nth row’s value for
the var you specify. The first argument must be a variable, and the second argument 7 must be
a valid row number (or a variable containing such numbers). The function works casewise.

VariableElement(Weight, 5)

Weight | Fifth weight
1 2700 2790
2| 3265 2790
3| 2935 2790
4| 2670 2790
S 2790 2790
3 2895 2790
el TEAN ~an

Above, we find the value in the fifth row of the Weight variable in Car Data.

Suppose you wanted to know the sum of the 5th largest and 5th smallest values of the variable
Weight in Car Data. Sort the variable (use Sort from the Manage menu) in increasing order,
then sum those elements. If you know the variable has, say, 100 nonmissing (Weight does
not!), you could do:

VariableElement(Weight, 5) + VariableElement(Weight, 96)

If you don’t know the number of nonmissing values, you can use Count:

VariableElement(Weight, 5) + VariableElement(Weight, Count(Weight, AllRows)—4)



430

26 Formulas Functions

Weight Answer
1695 6100
1845 6100
1300 6100
2075 6100
2170 6100
210 Z4nn

VariableElement is handy for simulating spreadsheet functionality. You might use it to supply
an argument to a function when you expect to change that value frequently, since it is easier to
edit data values than formulas.

Variance(?, AllRows)

Weekday(?)

Variance(var, AllRows) computes the variance of the variable you specify; by default, Variance
is based on AllRows of the variable, but you may instead specify OnlylncludedRows or Only-
ExcludedRows as the second argument. Missing values are ignored. The function works col-
umnwise and produces the same result for every row.

Variance(A, AllRows)

A YarOfa

Std. Error:| 2.323 | 0.000
Variance: | 21.583| 0.000

1]-4.000 21.583
2|-5.000 21.583
3 . 21.583
4 . 21.583
S| 1.000 21.583
6] S.000 21.583

Variance is a measure of variability about the mean. Variance is expressed in a square of the
units of the variable; for instance, if you are measuring length in meters, variance is a quantity
of area in square meters. Consequently, variance can be difficult to interpret, and standard
deviation (the square root of variance) is often preferred; see StandardDeviation(?, AllRows)

[p. 420].

StatView uses 7—1 in the denominator for the Variance function’s computations; if you prefer
n, you can build your own formula:

Variance(A, AllRows)*(Count(A, AllIRows) — I)/Count(A, AllRows)

Or, use the Descriptive Statistics analysis (see “Descriptive Statistics,” p. 1, which allows you
to choose 7 or #n—1. For sample variance, #—1 is generally preferred; for population variance, 7
is usually preferred.

Weekday(date) returns an index indicating the day of the week (1=Sunday, 2=Monday; etc.) of
the date specified. The date argument may be a variable or constant. (Remember, all date/time
values are an exact second of an exact day, and unspecified dates are assumed to be the current
date.) The DayOfWeek function is synonymous. The function works casewise.

Weekday("Other dates")
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Other dates | Weekday

01.01.95
02.02.95
03.03.95
04.04.95
05.05.95

O | O | =

If you want day names, change the variable to category, and edit the category to have levels
Sunday, Monday, Tuesday, ..., Saturday.

‘Weekday

Sunday
Thursday
Friday
Tuesday
Friday

Tummda

WeekOfYear(?)

WeekOfYear(date) returns the week number of the year (1-54) of the date specified. The date
argument may be a variable or constant. (Remember, all date/time values are an exact second
of an exact day, and unspecified dates are assumed to be the current date.) The function works
casewise.

WeekOfYear("Other dates")

Other dates | Week
01.01.95 1
02.02.95 S
03.03.95 9
04.04.95 14
05.05.95 18
06.06.95 23

Year(?)

Year(date) returns the year number (1904-2040) of the date specified. The date argument may
be a variable or constant. (Remember, all date/time values are an exact second of an exact day,
and unspecified dates are assumed to be the current date.) The function works casewise.

Year("Other dates")

Other dates Year
01.01.95 | 1995
02.02.95 | 1995
03.03.95 | 1995
04.04.95 | 1995
05.05.95 | 1995
06.06.95 | 1995
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Algonthms

General

Sum of squares calculations
Several statistics require calculation of the sum of squared deviations (sum of squares):
5 (X=5)°

StatView uses an algorithm that provides more accurate results for the sum of squared devia-
tions than the Monroe Calculator variance formula:

si¢_ (30"

StatView uses the following algorithm for the sum of squared deviations:
T (X=k)* = n(k—5)*
where # is the first non-missing, non-excluded value for the variable, and x is the calculated
variable mean.
In addition, several statistics require that the sum of deviation cross products be calculated:
Y (X=x)=(Y-y)
StatView uses the following algorithm for the sum of deviation cross products:

Y (X=a)(Y=b)—n(a—x)(b-))

where (a,6) is the first non-missing, non-excluded X, Y pair, X is the X variable mean, and j

is the Y variable mean.

Matrix inversions

Several statistics require matrix inversions. StatView uses the Sweep Operator procedure to
invert matrices.
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Descriptive Statistics

Continuous variables
n = number of non-missing, non-excluded values
Count =7

Mean, referred to below as x or j

X‘ = z—X
n
Variance

n—1
Standard Deviation
N

Standard Error of the Mean

_ S

Wn

Coefficient of Variation = s/x

=

Minimum = smallest value among X
Maximum = largest values among X
Range = Maximum — Minimum

Sum = ZX

Sum of squares = ZXZ

number missing = count of the missing values

Geometric Mean = %/ |—|X

Harmonic Mean

-1
10

On 0O

Kurtosis = (m,/ mi) -3
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Skewness = m3/(m2%) , where

y = 208’
_ S (X-x%)’

mS - 2
_y(x-o)°

Vﬂ4— .

Mode = unique most commonly occurring value among X

Median = 50th percentile (see “Percentiles,” p. 435)

Interquartile Range (1Qr) = 75th percentile — 25th percentile (see “Percentiles” below)
Median Absolute Deviation from the Median (MaD) = Median(D), where
D = |X—Median(X)|

2% Trimmed Mean = (X, , | +... + X _,)/(n—2k), where the Xs are sorted from smallest

to largest and 4 is chosen so that # observations represent p% of the data

Nominal variables

Count, number missing, and mode are as above

Number of levels = number of uniquely occurring values among X

Percentiles

The pth percentile using linear interpolation is (1 —f)x, +fx/e+ | » where x, and x, , | are
the kth and (£+1)st non-missing, non-excluded values in the variable, after sorting the Xs

from smallest to largest.

k is the integer part of v and fis the fractional part of v: v = (7p)/ 100 + 0.5 , where 7 is the
count and p is the desired percentile.

One Sample Analysis

N = number of observations

DF = N-1
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SE = standard error of £ = ——

N
One sample £test

U = hypothesized mean, entered by user

_(x=0)
SE

Confidence interval for the mean
¢, is the (two-tailed) critical value of the # distribution at level # and degrees of freedom
lower = x —¢ SE

upper = ¥ +¢,SE

Chi-Square test for variance

2 . .
0" = hypothesized variance, entered by user

2 52
X = DF—2
g

Confidence interval for variance
x; = lower chi-square critical value, level 2, DF degrees of freedom

x, = upper chi-square critical value, level 2, DF degrees of freedom

2

$

- DF-
upper = D :

u

2
lower = DF-
Xl
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Paired Comparisons

N = number of paired observations

D =X -X,
DF = N-1
D = mean of D

5, = standard deviation of D

Sd

SE = standard error of D =
N

Paired ttest

A = hypothesized mean difference, entered by user

t = (D-A)/SE

Confidence interval for the paired mean difference

¢, is the (two-tailed) critical value of the 7 distribution at level z and DF degrees of freedom

lower = D —¢ SE

upper = D + t,SE

/ test and confidence interval for the correlation coefficient

These are calculated using the 7 to z transformation discussed under Correlation/Covariance,
below.

Unpaired Comparisons

N, = number of observations in group 1
N, = number of observations in group 2

DF = N, + N, -2
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%, is the mean of the group 1 observations

%, is the mean of the group 2 observations

D =X, —%,

s, is the standard deviation of the group 1 observations
5, s the standard deviation of the group 2 observations

Standard error:

2 2
E = si(N; =1) +55(N, — 1) le +N,
DF NN,

Unpaired £test

A = hypothesized mean difference, entered by user

+ = (D-A)/SE

Confidence interval for the unpaired mean difference

¢, is the (two-tailed) critical value of the 7 distribution at level 2 and DF degrees of freedom

lower = D — t,SE

upper = D + t,SE

F test for variance ratio

VR = hypothesized variance ratio, entered by user

x?/é
" VR
DF = N;-1,N, -1

Confidence interval for the variance ratio

(s%/si)
(F(Ny=1,N,~-1,4))

lower =
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upper = (5?/55) AN, =1, N, —1,a))

where F(n, m, a) is the critical value of the F distribution with 7 and 7 degrees of freedom at

level .

Correlation and Covariance

Covariances and correlations are computed in StatView using provisional means.

Partial correlations
Where PC is the partial correlation matrix and IC is the inverse of the correlation matrix:

—IC..
PC.. = —_

v /ICZ.Z.IC].].

Bartlett’s test of sphenaty

x> = —Nln(det(C))

df = @_1

N = number of observations
n = number of variables

det(C) = determinant of the correlation matrix

p values and confidence intervals

+
These are computed using the transformation z = %ln B}—E , which has an approximately
+
normal distribution with mean = %lngll — E and variance = N+3 when the data are a ran-

dom sample of NV observations from a bivariate normal population with correlation R.

Regression

StatView applies the Sweep Operator to the XTX matrix of cross product deviations in order
to calculate regression coefficients. Sweeping operations are discussed in Draper and Smith
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ANOVA

(1981), Hocking (1985) and Goodnight (1979). The sweeping operation is used to add and
delete variables from the regression equation. Beta coefficients, partial correlations, multiple
correlation, partial Fs and residual sum of squares are computed as each variable enters (or
leaves) the regression equation. The calculation of confidence bands for the mean and confi-
dence intervals for the slope of a simple regression is discussed in Draper and Smith (1981)

and Sokal and Rohlf (1981).

The technique used for calculating the sums of squares for the various tests reported by Stat-
View is the reduction technique as described by Searle (1971, pp. 246-248). The basic idea of
the reduction technique is as follows. First a model is fit with all entered main effects and
interactions (the full model), and the residual sum of squares, rssg; is calculated. Then for
each main effect or interaction to be tested, another model is fit, containing all the terms in
the model except the one currently being considered. Once again, the residual sum of squares
is calculated. Let the residual sum of squares for the model excluding only effect A (where A
is any main effect or interaction in the model) be denoted ®rss ;. Then the sum of squares for
testing the hypothesis that effect A has no influence on the dependent variable is calculated
as: ss, = RsS,—Rssg ;- This calculation is carried out for each term in the model.

The reduction sums of squares are calculated using a method described in detail by Hocking
(1985, pp. 146 - 148). First, the matrix XTX is calculated, using a full rank parameterization
for the design matrix X. In this parameterization, the first element of each row of the design
matrix is a 1 (for the intercept), and for a nominal main effect with # levels, there are 41 col-
umns in the design matrix. For all but the last level of the factor, a 1 is placed in the column
corresponding to the level of that factor for a given observation (row), while for observations
with the last level of the factor, all £4~1 columns are filled with —1s. Covariates are simply
entered as the column of values of the covariate. The columns corresponding to interaction
terms for a particular row are formed as the Kronecker product of the columns corresponding
to all main effects contained in the interaction. Finally, the values of the dependent variables
are stored as the last columns in the design matrix.

The matrix X X is swept on its columns corresponding to entered effects. (See Goodnight
(1979), for a descrlptlon of the Sweep Operator). The square submatrix in the lower right
hand corner of the X' X matrix is the sum of squares and cross products, sscp, matrix. Its
number of columns equals the number dependent variables. The sscp for the fully swept
XTX is called the error sscp matrix, E . The residual sum of squares for each dependent vari-
able in the full model, (rss, ), is the corresponding diagonal element of E. Due to the
reversibility of the sweep operator, rss ; for any effect A can be calculated by re-sweeping the
columns corresponding to the effect in question in the fully swept XTX matrix, and extract-
ing the appropriate diagonal element of the sscp matrix. The hypothesis sscp matrix, H ,,
formed by subtracting E from this partially swept sscp matrix, is used in multivariate tests.
[Note: in models with one dependent variable, the sscp matrlces have only one element, so
RSSg| and rss ; are simply the lower right hand element of XTX after the appropriate
sweeping operations have been performed.] The sums of squares for each effect are then calcu-
lated from rssg;; and rss,; as described above.
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Repeated Measures

Repeated measures models are computed via multivariate analysis of variance. This allows
multivariate tests of hypotheses involving repeated measures to be computed in addition to
the usual univariate tests. The multivariate tests are formed by applying transformations to the
H, and E matrices. The transformation matrices are constructed by taking the Kronecker
products of matrices of orthogonal polynomial contrasts, and column vectors of 1s. For exam-
ple, in a model with two within (repeated) factors U and V that have 2 and 3 levels respec-
tively, the transformation matrix for effects involving only U wouldbe M, = O(2) O J(3);
for those involving V" alone, M, = J(2) 0 O(3); and for those involving the interaction of
Uand V, M, = O(2)0O(3);where O(#) isan n X (n—1) contrast matrix and J(7)
is a column vector of # 1’s. If in this example there were also a between effect A, the test for
the interaction of U with A would be formed from the transformed hypothesis matrix

M};HAMM and error matrix M};EMM

Power and lambda

Power is computed as the cDF of the non-central F distribution based on four parameters:
fisie » numeraror degrees of freedom (p , the degrees of freedom associated with the null
hypothesis), denominator degrees of freedom (¢ = 7 —residual df — 1), and lambda (esti-
mated as the hypothesis sum of squares divided by the residual mean square). Here £ . is the
critical value for the central F distribution at level 2 with p and g degrees of freedom.

Multivanate analysis of variance (MANOVA)

The sums of squares due to hypothesis and error that we examine for ANOvA models are
replaced by matrices of sums of squares and cross products (sscp) for Manova models. Like-
wise we no longer examine F-ratios but instead consider multivariate tests and their £ approx-
imations. Rather than computing the ratio of hypothesis to error sums of squares, we examine
eigenvalues of HE™!, where H is the hypothesis sscp matrix and E is the error sscp matrix.

Let A;, A5, ..., A, be the nonzero eigenvalues of HE™! listed in decreasing order (i.e.,
A >A, > >A)).

For all multivanate tests

Vi = degrees of freedom for H

Vg = degrees of freedom for E

d = number of dependent variables

s = min(Vyy, 4) and is also the number of nonzero eigenvalues

_ [Vu-q-1
2

m
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Vp—d—1
n= - —

2

Wilks” Lambda

S|
N =

I_l 1+,

i=1 z

d+v,+1
H

= + —_
7 VH VE >

0

O

0
t =0

O

0

0

av,;—2
p=H

4
1/t

Fvalue:Lﬂ———Bl:—g—/qj

Al/t O dVH 0

Numerator DF: dvy

Denominator DF: rz—24k

1/t
_ A2k u
p = 1- ProbFél/\HDED, dVH, 7’1’—2%

(This notation is from StatView’s expression language; see “ProbE(?, 1, 1),” p. 402 for more
information. It can be read as, “the cDF at the Fvalue of an F random variable with 4vy; and
rt— 2k degrees of freedom.” You could compute this p value yourself using a formula variable
with this definition, substituting the F value and degrees of freedom values shown in the
MANOVA table.)

Roy’s Greatest Root
© = A, (the largest eigenvalue of HE™)
t = max(Vyy, 4)

Vg —t+Vy
Fvalue: © D—-—-—-t——

Numerator DF: ¢
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Denominator DF: Vg —t+Vy

Vp—t+V
P = 1—P1‘O|:)Fg9 DE—';'"'—H, t,VE—t+VHE

Hotelling-Lawley Trace
Tyr= 3N
i=1

Z_H_ED 2(sn+1) O _ 2T (sn+ 1)
s B@m+s+1)] S@m+s+1)

Fvalue:

Numerator DF: s(2m + s+ 1)

Denominator DF: 2(sn + 1)

RTy(sn+1 g
p= I—ProbFDL,s(2m+s+ 1),2(sn+1)0
O

|:}2(2m+5+ 1)

Pillai Trace

_ < N
Tp = .ZIH)\Z.

Tp BQrn+s+1)n _ Tp Rr+s+10
s—TP[}(Zm+x+1)D s—TPEjZm+5+ID

Fvalue:

Numerator DF: s(2m + s+ 1)

Denominator DF: s(27 + s+ 1)

=1- Q-7 |:lz—n-'-j-’_ll:| + s+ +s5+
p=1 PrObF[}—TPEQ +5+1D’S(2m s+1),s2n+s 1%

Multiple comparisons

Multiple comparisons are discussed in Winer (1971) and Milliken and Johnson (1984). The
formulas used are listed below.

For all multiple comparison tests

k is the number of groups

a is the user-entered significance level
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n; = number of observations in group 7

X, = the mean of the observations in group 7

5; = the standard deviation of the observations in group 7
r=1/n;+ I/n]. where groups 7 and j are being compared.

MSE is the error mean square

Vg is the error degrees of freedom

MD = 9?] —x, is the difference of the group means being compared

A difference is declared significant if |[Mp| > D, where D is the test specific critical difference
defined below.
Fisher’s Protected Least Significant Difference (PLSD)

D = t./r X MSE, where t is the (two-tailed) critical value of the # distribution at level 2 and
V- degrees of freedom.

Scheffe F test

D = JFxwMsE X (k—1) X 7, where Fis the critical value of the F distribution at level z and
degrees of freedom k-1 and vy .

Bonferroni/Dunn

D = t.Jr X MSE, where ¢ is the (two-tailed) critical value of the # distribution at level 2/ m
and degrees of freedom Vi, and m is the number of comparisons, m = k(k—1)/2.

Dunnett’s Test

1 1 . .
D = tp et IMSE X Eh— + n—/eD , where 7, is the number of counts in the last (control)
7

group, and 7y - is the critical value from a two-tailed Dunnett’s table at significance «

with (£—1) comparisons and Vi degrees of freedom.

Tukey-Kramer Test

[r X MSE . .. . L. .
D =yq — where g is the critical value of the studentized range at significance 2 with

k means and Vi degrees of freedom.



A Algorithms Contingency Tables 445

(Games-Howell Test

107 50 . iy . .
D=y EEL—Z + L% where ¢ is the critical value of the studentized range at significance
. 7.

? J

2 2.2
O 50
G+ 4
O} w0
v = /4 7
4 4

+
2 2
”z‘(”i_l) nj(nj—l)

Student-Newman-Keuls Test

E

D =gq| 1\% where H is the harmonic mean of counts in all groups, and g is the critical

value of the studentized range at significance # with & means and v E degrees of freedom,

where & = ‘Rank(a?l-) - Rank()?]-)‘ +1 (i.e., it is one more than the number of steps between

the 7th and jth means when they have been placed in ascending order).

Contingency Tables

Two way tables

n = number of observations
r = number of rows of contingency table

¢ = number of columns of contingency table

DF=(r—1)(c—1)

2
)(2 =3 LQ_E—E) where £ = (CR)/ N, the expected values

C = column total
R = row total
O = observed value

N = grand total
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G statistic

2[Y Oln(0) =y RIn(R) = 5 CIn(C) + NInN]

Contingency coefficient

2
X

X +N

Cramer’s V

2
/ X
N(q-1)

Note: when 7 = ¢ = 2, Viis the same as Phi where ¢ = min(7, ¢)

Chi-square with continuity correction (r = ¢ = 2 only)

2 _ N(AD-BC -N/2)
" (A+B)(C+D)(A+ C)(B+ D)

X

where:
A = observed value in row 1, column1

B = observed value in row 1, column2
C = observed value in row 2, column1

D = observed value in row 2, column2

Post-hoc cell contribution

O-E
RGO
- 5ad 70
Cell chi-square
(0-£)’

E
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Fisher’s Exact Test (» = ¢ = 2 only)
rilryte ey

Define P(nyy, 715, 51, 715,) = , where

| | | |
N tn,lny ln,,

ry = nytn, = A+B
ry = myytmyy = C+D
ep =y tmy = A+C
€ = mptny = B+D

N = nytnp,tny t+n,, = A+B+C+D

Let p, = P(A, B,C,D).1f AD< BC,let [ = min(4, D), # = min(B, C), and
s = 1. Otherwise, let / = min(B, C), # = min(4, D),and s = —1.

/ u
Letpy = pot 5 P(A=si,B+si,C+si,D—si) and py = 5 pyl(py;<pg) >
i=1

i=1
where p,; = P(A+si, B—si, C—si, D+ i) and I(p,;<p,) = 1if p,;<p, and=0
if ;> 2o -
The exact p value is given by p, + p, .

Nonparametrics

One sample sign test

U = user specified hypothesized value

N, = number of observations > U
N_ = number of observations < U
N=N_+N.
Exact p value:
%EN 1 % g\h where # = min(N,, N)

Approximate p value:
mean = N/2, standard deviation= J/N/2, Z = (N, —Mean)/SD.
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Mann-Whitney U

n; = number of observations in group 1

n, = number of observations in group 2
N = n, +n,

R =3 Ranks of first group

R, = % Ranks of second group

ny(ny + 1)

Up = mmy+ — 2

B nl(n1+l)

Uy = mny + ) R,
U = min(U,, U,)

U =nn—-U

Mean = (n,7,)/2

Standard deviation = Jnlnz(nl +ny,+1)/12

Z = (U—Mean)/ Standard deviation

Correction for Ties

3 3
. Mm% N =N _t—t .
Standard deviation becomes /\/N(N— o 12 z 7%, where T = 5 and zis

the number of observations tied for a given rank.

Kolmogorov-Smirnov
See Siegel, pp. 127-136, and Hollander.

Wald-Wolfowitz runs test

n; = number of observations in group 1

n, = number of observations in group 2

R = number of runs. A run is any sequence of scores from the same group.
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2”1”2

Mean = +1

nytn,

2n1n2(2n1n2 —-n;— ”2)

Standard deviation = >
(ny +n,) (n; +ny—1)

— |R—Mean| —0.5
Standard deviation

Note that there are no corrections for ties. Ties may invalidate the results.

Wilcoxon signed-rank

D = X—Y for each matched pair

N = number of matched pairs excluding those with a D of zero

R = Rank of | D)

R, = Y Rwith D>0
R = Y Rwith D<0
T = min(R,,R)

Mean = N(N+1)/4

N(N+1)(2N+1)
24

Standard deviation =

Z = (T —Mean)/ Standard deviation

Correction for Ties

NN+ 1) 2N+ 1) = 2L

Standard deviation =
24

number of observations tied for a given rank.

Paired sign test

N, = number of pairs with X, >X,
N_ = number of pairs with X <X,

N=N,+N_

3 .
where 77 = £ —¢ and ¢ is the
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Exact p value

N—-1 7
0 > lj\.h,where n = min(NV,, N))

Approximate p value

Mean = N/2,SD = J/N/2, Z = (N, —Mean)/SD.

Spearman rank correlation coefficient
N = number of matched pairs
R = Rank of X;
R}/ = Rank of ¥,
D =R — Ry for each matched pair

Rho
p = 1__62i
N(N* 1)
Z = pJN-1

Correction for Ties
2 2 2
oo 3X+3) 3D

2 IZXZZ}/Z

3
2 _ N -N
2 _ N S _ N
2V =T 2
l’3 -t
T, = =T where # is the number of X observations tied for a given rank.
t3 —t
Ty = BT where # is the number of Y observations tied for a given rank.

Kendall correlation coefficient

N = number of matched pairs

C = Kendall statistic determined as follows:
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Rank the observations on the X variable from 1 to V. Rank the observations on the ¥ variable
from 1 to N. Arrange the list of /V subjects so that the X ranks of the subjects are in their nat-

ural order, i.e., 1, 2, 3, ..., V. For each Y rank, count the number of ranks below it which are
larger. Then subtract the number of ranks below it which are smaller. The sum of this for each
Yis C.
t = 1#
2N (N-1)

Standard deviation
DN +5)
IN(N-1)

z = t/ Standard deviation

Correction for Ties

C

JUN(N— -3 TIENWN-1) -3 TF

2
t —-—
T, = - ! where ¢is the number of X observations tied for a given rank
f2 t
Ty = 5 where 7 is the number of ¥ observations tied for a given rank

Kruskal-Wallis test

k = number of groups

n; = number of cases in the jth group
N = > s the number of cases in all groups combined

Rj = sum of ranks in the jth group

2
12 £ R Nl
N(N+1)zn_3( )

H = ;=17

o2

N -N

3 . . . . .
where 7' = £ —¢, t is the number of tied observations in a tied group of scores, and

z T directs one to sum over all groups of ties.
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Friedman test

k = number of variables

N = number of rows

R, = ZR for each variable where R is the score ranked by row, =1, ..., &.

2 12

_ 12 o
Xr = Neer 2 R —3NGe+1)

Correction for ties

ok + 107
12 = N—
XZ: X%Qz 0 - M _yT

NE(E+1) -1

Survival analysis

For both nonparametric methods and regression models, { (7}, C)),i =1, ..., N} 5 T is the
event time or censor time for the 7th individual; C,is0 if T, is an event time, 1 if it is a cen-
sor time.

For nonparametric methods, data may optionally be divided into G groups and/or S strata.

For regression models, z ;= (z1 PRINEA Z-) » a vector of covariates, may be observed for each

individual (required for proportional hazards models). For proportional hazards models, the
data may be divided into § strata.

Event Times

Let #; <t#, <... <t be the distinct ordered event times (i.e., the distinct sorted times
T, for which C; = 0). Define 7, = 0 and ¢, ; = .

Survival (Distribution) Function (sDF)
S(#) = Prob(7'>¢), where T = time to event

Cumulative Distribution Function (CDF)

F(¢) = Prob(7T'<2) = 1-5(2)
Probability Density Function (pDE)
_dF _
=% = re

Hazard Function

Ay = 42

S(2)
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Cumulative Hazard Function
A7) = I(’)A(u)du = —In(S(2))

Ln Cumulative Hazard Function

In(A(2)) = In(-In(S(2)))

Kaplan-Meier
Let 7; = number surviving just prior to ¢,
e; = number of events at #;
r; = n;—e; (remain at risk)
¢; = number censored in [#;_,, ¢,)
Survival Function
i

St = -

j=1 "7

1—e.

Failure (cpF)
F (1) = 1-S(2)

Survival s.e.

66() =8() | ¥ L
j=17

Cumulative Events
i

2 ¢

j=1
Cumulative Censored
i
2
j=1
Confidence Interval

ucL(§) =S +24,,6(5)
eL(§) =8 —z4,,60)

where z, ,, is the (two-tailed) critical value of the normal distribution at significance level a.
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Actuarial

Quantiles

Let j be such that S (,_,)>(1-p) 2§ (1) s then 7, = ¢,

Quantile standard error
G . .
6(tp) = (A—A(ﬁ , where f(tp) is an estimate of the density at t,
76)
Mean Survival Time
E-1 R
ﬁ = z S(fz')(tl'+ 1 _t,')
i=0
Mean standard error

E-1

i'i

j=i

Interval 7 (denoted /) is [T,_, T;) = [(i—=1)At, D), i = 1,..., M
T,; = (i—=1/2)Ar (interval / midpoint)

n; = number entering /; (number entered)

e; = number events in /; (number events)

¢; = number censored in /; (number censored)

r— i

n = m=y (effective number at risk)

e.
q; = ;l—, (conditional probability of failure)
z

= 1-g, (conditional probability of survival)

=
|

6(g,) = \Jq,;p/n,; (conditional probability of failure standard error)

Survival function

$(t) = M4
j=1

€
n—r,where M=y S(t])(t]+1—t]) and M =

E

2

=1
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Failure (cDF)
F(1) = 1-5(r)

Survival s.e.

6G()) =8y |y L
=18
Density
f(Tmi) = (TZA_tl)ql

Density standard error

6-U,:(."-ml)) = f(Tml')

Hazard

5 24,
Nt,,)

YR

Hazard standard error

l-0—=— 0

—
n;9;

8(M1,,)) = A(T,,)

Median Residual Lifetime (MRL)

Let ; be such that §(Tj_ D) 2§(Tl-)/2 >§(Tj») ; then

A ST;
. St_1——
M; =1, _,—T,+ Atz =
g $(t;_)=S(t)

MRL standard error
R S(t.
o(M;) = ———— ) ,
) 7
Confidence intervals
UCL@) = 2 +zu/26(§)
LcL(g) = g—za/zﬁ@)

where g isoneof S, f,or A, and z,, is the (two-tailed) critical value of the nor-

mal distribution at significance level a.
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Quantiles

Let 7 be such that S(T J)=z1-p >$ . Then estimate the pth quantile by linear interpo-

L S(1)—(1-p)
lation: t, = T, + At
S(TZ‘) _S(Tl'+1)

Quantile standard error

~ A 1 1—
O'(tp) = f"_(.l_ ) E(nl'E)

Linear rank tests
Let nj = size of risk set for group j at ¢

e;; = number of events for group j at ¢;

if
_ <G
np = Zj':lnij
G

¢ = Z] =1 61-]»
r; = onme
Test statistics
J

~ n..e
V'V 1V DX2G—1 , where v. = Zfz ) wi%zj_—l_;‘% and
i

2
v, = 5E wi(”i”i/eé;'/e_”i/”i/e)f/z’
ik 2i=1 2

n;(n;—1)

forj kb =1, ""G_1’6j/e = 1 ifj = k or 0 otherwise

Weights
Logrank (Mantel-Cox)

w;, = 1
Breslow-Gehan-Wilcoxon
w; = n;

Tarone-Ware

w;, = n;
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Peto-Peto Wilcoxon
~ i 1—e.
w. :Si = )
: AMn+1
j=117

Harrington-Fleming

~ . 1—e
p -1
wl':Si—l = a_ll _____.j:l

=1 5. 0
/ J

P

Here, S is the KM estimate of the survival function, computed separately for strata but

pooled for groups. Sisa slight modification of this estimate, with ni+1 replacing n.

Cell Contributions (j = 1, ..., G)

Sum weighted observed

_ E
0, = 3., we

Sum weighted expected

_ <E  Wine;
EJ’ = 2= ",
Contribution
2
(O,-E)
£

Note that the sum of the cell contributions, which is an approximate chi-square statis-

.. .. —1 . . .
tic, is not the same as the statistic v'V v and is conservative (Peto and Pike, 1973).

Stratification

_ N _ S
v = zi: Vi and V = Ziz 1Vz‘
where v, and V; are computed for the 7th stratum.

Trend versions
Letd = (4, ...,d)" be aset of weights for the groups. (If there is a numeric group-
ing variable and numeric values are used, these are the levels of the grouping variable;
otherwise d = (-(G—-1),...,-3,-1,1,3,...,(G—1))" if G is even, and
d =(H(G-1))/2,...,-1,0,1,...,(G=1)/2)" if G is odd.)

(d'v)
d'vd

2
Ox;

The test statistic in this case is
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Proportional hazards model

Hazard function

A(tz) = )\O(t)eB * where z = (275 - zp) is a vector of covariates and [3 is a vector of

unknown coefficients. A,(#) is the baseline hazard function, corresponding to z = 0.

Survival function

B I;)\O(u)du
S(rz) = (Sy(2))  where §y(2) = ¢ is the baseline survival function.

Parametric models

Y=1In(7) = p+B'z+0oW

where W is a random variable with a distribution specified by the model chosen (see below);
models available are exponential, Weibull, lognormal and loglogistic. Note that the model dis-
tribution refers to the distribution of the untransformed response time. Also, for the exponen-

tial model 0=1.

If the Don’t transform time variable option is checked, it is assumed that the event time vari-

able contains the values of Y rather than those of 7.

Estimation (proportional hazards)

R, = {individuals at risk just before ¢}
E; = {individuals who fail at #;}

e; = number of elements of £; = number events at #;

= 2ingi

Partial likelihood function

Assuming no ties, i.e., e, =1,

E eB'Zi
1B =
i=1 e !
IOR;

i
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Breslow approximate likelihood

In case of ties,
E ZBIS,'
1B = ———
i=10¢ P
¢ 0
Oér

Log-likelihood

E .
¢(B) = In(L(B)) = ¥ %’Si—fﬂﬂgg 3 %H
i=1 i

R

First denvatives (score function)

UE) = Lo(p), where

B
0 Bz
£ O > F¢ O
_ 00(B) _ _ TR 0
Ui(B) = B, Z %l] ¢ Bz O
J i=1[] Z e O
O [OR 0
Second derivatives (information matrix)
092 O
I(B) = -G—((BD
(o H
@) = 5O upf
Ik %Bjaﬁk 0
B'z 'z 'z
E z lezlkf ! z ZZ]-KB ! z ZlkEB !
=y [OR, _ IR, (OR,
z‘:1l eBZl Z eBZ[ Zele
IR (TR, IR

Estimation (parametric models)

Yi = ln(Ti)
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_ )’i_H_B'Zl‘
w, = ———————
()

g g(w,) is the probability density of y, (see below for distribution-specific definitions)
Sg(wi) = J':ig(x)dx
6 =(oup)

Likelihood function

N _1 1-C; C.
L(8) = ] (0 glw))  (S(w)) "

i=1

Log-likelihood

Mg 1 0
() = In(L(®)) = ¥ E(l—Cl.)ln[o g(w)] +Cl-ln(5g(wi))g

i=1
First derivatives (score function)

u(e) = %e(e) , where

0 -1 N
U,(e) = %E(G) =0 Z (wa;+ C,—1)

1
a;
1

N
-1 .
((B) =0 > za; | = L, ...,p
i=1

IIAM 2 |

U,(8) = a‘iue(e) =g

9
oB;

where 2; = (C;—1)

U]‘+2(e) =

) )
awz,ln(g(wi)) + CA(w;) and A (w) = Sy(w)
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Second derivatives (information matrix)

Og% O
I(6) = —E%ZZ(G)D where
(oo a

092 g
1,,(8) = _%TZ(G)D =0 Z (wA +1-C)

i=1

I,(8) = 1,,(8) = z(e)g =g z wA,

i=1

2

U g =) .
I 2 2(8) = 1,5 ,(8) = —%sz(e)g =07 5 s = 1

=

0 a2 0 o N
1,,(0) = —D—zf(e)] =0 ) 4
Cou O i=1

=

0 9° 0_ - .
2@ = [22(8) = g O] = 07 3 2y = 1

e O N
1j+2,£’+2(e) -7 BjaBkg(eE z if z/eA ]’ ""’P
where A; = —
wi
Exponential

Same as for Weibull (below), except that w; = y,—H —['z;and probability density of y; is

g(w;)) and U} =1 ;= 1 =0. Calculations involving U and [ are performed on the last

2 + 1 elements of the former and the submatrix of the latter of dimension p + 1 formed by
excluding the first row and column.

Weibull

w.
1

w.—e

gw) ="
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Lognormal

1 —wl-z/ 2

g(w)) = Ee

Loglogistic

Wi

e

g(wl’) = 2
(1+e)

OLS initial parameter estimates

Initial estimates of {4, B from the regression model ¥ = P + B’z + €; then estimate O as

1 RSS . . . .
= | N 1’ where Rss is the residual sum of squares from the regression and s g 15 1.28,
s o
4

1.00, 1.81 for the Weibull, lognormal and loglogistic models, respectively.

Newton-Raphson iteration

Find fﬂ such that U([A3) =0

[§/+1 = [A3i+A[3j,where [30 = 0 and ABj = I_l(ﬁj)U(Bj), and the algorithm ter-

() - 1@
/(B

Aj+l a1 /-1
with the step size halved, i.e., B/ "o B/ + ABT

minates when

~j ~i—1
<c.If E(Bl) < E(B] ), then the step is repeated

Coefficient covariances
V@) =1 (B)

Model coefficient p values (Wald)

For continuous or two-level nominal variables (including the dummy variables corresponding
to levels of multi-level nominals):
~2
Bi 0%
Vii(B)
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For nominal variables with £ > 2 levels, where [3; is the vector of coefficients associated with

the first £#—1 levels of variable 7 and \A/Z(fi) is the corresponding submatrix of \7([?3) :

B,V: (BB Ox;_,

Confidence intervals

~1/2

€ Bi+ as2Vii B
vafPg = e ©
B Al'_ i\/Jii/z t
1Rl = et
where z, ,, is the (two-tailed) critical value of the normal distribution at significance level 0.

Survival function and related quantities

Baseline survival function

Proportional hazards

~ ‘_1 ~ A A~ . .
So(z) = rl]lo a; where 0, = 1 and Q; is the solution to

R O R g Pz
By, 3 0O B o
Z —i—:—= ZE‘ I.Ife‘:1,then(AX-=El——-g——-r-—D . Other-
B'z. z z B'ZD
]DEll—(Axtf J TR, % ¢ %
d IUR;

I3

wise, an iterative solution is required, using as an initial value @, where

e . . . . .
——— . If the iterative solution fails to converge at time s the base-
1
z
/

In(G,,) =

e
1(TR,

line survival function is missing for times = t.

Exponential
§o(t) = ¢ % where @ = ¢ "

Weibull

. Iy i i s
So(s) = ¢ where Yy = 1/6 and @ = PO
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Lognormal

So(r) = 1 _(D%ln(tgy—ﬁm

il where @ is the standard normal cumulative distribution

function.

Loglogistic

§O(t) = L 5 where § = 1/6 and & = e

1+0¢

Survival function evaluated at the observations

Proportional Hazards
B,
§(Tyz) = So(T)"

Parametric Models

R " D (B)ZD
S(Tyz) = Sor; O
O O

Cumulative hazard
Ao(z) = =In(S (7))

A(T;z) = =In(S(T;z,))

Linear predictor and its standard error

LP; = P'z,
6(LP) = '\/Zi'{,(é)zl'
Residuals

Let , = 1-C,, i.e., §, is 1if 7} is an event time and 0 if 7 is a censor time. For the pro-

portional hazards model, let Ej = {individuals with 7< 7, and & = 1} . Also, if 7is an
event time, let ;= ) eB * and Ql»]- =y zkjeB o
kLR, FOR.
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Martingale Residuals
M ~ fSIZ,' ~ . . . .
€ =0,—-No(T))e ', where A\o(T;) is an estimate of the baseline cumulative haz-
ard function. For parametric models, i\o is defined above. For proportional hazards, it

is defined as /A\O(TZ-) =3 71—
ROE k

Deviance Residuals (proportional hazards only)

82 = sgn(8), 206" + 5,1n(5,-2)]

7

Score Residuals (proportional hazards only)

. Ary. &..
éf = (éfl, ...,é;),where éfj = éi%lj—gl%—eﬁ Z{ ?—%}
i 4 k g

™M

P

Quantiles (parametric models only)

No covariates in model
The quantitics plotted are £ (1 =7,) vs. Ty where £ is the model distribution cor
with estimated scale and intercept parameters, Ty is the 7th sorted event time, and p,

is the Kaplan-Meier estimate of the survival function at Ty

Covariates in model

B'z

Let 7,); = T,e ' be the event or censor time for the 7th individual, adjusted for

. .. ~—1 ~ ~ .
covariates. The quantities plotted are F (1 —p,,) vs. T}, () where F is the model
distribution cpF with estimated scale and intercept parameters, 7, ) is the 7th sorted
event time, and p,,; is the Kaplan-Meier estimate of the survival function at Toi)

computed using the 7}, ;.

Testing the global null hypothesis

For Hjy: B = 0, there are three different statistics with p degrees of freedom.

Wald

Score

X5 = U'(0)I”'(0)U(0)
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Likelihood ratio
Xo e = 2[0(B)-(0)]

Joint significance tests

* .
H,: some subset B of the coefficients are 0.

Let 7 be the number of elements of B, [’i, be the MPLE of the coefficients when B is

restricted to be 0, and ﬁ* be the coefficients of [’\3 corresponding to B . Also let

U(By), L(By) be the elements corresponding to B~ of the score function and information

. . . * .
matrix, respectively, evaluated under the model with 3 constrained to 0.

Three different X2 statistics with » degrees of freedom:

Wald
2 A*,A—l Ax Ak
Xw=B'V (B)B
Score
Xs = U'(Bo)I™ (Bo)U(Bo)
Likelihood ratio

X7g = 2[0(R) = (B,

Stratification (proportional hazards only)

Mez) = AP i=1,..,8

S
(B = 3 1B

i=1

UP) = 3._, U B)

s
IB) = 3 L(B)

i=1
where )\Z» » ;5 Uy, and [; are the hazard, log likelihood, score function and information

matrix, respectively, for the ith stratum.



A Algorithms Logistic Regression 467

Stepwise

Remove variable 7 for which
B
Xz(i) = — — is smallest if P(Xf > Xz(i)) > P-to-Remove .

ii

Enter variable 7 for which

X*() = l'(? ) s largest if P(X; > X" (i) < P-to-Enter,

*

ii

where B is a vector containing the estimated coefficients for variables in the model and 0Os for
. . *, 8 . . . .

variables not in the model, and I (3) is the information matrix swept on all rows correspond-

ing to variables in the model.

For nominal variables with #> 2 levels, the above X2 statistics become:
28— Ao AG, b2 200 vl B A 2
X“(4) = B/V; (B)B;UX),_; and X" (7) = U;/(B)I; (B)U,BUX;_,

where the subscript 7 refers to the £#—1 elements of the vectors and the £#—1 X £ —1 ele-
ments of the matrices corresponding to the dummy variables representing the first £—1 lev-
els of variable 7.

Logistic Regression

For a model in which x' is the vector of p covariates and Y is the nominal response variable
with R+ 1 levels coded as [0, K] , define x = (1,x"). Let T (x) = P(Y' = r|x) be the condi-
tional probability of response ¥ = 7 given x.

The logit functions are:

_ 1, %0
x) = In .
g r( ) E.h_O (X)D

Nominal independent variables are represented by collections of design variables. A K—level
nominal independent variable A is represented by K—1 design variables (dlummy variables)

dy,dy, ...dy_ . Theyhavevalues 4 = 01 14> Where O is the Kronecker delta (defined
below) and Level(A) is the ordinal level of A numbered from 0 to K'—1. So, for example,
when A is at its first level, all 4, are zero; when 4 is at its second level, only 4, = 1; etc.
The Kronecker delta is
5 = El (v = 1/)'
oo (u#v)
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Logistic model

Estimation

x[B,

= by tx b+ ... +prrp

2,(x)

where B are vectors of coefficients each of length p + 1. (Note that B = 0 since

go(x) = In1 = 0.) Solving for the Tts we have
egx(X)
nj(x) = gy(x) .

R
zr=0€

Partial likelihood function

For a sample of 7 independent observations the conditional likelihood function is

n

L(B,,B,,..Bp) = ] |-| T[(x
i=1r=0

Log-likelihood

(B}, B,,...Bg) = In(L(B,, B,, ...By))

» R )En
J 7gr(xl ln[l
> DD,gl Z

i=1

First derivatives

= z xkl(5 T[r(xi)) forr=1,2,...,Rand £ = 0,1, ...,p.

Second dervatives (information matrix)

I(B,,B,,...By) = —%E where —————— 35 9B /eaB .lekixk'inr(xi)(nr'(xi) -9,,) for r and

7 =1,2,...,R,and kand # = 0,1,...,p,s0 I isan R(p+1) X R(p + 1) matrix.
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Parameter fitting

A modified Newton-Raphson iterative procedure is used to find parameters B, for

r = 0,1, ..., R such that f(fil, ﬁz, ﬁR) is maximized, simultaneously solving the
. o/
R(p+1 =0.
(p +1) equations 35, )
(B, By, ...Bg)

Coefficient covariances

A A A ~ 1,~ A
V(Bl,Bz, BR) =1 (B11B21---BR)

Model coefficient p values (Wald test)

For continuous or two-level nominal variables (including the dummy variables corresponding
to levels of multi-level nominals):
~2
X2 Brk
k ~ ~
i Vr/e, r/e(B)

Partial correlation (R statistic)

9 K2
Xrk— 2
>2
R, = B!t -2/ xrk
rk 0
2
E 0 Xo, <2
where the sign is that of the coefficient érk , Xf/e is the Wald statistic, and /, is the log likeli-
hood for a model containing only the intercepts (i.e., B,, = 0 for » = 0, 1, ..., R and
k=1,2,...,p).

Confidence intervals

Br/e + 24,9 Vik rk(B)

UCL

/e Zq/z rk rk(B)

|:nf| DE

3
a

where 2, ,, is the (two-tailed) critical value of the normal distribution at significance level 0.
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Likelihood ratio tests

2= 2u(B)-1,)

where £, is the log likelihood for a model refit with variable # excluded. The degrees of free-
dom for the test is R(p + 1) minus the number of parameters fitted in the model excluding

variable # .
(lassification
For each x; the predicted response is 5/ = r where r satisfies:
T(x)| = max%‘[o(x T[l(x veees TOH(X; E
B

(i.e., 7 is the most probable response).

Global tests

Arrange the data according to distinct values of x (i.e., unique covariate patterns) labeled by
g = 1,2, ..., G where the number of distinct covariate patterns is G< 7. Let p,, be the
number of responses y = 7 in the covariate group ¢, let 7, be the number of members of g,
and let T, be the probability of response y = r for group ¢ predicted by the fitted model.

Pearson
¢ R )2
=2 2 —g—g—g—nn
g=1r=0 g gr

DF = R(G-p—1)

Deviance
) G R 1P
—_ g}"
Xp =23 ngrln[hnlj
g=1r=0 g &r

DF = R(G—p—1)
Likelihood Ratio

)(E g =20 (1A3) — () where  is the log likelihood for a model containing only the inter-
cepts (i.e., B,, = 0 forr =0,1,...,Rand £ = 1,2,...,p).
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Bivariate

DF = Rp

Plots

The scatterplot smoothers are applied to a set of points (x, y,) for i = 1, ..., 7 yielding a
smoothed function s such that y; = s(x,) + €;, where €; are the residuals.

Lowess
The lowess method, described in detail by Cleveland (1979), is outlined here.

Let 0 <#<1 and r be the nearest integral value to 7#z. Then 100# is the called “tension.” Let
d,, be the distance from x, to its 7th nearest neighbor.

Let

By = H1 =) <1
(o

lul =1

Ty = J=1d?y 1 <1
o

lul = 1

The smooth function s is produced by the steps:

1. Foreach £ = 1, ..., n fitaline to the points (xi, yl«) by weighted least squares using
. _ X0 . ~
weights w(x,) = TDTD' Denote the value of the fitted line evaluated at x, as y,,.
k

2. Lete; = y, _5’1' ,and let 0 be the median value of ‘ei‘ . Define robustness weights
d; = B(e;/60) . Compute a new set of ;s by repeating the fit procedure of step 1 using
weights &,w,(x;) .

3. Repeat step 2.

For any value # on the interval (x,, x,) , call the nearest bracketing x values x; and x.. Then
the smoothed function s(#) is the linear interpolation between the points (x, y;) and

(x ) 5/]) .
Supersmoother
The method, described in detail by Friedman (1984), is outlined here.

Order the data by ascending value of x.
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Define the symmetric 4 -nearest neighbor smoothing function, y(4) = N(x, y;#) where for
each j = 1, ..., 7 aline is fit by least squares to the points (xi, yi) for which
Xi_k/2 Sx; < Xisp/2 The fit value, )Alj, is the value of the jth line evaluated at X

Define the cross-validated residuals for a span of 4 neighbors centered about x;

(k
ror(k) = _ A
) 1—H.(k)
J]
. 1 (x—x)?
where r]-(/e) = ;= y]-(/e) , and H]-]- =7 + —V; with x the average and V' the variance

of the x; in the span.
The steps in the procedure are as follows:

1. Perform nearest neighbor smoothing for spans including -2-16 R % ,and % of the points.

Compute y(k,) = N(x,y;k,) with k; = 2—716, ky = %Z, and k5 =

n
3
2. Smooth the cross-validated residuals from step 1 with a 4, span and choose, point by

point, the span value that produces the smallest smoothed residual. Compute

rl(i)(kb) = Ny(x, T )(/eb);/ez) for each of the three s, where ) denotes the vector of
(i) S- Then form

1 (7’1-: "(i)(kl))

k
by (7= 7 (k)
by (= 7 (k3)

K, =

I o

where 7, = min(r'(l-)(kl), r'(l.)(kz), r'(i)(/e3)) .
3. Smooth the vector of best spans. K'; = N,(x, K;£,) .

4. Use the smoothed best spans to interpolate between the smoothed curves from step 1.

Let

ky =K'
[l

27k

IeS—K'l.
g =

kﬁ_kz

~ Efii’i(/ﬁ) +(1=£)yky) K<k,
%gﬁ’i(kz) +(1-g)ylks) K> k)
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For any value # on the interval (x|, x,) call the nearest bracketing x values x; and x.. Then
the smoothed function s(x) is the linear interpolation between the points (x, y,) and

(xj, )A/]) .
Cubic spline

The cubic spline is computed assuming the natural boundary conditions on the end points,

2
ie, y'(x;) = 0 and y"(x,) = 0 where y" = 6—%
Ox

QC Subgroup Measurements

Exact probabilities or critical values for constants are calculated wherever possible and practi-
cal. Those probabilities or constants taken from tables are noted below.

Sigma

Sigma (0), which is the estimate of the process standard deviation, is computed in one of two
ways. It may be based on subgroup standard deviations:

$
o= —&-
54(/5)

or it may be based on subgroup ranges:
firi
2

where s ¢ is the square root of a weighted average of the subgroup variances

AT

£z

Z(”i_l)

¢4(#) is an unbiasing constant with 4 degrees of freedom

_ F r(k/2)
k=1T((k=1)/2)
F(k) = (k—=1)T(£-1)
r(1) =1
r(1/2) = Jm

and 4 degrees of freedom usually = total number of observations — number of subgroups + 1.
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In the equations above,

2
£ = (dz(”l'))
! d3(”l')
r; = the range of subgroup 7; 7; is the number of observations in subgroup #; d,(4) is the
expected value of the range of # normal observations with standard deviation 1 (this value is

read from a table); d5(#) is the standard deviation of the range of £ normal observations with
standard deviation 1 (also read from a table).

Xbar analyses

The center line is computed as <l = [, where W is the mean of all measurements from all
subgroups.

If control limits are based on #4-sigma, then

kO

ucL = o+ —
n;

_ kGO
LCL = cl——

i
If control limits are based on alpha, then

_ o
veL = d+z,,,——
Jn;

= d 9
LCL = C _Za/2

Jn;

where z, ,, is the standardized normal score.

R analyses

The center line is computed as cl = 4,(»,)0.

If control limits are based on k-sigma, then

cl+ kdsy(n;)o
= kds(n;)o

UCL

LCL

unless LcL is < 0, in which case LcL = 0.

If control limits are based on alpha, then

ucL = Dy _q/,(n;)0

LcL = Dy ,5(7,)0
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where values of D with 7, degrees of freedom are retrieved from a table from Harter (1960).
Note that StatView retrieves values of D for only nine values of a: 0.4, 0.2, 0.1, 0.05, 0.02,
0.01, 0.002, 0.001 and 0.0002. For all values of O within this range, D is interpolated by the
method suggested by Harter. For O less than 0.0002, StatView uses the value for o = 0.0002.
For the most accurate results, avoid interpolated values by setting O to one of the values given
above.

§ analyses

The center line is computed as I = ¢,(#,)0.

If control limits are based on 4-sigma, then
ucL = cl + keg(n,)0

LcL = cl—kes(n,)0
unless LcL < 0, in which case LcL = 0.

In the equations above, ¢<(#) is an unbiasing constant. If s is a sample standard deviation
. 5 . .
with £ degrees of freedom, then the standard deviation

S

ok °

Therefore,

es(k) = J1=(e(R)

If control limits are based on alpha, then

UCL =

LCL =

where X2 is the chi-square value of indicated probability with 7, —1 degrees of freedom.

CUSUM analyses

The high and low cumulative sums are calculated as

Spi = 2=kt Sy
SL'

2

= —z=k* S

Sy and S, ; are independently set to 0 if their computed values are < 0.
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In the equations above,

(IR
z. = E—

i

M, is the mean of the ith subgroup, U is the mean from all measurements and 4 is dev/2,
where dev is the magnitude (in standard units) of the mean shift to be detected, as specified by

the user.

Capability analyses

_ USL—LSL

? 60

c = min(7 —tsL, usL — 7)

pm P
3 52+”(|J'_T)
N n—1

cpy = BE-H
30
cpL = HZLSE
30
Cpk = min(cru, crL)
b= 2‘7’7_“‘
USL — LSL

% > usL(observed)

1005? obs > usif]
] 7 O

% > UsL(expected)

100 xp%>luﬂ
s

IOOEE obs < 1s1]
g 5 O

% < LsL(observed)

% < UsL(expected) 100 x P % < LSLS_ IJ%

Where ust and st are the user-specified upper and lower specification limits, respectively; s is
the standard deviation of all measurements:

AN
NI
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T is the user-specified target value for the process; 7 is the average of st and LsL; and Zis a
standard normal variable.

QC Individual Measurements

Sigma

| analyses

MR analyses

For individual measurements, 0, when computed, can be based on one of two different meth-
ods of calculation. The default method is based on the standard deviation of the measure-
ments:

s

T LM

Alternately, the more traditional method is based on the average moving range of the measure-
ments:

M
d,(rs)

=

o =

In the equations above, MR is the average of the moving ranges of the data over a window
(range span) of size rs:

5 MR,

Ji

MR =

n—rs+1

where MR; = Ra%nge(xi_rlﬁ_ DX g e xl-) , .L.e., MR; is the .movmg range for the 7th
measurement; x. is the 7th included measurement in the dataset; 7 is the total number of

. z . .

included measurements in the dataset; and 4, (7s) is the expected value of the range of s nor-

mal observations with the standard deviation assumed to be 1. It is read from a table.

In the equation for @ based on the standard deviation of the measurements, ¢,(7) is the same
unbiasing constant as used in the subgroup measurement calculations.

All center lines and control limits are computed in the same way as the equivalent values for
Xbar analyses, above.

The center line is computed as ¢l = MR.
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If control limits are based on £-sigma, then
ucL = cl + kad;(rs)

LcL = ol —kad;(rs)

If control limits are based on alpha, then
UcL = D, _y/,(rs)0

icL = Dy 5(75)0
Note that this is closely related to the formula that is used to calculate alpha-based control

limits for R charts. As is the case for R charts, D is retrieved from a table. The same cautions
regarding interpolated values apply here as well.

CUSUM and capability analyses

See cusum and capability analysis computations for subgroup measurements, above.

QC P/NP

p analyses
The center line is computed as I = p, where p is the total number of nonconforming items
divided by the total number of items for all subgroups.
If control limits are based on 4-sigma, then
UCL mln% k /u’li g
_ _, e =p)
LCL = max %1 k . , (H
If control limits are based on alpha, then
oL = LcL(7p)
7
veL = ucL(np)
n;
where LcL(np) and ucL(np) are defined below.
np analyses

The center line is computed as cl = 7,p unless it is specified in the Lines dialog box.
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QC C/U

¢ analyses

u analyses

If control limits are based on /-sigma, then

vcr = min(cl + £, /np(1 —p), n;)
LcL = max(cl—£,/n,p(1—p), 0)

If control limits are based on alpha, LcL is calculated by setting

1-0a/2 = I(rcL, n;+ 1 —1cL) and then solving for LcL, where /(1 B) is the incomplete

Igta_l(l —t)B_ldt

C(O)r ()
M(a+B)
[of

3= I(uct, n;+ 1 —uct) and then solving for uct. Note that for all p/np analyses with

beta function, /p(a,B) = . Similarly, uct is calculated by setting

alpha-based control limits, LcL is set to 0 for all values of o <2(1 —p)n .

The center line is computed as cl = 7,u where « is the average number of nonconformities
per inspection unit over all subgroups, and 7; is the number of inspection units in the 7th sub-
group.

If control limits are based on £-sigma, then

ucL = cl+ £, [nu
LcL = max(cl—£,/n;u, 0)

If control limits are based on alpha, LcL is calculated by setting 1 — % = P(rcL+ 1, 7;u) and

then solving for LcL, where P(a, 3) is the incomplete gamma function:

—toa—1
J‘Be t dt
0

P(0,B) = P pra

Similarly, uct is calculated by setting % = P(ucL + 1, n;u) and then solving for uct.

The center line is computed as ¢l = «.
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If control limits are based on £-sigma, then

UCL = c1+k/\/Z
n;
mu%l—kﬁ,og

If control limits are based on alpha, then

LCL

oL = LcL(c)
n;

veL = ucL(c)
7.

z
where LcL(c) and ucL(c) are defined above.
Note that for all ¢/« analyses with alpha-based control limits, LcL is set to 0 for all values of

—n.u
a<2e
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accelerated failure time model Fully para-
metric survival regression models of the
form log(7) = p+pB'Z+0W . These
are termed “accelerated” failure time mod-
els because a unit change in the covariage
Z. induces a multiplicative change of e i
in the time to failure. Perhaps more accu-
rately, this change should be termed an
acceleration when [ is negative and a
deceleration when B]] is positive.

alpha The Type I probability that any indi-
vidual value of a process statistic exceeds
the control limits; more generally, the prob-
ability of Type I error, where a null hypoth-
esis that should be accepted is rejected.

alphanumeric Comprised of letters and/or
numerals.

analysis of variance (ANova) Analysis of
variance determines the significance of the
effects or factors in a model by calculating
how much of the variability in the depen-
dent variable can be explained by the effect
in question. Other model types are ANcOva
(analysis of covariance), which includes
continuous independent variables called
covariates, MANOVA (multivariate analysis of
variance), which includes more than one
dependent variable, and MaNcova (multi-
variate analysis of covariance), which
includes more than one dependent variable
and continuous independent variables.

argument A value on which a function
operates. The arguments to a function can
be constants, column names or formulas.

assignable causes Any nonrandom factors
that affect the results of a process. Gener-
ally, the identification and elimination of
these is one of the primary goals of any
quality improvement program.

attribute Any descriptive characteristic of
an item (e.g., an item’s color or texture). In
spC analyses, the most common attribute of
interest is whether or not an item is defec-
tive.

baseline The descriptor given to survival
and hazard function estimates from a sur-
vival regression model for the case in which
all covariates are equal to 0.

beta The probability of type II error (the
error of accepting a null hypothesis when it
is actually false).

between factor In repeated measures
ANOVA, an independent variable to test for
differences among groups, as opposed to a
within factor, which is used to compare sev-
eral measurements of the same quantity
under different conditions or at various
times.

binary Having two possible values.

bivariate graph A graph that plots the rela-
tionship between an X and Y variable. Can
be displayed as a scattergram or line chart.
(See also univariate graph.) Can include fit-
ted lines: cubic spline, lowess, super-
smoother, or linear regression.

case-control studies In many settings, it
can be expensive or impossible to obtain
random samples of the dependent variable,
even at pre-specified values of the indepen-
dent variables. To overcome these obstacles,
case control studies sample separately a set
of cases (e.g., individuals with the disease of
interest) and a set of controls (e.g., individ-
uals who do not have the disease).

cell A subset of your data. Specifically, the
intersection of the groups in your data
when several nominal variables are consid-

ered. A cell is defined by the group labels of
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the nominal variables. Multiply the number
of distinct group labels in all nominal vari-
ables to get the maximum number of cells
in the resulting analysis.

cell plot A plot which compares the
means or sums of related variables or
groups. You can depict data as bar charts
(often referred to as side-by-side bar charts),
line charts, or point charts to compare vari-
able to variable and group to group.

censor time The time elapsed from the
onset of observation of a subject until the
subject is censored. Censoring occurs when
the subject can no longer be observed
because, for instance, the subject drops out
of the study or the study ends.

censored observation Any subject in a sur-
vival analysis for whom the event time mea-
surement is incompletely known. StatView
supports only right censoring. A censored
observation is sometimes referred to as an
incomplete observation.

censoring The exclusion of a subject from
the risk set at time # because that subject’s
survival status is unknown at time .

colinearity The condition of relatively
high correlation among variables. In an
extreme case of colinearity, a straight line
describes perfectly the relationship between
two variables. Colinearity between inde-
pendent variables in a regression makes it
impossible to discern their individual effect
on a dependent variable.

compact variable An alternative to enter-
ing each observation’s group label in a col-
umn, a compact variable is a way to use
individual columns to identify the groups
of a nominal variable. Created by selecting
the columns and clicking the Compact but-
ton in the dataset or the variable browser.
In a compact variable, all the data in a col-
umn must belong to the same group. This
structure is required to define the within
factor of a repeated measures model.

confidence interval A range of values such
that there is a known probability that the

true value of some quantity lies within that
range. This probability is known as the con-
fidence level, and must be stated before the
confidence interval is calculated. For exam-
ple, the 95% confidence interval for a mean
represents a range of values within which

we expect to find the true value of the mean

95% of the time.

continuous selection Selection (using the
mouse) of cells, rows, columns or elements
that are next to each other. Selected by
clicking the first item and then dragging the
mouse to the last item.

continuous data Continuous data can
assume any numerical value over a given
interval, e.g., data that describe persons’
weights or height.

control limits Maximum and minimum
values of a particular process statistic if the
process is in control. Values of the process
statistic beyond these limits are regarded as
evidence that the process is out of control.

convergence criterion The minimum rela-
tive difference in likelihood functions for
successive iterations of the model-fitting
procedure. When the relative difference in
likelihood functions for successive itera-
tions falls below this value, the fitting pro-
cedure stops. Note that the fitting
procedure also stops if the maximum num-
ber of iterations is reached before the con-
vergence criterion is met.

covariate A covariate is an independent
variable in a [M]aN[c]ova model that is a
continuous variable. A covariate is expected
to behave as a regressor (where its values
might be thought to predict the values of
the dependent variable) and is added to the
model to remove its effect so that the influ-
ence of the factors can be more accurately
measured. In survival regression models,
covariates are used to model the variation in
the event time variable.
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cubic spline A smoothing method for
bivariate scattergrams that connects a series
of third order polynomial regressions in a
moving window of four data points.

degrees of freedom The degrees of free-
dom (often denoted “df” or “DF”) associ-
ated with a statistical calculation are the
total number of parameters minus the
number of “fixed” parameters in the calcu-
lation. For example, a statistic based on the
sample mean for a dataset with n observa-
tions has 7 —1 degrees of freedom. One of
the 7 observations is considered “fixed,”
because more than one observation is
required to calculate the variance for the
mean. The estimate of variance is required
because without it one cannot estimate
measures of certainty, and thus p values,
about test statistics (such as #, £ chi-square,
etc.).

dependent variable The dependent is the
variable whose variation you want to
explain through a relationship with the
assigned independent variable(s). Depen-
dent variables are often called “Y variables,”

“« . » « .
response variables,” or “outcome vari-
ables.”

deviance In logistic regression, a multiple
of the log of the likelihood function:
—2logl(by, 6,) .

dichotomous Having two possible values.

effect A term in an ANOVA, ANCOVA,
MANOVA, or MANCOVA model. A main effect
is a term that consists of a single variable
treated as a factor. An interaction effect is a
term that consists of a factor crossed with
one or more other factors or covariates.

eigenvalue A value of lambda (A) for
which Ax = Ax for x# 0 where Aisa
square matrix and x is a vector. Each eigen-
value is associated with a corresponding
eigenvector. The eigenvectors correspond-
ing to large eigenvalues are usually the most
useful.

eigenvector A vector xZ 0 for which

Ax = Ax, where A is a square matrix and
A (lambda) is an eigenvalue of A. The
eigenvectors of a correlation matrix are use-
ful in determining which variables explain
the variability seen in a dataset.

error bar The extension of a single point
on a graph to reflect the variability of the
quantity being estimated.

event An occurrence of special interest that
marks the endpoint of an event time. In a
survival analysis, the event is often failure or

death of the subject.

event time The time that elapses from the
onset of observation of a subject to the
occurrence of the event of interest.

excess risk The absolute difference in risk
or probability of an outcome when com-
paring exposed to unexposed individuals.

explanatory variable Another name for
independent variable.

exponential distribution A special case of
the Weibull distribution, with the scale
parameter equal to one. For the exponential
distribution to be applied to a parametric
model, the hazard function must be con-
stant.

exponential regression A nonlinear trans-
formation of the basic linear re%r%?sion

. 1
model in the form ¥ = 45 +¢

factor A factor is a single nominal variable
in a linear model, such as an aNova. Factors
by themselves or crossed with other factors
comprise “effects” or “terms” in such mod-
els.

failure The term used as a synonym for
event in a typical medical or engineering
survival analysis in which subjects “fail” or
die.

false signal Any indication, usually from
control charts or tests for special causes,
that a process is out of control when, in
fact, the process is in control. See Type I
error, below. The QC analyst tries to mini-
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mize the occurrence of such signals, while
maximizing the detection of true signals.

fitted value The values of the dependent
variable generated by a regression equation
when you calculate it using the values of the
independent variables in your data.

frequency plots Graphical displays of the
frequency distribution of a variable. Stat-
View produces regular histograms, z-score
histograms, and pie charts.

grid lines Lines that run across a graph
perpendicular to an axis and mark the
major and minor intervals along the axis.

group A collection of cases in a dataset that
share the value of a nominal variable. All
observations with the same value for the
nominal variable are said to be in the same
group level. For example, a nominal vari-
able describing a person’s gender divides the
data into two group levels: male and
female.

group label A name that identifies the dis-
tinct groups of a nominal variable. A label
is also used to identify the groups of a cate-
gory.

grouping variable A nominal variable that
has a distinct value for each group in the
dataset and thereby identifies the different
groups in the data when the variable is used
in an analysis.

growth regression A nonlinear transforma-

tion of the basic Lirgregr )gegression model in
0 1

theform Y = ¢

hazard function The rate of occurrence of
events at time t.

hazard function, cumulative Measures the
cumulative risk to which an individual is
exposed up to time t. The cumulative haz-
ard function is equal to the negative log of
the cumulative survival function.

histogram A bar chart that plots the dis-
tribution of a variable.

hypothesis testing A statistical technique
for collecting data to answer questions

through the use of a statistical model. Each
question is stated in the form of a null
hypothesis, and the answer takes the form
of either acceptance or rejection of the null
hypothesis according to whether the p value
of a test statistic is greater than or less than
an appropriate significance level.

hypothesized value A value you suspect a
particular statistic to have in the population
you are studying. You can construct a
hypothesis test to see if your hypothesized
value is reasonable considering the data you
collected.

in control The description for any process
that produces items that vary within the
limits proscribed by a particular statistical
distribution.

independent variable The independent
variable is used to explain the linear varia-
tion in the dependent variable. Note that
multiple and stepwise regressions take more
than one independent variable. Indepen-
dent variables are sometimes called “X vari-
ables,” “predictor variables,” “design
variables,” or “explanatory variables.”

informative data An informative variable
is used for identification purposes only, e.g.,
a column containing names of patients in a
study.

interaction effect An interaction effect is a
term in an [M]AN[c]ova model that consists
of a factor crossed with one or more other
factors or covariates, as opposed to a main
effect, which is a single variable treated as a
factor.

joint significance tests Statistical proce-
dures for evaluating the probability that
two or more covariates fogether (thus,
“joint”) make a significant contribution to
a statistical model. These same procedures
can be used to evaluate the contribution to
a model of individual covariates as well,
though in such cases, these procedures
would be more accurately called individual
significance tests.
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£ The constant by which sigma is multi-
plied to calculate the normal approxima-
tion of the control limits.

k-sigma An expression that indicates that k
multiples of sigma are used to compute
upper and lower control limits about a cen-
ter line.

lambda A quantity used to compute
Power, Lambda is sometimes called “partial
eta squared” or “noncentrality value.”

LCL The Lower Control Limit, the mini-
mum value for a particular process statistic
if the process is in control.

level A cell or group within a factor, inter-
action, categorical variable, or any other
nominal or grouping variable. A collection
of cases in a dataset that share the value of a
nominal variable. All observations with the
same value for the nominal variable are said
to be in the same group level. For example,
a nominal variable describing a person’s
gender divides the data into two groups or
levels: male and female.

likelihood ratio test In logistic regression,
a test of the relationship between an inde-
pendent and dependent variable based on
comparing the likelihood or deviance of a
model including the independent variable
of interest with that of a model excluding
it.

log odds The log of a probability divided
by one minus the same probability:
log(p/(1-p)).

logarithmic regression A nonlinear trans-
formation of the basic linear regression
model in the form y = by + b;InX -

logistic regression A modeling technique
analogous to linear regression that examines
the relationship between a nominal out-
come (or dependent) variable with one or
more nominal or continuous independent
variables.

loglogistic distribution The frequency dis-
tribution of a variable whose logarithm fol-

lows a logistic distribution. The hazard
function of a parametric model based on a
loglogistic distribution either always
decreases with time or initially increases to
a maximum and then decreases.

lognormal distribution The frequency dis-
tribution of a variable whose logarithm fol-
lows a normal distribution. For the
lognormal distribution to be applied to a
parametric model, the hazard function
must be initially increasing and then
decreasing.

lowess A locally weighted regression
method for smoothing bivariate scatter-
grams. Its tension parameter indicates what
percentage of the dataset’s values should be
included each the window for the smooth-
ing. A higher number produces a tighter
smooth (with less response to local vari-
ances); a lower number produces a looser
smooth (that is more strongly influenced by
local variances).

MAN©OVA [M]aN[c]ova is shorthand for
[multivariate] analysis of [co]variance; that
is, it denotes ANOVA (analysis of variance),
ANCOVA (analysis of covariance), MANOVA
(multivariate analysis of variance), and
MANCOVA (multivariate analysis of covari-
ance). All are specific types of models
within the general linear model (along with
linear regression, etc.). All are models pre-
dicting the values of one or more depen-
dent continuous variables from
combinations of one or more factors (inde-
pendent nominal variables) and/or covari-
ates (independent continuous variables).

main effect A main effect is a term in a
[M]an[c]ova model that consists of a single
variable treated as a factor, as opposed to an
interaction effect, which consists of a factor
crossed with one or more other factors or
covariates.

missing cell An intersection of the groups

in combined nominal variables for which
there is no data. You get missing cells in
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your data when one of the combinations of
groups among the nominal variables does
not exist in the data.

missing value A case which has no value
for a variable, either because none was
available or because data were lost. A miss-
ing value is represented by a period (. ).

model In statistics, any mathematical
expression used to account for or “explain”
the variation in at least one other variable.

nominal data Nominal data identify
which the groups to which each observa-
tion belongs.

nonconforming item An item that is
defective, i.e., an item that does not meet
minimum standards of acceptability.

nonconformity Any attribute of an item
that is unacceptable (e.g., scratches, dents,
discolorations).

nonlinear regression Nonlinear regression
analysis estimates a nonlinear (exponential,
logarithmic, power, or growth) transforma-
tion of the linear regression model.

nonparametric Statistical procedures
which make less restrictive assumptions
about the population(s) from which the
data were sampled.

null hypothesis A statement that a quan-
tity has a particular value, or that several
quantities are equal. The null hypothesis is
the statement you are evaluating through
your analysis of the data. It provides a basis
for hypothesizing a known distribution for
a statistic. You compare an observed value
to the hypothesized value to see if the data
supports the null hypothesis. If the test sta-
tistic seems unreasonable under the
assumption of the null hypothesis, you can
reject the null hypothesis in favor of some
alternative, usually a statement which is the
opposite of the null hypothesis. For exam-
ple, the null hypothesis for an unpaired -
test is that there is no difference between
the means of the two groups you are com-
paring. So, a rejection of the null hypothe-

sis means that the means of these two
groups are not the same.

one-sided test A statistical test which con-
siders the possibility of change or difference
in only one direction. For example, a test of
the hypothesis that one mean is equal to
another mean versus an alternative hypoth-
esis that the first mean is greater than the
other mean. This is in opposition to the
two-sided test which has an alternative
hypothesis that the means are simply not
equal. One-sided tests should only be per-
formed when you have secure knowledge
that a change in the other direction is phys-
ically impossible. The option to perform a
one-sided test is available in the one sample
inference, paired comparison and unpaired
comparison.

out of control The description for any
process that produces items that deviate
from the expected patterns of variation that
are consistent with a particular statistical
distribution.

outcome variable Another name for
dependent variable.

2 value A value indicating the likelihood
that the data used to carry out a statistical
test would occur under a specified hypothe-
sis. A p value represents the probability that
a statistic would have a value at least as
extreme as the one observed, assuming the
hypothesis in question is true. Thus, with a
low p value (less than 0.05, for example) it
is unlikely that the hypothesis is reasonable;
similarly a high p value indicates that the
data does not contradict the null hypothe-
sis. A low p value leads you to reject the
null hypothesis.

paired comparison A comparison of two
variables, both measured on each of several
subjects.

polytomous Having many possible values.

population The collection of all possible
units similar to the ones you are studying.
The population is usually the group to
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which you extend your results after your
analysis is performed. A sample is a subset
of a population.

post hoc test A post hoc test is used as a
follow-up to a [M]an[c]ova analysis in
which one or more effects are found to be
significant (in other words, after the null
hypothesis has been rejected) to determine

how the groups of that effect differ.

power The ability of a statistical test to
declare a true difference “statistically signifi-
cant.” Its value is equal to 1 minus Beta,
and its computation for [M]aN[c]ova is

based on a quantity called Lambda.

power regression A nonlinear transforma-

tion of the basic lingar regression model in
1

the form ¥ = 4,X .

process Any action or series of actions that
generates a measurable result.

process statistic Computations that are
used to infer characteristics of a process
which typically are based on measured
results of this process.

proportional hazards The assumption
that, for different covariate values, the ratio
of hazard functions is constant across all
failure times.

raw data Raw data consists of the infor-
mation originally obtained from a test,
experiment or survey, before it has been
summarized or condensed by any method.

recode To describe any change in the rep-
resentation of a variable’s values by recoding
continuous values to levels of a category or
substituting computed values to replace
missing values.

regression Regression analysis determines
whether the values of one or more indepen-
dent variables in a model can predict the
values of a dependent variable.

regression line The line that describes the
position of values predicted from a regres-
sion equation, with the independent vari-

able plotted on the vertical axis and the

dependent variable plotted on the horizon-
tal axis.

relative risk The risk or probability of an
outcome for an exposed individual divided
by the risk of an unexposed individual (e.g.,
a relative risk of ten in a smoking/lung can-
cer study would indicate that subjects who
smoke are ten times more likely to develop
lung cancer than subjects who don’t).

repeated measures analysis of variance An
ANovA model in which one or more of the
independent variables are used to compare
several measurements of the same quantity
under different conditions or at various
times. This independent variable is called a
within factor. A repeated measures ANOvA
can also contain one or more between fac-
tors to test for differences among groups.

residual The difference between the fitted
value of the dependent variable in a regres-
sion and its actual value.

response variable Another name for
dependent variable.

right censoring The exclusion of subjects
from the risk set at times beyond z,,
because their survival status is unknown
beyond z,.

risk The probability that any individual

will experience an event.

risk set The group of all subjects vulnera-
ble to an event at time ¢. Excludes all sub-
jects that have experienced the event or
have been censored before time ¢.

sample The specific collection of units
from which a dataset is derived. The units
of a sample are usually a subset of the popu-
lation.

scattergram A graph that represents data
points as unconnected marks or dots on an
X-Y plane (Cartesian coordinate system).

sigma The estimate of the standard devia-
tion about a particular process statistic.

significance level A preset value, expressed
as a probability between zero and one
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(p value), used as a cutoff value in deter-
mining whether to reject a null hypothesis.
Essentially, the significance level is an esti-
mate of how often you will err by rejecting
a hypothesis which is in fact true. A com-
mon significance level is 0.05, which means
you are willing to be wrong one out of
twenty times (1/20 = 0.05) when you
reject the null hypothesis.

statistical process control (spc) The use of
statistics to identify the occurrence of
assignable causes in processes.

strata In proportional hazards models,
strata define groups having different base-
line survival functions. In nonparametric
models, strata define groups for which sepa-
rate survival functions are estimated. In
general, strata define groups whose behav-
ior must be accounted for to maintain the
validity of the model, but do not provide a
basis for tests of significance. In this sense,
strata define “nuisance” groups.

subgroup A natural division of observa-
tions from a population, with no observa-
tions repeated among equivalent divisions
in the same population.

supersmoother Supersmoother is a
smoothing method for bivariate scatter-
grams that uses a local cross-validation
technique to determine how much smooth-
ing is needed in each region along the X
axis. It uses less smoothing in areas of
greater curvature or lesser variance, and it
uses more smoothing in areas of lesser cur-
vature or greater variance.

survival function, cumulative The esti-
mate of the proportion of individuals that
have not experienced the event from time 0
to time ¢. Often referred to simply as the
survival function.

survival status The state of subjects with
respect to whether or not they have experi-
enced the event.

tail The extreme region of a distribution
curve for a particular variable or statistic. If

there are extreme values spread out over a
large range, the distribution has long tails.
The upper tail of a distribution refers to
extremely large values; the lower tail refers
to extremely small values.

tolerance A criterion for abortion of a
model-fitting procedure that is dependent
on colinearity among independent variables
(covariates). The greater the colinearity
among these variables, the more likely it is
that they will fail to satisfy the conditions
established by a given tolerance, and that
the model-fitting procedure will be
aborted.

Type I error The rejection of a true null
hypothesis. For QC analysis: in spc analy-
ses, a Type I error occurs when a process is
mistakenly identified as being out of con-
trol.

Type II error The acceptance of a null
hypothesis when it is false.

UCL The Upper Control Limit, the maxi-
mum value for a particular process statistic
if the process is in control.

unbalanced design A balanced anova
design is one in which the cells of each fac-
tor or combination of factors have an equal
number of cases. An unbalanced ANova
design is one in which the cells of each fac-
tor or combination of factors have differing
numbers of cases.

uncensored observation Any subject in a
survival analysis for which the entire dura-
tion of the event time measurement is
known. This is sometimes referred to as a
complete observation.

univariate graph A graph that presents
one-dimensional data, with only a Y axis.
Each individual observation is plotted.

unpaired comparison A comparison of

the measurements of two distinct groups of
equal or unequal size.

Wald test In logistic regression, a test of
the relationship between an independent
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and dependent variable based on compar-
ing the estimate of the slope coefficient to
its standard error.

Weibull distribution The generalization of
the exponential distribution, with both
scale and intercept parameters, to accom-
modate non-constant hazard functions. For
the Weibull distribution to be applied to a

parametric model the hazard function must
be a power of T

within factor In repeated measures ANOVA,
an independent variable used to compare
several measurements of the same quantity
under different conditions or at various
times, as opposed to a between factor,
which tests for differences among groups.
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SR97-SR99
results SR9S
templates SrR96
tutorial example Us38-Us40
analysis windows Us139-Us148
View, Window menus Us148-usi49
also see analysis browser, results browser,
variable browser, views
Analyze menu
New View uUsI32, USI39, USISO
rearrange USI68—USI69
Rebuild Template List us168
templates Us162, UST74
analyze subsets Us149-UsI50

ANCOVA see analysis of variance

AND SR345

angle Us18s, UsI99
ANOVA see analysis of variance

Apple Guide Us48, Us221, Us223
application preferences Us225-Us226
Arabic characters srR379, SR384, SR423
arc functions uUsiI2

arc tool Us205-Us207

ArcCos SR349
ArcCosh sr349
ArcCot SrR350
ArcCsc sr3s1
ArcSec sr3s2
ArcSin sRr3s3
ArcSinh sr3s4
ArcTan sr3ss

ArcTanh sr356
arguments USII3, SR323—SR326, SR331

arithmetic operators UsII2

arrange results US43, Us213-Us214
arrow tool us21z
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tutorial example Us4s
also see selection tool
ascending sort see Sort
assign variables Usi44
dialog box us1s8-UsI59, Us222
exercises USIS0—USIS6
from other analyses see adopt
templates Us162, USI64
variables

assign from other analyses see adopt
assignable causes sr252, SR254
association see correlation, covariance

asterisk SR79, SR329, SR333

double sr334
attribute pane Uss8-Us60, Us73-Us80,
US255

change attributes uUss9

control Uss, Us6o

set attributes US§8—Uss9

show uss

tutorial example Uss
autocorrelation SrR363
automate analyses see templates
Average SR356
average SRI, SR388, SR391
AveragelgnoreMissing sr357
avoid errors US162

axis
bounds usi8s, Usi88, UsIgI
cell dialog box us192
colors uUs197
decimal places Us188, Usi92
frames UsI183, USI87, USI97, US229
grid lines Us18s, UsI92
labels us183, Us186
logarithmic and linear scales Us192
move USI86
numeric dialog box usigo

numeric formats Us192, US229
ordinal dialog box us193
rotate text USI9O

select usi8s

three types UsI9o

tick marks Usi8s, USI91-US193
transpose USI88

values Us183

B

background calculation us138
background colors us212
backward stepwise regression see regression
Balloon help us48, us221-Us222, Us224
bar charts

fill patterns Us19s

frequency distribution sri3

univariate plots sr217

also see cell plots
Bartlett’s chi-square sri38
Bartlett’s test of sphericity sr44
Bartlett’s test template Us235-Us237
baseline cumulative hazard plot sri89

baseline cumulative survival plot sri87
baseline estimates, Kaplan-Meier sri7s
baseline hazard sri69
baseline In cumulative hazard plot sri89
baseline survival table sri88
Basic Statistics Us142
batch mode see templates
beep for error messages Us225
bell-shaped curve sriy
Bernoulli distribution srqo1
beta distribution sr406
beta see type II error
between subjects sr83
Bezier curves see spline tool
bimodal distribution us32
binary logistic regression sr199
binary operators see operators
binomial distribution sr287, srR401, SR406
BinomialCoeffs sr3s58
bivariate plots sr221-sr236
axis types USI9O
confidence intervals Us242, srR221,
SR224, SR228, SR232
correlation sr31, sR48
cubic spline sr221, SR225, SR227—SR228,
SR2
data requirements sr229
dialog box sr228

discussion SR221—SR228
error bars Us242

exercises SR3§, SR230—SR236
fitted lines srR221—-sr228
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interaction plots srR99

lowess sr221, SR225-SR226, SR235
multiple variables sr222
nominal data sr232

results srR229

split-by variables sr222

strategy SR222-SR223

supersmoother srR221, SR225-5R227,

SR236
templates sr230

exercise USI7I
black selection handles us21, Usi84, UsIS86,
USI98—US199, US204, US207,
US209-US210, US214
blocking factor srior, srrog
Bonferroni/Dunn sr86—sr87, sr1o4
Boolean operators usi27

Boolean variables sr338

borders
dialog box us2o1
tables Us199, Us201, US231

box plots Us96, UsI33, USI3s, USI37, SR243
axis labels vs. legend text sr24s

change style us188

data requirements SrR244
dialog box sr243
discussion SsrR243
exercise SR244

results SR244
subgroups Us244
templates SR244
tutorial example Us29

BoxCox sr3s8

braces sr336

brackets sr337

breakpoints see Recode

Breslow-Gehan-Wilcoxon test srist, sri56

browser see analysis browser, formula brows-
er, results browser, triangle controls,
variable browser

(

C class marker see class marker

C usage marker see usage markers
¢/u analyses see QC c/u analysis
calculations

background us138
cancel uUs138

control UsI38-UsI39
precision Us73
save results with view Usi41
calculator keypad usti2
cancel calculations uUs138
Candy Bars Data us2—us48
capability analysis sr252, SR254—SR255,
SR261
cara dialog box sr263, srR267
capA table sr272
capability indices sr262
Cpk SR261
Com SR2061
example sr275
indices Us244, SR254, SR476
individual measurements analysis sr279
k (centering index) sr262
parameters SR267
caret SR334
case number Sr417
case-control studies sr203
case-sensitive US255
casewise operation SR32I1—SR323,

SR331—SR332
categories US74, Us80—Us84
add usg1

advantages Us8o

compact variables Usgr
create US8I

example Us92
data type Us73, sR320
delete Us84, usgr
disadvantages Us8o
edit Us83-Us84
enter data Us83
how StatView uses order us238-us240
import USIO4, US254
multiple Us2s4
nominal data class Us74, us78
problems from editing Us256
recode UsII8, US238, US255
reorder levels Us238-uUs240
required Us81, US91, USII8
tutorial example Us33

CDF
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Bernoulli sr40r1
binomial srg401
chi-square sr402
F srq02
inverse
chi-square srq14
F sraq1s
normal SsrR415
¢ sr416
normal Sr403
 SR404
Ceil sr359
cell axes usi90
dialog box us192
labels usi92
tick marks usi92
cell normality sr84
cell plots sr237
axis labels vs. legend text sr240
cell bar chart picture sr240
cell point chart picture sr241
data requirements sr238
dialog box sr237
discussion srR237
exercise SR239
results sR239
templates sr239
censor SR488
nonparametric analyses SR147, SRI57
pattern plot sri61
regression methods srizs, sri84
center-justify shapes uUs20s, Us218
central limit theorem sr258
central tendency
Average SR357
AveragelgnoreMissing sr357
GeometricMean sr380
HarmonicMean sr382
Mean sr388
Median sr389
Mode sr391
TrimmedMean sr428
change
analysis parameters USI34—USI3S
appearance of results UsI3s
criteria US240
data class uss1, Us78

data source us77
data type us75-Us76
formulas us240
templates UsIzI
variable names uss8
characteristic roots sri32
Chinese characters sr379, SR384, SR423

chi-square sr24
contingency tables srir2
data requirements sr2s
distribution sr402, srR407
results sr26
choose group(s) see Criteria
ChooseArg sr359
chords usvi
class markers usiio, USI143, USI63—US164

compact variables Us89, Us93
tutorial example Us2t

class see data class

classify results see Split By

Clean Up Items usis9, us213
tutorial example Us43

Clear us6s, usi81-Usi82

Clipboard us66, usi81
import pictures, text US2I0
transfer data UsS66

clone analyses Us131~Us133, USI46
tutorial example Us26-Us27

closed interval sr337

closed polygon us207

closed spline us208

coded raw data Usst, US84, SrII4

coded summary data Uss2—-Uss3, SRIIS

coefficient correlations table sri89

coefficient covariances table sri89
coefficient of determination see R squared
coefficient of variation us6o, sr4
CoeffOfVariation sr360

colinearity srs3, srs8

collection of analyses see templates

color palette preferences Us226-uUs227

colors
axis USI97
graph frame Usi8s
graph text Us197
graphs Us229
grid us217
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page break us217

plots usi97
preferences Us226-Us227

shapes us212

table text usigg

tables Us199, Us202

tutorial example Us43

view background us212
column attributes see attributes
column charts see cell plots
columns

add multiple columns uUs62

insert US62

labels usig9g

selecting Us64

transpose into rows Us68

vs. variables Uss3

widths in tables usi99
columnwise operation UsI08, UsI24,

SR321-SR323, SR325—SR326

Combinations sr361
combinations sr358
combine analyses Us162

combine datasets see merge
combine functions sr323
combine levels sr360

combine strings SR361

command syntax see syntax
commas SR324

comment SR329

common intercepts test SR3I
common problems see troubleshoot
common questions Us237—US250

dataset Us237-Us240
formulas Us240-Us243
QC analysis Us244~Us245
survival analysis Us245-Us250
common slopes test SR81
communality summary SR140
Compact Uss7, Us88, Us9o
compact variables Uss7, Us81, Us84~Us97,
USIII, USIT7, USI43, USI63—USI64
advantages Us8s
analyses US95-Us97
example Us9s, SROI-SR93,
SR97—SR99, SRIOI, SRIOS—SRIO7
categories US9I

compact USSZ
create US86, US245

complex example US89-Us93
simple example Us87-Us89
disadvantages Us85-Us86
expand US57, US94-US95
QC analyses Us244-Us24s
repeated measures analysis of

variance US8S, SROI
triangle controls Us88, Us9s
compare distributions
box plots sr243
compare percentile plots srR247
data requirements sr247
dialog box sr247
discussion sr247
exercise SR248
results srR248
templates sr248
comparison operators USI26

complete srRi47

complex criteria USI25, SR409
compound vs. multiple

results USI35—USI37, USI70, US229
Concat srR361
conditional transformation sr341
confidence intervals Us241-Us242
bivariate plots sr221, SR224, SR228,
SR232

chi-square test sr24

interaction plots srR90

logistic regression sr20s, SR209,
SR2I4—SR21§

mean difference sr30, SR37-SR38, SR44
one sample t-test SR23

proportional hazards models srizo
survival regression analyses sri88
univariate plots sr217
unpaired comparisons Sr37
connect lines Us188
constants SR324—SR325
TT SR400
¢ SR375
consultant Us162

contingency coefficient srii3
contingency tables srir
data requirements SRII4—SRIIG
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dialog box srir4
discussion srrir
exercise SRII7
results SRIIG
templates SRI16
continuous data class Us78
control charts sr283-sr284
lines srR266-sr267
control limits
3-sigma rule sr2s58
QC subgroup measurements
analysis SR262
violations sr251-sR252
convert data types SR331
convert values see Recode
coprocessor Us73
Copy Us65—US66, USI04, USI8I—USI82
as text and picture US233, US236
unusual selection shapes Us68-us7o
copy analysis with new variables see clone

copy variable assignments see adopt
corner/center control Us205
correct errors SR330
Correlation sr362
correlation SR31, SR43, SRS53
data requirements sr47
dialog box sr46
discussion sr43
exercise USISS, SR35, SR48
factor analysis sri31
Kendall rank srr2t
matrix US§3
results SrR47
Spearman rank srr2r
templates sr47
Cos sr363
Cosh sr364
Cot sr364
Count sr365
count US60
Covariance SRrR365
covariance SR43, SR45
data requirements sr47
dialog box sr46
discussion sr43

exercise USISS, SR48
matrix US§3

results sr47
templates sr47

covariates SR78
proportional hazards models sri69
survival functions Us24s, Us248
Cramer’s V srii3
crash us2s1
create
analyses USI31-USI33
by hand or with templates Usi3t
templates USIGI-USI
tutorial example Us20-Us27
category
tutorial example Uss-Us6
compact variables Us86
criteria USI24—US128
graphs us131-Us133
tables uUs131-UsI33
templates UsI69-USI74
exercise USI7I—USI77
Create Analysis Us132, USI43
exercises USIS0—USIS6
tutorial example Us20
Create Criteria US124~USI128, SR317
Criteria USI24—USI129, SR325—SR326,
SR336—SR339, SR343—SR344, SR409
analyses US149-USISO
Boolean operators usi27

choose level(s) usi2y
compare results with different Usi82

complex USI25, SR409
delete usi29

Edit/Apply usi29, us240
example Us30

hints us222

names USI2§

pop-up menu US28, USI24, USI28—USI129
print definitions UsI2g

random Us128

set values UsI26

subrtitles Us29

troubleshoot Us254-Us256
turn off usi2g

tutorial example Us28-Us29

vs. Include/Exclude Row usio8
windows at Open Us254, Us256
also see row inclusion
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critical values see CDF, inverse Copy Us66
cross-hair cursor see Recode Cut, Clear, Delete us6s
cross-platform compatibility us7o, us99 enter USGI
crosstabs see contingency tables manage USIO7—USI30
Csc sr366 select Us64
CSCC SR26T subsets see Criteria, Include Row, Ex-
cube root sr334 clude Row, Sort, row inclusion
cubic spline Us208, sr221, sR225, also see dataset
SR227—SR228, SR233 data class us6, usso, sr332
CubicSeries sr367 change usst, Us78
CumProduct sr367 continuous Us78
CumSum sr368 discussion Us78
CumSumSquares sr368 example Us49
cumulative distribution function see CDF in examples UsVI
cumulative hazard function sri6s informative Us78, usiry
cumulative hazard plot sriso, sri6o nominal Us78, Us238-Us240
cumulative survival plot sri60 data format
currency currency US79
data type Us73, SR320-SR321 date/time us79
formats Usvi, US79 engineering US79
cursor movement see dataset preferences enhanced free fixed us79
curve tool see spline tool fixed places Us79
Custom Rulers us217 free format us79
custom templates US169-USI77 free formart fixed Us79
exercise USI7I-USI77 in examples UsVI
custom tests for special causes sr260 scientific Us79
dialog box sr264 data loss
save as template SR261 change type usys
customize when pasting Us67
graphs USI83-USI97, US203—Us212 data organization US3, Us49-Uss3
results USI79—Us202 arrangement US5O
shapes Us203-Us212 class us49-usso
tables Us197-Us202 compact variables Us84
text US203—US212 example Us49
CUSUM analysis structure US49-USs3
charts sr2ss, SR261, SR271, SR283 Data pop-up menu
individual measurement analyses sr279 Assign variables dialog box us163
results SR263, SR265 variable browser Uss56, Usi43, Usi46
Cut us6s, UsI81-USI82 data source Us6, US77, SR329—SR330
unusual selection shapes Us68-us7o analysis generated Us77
cutpoints SR342 change us77
also see Recode dynamic formula us77
in examples UsVI
D static formula us77
user entered Us77
D usage marker see usage markers data type Usst, US73-Us76, SR316,

data SR3I8—SR321, SR332, SR359
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category US73-US74, SR320 Hour sr382
change us75-Us76 Minute sr389
convert SR331 Month sr391
currency US73, SR320 Now sr393
date/time Us73, sr321 Second sr419
import USIO3, US254 Time sr427
in examples USVI Weekday sr430
integer US73, SR319 WeekOfYear sr431
long integer Us73 Year sr43t
real Us73, SR318 group by month sr370
string US73, SR319—SR320, SR338 missing values sr321
dataset valid data range Us74, sr321,
add columns uUss4, us62 SR330—SR331
close us72 DateDifference sr370
common questions Us237—US240 Day sr371
copy Us6s DayOfWeek sr372
cut Us6s DayOfYear sr372
delete us66 decimal characters usvi
edit us64-usyo decimal places us8o
insert columns Us62 graphs Us188
paste USG6 in examples UsVI
preferences Us227 see dataset preferences
print Us72 tables us2o01, Us231
renamed UsI58 defaults see preferences
save US70 defect variable sr31o
scroll us64 degrees sr372, SR405
split pane control Usss degrees of freedom sr73
summary pane see attribute pane DegToRad sr372
transfer between Windows and Delete us63, us6s
Macintosh us7o, us9g categories US84
troubleshoot Us252 Criteria Usi29
window Us4 variables us116
windows US54-US57 delimiters usior, Us252-US253
Dataset Templates Us233-Us237 denominator df sr41
custom US240 density plot sri61
Date sr369 Dependent usi44
date/time dependent variables sr76—sr77
data type Us73, sr321 descending Sort see Sort
fix imported values sr369, sR427 descriptive statistics US96, USI35-USI36
format uUs79 data requirements sr9
formats USVI, US79, SR330—SR331 dialog box sr7
functions SR330—SR331 discussion srI
Date sr369 exercise SR9
DateDifference sr37o results SrR9
Day sr371 template exercise USI65—USI66
DayOfWeek sr372 templates UsIGS, SRQ

DayOfYear sr372 tutorial example Us20
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design of StatView ust
determine whether results are

selected USI33-USI34
deviance sr203
deviance residuals sr170, SrR178, SR190
df see degrees of freedom
dichotomous logistic regression sr199
Difference sr373

difference sr333, SR370, SR373

unary SR33s
differing results uUsvr

dimensionality reduction sri3r

direction of operation sR321-SR323,

SR331-SR332
directory of results see results browser
disk space usizo, Us232
distribute space Us218
distributions see CDF, random numbers func-

tions

Div sr374
divide continuous into groups see Recode
division SR334, SR374, SR413
document formulas sr329
document size us213

limit us232
documents vs. templates USI61-USI62

dose response sr202
DotProduct sr374
dotted lines usi8s
dotted red line see page breaks
double asterisk sr334
double-byte strings
manipulating sr379, sr384, srR423
double-click row numbers see row inclusion

double-spacing see line spacing
Draw palette Usi8s, US195-US197, US199,
US202—US212

arc tool Us205-Us207
arrow tool us212

tutorial example Us4s
also see selection tool
corner/center control Us205
curve tool see spline tool
ellipse tool us205
fill color us202

tutorial example Us43
fill pattern uUs21r

grid us217
line tool us205
tutorial example Us4s
line widths us2ir
pen color Us202

tutorial example Us43
pen pattern US211
polygon tool Us20s, Us207-Us208

rectangle tool Us205

rounded rectangle tool Us205-Us206
selection tool Us18s, USI97, US204
spline tool Us208-us210

tear-off menu Us204

text tool US204-Us205
tutorial example Us4s

drawing and layout us203-us212
Drawing Size UsI59, US213

dialog box us213
DS Transfer file format us70, us99
Dunnett’s sr87
Duplicate usi81—usi82
Durbin-Watson srs9
dynamic formulas Us116, sSR329—SR330,

SR393
data source us77

also see Formula

dynamic links
analysis objects Us133
Analyze menu us168
formulas us109, USIIG
graph text Usi87
reopen views USIGI
results and data Us138-UsI39
tables us2o1

E

e SR375, SR385
also see hyperbolic functions
edit
criteria US240
data Us64-Us70
tutorial example usis
formulas usz240
table text Us200
Edit Analysis Us134—~Us135, USI40, USI42,
Us233
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shortcut usigr
tutorial example Us24-Us2s
Edit Categories Us83-Us84
Edit Display us13s, usigo-usi4r,
us180—us182, usi8s, Usi87, usigs,

US197, USI99, US20I, US233

dialog boxes us18o—usi81
Edit/Apply Criteria Us124, USI29, SR317
effects sr73
eigenvalues sri32

table sri3g
ElementOf us28, usi26, sr345
ellipse tool us205

ellipses Us64, usii3
empty cell see missing values

empty graphs Us138, Us164
empty tables Us138, USIST, USI64
engineering format Us79

enhanced free fixed format usy9

enter data US57-USG4
tutorial example Us3, Us6-UsIO
values US61-UsG2

equal sr340

equamax SRI3S

Erf sr376

error bars Us241-Us242

cell plots sr237
interaction plots SrR90O

error function SrR376

error messages US222, US225, US251
beep us225
Formula usii6

error of intercept SRs6

error-free analyses USIG2

Euclidean norm sr392

evaluation SR326-SR328

event time variable Us243, SR147, SR149

discrete vs. continuous sri48
nonparametric analyses SR157
pattern plot sri62

regression model survival plots srizs
regression models sr182, sr184

survival regression models sri84
Example Views and Datasets Us233

examples UsVI, SR316-SR317
Excel import/export Us99—UsI00, US254

tutorial example UsII—UsI2

excess risk sr201
Exclude Row usio8—usio
analyses US149-USISO
compare results Us182
subtitles Us29
vs. Criteria uUs1o8
also see row inclusion

exclusion see Criteria, Include Row, Exclude
Row, row inclusion

exclusive OR sr347

Exercises sr96

Expand uss7, Us94

expand compact variables Us94—Us9s

expected value srir2

exponential distribution sr407

exponential function sr37s, sr385

exponential model sr172—sr173, sr175

exponential regression SRs4, SRG8

ExponentialSeries sr376

exponentiation SR334

export
EMF USIS7
Excel us11, usgg9-usioo
missing values UsIo2

PICT USIS7
previous StatView versions USIO6

SuperANOVA us1o6
text USIOO—USIO2, USIO§

WME USIS7
expression SR325, SR338—SR339
expression language uUsii3

extended precision Us73
extra-Binomial variation sr202

€xtract text SR423

F

F distribution sr402, SR407
factor sr77
factor analysis sri31
basic output sri38
data requirements sri37
dialog box sr136
discussion sri31
exercise SRI38
factor extraction methods sriz2
factor loadings sr133, sr139



Index SR=Statliew Reference, US=Using Statliew

factor scores SRI33
oblique solution sri42
results SrI38
save factor scores SRI33
summary table sri38
templates sri38
transformation methods sri3s
unrotated solution Sri41
Factorial sr377
factorial design sr9t
factors see category, nominal data
false sr338, srR34s
features UsI
FibonacciSeries sr378

file formats us70, Us72, UsS99, USI§6—USIS

file size usryo, Us232
filename us99

fill patterns
color usig7
colors US202, US212
graph interior Usi8s

graphs Us196, Us229
shapes us211

final communality estimate sri40
find and replace uUs241
Fisher’s exact test srir3
Fisher’s pLSD Sr86, sr103
tutorial example Us39

Fisher’s 7 to z transformation Sr32, srR44

fitted lines see bivariate plots
fitted values srRGO—SRGI
fix page breaks
tutorial example Us43
fix page breaks see Clean Up Items
fixed places Us79
flip see transpose
Floor sr380
fonts
graphs Usi8s
tables Us199-Us200
views US205, US232
Food Guide Pyramid us2
Force button usi44
stepwise regression SR62
survival regression models sri8s
force recalculation Us138-Us139
foreign versions Us256

format sr316
date/time data sr330-sR331
graphs usi83-us197
multiple columns
tutorial example Us9
numeric data srR332
tables Us197—Us202, US231
templates UsI70, US233
also see data format
Formula usiog-us1i6, sr318, sr330,
SR338—SR339
analysis generated variables sr61
build definition usii3
common questions US240-US243
compute USII3
date/time data us74
dialog box usiog
dynamic links usto9, UsiI6

edit usis, us240
errors USII6

examples UsIi4—UsIig

hints us222

import from SuperANOVA us256
missing values Us2s5

preferences Us228
print definitions usiIo
shortcuts usis
troubleshoot Us116, US254—Us256
tutorial example Usiz—Us20
variable attributes usiio
windows at Open Us254, Us256
fractional values sr359, SR374, SR380,
SR390, SR4I3, SR416, SR429
F-ratio sr74, SR84
free format us79
free formart fixed Us79
free-form curves see spline tool

frequency distribution Us233, sr13
data requirements sri6
dialog box sri4
discussion sr13
exercise SRI7
interval settings sri4
results SRI6
templates sr16
tutorial example Us31
Frequency Summary Table usi36-us137
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Friedman test sri22
F-statistic srR73

F-test see unpaired comparisons
function browser ustii, Usiiz

G

G usage marker see usage markers
Games-Howell sr88
gamma distribution sr408
Gaussian distribution sr408
generate data SR338, SR347
also see Series, Random Number, Formula
generator seed see random numbers
generic variable names for templates Usizo
geometric mean SR3
GeometricMean sr380
GeometricSeries SR381
global null hypothesis tests table sri86
golden ratio sr378
graph defaults see preferences
Graph dialog box usi87
graphs
align us214
arrange US213-US214

axes USI83
axis bounds usi8s

axis frame us18s

axis frames Us18s, USI87, US229
axis labels usi83

axis values Usi83

bivariate plots srR221-sr236
box plots sr243

cell plots sr237

chart of types srv

colors Us229

compare percentile plots sr247

create USI3I-USI33
by hand or with templates uUs131

customize USI83—USI97
decimal places usi92
Edit commands usi81
edit text usi87

fill color usi97

fill patterns Us196, US229
fonts usi8s

format usizs

frames Us183, USI97
grid lines Us183, Us18s, USI92

group US215

height us188, Us229

interior USI83, USI8s, USI9§

layers us21s

legends us183, Us186, USI8S,
USI94~USI9S, USI97

line patterns usi8s

line widths usi8s, usi96

list in analysis browser Usi41

lock us214

move USI86, Us214

move components USI86

notes USI84, USI86

numeric formats Us229

overlay Us186

pen color Usi97

pen patterns USI8s, USI96

percentile plots srig

plots usi83, usi97

plotted lines Us183, Us197

point colors USI195-UsI196

point types USI9§

point types and sizes Us229
preferences Us179-Us180, US228-Us229
reference lines Us184

resize USI8G
select Us184
select components Us18s
template exercise UsI7I
text color UsIS8s, USI97
tick marks Us183, Us18s
titles Us183, Us186, USIS8Y
ungroup US2Is
univariate plots sr217
unlock us214
width Us188, us229
X axis USI83
Y axis usi83

Graphs Only usi42

greater than sr341

greater than or equal to srR337, SR341
gremlins Us252
grid Us186, US200, US217

colors us217

spacing US217
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grid lines us183, Us18s, USI92

Group us21s
unexpected results Us2s1

group labels see category
group variable
nonparametric analyses SR157
grouped regression SR81
Groups sr381
groups US50—USSI, US80, USI9O, SR327,
SR336, SR349
choose see Criteria

nonparametric analyses Sr147

also see compact variables, Split By
growth regression SRrss, SR67
G-statistic SRII3

H

hairlines us232
half-open interval sr337
harmonic mean sr3
HarmonicMean sr382
Harrington-Fleming test srist, sri56
Harris image analysis sri32
hashed red lines see page breaks
hatch marks see tick marks
hazard function sri78
hazard plot sriso, sr161
height us229
graphs Us188
tables usi99—us200
help Us48, us221, US223-USs225
helpful hints see troubleshoor
heterogeneous variances sr86
Hide Grid Lines us217
Hide Page Breaks us2ry
Hide Rulers us217
hierarchical Analyze menu usi69
Hints us48, us221-us222
balloon us222
formulas usiz
informational us222

interface us222
preferences Us222, Us230
templates (Assign Variables) us163
window Us4

Histogram Us132, USI136—US137, US233

capability indices Us244

normal curve Us244

tutorial example Us31
histograms see frequency distribution
historical values sr256
homogeneity of slopes sr81

homogeneity of variances Us235, SrR84

horizontal see casewise
Hotelling-Lawley trace sr82
Hour sr382

HYP USII2

hyperbolic arccosine sr349
hyperbolic arcsine sr3s4
hyperbolic arctangent sr356
hyperbolic cosine sr364
hyperbolic sine sr419
hyperbolic tangent sr426
hyperbolic trig functions usi2
hypothesis testing srR74—sr76
hypothesized mean sr23
hypothesized variance sr24

I charts sr277, sr281, sr283
I class marker see class marker
if...then...else usii4, sr341
tutorial example UsI9
ignore characters sr329
illustrations in manual usvi
impact SR201
import
categories USIO4, US254
data type Us103, Us254
date/time values sr369—sr370,
SR427-SR428
dialog box usior
examples USI04-USIOS
Excel us2s54
tutorial example usi—usi2

missing values US103, Us253-Us254

non-numeric data as type String Us254

pictures US210

previous StatView versions USIO6
separator characters US252-US253

SuperANOVA us106, Us256
text USIOO—USIO2
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SII

tutorial example Usi2-us13
troubleshoot Us252-Us254
variable names usIo2

in control SsrR251, SR253
Include Row usio8—usio

analyses US149-USISO
compare results Us182
subtitles Us29
vs. Criteria Us1o8
inclusion see Criteria, Include Row, Exclude

Row, row inclusion
incomplete sri47
incorrect results Us250
Independent usi44
independent variables sr77-sr78
index of results see results browser
individual measurements analysis see QC
individual measurements analysis
inequality srR338-sr341
informational hints Us222
informative data class Us78, usiry, sr332
input column Us4, Uss4, USGT
input row USG6I

insert columns Us62

insert rows US62—Us63

integer data type Us73, SR319

interaction effects sr78, sr9o
interaction plots sr78, SR9O, SR96-SR99,

SRIO4, SRIO7
tutorial example Us40

also see cell plots
intercept SR§5—SR56, SR8O—SR8I, SR200
Interface hints us222

interior
graphs Usi83
tables uUs198
international datasets Us256, SR324
international system configurations UsvI
interquartile range Srs
intervals SR336—SR338, SR345
frequency distribution sri4
INV USII2
inverse CDF see CDF

inverse functions see arc functions
inverting matrices SR433
invisible lines us202

IQR see z'nterqmzm'le range

IS US25S, SR346
IsMissing Us255, SR343

ISNOT US255, SR347
IsRowExcluded sr343

IsRowlncluded sr344

item count variable sr290

iterated principal axis factor
extraction SRI32

iteration history table sri89

J

Japanese characters srR379, SR384, SR423
joint significance tests table srrgo

jump point SRI49

K

Kaiser image analysis sri32

Kaplan-Meier sri49, sr163

Kendall rank correlation sri21
data sri23
data requirements sr123
exercise SRI27

Kendall’s tau sri21

key see legends

keyboard shortcuts usvi, us64
draw shapes Us205
Edit Analysis, Edit Display us233
move graphs Us186

move tables us2o00
see StatView Shortcuts card
Kolmogorov-Smirnov test Us86, sri20
data requirements sri23
template Us234
Kruskal-Wallis test sriz1
data requirements sri23
exercise SRI28
kurtosis Us234, SRG

L

Lag sr382

lag sr363
lambda sr74, sr76

landscape page us213
Latin square design srios—srioz
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layers us21s
exercise US2I§

Layout tools us212-us219

tutorial example Us43
least significant difference (Fisher’s
protected) sr86
Left Justify us20s, us218
left to right evaluation sr328
legends us182—-Us183, USI94-USI9S

color usigy
frame uUsI94

layout usios
move USI86
orientation USI8G

show Us188
symbols Us186, UsI94
text USI9S

Len sr383

length of string sr383
length of vector sr392
leptokurtic sry
less than sr337, sR340
less than or equal to sr337, sR340
levels see categories
Library us91, us22s, U233, Us251
life table method sris2
likelihood ratio test sri70, srR179, SR209
Likert scale, reverse sr348
limit document size Us232
line charts
cell plots sr237
connect lines Us188
Line Plot dialog box sr217
univariate plots sr217

also see bivariate plots and univariate plots
line patterns

graphs Usi8s

tables Us202
line spacing us199

tables us2o01, USs231
line tool us205

tutorial example Us4s
line widths us232

graphs usi8s, Us196

shapes us211

tables Us199, Us202
linear algebra

DotProduct sr374
Norm sr392

linear axis scale usi92

linear predictor srizo, sri78
standard error sri78

LinearSeries sr384

listwise deletion sr4s

Ln sr38g
In cumulative hazard function sriso, sri61,
SRIGG6

localized versions us256

locally weighted scatterplot smoother see
lowess

locate results see results browser

Lock us214

Log sr38s

log odds sr200

logarithmic axis scale Us192

logarithmic regression srs4

logarithms sr37s, sr385—sr386

also see hyperbolic functions

LogB sr386

logical expressions see Criteria, Formula

logical operators sr328, sR338—sR340

AND SR34S
ElementOf sr345

equal sr340
exclusive OR sr347
false sr34s

greater than sr341

greater than or equal to sr341
if...then...else sr341

Is sR346

IsMissing sRr343

ISNOT SR347

IsRowExcluded sr343
IsRowlncluded sr344

less than sr340

less than or equal to sr340

NOT SR345
not equal sr341
OR SR347
true SR34s
logistic regression SrR199—SR215
assumptions SR202

binary sri99
case-control studies sr203
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confidence intervals sr205, SR209,
SR214—SR21§

data requirements SsrR205

dialog box sr204

dichotomous sr199

discussion SR199—SR204
estimating coefficients sr203

exercises SR207, SR2I§
iterations SR205
multiple srR201-sR202, SR212

nominal data coding sr206
polytomous SRr199, SR204, SR214
random samples SrR203

reference level sr206
results srR207
simple SR200-SR201, SR207

templates sr207
loglogistic model srry2
lognormal model sri72, srizs
LogOdds sr386
logrank (Mantel-Cox) test SRIsT, SRI56
long integer data type Us73
lowess sr221, SR225-SR226, SR235

tension SR226, SR228

LSD see Fisher’s PLSD

M

M usage marker Us163
MacDraw II
size limit Us232
macros see templates
MAD see median absolute deviation
magnitude srR348
main effects sr78
manage data USIO7—USI30
tutorial example Us2—-uUs13
Manage menu
commands USIO7, SR315, SR317—SR318
Preferences us225
manage templates USI67—US169
MANCOVA see analysis of variance

manipulate columns and rows Us62-Us64

Mann-Whitney U test sr120
data sri23
exercise SRI2§

MANOVA see analysis of variance

Mantel-Cox test SRISI, SRIS6
Mantel-Haenszel test srisi, sris6
marquee select Us184, Us198

martingale residuals sr170, sr178, sri9o
mathematical expression language usi3

mathematical functions
absolute value sr348
addition sr333
Average SR356
AveragelgnoreMissing sr357
Ceil sr359
Combinations sr361
CumProduct sr367
CumSum sr368
CumSumSquares SrR368
difference sr373
Div sr374
division sr334
DotProduct sr374
¢ SR37S
Erf sr376
exponentiation SR334
Factorial sr377
Floor sr380

Lag sr382
Ln sr38s
Log sr38s

log sr386
LogOdds sr386

Mod sr390
MovingAverage SR391
multiplication sr333
negative SR335

Norm sr392
parentheses srR336
Percentages sr397
Percentile sr398
Permutations SR399
Pi srq00

positive SR335
Remainder sr413
Round sr416

Sqrt sr420
subtraction sr333
Sum srR423
SumlgnoreMissing sr424
SumOfColumn sr424
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SumOfSquares srq25
Trunc sr429
matrix inversion SR433
Maximum sr387
maximum US60, US255, SR3
Mean sr388
mean US6O, USI84, SRI, SR356—SR357, SR388,

SR391, SR428
confidence interval around sr217

one sample rtest sr23
mean difference confidence interval sr3o
mean square SR73
means tables sr78, srRgo

tutorial example Us39
measure string values sr383
measurement units US2I7
Median sr388
median sr2, SR398
median absolute deviation sr6, srR387
memory requirements US232, US25T
merge

datasets Us66

files us99

graphs Us186
mesokurtic srR7
message area USI40
method default sri3s
Microsoft Excel see Excel
Minimum sr389
minimum US6O, US255, SR3
minus SR333, SR335, SR370, SR373
Minute sr389
Missing Cells us2ss

also see missing values

missing values US60-Us62, USII8, SR326,
SR335, SR338—SR339, SR343,
SR346—SR347, SR357, SR365,
SR393—SR394, SR424
date/time data sr321, sr330
formulas us2ss

import USIO3, US253—US254

in criteria USI27
multiple datasets Usi46
Recode usr20, us2ss
recode SR341

Mod sr390

Mode sr390

mode srR2
model building sr76, sr78
model coefficients table sri86
modify templates Usizt
modulus sr390
Month sr391
Most sr324
mouse shortcuts UsvI

also see StatView Shortcuts card
move

graphs Us186

objects Us214

table components Us200

tables Us200
Move Backward us21s-us216
Move Forward us215-us216
Move to Back usi86, us2is
Move to Front us186, usais
moving range SR477
MovingAverage SR391
MR charts sr278, sr281, srR283
multiple srs2
multiple categories Us254

multiple comparisons see post hoc tests
multiple logistic regression srR201-sR202,
SR2I2
multiple regression srs2, SR69, SR77
multiple vs. compound
results USI35-USI37, USI70, US229

multiplication sRr333, SR367, SR374

N class marker see class marker
name variables see variables
natural logarithm sr38s
negation SR345
negative SR335
also see absolute value
nest functions sr323
nested groups SR381
new dataset
tutorial example Us4
New View Us132, USI39, USISO
nominal data sr204
bivariate plots sr232
coding sr206
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nominal data class us74, Us78,
US238—US240, SR332
also see category, Split By
nonconformity variable
c/u analyses srR302

p/np analyses srR290

nonlinear regression SR§4—SRsS, SR67—SR68

also see logistic regression
nonparametric tests SRII9

data sri23

data requirements sr123

dialog box sri22

discussion srirg

exercises SRI2§

Friedman test sri22

Kendall’s tau sri21

Kolmogorov-Smirnov test sr120

Kruskal-Wallis test sri21

Mann-Whitney U test sr120

one sample sign test SRII9

paired sign test SrI21

results SR124

Spearman rank correlation

coefficient srizr

templates sr124
ties SRI24
Wald-Wolfowitz runs test sri2o
Wilcoxon signed rank test srr2o
Norm sr392
normal count SRIs
normal curve Us244
normal distribution sr403, SR410
curve on histogram sris
definition sr4

normality SRI3, SR416
Normality Test Us86, us233

NOT SR345
not enough memory Us232, US251

not equal sr341
notation
keyboard/mouse shortcuts usvi
notation see syntax
notched box plots Us188
notes USI84
move USI86
tables Us199

Now sr393

np charts sr266, srR288, sR293
nth root sr334

null hypothesis sr74-sr7s
number of cases sr365

number of seconds see date/time functions
NumberMissing sr393
NumberOfRows sr394
numerator df sr41
numeric axes USIQO
bounds usigr
dialog boxes usi9o
tick marks usior
numeric data UsS66
numeric formats

axes USI92

graphs Us229

tables us2o01, Us231
numeric intervals SrR337

numeric precision US73
nutrition labels us2

0

object-oriented technology Us133, UsI6T
objects

align us214

clean up us213-Us214

group Us2Is

layers us21s

lock us214
move US214

ungroup US2I§
unlock us214

oblique factor scores SRI3s, SRI37, SRI40,
SR142

odds sr200

off-diagonal sri33

old StatView data usi06

omnibus tests srR74

one SR345

one sample analysis sr23
data requirements sr2s
dialog box sr24
discussion SR23—SR24
exercise SR26
nonparametric SRII9Q
results srR26
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templates sr26

t-test SR23
one-case-per-row data USSI—-USs2
OneGroupChiSquare sr394
OnlyExcludedRows us108, usi24,

SR325—SR326
OnlylncludedRows us108, Usi24,
SR325—SR326

Open US72, US99—USIOO, USIS
dataset
tutorial example Us13

view
use different variables uUs1s8
views USI§7—USI59
use different dataset usisg
use original variables usis7
open interval sr337
open polygon Us207
open spline Us208
Open View As Us157-UsI58, USIGI
operators SR332—SR336
addition sr333
division sr334
exponentiation SR334

multiplication sr333
negative SR335
parentheses srR336
positive SR335
subtraction sr333
OR SR347
order of operations SR326-SR328, SR336

Order pop-up menu
analysis browser Usi42
Assign variables dialog box us163
function browser uUsIIt

results browser Usi47

variable browser Uss56, ustio, UsI43
ordinal axes UsI90, USI93
ordinate see Y axis
orientation

page Us2I3

also see transpose
orthogonal factor solution sri3s, sr137
out of control sr253
out of memory Us232, US251

outliers SrRs7, SR391
and variance sr4

box plots sr243

in descriptive statistics SRI
output list in analysis browser Usi4r
ovals Us206
overlay

graphs Us186

graphs, tables us2rs

P

p value
analysis of variance SrR74
contingency tables srir2
correlation SrR44
one sample rtest SrR23
paired comparisons sr29
regression SR§7
regression intercept SRss
unpaired comparisons SrR37
Z test SR3I
p/mp analyses see QC p/np analysis
page breaks us27, usisg
color us2iz
print Us214
show/hide us2i7
page orientation US213
paired comparisons sr29
data sr33
data requirements sr33
dialog box sr32
discussion SR29—SR32
exercise SR34—SR36
nonparametric SRI20—SRI2I
paired #test srR29
results SrR33
templates SR34
Z -test SR3I
z-test SR3I
pairwise deletion sr4s
parametric models SRI7I—SR172
parentheses SR327, SR336, SR349
intervals sr337
Pareto analysis Us238, SR256, SR31I
data requirements SR310—SR31I

dialog box sr309—sr310
discussion sr309

exercise SR3II-SR313
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results SR31I

partial correlation sr4s, sR205

partial F-ratio srs3

Pascal’s triangle sr358

Paste Us66, us104, USI8I—USI82
imported pictures and text Us210
results into datasets Us233
unusual selection shapes Us68-us70

Paste Transposed Us68

patterns see pen patterns

Pearson correlation sri31, SR362

pen color Us202

pen patterns
colors Us197, Us212
graphs usi8s, Us196
shapes us21t
tables Us199, Us202
Percentages sr397
Percentile sr398
percentile plots srig
percentiles
convert raw scores to SR399
data requirements srig
dialog box srig
exercise SR20
find several at once srR398
results sr20

templates sr20
percents of column totals table srir2

percents of row totals table srir2

period see missing values
Permutations SR399
permutations
ordered srR377, SR400
unordered sr361
Peto-Peto-Wilcoxon test SRisI, SRI56
phi coefficient srir3
Pi srq00
Pillai’s trace sr82
placeholders Us138, USIST, USI64, SR324
formulas usis
plateau sr79
platykurtic sr7
plots Us183
colors uUs197
plotted lines uUs183

color usig7

PLSD see Fisher’s PLSD

plus sr333, SR335, SR368, SR423—SR424
point charts see scattergrams

point colors USI195-UsI196

point sizes USI9S, US229

point types Us195, Us229

Poisson distribution sr410

polygon tool Us20s, Us207-Us208

polynomial regression srs2, SR64—SRGS
polytomous logistic regression SRr199,
SR204, SR214
population statistics SRI
portrait page US213
positive SR335
post hoc tests SrR74, SR84—SR90, SRI03
assumptions SR84
Bonferroni/Dunn sr86
cell contributions table srir2
Dunnett’s sr87
Fisher’s pLsD sr86
Games-Howell sr88
interaction effects sr89
purposes SrR84
repeated measures SR8
Schefté’s F sr86, sri04
Student Newman Keuls sr88
Tukey-Kramer sr87
type I errors sr8s
pound signs Us64
power sr74, SR76, SR9O, SR334
power regression SRS
precision US73
predicted values sR60-SR6I, SR66
preferences Us225-Us233
application Us225-Us226
color palette Us226-Us227
dataset us227
formula Us228
graph us228-us229
graphs Usi79-Us180
hints us222, Us230
Survival Analysis Us230-Us231
table usi79—uUsI80, US231, US250
view USI4I, USI7I, USI79—USI8O,
US232-US233
presentation USIGI, USI69
tutorial example Us43-Us47
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prevent changes see Lock
prevent errors USI62

prevent recalculation Us138-us139, usizo

preview format changes Usi81
previous versions’ data Us106
primary pattern solution sri4o
principal components analysis sr132
principal values see arc functions
print

Criteria definitions uUs12s

dataset us72

Formula definitions usiro

line widths usis9, Us232

presentation

tutorial example Us47
Random Numbers definitions usi23
Recode definitions usirg—usizo
Series definitions usr22
troubleshoot Us254
views USI§9—USI6O
prior probability sra1r
probabilities functions
ProbBinomial srgor1
ProbChiSquare sr402
ProbF srq02
ProbNormal sr403
Probt sr404
ReturnChiSquare srq14
ReturnF sr41s
ReturnNormal sr41s
ReturnT sr416
probability value see p value
ProbBinomial srgor1
ProbChiSquare sr402
ProbF sr402
problems see troubleshoot
ProbNormal sr403

Probt sr404

process SR251

process capability analysis sr261

product sr333, SR367, SR374

product limit method (Kaplan-
Meier) sri49

product-limit method (Kaplan-
Meier) sris2

progress bar usit

proportional hazards models sr167, srizs,

SRIQI
baseline hazard sri69
coefficients sri69
confidence intervals srr7o
covariate values SR169
residuals plots srr7o
significance tests SR169
stratification SRI71
stratified sr169
protected least significant difference see
Fisher’s pLsD

Q

QC analysis Usi42
common questions US244—US245

example sr254
introduction srR251-SrR256
QC ¢/u analysis
c/u charts sR300, SR303, SR306
control limits srR299
data requirements SR299, SR302-SR303
dialog boxes sr301-sr302
discussion SR299—srR301
exercise SR305—SR307
nonconformity variable sr302

results SR303-SR305
standardize inspection criteria SR301
subgroups sr299
templates SR305

QC individual measurements analysis
capability analysis sr279
CUSUM SR279
data requirements sr280
dialog boxes sr279—sr280
discussion Sr277-SrR279

exercise SR283—SR284
results srR280—sr282

templates SrR283
tests for special causes sr278
QC p/np analysis sr2ss
control limits sr288
data requirements SrR287, SR290—SR292
dialog boxes sr290
discussion sr287—sr289

exercises SR294—SR297
p charts sr256, SR266, srR288, sR292,
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SR295

results SR292-SR294
standardize inspection criteria Sr289

subgroup variables sr287
templates SR294

QC subgroup measurements analysis
data requirements SrR268—sr26
dialog boxes sr262-sr268
discussion sr257-SrR262

exercises SR273—SR276

results SR269—sR272
templates sr273

tests for special causes sr259
QuadraticSeries sr404
quantile plots sri74
QuarticSeries SrR405

quartiles sr398
quartimax SRI3§

question marks USII3, SR324
questions see common questiom
quotation marks US255, SR325, SR331
quotient SR334

R

R (partial correlation coefficient) sr20s
R charts sr259, SR266, SR270
R squared srs6
radians SR372, SR400, SR405
radius for round corners Us206
RadToDeg sr405
raise to powers SR334
random criteria USI124, USI28, SR409
Random Numbers usi23—usi24, sr317,
SR330

hints us222

print definitions UsI123

unique SR4T2
RandomBeta sr406
RandomBinomial sr406
RandomChiSquare sr407
RandomExponential sr407
RandomF sr407
RandomGamma sr408
RandomGaussian sr408
RandomlInclusion sr409

randomized complete block design srior1,

SRIO
RandomNormal sr410
RandomPoisson sr410
RandomT sr411
RandomUniform sr411
RandomUniformInteger srq12
Range sr259, srq12
range USGO, SR3
ranges SR336—SR338, SR345
Rank sr413

rank tests SRISO—SRISI, SRIG2, SR164, SRIGG

raw data
contingency tables exercise sriry
factor analysis sri31

real data type Us73, SR318

rearrange templates USIG8-USIG

Rebuild Template List us168-usi6
exercise USIZ6

Recalculate us138-uUsi40, Usi64, UsISI
background us138
templates Usr70

recalculate see dynamic formulas

reciprocal powers SR334
Recode usii7—usi21, sR71, SR317, SR330,

SR338, SR359
categories USII8, US238

dialog boxes usiry, us2o
example Us20

examples SR342-SR343
hints us222

missing to specified value Usi20
missing values Us2s5
print definitions UsI9—uUs20
troubleshoot Us2ss
tutorial example Us33-Us35
record macros see templates
rectangle tool Us205
recycle formulas us240
recycle results see template
reference level sr206
reference lines Us184
reference structure solution sr140
regression SRSI—SR7I
data requirements SrR61
dialog boxes srs9, sR204
discussion srs1
error distribution srs1
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error of intercept SRs6 repeat analyses see templates
exercises USISI, SR64, SRG9—SR7I repeated measures analysis of variance see
exponential SRrs4, SR68 analysis of variance
growth srss, SR67 reserved words US255-Us256
line equation uUs184 Reshape us206, Us208-Us209
lines see bivariate plots spline curves Us209
logarithmic srs4 residual mean square sr73
models sr77 residuals srs7, SRs9—SRGT
multiple srs2, SR69, SR77 plots srs8, srRG8
nonlinear SR54—SRsS, SRG7—SRGS proportional hazards models srizt
also see logistic regression saving and plotting sri71
plots sr231 resize
polynomial srs2, SR64—SRGS columns Us63
power SRSS graphs Us186
residual plots srs7 imported pictures Us210
residuals srs7 pasted object Us182
results SRG2, SR207 shapes Us206
simple SRs2, SR64, SR77 tables Us199-Us200
stepwise USI44, SR§2—SR54, SR6G9 text US204
tvalue srs7 restrict computations see Criteria, Include
templates USI66, USIZS, SRG3, SR207 Row, Exclude Row, row inclusion
exercise USI66—USI167, USI7S results
with ANova procedure sr80 accuracy USVI
also see logistic regression align us214
regroup sR360, SR381 clean up us213-Us214
relations srR338—sr340 group US2I5
ElementOf sr345 incorrect Us250
equal sr340 layers us21s
greater than sr341 list in analysis browser Usi41
greater than or equal to sr341 lock us214
IS SR346 move US214
ISNOT SR347 selected UsI33
less than sr340 unexpected Us2st
less than or equal to sr340 ungroup US2I§
not equal sr341 unlock us214
relative frequencies sris validation us2s50
relative risk sr2o1 results browser Usi47-Us148
Remainder sr413 selected results USI33-UsI34
remainder SrR390 tutorial example Us43
remark SrR329 Results Selected note us133-UsI34, US40
Remove usi44 resume work USI§7-USI59, USI6I
remove variables Us63 ReturnChiSquare srq14
templates Us164 ReturnF sr41s
tutorial example Us22 ReturnNormal sr41s
rename datasets US70 ReturnT sr416
reopen view USIS7—USIS9 reuse formulas Us240

reorder category variable Us238-Us240 reuse results see template
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reverse-code Likert scale sr348
tho see Harrington-Fleming, Spearman
Right Justify us2os
right mouse button usvit
right to left evaluation sr328
right-justify shapes vs218
root
nth sr334

square SR420
root curve SRI34

roots greater than one sri34
Rotate Left/Right usi9o
rotate text US205
axis values UsI90
rotation methods sri33
Round sr416
Round Corners dialog box us206
rounded rectangle tool Us205-Us206

rounded squares US205
row and column organization see data orga-
nization
row exclusion see Criteria, Include Row, Ex-
clude Row, row inclusion
row heights Us199, Us231
row inclusion UsI08, USI24, SR325—SR326,
SR339, SR343—SR344, SR409
multiple datasets Usi46
subtitles Us29
also see Criteria, Include Row, Exclude
Row
row labels usigg
row numbers, dimmed Us28, Us108, Us124,
SR326, SR339
RowNumber srq17
rows

selecting Us64
transpose into columns Us68
row-wise see casewise
Roy’s Greatest Root sr82
rs (range span) SR477
rulers us217

§

S charts sr2s5, SR259, SR266, SR271
compared to R charts sr259
S usage marker see usage markers

sample size SR365
sample statistics SRI
save
analysis results with view usi41,
USI70—-USI71, US232
datasets usyo
tutorial example Us4t
Excel ustoo
file formats us7o, Us156-USI57
template, tutorial example Us41, Us47
text USI02

views USI§6—USI§7
tutorial example Us41, Us47

Save As see save
scattergrams
cell plots sr237
compare percentiles plot sr247
confidence intervals Us242
error bars Us242
factor plots sri41
format usigs
regression plots srs7
residual plots srs7

scree plot SRI34
templates UsI7I

example UsIz4

univariate plots sr217

also see bivariate plots, univariate plots
Schefté’s F sr86, sri04
scientific format us79
score residuals sri71, sr178
score test SRI7O, SRI79
Scrapbook us240
scree plot SRI34
search sr379

Sec sr418
Second sr419

second mouse button usviI

seed see random numbers
Select Usi48
select
graph components Usi8s
graphs Usi84
rows and columns Us64
shapes Us204
table components Us198
tables usi97
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variables uss7
Select a Dataset dialog box usioz
selected results USI33-UsI34
selection handles uUs21, Us184-Us186,
USI98—US199, US204, US207,
US209—US210, US214
selection tool usi8s, UsI97
SEM SR421
semi-colons SrR324
separator characters USI00-USIOT,
US252-US253
importing US252
serial autocorrelation srs9

Series USI21-USI23, SR317, SR330

example UsI22
hints us222
print definition usi22

series functions
BinomialCoeffs sr3s58
CubicSeries sr367
ExponentialSeries sr376
FibonacciSeries sr378
GeometricSeries SR381
LinearSeries sr384
QuadraticSeries sr404
QuarticSeries SrR405

sets SR336—SR338, SR345
braces sr336

75% variance rule Sri34

shapes

arcs US205—US207
colors us212

corner/center control Us205
curves see spline tool
ellipses uUs205

fill patterns us21r

line widths us21r

lines us205
ovals Us206

pen patterns US211

polygons Us205, Us207-Us208
rectangles Us205

reshape Us206

resize US206

rounded rectangles Us205-Us206
rounded squares US205

select Us204

spline curves US208-Us210

squares US205
starting point US205

text US204-US205
shortcuts see StatView Shortcuts card
Show uss7, usi8i
Show Balloons us224
Show Definition usi21
Show Grid Lines us217
Show Page Breaks us21y
Show pop-up menu

analysis browser Usi42
results browser Usi48
Show Rulers us217
Show Selection Us64, USI33-USI34
side by side column charts sr237
sigma limits sr258
sign of coefficients srs4
sign test SRII9, SRI2I
exercise SRI2§
significance level sr9o
discussion SrR75—SR76
post hoc tests sr84
also see p value
simple logistic regression SR200—SR201,

SR207
simple regression SRs2, SRG4, SR77
Sin srR419
single-byte strings
manipulating sr379, sr384, srR423
single-spacing see line spacing

singular matrix sr43
Sinh sr419
Size Us205
skewness US234, SRG, SRI7
slash sr329, srR334
slope 580, sr200
slots for variables uUs163
SMC see squared multiple correlation
smooth sr391
smoothing see bivariate plots
snap to grid Us217-Us218
solve problems see troubleshoot
Sort USIIG—USII7, SR4I3, SR4IS
analyses US149-USISO
turn off sr418
tutorial example Usi4
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Undo usiry
source see data source
space SR333
SPC SR25T
Spearman rank correlation coefficient
data sri23
Spearman rank correlation coefficient
(rho) sri21, sr123
Special Causes Definitions table sr270
special purpose functions
O, 11 (1 D, (1 sra37

<, >, S, 2 SR337
{} sr336

ChooseArg sr359
VariableElement sr429

specification limits sr253

sphericity srq4

spline tool Us208-us210

Split By us97, Us136, Us144, USI46
tutorial example Us25-Us26

split pane control Usss, Usi41
Recode usirg

Sqrt sr420

square root SR420

squared multiple correlation sr133, sri40

squares US205

SS[e(i) — e(i-1)] srs9

stabilize variance sr386

stack order of objects Us21g

stagger tick marks us192

standard deviation Us6o, Us184, SR4
bars on interaction plot sr9o
lines on univariate plot sr217

standard error Us6o
bars on interaction plot sr9o
descriptive statistics table srs
lines on univariate plot sr217

standard error of the mean srs, srR421

StandardDeviation sr420

StandardError sr421

standardize sr397, sSR422

standardized regression coefficients srs6

StandardScores sr422

Static Formula usii6, sr329—sr330
data source us77

reason to use US256, SR344, SR4I8

also see Formula

stationery see templates
statistical functions
BoxCox sr358
CoeffOfVariation sr360
Correlation sr362
Count sr365
Covariance sRrR365
GeometricMean sr380
Groups SrR381
HarmonicMean sr382
MAD SR387
Maximum sr387
Mean sr388
Median sr388
Minimum sr389
Mode sr390
NumberMissing sr393
NumberOfRows sr394
OneGroupChiSquare sr394
Range sr412
Rank sr413
RowNumber srq17
StandardDeviation sr420
StandardError sr421
StandardScores sr422
TrimmedMean sr428
Variance sr430
statistics texts, recommended Sr481
status bars USI40, US221, US223
StatView 4.x data usyo
StatView Guide us223
StatView II/SE+Graphics file format usros
StatView Library us22s, Us233, Us2s1
categories US9I
StatView Templates folder usi6r, usiz4
step function plots Us249
stepwise regression USI44, SR§2—SR54, SR69
F-to-enter srs3
F-to-remove srg3
survival analysis sr176, sr186
Strata button
survival regression models sri8s

stratification variable
nonparametric analyses SRIs3, SRI57
regression models sri83
strike-through text sr323
string data type US73, SR319—SR320, SR338
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string functions see text functions
Student-Newman-Keuls sr88
Style us205
style sheets see templates, preferences
subgroup measurements analysis see QC
subgroup measurements analysis
subgroup variables Us242, srR290
differences Us244
formulas sr291
subject (group) sr83
subsets of data see Criteria, Include Row,
Exclude Row, row inclusion
Substring sr422
subtitles for inclusion Us29

subtraction SR333, SR370, SR373
unary SR335

Sum sr423

sum US6O, SR333, SR368, SR424

sum of squares US6O, SR368, SR425
algorithms sr433

SumlgnoreMissing sr424

summary data Uss2
summary pane see attribute pane
summary statistics USIs, US255

tutorial example Us8
SumOfColumn sr424
SumOfSquares sr425
SuperANOVA

file format usyo

formulas us256

import/export USIO6, US256
superimpose graphs Us186
supersmoother sr221, SR225-SR227, SR236
suppress recalculation Us138-Us139, USI70

survival analysis Usi42
common questions Us245—US250
example SRi46—srR147
functions US24s, SRISO, SRIGS, SRI78
introduction sri43
nonparametric methods

data requirements SRI57—SRI62
dialog boxes sris2—sris56
discussion SR147—SRIST
exercise SRI63—SRIG6

results SRI159

templates SR163

preferences Us230-Us231

regression methods
data requirements Sri83—sri8s
dialog boxes srrys—sri83
discussion srR167, sr175
exercise SRIQI-SRIQ8

results SRI85—SRI9T
stepwise SR176

templates SRI9T

symbols see point types

syntax SR339
arguments SR323—SR326, SR331
combine functions sr323
constants SR324—SR325
expression SR325
order of operations sR326—sr328
placeholders sr324
quotation marks SR325, SR331
row inclusion SR325-SR326
variables SrR324-sr325

system configuration US74
troubleshoot Us252

system crash Us2st

system software SR3I7, SR32I, SR330—SR331

T

¢ distribution SrR404, SR411
T usage marker see usage markers
t value
one sample rtest SrR23
paired #test SR30
regression SR§7
unpaired #test SR37
table defaults see preferences
Table dialog box us2o1
tables
align us214
arrange US213-US214
borders us199, Us2o1, US231
colors Us199, US202
column widths usi99
components USI97
create USI3I-USI33
by hand or with templates uUs131
customize USI97—US202
decimal places us201, Us231
Edit commands usi81




Index SR=Statliew Reference, US=Using Statliew

525

edit text Us200

fonts USI99—US200

format UsI35, US201, US231
group US2I5

height and width us199-Us200
interior USI98

layers us21s

line spacing Us199, Us201, US231
line widths us199, Us202

list in analysis browser Usi41
lock us214

move US200, US214

move components Us200

notes USI99

number format us2o1

numeric formats Us231

pen patterns USI99, US202

preferences USI79—USI80, US231, US250

resize USI99—US200
row and column labels usigg

row heights Us199, Us231

select usi97
select components Us198

structure US201
text alignment Us199-Us200
text angles USI99—Us200

text colors Us199

titles Us199
transpose US199, US201

ungroup US2Is
unlock us214

tails

F-test sr38

one sample analysis sr24
paired comparisons Sr30
unpaired r-test SR38

dataset Us240

exercises USIG5—USIG7, USITZI, USI7S
formats Us170, US233

generic variable names Us170
graph formats us1yI

manage USI67—USI69
modify UsiGs, usi7I
exercise USI7S
open USIS7
pre-assigned variables usryo
rearrange USIG8—USI69
repeat analyses USI62
save USIS7
save views USI§7
tips U169
variable slots Usi63
Vvs. views USI6GI—USI62
temporary files Us233
tension SR226, SR228
test differences among covariate
levels us248
test normality US86, US233, SRI3, SR416
tests for special causes SrR259—SR260

¢/u analyses SR260, SR300

false signal sr259
[ analyses sr260

individual measurements sr278
individual measurements

analyses SR260
p/np analyses SR260, SR289—SR290
subgroup measurement analyses sr262

subgroup measurements analysis sr260

text
attributes Us205
colors us18s, USI97, US202, US212
edit graph text usi87

Tan sr426
Tanh sr426

target value sr254
Tarone-Ware test SRISI, SRIS6
Template folder usi61, UsT74
templates USIGI-UST
assign variables
dialog box us162

edit table text Us200

import/export USIO0-USIO2
tutorial example Usi2—Us13

resize US204

rotate US205

Save As Us105

views and templates Us233

see text tool

combine analyses Us162

create USI69—USI74
exercise USI7I—USI77

text editor UsIOO
text functions SR331-SR332
ChooseArg sr359
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Concat SrR361
Find sr379
Len sr383
Substring sr422
Text menu usi8s, UsI99
text tool US200, US204—US205
tutorial example Us4s
thickness see line widths
tick marks us183, Usi8s, USI9I-USI93

stagger USI92
ties SRI24
Time sri84, srR427
time functions see date/time functions
time series functions
Correlation sr363
Difference sr373

Lag sr383

MovingAverage SR391
times see multiplication, date/time
titles Usi82

graphs Usi83

inclusion subtitles Us29

move USI86

show us188
tables Usi99
tool bar us221
Tool tips Us221, US223
transform data see Formula, Recode

transformations
BoxCox sr3s8
Difference sr373
Ln sr385
Log sr38s
LogB sr386
LogOdds sr386
transpose
axes USI88
page Us2I3
rows and columns Us68
tables Us199, us2o1
tutorial example Us23
trend Sr373
triangle controls
analysis browser Usi41
compact variables Uss7, Us88, Us9s,

USI143
Formula dialog box usiro—usrit

templates Us163
tutorial example Us31
trigonometric functions UsII2
ArcCos srR349
ArcCosh sr349
ArcCot sr350
ArcCsc sr3s51
ArcSec sr3s2
ArcSin sr3s3
ArcSinh sr354
ArcTan sr3ss

ArcTanh sr356

Cos sr363

Cosh sr364

Cot sr364

Csc sr366
DegToRad sr372
example dataset srq00
RadToDeg sr405

Sec sr418
Sin srR419
Sinh sr419
Tan sr426
Tanh sr426

trimmed mean srR2
TrimmedMean sr428
troubleshoot Us250-Us256
formulas and criteria Us1IG,
US254—US256
general problems Us250-Us251
import US252-Us254
print Us254
Recode us2ss
system configuration US252
true SR338, SR345
Trunc sr429
truth tables sr339-sr340
t-test see paired comparisons, unpaired com-
parisons, one sample analysis
Tukey-Kramer sr87
Turn Grid On/Off us2iy
turn off Criteria Usi2g
tutorial Usi—uUs48
two-way table Uss3, srits

type I error srR75—sr76, SrR8s
type II error sr75—srR76
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U

u charts SrR256, SR266, SR300, SR304, SR306
UE in variable name sr47
uncensored SRI47
Undo us9s
graph/table formats us181

Sort usiy
unexpected results Us2s1

Ungroup us21s
uniform distribution SR411—-SR412
unique random integers SrR412
univariate plots sr217

axis types USI9O

confidence intervals sr217

connect lines Us188

data requirements sr218
dialog box sr217
discussion sr217
exercise SR219
Line Plot dialog box sr217
ordinal axes Us193
results sr218
templates sr219
Unlock us214
unpaired comparisons Sr37
data sr39
data requirements SrR39
dialog box sr39
discussion sr37
exercise SR4I
nonparametric SR120
nonparametric test SRI120
results SR41
templates sr41
unrotated factor solution Sr139, SR141
unsort data sr418
update Analyze menu Us169
update see dynamic formulas
usage markers USs7, USI4s, USI63, USIGS
tutorial example Us22
user entered data source Us77

v

valid range
date/time data Us74, SR321, SR330-SR331

each data type us73
integer data sr319
validation of StatView results us2s50

variability
CoeffOfVariation sr361
MAD SR387

StandardDeviation sr421
StandardError sr421
Variance srR430
variable attributes see attribute pane
variable attributes in examples Usvi
variable browser us21, uss6-Uss7,
US143-US147
buttons uUsi44
exercises USIS0—USIS6
Force button srs3
Formula dialog box ustio
keyboard shortcuts see StatView Short-
cuts card
X Variable button sr229
Y Variable button sr229
variable names, rules sr317
variable summary pane see attribute pane

variable symbols see usage markers, class
markers

variable types see data type

VariableElement sr429

variables SrR324-sr325
assign  UsI44
delete usii6
names USs58
change uss8
generic for templates Usi70
tutorial example Us4
requirements also see data requirements
under specific analysis
slots for templates Us163
vs. columns Uss3
Variables dialog box sr267
variable-wise see columnwise
Variance srR430
variance US6O, SR4
chi-square test sr24
comparison SR4I
test homogeneity Us235
varimax SRI3§

Vvectors SR374
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also see variables
velocity handle us209

Weibull model sri72—-sr173, srR17s, SR196
Welch’s test template Us235-Us237

vertical alignment Us218
vertical see columnwise
View menu Us148-Us149
View pop-up menu USI47
views
background color us2r2
clean up us213-Us214
document limits us213
documents vs. templates UsI61
Edit commands usi81
file formats usis6-Usi57
fonts Us232
grid lines us217
hairlines us232
Open Us1s7-Us159
use different datasets usisg
use different variables uUs1s8
use original variables usis7

preferences UsI41, USI7I, USI79—USI80,

US232-US233
print USIS9—USI6O
rulers us217
save results USI7I, US232
save templates UsIs7
save views as views USIS6
vs. templates USIGI-USI62
window US20, USI39—USI4I
Results Selected note usi33
violations of control limits sr251

w

Wald test sr170, SR179, SR209

Wald-Wolfowitz runs test SR120, SRI123

Weekday sr430
WeekOfYear sr431

Western Electric rules sr259
Westgard rules sr278
width us229

graphs Us188

tables Us199-Us200
Wilcoxon signed rank test srr2o

data sri23

exercise SRI26
Wilks’ Lambda sr82
Window menu UsI48-Us149
within subjects sr83

X

X axis UsI83

X boxes uUsi38, Usi64

X usage marker see usage markers
X Variable usi44

Xbar charts sr2ss, SR257, SR266, SR269,

SR274
XOR SR347

Y

Y axis Usi83
Y usage marker see usage markers
Y Variable usi44

Year sr431
yin-yang cursor USII, USG6G6, USI38

I

ZEro SR345

2-SCOres SRI3, SR422
z-test see paz’rm’ comparisons
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