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• How do tornadoes form?

• How are tornadoes rated?

• Where / when do tornadoes occur?
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What is a tornado?

From the AMS Glossary of Meteorology (2012):

• Tornado — A violently rotating column of air, in 
contact with the ground surface, either pendant 
from a cumuliform cloud or underneath a 
cumuliform cloud, and often (but not always) 
visible as a funnel cloud.

– Includes waterspouts
– Excludes dust devils and ‘gustnadoes’
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What is a tornado?

Further details:

- Winds spiral inward at surface 
then spiral upward

- Wind speeds generally 
90 km/h to >= 315 km/h

- Average path ~250 m but can 
range between 2 m and 2+ km

- Average length ~10 km but 
can range between 50 m and 
100+ km

Photo by Justin Hobson

Elie, Manitoba F5
Video
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How do tornadoes form?

Tornadoes can occur with any storm type:
• Supercells – tend to produce the most violent and long-tracked 

tornadoes due to sustained, intense updraft
• Bow echoes and squall lines – vertical vortices along leading edge 

are stretched by the updraft and intensified
• ‘Pulse’ storms – brief, weak tornadoes along boundaries
• Even towering Cu over lakes – non-supercell waterspouts
• Key is co-location of enhanced vorticity with strong, localized updraft 

+ precip
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Supercell Tornadogenesis

• Most supercells are not tornadic

• However, most significant tornadoes and nearly all 
violent (F4-F5) tornadoes are supercell tornadoes

• Many supercell tornadogenesis theories have 
evolved through field and modelling work: area of 
active research

• In the 1970’s, Doppler radar used to identify a region 
of large cyclonic gate-to-gate shear (TVS) that 
descended from mid-levels over 20-30 min 

• Led to hope that Doppler radars would rapidly 
advance tornado prediction
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• Conceptual supercell 
diagram Lemon and 
Doswell (1979)

• ‘Top-down’ tornado-
genesis process: MLM-> 
LLM-> TVS-> tornado

• High-resolution numerical 
models appeared to 
support this paradigm

• Was thought that the 
VORTEX1 study in 
1994/95 would confirm this 
conceptual model…

“Cascade” Paradigm

Forms near back of storm
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Pre-existing Boundary Paradigm

• Instead, it was found 
that nearly 70% of 
significant supercell 
tornadoes occurred near 
pre-existing boundaries 
(Markowski et al. 1998) 

• ‘Bottom-up’ tornado-
genesis process

• ‘Boundaries’ include old 
outflow boundaries, lake 
breeze fronts, drylines, 
etc.



Page 9

VORTEX2 Field Project – 2009-10
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18 May 2010 
Dumas, TX

tornadic supercell

Neil Taylor

VORTEX2 Field Project – 2009-10
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5 June 2009 Goshen Co. Tornado
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5 June 2009 Goshen Co. Tornado
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‘Bow Echo’ Tornadoes

• ‘Bow echoes’ tornadoes
– bow echoes are likely prodigious tornado producers
– unlike supercells, form out front of the storm
– many of the tornadoes likely go undetected (cell 

phone cameras may help here!)
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‘Bow Echo’ Tornadoes

Fujita, T.T. (1985). "The Downburst: microburst and macroburst". SMRP Research Paper 210, 122 pp.
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• So called because the formation 
process, and appearance, are similar 
to waterspouts

• Damage rarely greater than F1 and 
often more brief than supercell 
tornadoes, though can occasionally 
last 30 min+

• Commonly appear thin and rope-like
• Occasionally occur with atypical 

translational motion e.g. NE to SW
• Many events occur in the vicinity of 

boundaries e.g. lake-breeze fronts

‘Landspout’ Tornadoes

Exeter ON 
F0 2004
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Adapted from Lee and Wilhelmson (1997)

‘Landspout’ Tornadoes
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Waterspouts

• Any of the processes mentioned previously can 
produce a tornado over water – a waterspout!

Rice Lake F0 ’waterspout’, 2003



How does EC rate tornadoes?

• EC conducts both on-site storm damage 
surveys and remote surveys
• Goal: identify various parameters related 
to the event:

• Was it a tornado?
• Intensity?
• When did it occur?
• Where did it occur?
• Injuries / fatalities?
• Property damage?

Exeter F0, 
13 Jul 2004



How does EC rate tornadoes?

From Fujita (1981)

• Fujita Scale

• Developed by Ted Fujita at 
Univ. of Chicago in the 1960s

• Wind speeds were educated 
guesses

• Limited number of damage 
indicators

• Used for tornadic and non-
tornadic wind damage

• Implemented in the US and 
Canada in 1970s



• The EF-scale was developed at 
Texas Tech Univ. (McDonald and 
Mehta, 2006) involving many US 
interests

• Has much improved wind speed / 
wind damage correlation with large 
number of damage indicators while 
consistent with existing US database

• Adopted for use in the United States 
in 2007

• Adopted officially at EC on April 1, 
2013

• First tornado rated using the EF-scale 
occurred on April 18th, 2013, at 
Shelburne, ON – rated EF1

Enhanced Fujita Scale



Damage Indicators (DI)

Farms / 
Residences

Commercial / 
retail structures

Schools

Professional 
buildings

Metal buildings / 
canopies

Towers / poles

New Canadian DIs!



Degrees of Damage (DoD)

DODs wind speeds in km/h



• Though F-scale and EF-scale wind speeds are 
different, both still have the same damage scales

• Hence, ratings based on damage will be the same 
for older events rated with the F-scale and newer 
events rated with the EF-scale

• For example, the roof removed from a framed 
house is F/EF2, and a framed house swept from its 
foundation is F/EF5.

F-scale vs EF-scale



F-scale vs EF-scale

WDTB

(min)

F/EF-number



EC Implementation – Power Law

Y = 0.6246X + 36.393
R2 = 0.9118

Y = 3.9297 • X 0.7019

R2 = 0.9236

If power law
regression used 
instead of linear:

• Slightly better fit

• Goes through 
origin

• Lower bound of 
EF0 becomes 
~90 km/h instead 
of 105 km/h

After McDonald and Mehta (2006)



EC Implementation - Scale



EF-Scale Standard

• Team currently worked on an EF-scale 
‘standard’ to be administered by ASCE

• Canadian revisions to be considered for 
adoption

• Hoping to accept annual proposals for 
modifications starting in a couple of 
years
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Tornado Damage Studies

Greg Kopp WindEEE Dome
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Where / when do tornadoes occur?

Average annual frequency of tornadoes per 10,000 km2 (dashed isopleths have been extrapolated)

Newark 1984 – max. frequency just over 2 tornadoes / 10,000 km2
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Where / when do tornadoes occur?

Etkin et al. 2001 – max. frequency 7 - 9 tornadoes / 10,000 km2
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• Tornado resilience measures written into National Building 
Code of Canada in 1995 based on forensic studies of Barrie / 
Grand Valley F4 tornadoes of 1985

• Measures include anchors in manufactured and permanent 
structures, masonry ties in permanent structures (schools, 
hospitals, auditoriums) – relatively inexpensive to implement 
for new buildings

• BUT implementation required clear 
definition of ‘tornado-prone’ regions
of Canada

• Multi-disciplinary research initiative 
within EC (Auld, Burrows, Cheng, 
Elliott, Klaassen, McCarthy, 
Rousseau, Shephard, Sills, Waller) Barrie F4 1985
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Methods

• Needed to build an updated 30-year national 
database

– Last database by Newark 1950-1979
– Period of database for this work 1980-2009
– Five regions all with their own databases, needed 
to be merged and any inconsistencies adressed
– Used TOP approach (see Sills et al. 2004)

• Needed to develop method to fill known gaps in data
– Under-reporting in rural / remote areas



Tornado Incidence (verified)

Preliminary
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Seasonal Variation (all)

N = 1844Preliminary
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Hourly Variation (all)

85% between
1 pm and 8 pm

Preliminary
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For 1980-2009 (30-yr) period

Average path length = 10450 m
Average path width = 260 m
Average number of fatalities / year = 2
Average number of injuries / year = 29
(all preliminary, biased by large fatality / injury events)

Notable tornado events:

• Barrie / Grand Valley ON F4s (1985)
• Edmonton AB F4 (1987)
• Elie MB F5 (2007)
• Southern ON (18 tornadoes F0-F2, 2009)
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~62 tornadoes/year verified across 
Canada based on 1980-2009 data

N = 1844
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Lightning flash density (flashes/km2/year) on 50 km grid 

CLDN 1999-2008
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Bayesian Statistical Modelling 

• Use CLDN lightning flash density climatology to 
model tornado incidence, but use a population 
density mask to adjust for population bias

• In high population areas, use observed tornado 
count

• Otherwise, ‘true’ tornado count is modeled as a 
Poisson regression with lightning flash density 
as predictor, and weighted by population 
density
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Canada & U.S. F0-F5 tornado occurrence
(1980-2009) on 50-km grid
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‘Probability of detection’ weighting mask based on 
population density (2001 census) on 50 km grid

POD=1 for ≥ 6 persons / km2
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~230 tornadoes/yr
modelled across 

Canada!

Resulting tornado density on 50 km grid

Max. frequency 7 - 9 
tornadoes / 10,000 km2
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Partitioning by F-scale

• Use F2-F4 log-linear slope relationship (Brooks and 
Doswell, 2001) and modelled tornado counts to partition
all tornado occurrences by F-scale rating

Assumption: all areas of Canada have the same F2-F4 slope

Canadian Tornadoes for 1970 - 2010 
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‘Tornado-Prone’ Definitions
1. Prone to Significant Tornadoes
Probability of an F2-F5 tornado is estimated to exceed 

10-5 / km2 / year. F0-F1 tornadoes will be more 
frequent.

2. Prone to Tornadoes
Probability of an F0-F1 tornado is estimated to 

exceed 10-5 / km2 / year.

3. Tornadoes Observed - Rare
Tornadoes observed, but probability of a tornado is 

between 10-5/km2/year and 10-6/km2/year.

(threshold of 10-5 / km2 / year consistent with engineering literature)
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Tornado-prone map published 
In National Building Code - 2011

Rare

F0-F1

F2-F5

F2-F5

Rare
Rare
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F1
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Tornado Frequency Analysis (25 km grid)

Cheng et al. (2013, J. Climate)
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How does EC provide tornado alerts?

• Examples of recent supercell 
and nonsupercell tornado 
events to illustrate EC’s watch 
/ warning process and inherent 
difficulties…
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Time: 1555 LT (land)
Path length: 20.5 km

Max path width: 1.5 km
Fatalities: 1
Injuries: 37

Estimated Cost: $150M
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1550 LT

0.5° Doppler Precipitation Scan
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Mesocyclone with 7 km diameter,
70 m s-1 delta-V, and shear 0.01 s-1

1550 LT

0.5° Doppler Velocity Scan
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Gate-to-gate shear (TVS) 34 m s-1

0.5° Doppler Velocity Scan

1550 LT

Mesocyclone with 7 km diameter,
70 m s-1 delta-V, and shear 0.01 s-1
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0.5° Doppler Precipitation Scan

1550 LT
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Supercell / Pre-existing Boundary
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A Very Rare Event

• Occurred well behind cold front

• Supercell / tornado developed over 
Lake Huron

• Widely used tornado prediction 
parameters suggested little chance of 
a significant supercell tornado

• Tornado climatology shows very low 
frequency in Goderich area and very 
infrequent F3+ in general
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Goderich

N0 km 100
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EC Hi-RES NWP Model

?
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EC Alerts

• Tornado began to impact Goderich at 3:55 PM

• Severe Thunderstorm Watch issued for Goderich: 2:02 PM
• included the line “A tornado is possible”
• lead time ~ 2 hours

• Tornado Warning issued for Goderich: 3:48 PM
• “moving southeast at 75 km/h and will make landfall near 

Goderich near 4 PM”
• lead time ~7 minutes
• Might have been sooner but marine warning issued first

• So despite rare situation, acceptable lead time for many in path

• But who heard the message??
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18 Apr 2013 EF1 @ Shelburne

• Occurred at leading edge of small bow echo 
embedded in squall line – rain-wrapped!

• 10 km track, main damage to barn
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0.5°
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0.5°
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?

EC Hi-RES NWP Model
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EC Alerts
• Tornado caused first damage at 5:33 PM

• Severe Thunderstorm Watch issued at 12:11 PM
– More than 5 hours lead time
– “Storms could contain large hail and damaging winds”, 

but no mention of tornadoes

• Severe Thunderstorm Warning issued at 5:37 PM
– 1 minute lead time for area of worst damage
– “Most of these storms are not severe, however one or two 

could produce wind gusts to 90 km/h and large hail”, and no 
mention of tornado potential

• Snowfall, freezing rain and rainfall warnings also out

• Warnings for ‘bow echo’ tornadoes are very difficult, 
even worse for ‘landspout’ tornadoes!
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‘Next Generation’ Warnings

iCAST• interactive Convective Analysis and 
Storm Tracking (iCAST) prototype –
optimizes the human-machine mix

• New approach to severe thunderstorm 
nowcasting and alerting

• Forecaster manages ‘track’ MetObjects 
/ intensity trends for significant storms

• Alerts then derived from MetObjects

• To be demonstrated (internally) during 
Pan Am Games in 2015
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Human-machine mix:

• Interactive ‘Storm Attributes Table’ used to rank storms – smart filter
• Modifiable 30-min nowcast ‘rank weight’ – warn on nowcast
• Storm track nowcasts and intensity trends determine if a first-guess 
warning area is generated, modified by forecaster as necessary

Mesoscale / Storm-Scale
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Goderich

Seaforth

TORNADO WARNING FROM 
ENVIRONMENT CANADA AT 7:10 PM EDT 
THURSDAY 28 JULY 2012.

TORNADO WARNING FOR:
=NEW=  GODERICH – BLUEWATER –
SOUTHERN HURON COUNTY

A SEVERE THUNDERSTORM 
PRODUCING TORNADOES, LARGE HAIL, 
DAMAGING WINDS AND HEAVY RAIN 10 
KM SOUTHEAST OF GODERICH IS 
MOVING SOUTHEAST AT 40 KM/H. THIS 
STORM IS EXPECTED TO REACH
SEAFORTH AT 8:05 PM EDT.

En français aussi!

Warning Generation
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Warning Generation

Goderich

Seaforth

TORNADO WARNING FROM 
ENVIRONMENT CANADA AT 7:10 PM EDT 
THURSDAY 28 JULY 2012.

TORNADO WARNING FOR:
=NEW=  GODERICH – BLUEWATER –
SOUTHERN HURON COUNTY

A SEVERE THUNDERSTORM 
PRODUCING TORNADOES, LARGE HAIL, 
DAMAGING WINDS AND HEAVY RAIN 10 
KM SOUTHEAST OF GODERICH IS 
MOVING SOUTHEAST AT 40 KM/H. THIS 
STORM IS EXPECTED TO REACH
SEAFORTH AT 8:05 PM EDT.

En français aussi!

20%
30%

40%50%
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Are tornadoes increasing in frequency / intensity?
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Are tornadoes increasing in frequency / intensity?

We (unfortunately) don’t know,
and likely won’t for a long time!
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Are tornadoes increasing in frequency / intensity?

We (unfortunately) don’t know,
and likely won’t for a long time!

- Low sample size (rare events)
- Numerous artifacts in data 

(tornadoes vs. downbursts, EC 
resources, rise of commercial 
electronics, storm chasers, etc.)
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Are tornadoes increasing in frequency / intensity?

19
80

N = 1844

Preliminary
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Questions?

Contact
David.Sills@ec.gc.ca
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