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Brownian Motion: oil globules in suspension
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Brownian Motion: random walk simulation
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Brownian Motion: random walk dispersion

Diffusion works best at small distances.
average displacement = (6•D•t)1/2
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Neurospora: tip expansion

Expansion at the tip must 

be coordinated with the 

incorporation of new 

material at the tip.

A signaling control system is 

essential:

• a growth sensor sensitive to 

cell expansion

• a signal transducer.

The signal transducer is a tip-high 

Ca2+ gradient.

Growing hyphae 

of Neurospora 

crassa have a 

tip-high Ca2+ 

gradient. The 

magnitude of the 

gradient is 

correlated with 

growth rate.

Neurospora: Ca2+ gradient

Silverman-Gavrila LB and RR Lew (2003) Calcium gradient dependence of 

Neurospora crassa hyphal growth. Microbiology (SGM). 149:2475-2485.

The elevated Ca2+ will 

mediate vesicle fusion 

during tip expansion.

The other physical mechanism underlying tip 
expansion is related to the feedback mechanisms. 
How does the hyphal tip !know" it is expanding, to 
allow for continued incorporation of cell wall and 
membrane at the appropriate, controlled rate to match 
the rate of expansion? We have explored two aspects 
of this. One is a polar gradient, tip-high, of Ca2+ in the 
cytoplasm at the tip. The other is identifying the 
mechanisms used to generate and maintain that tip-
high Ca2+ gradient.

Neurospora hypha do exhibit a tip-high Ca2+ 
gradient, as imaged with Ca2+ sensitive fluorescent 
dyes. If we quantify the gradient as the difference in 
concentration at the tip versus behind the tip.



Calcium Distributions: generation of a tip-high gradient

The predictions 
of Ca2+ 

distribution 
versus time 
based on a 

steady supply of 
Ca2+ at the tip 

and removal 

behind the tip. 

The Ca2+ gradient was initially fit to obtain an estimate of the diffusion 

coefficient (5.6 µm2 sec-1) using a 4 second time interval, when the 

hyphae would have grown about 1.2 µm. In dilute CaCl2 solutions, the 

diffusion coefficient for Ca2+ is about 775 µm2 sec-1. Intracellular Ca2+ 

diffusion coefficients are much smaller, 2-15 µm2 sec-1.
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Calcium 

Distributions: in 

conidia and 

hyphae
Organellar Ca2+ and 

cytoplasmic [Ca2+] 

exhibit time dependent 

random walks.

co (outside concentration)

ci (inside

concentration)

d (distance)

Flux will depend upon the ability

of the particle to enter the membrane

(partitioning)

Partitioning, Kp =
c(membrane )

c(aqueous )

J = D
Kp

d
[coutside – cinside ]

where D
Kp

d
= P,

units of  
cm

, or cm•sec-1

cm2

sec

Permeability: Diffusion through a membrane

Permeation through a membrane depends directly upon 

the ability of the molecule to partition into the membrane



Source:! Collander, R. (1954) The permeability of Nitella cells to non-electrolytes.

! Physiologia Plantarum 7:420–445.

Relations between permeability, oil/water 
partitioning and molecular weight

oil/water partitioning

molecular weight

There is a closer correlation when molecular weight 

and oil/water partitioning are factored together.
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Oil/water partition 

Pressure is one way to determine the 

permeability of the cellular plasma membrane to 

a solute molecule. Below, sucrose is 

impermeable, but ethanol is permeant.

Hydrostatic Pressure: Using the pressure probe



Hyperosmotic Shock: Hyphal Shrinkage

RANDOM WALKS
They permeate the 
physical foundations of 
biological phenomena

















Random Walks – page 1.02 – RR Lew Fick’s Diffusion

[1]Noble, PS (1974) Introduction to Biophysical Plant Physiology. WH Freeman and Co. pp 9–19.

J = −D •dcdx ⇒( cm
2

sec )(molcm4 )⇒( mol
sec• cm2 )

flux, J (mol cm-2 sec-1)

 Diffusion coefficient with units of cm2 sec-1

concentration gradient, dc/dx 
with units of (mol cm-3)/(cm), 
or mol cm-4.

The diffusion equation, J = –D(∂c/∂x), does not account for changes in concentration that 
will occur as molecules move fom one location to another, in accordence with the flux, J. 
(Instead, it assumes a steady state, in which the change in concentration over time is zero: 
∂c/∂t = 0.).

How do we account for the non-steady-state time dependence of diiffusion? The deriva-
tion of a general equation relies upon the assumption of conservation of mass[1].

Consider the changes in flux, J, with respect to distance (∂J/∂x)  through a small volume 
element of width x+dx and area A:

flux of 
some solute at x

J = J + ∂J
∂x dxJ

flux of 
some solute at x + dx

The change in flux
over the small

distance dx
dx

Area, A

The change in the amount of solute in the volume element, A•dx, is equal to the amount 
flowing in, J•A minus the amount flowing out, (J+(∂J/∂x)dx)•A per unit time. Note that 
the change in the amount of solute in the volume element A•dx can be expressed as ∂c/∂t, 
multiplied by the volume element A•dx. 

The movement of mol-
ecules depends upon the 
concentration gradient of 

molecules. This is 
described by Fick’s First 

Law of Diffusion.

Fick’s First Law of Diffusion dominates descriptions of molecular transport. It is a phe-
nomenological equation; that is, it is based upon experimental results and lacks a theoreti-
cal underpinning. The equation is: 



Random Walks – page 1.03 – RR Lew Fick’s Diffusion

[1]Crank, J (1975) The Mathematics of Diffusion, Second edition. Clarendon Press, Oxford.

flux of 
some solute at x

J = J +
∂J
∂x dxJ

flux of 
some solute at x + dx

The change in flux
over the small

distance dx
dx

Area, A

Substituting the continuity equation, (∂c/∂t) = –(∂J/∂x),
into the flux equation, J = –D(∂c/∂x), yields:

This is known as the Continuity Equation
and is based on conservation of mass:

that matter can be neither created nor destroyed.

This is known as the Fick’s Second Law of Diffusion. It describes how the concentration 
of the solute changes with position and with time as a result of diffusion. The solutions of 
this equation depend upon the geometry. Books are devoted to solutions to the diffusion 
equations[1].

The change in the amount of 
solute in the volume element A•dx 

is equal to the amount moving 
into the volume element minus 

the amount moving out of the 
volume element

∂c
∂t dx • A = (J • A) − J +

∂J
∂x dx
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Random Walks – page 1.04 – RR Lew Fick’s Diffusion

[1]The original english article (Fick, A: On liquid diffusion.) (an abstract of a longer German article) 
was published in 1855, and republished in the Journal of Membrane Science 100:33–38 (1995).

∂c
∂t = –k ∂

2c
∂h2

From an historic point of view, it’s worthwhile to explore the method Adolf Fick used to 
establish the veracity of what we now know as Fick’s Laws of Diffusions[1].

Fick noted that the underpinning theory should be identical to that obtained for the diffu-
sion of heat in a conducting body (developed by Fourier), and Ohm’s Law describing the 
diffusion of electricity in a conductor.

c1

cn

hn

For solute diffusion through a series of concentration strata 
(c1 through cn) varying with height (hn), Fick invoked con-
servation of mass:

That is, the change in concentration will depend upon the second derivative of concentra-
tion with respect to distance, multipled by k, a constant dependent on the nature of the 
substance. Note that this is suitable for a simple system, in which the geometry and 
volume of each stratum is the same.
To test this, Fick used an apparatus in which a 
steady state concentration gradient was created 
between solid salt and pure water. He then mea-
sured the specific gravity at various depths. Allow-
ing the system to reach a steady state, where ∂c/∂t 
would be zero, leads to a solution of the second 
derivative equation: a linear gradient: c = a • h + b.
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In fact, this is what he found (Fick’s 
data is graphed to the left) (square 
symbols). He performed a further test 
with a more complex geometry (a 
funnel), in which the steady state 
solution is a non-linear concentration 
gradient (triangle symbols). 

This was one of the starting points for 
Einstein’s elucidation of the molecular motion 

underlying diffusion. The other was the behav-
iour of particles in solution: Brownian Motion.

From ∂/∂h (a•h+b) = a,
and ∂/∂h (a) = 0.
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