
Journal of Vision (2022) 22(13):1, 1–9 1

Luminance calibration of virtual reality displays in Unity

Richard F. Murray
Department of Psychology and Centre for Vision

Research, York University, Toronto, Ontario, Canada

Khushbu Y. Patel
Department of Psychology and Centre for Vision

Research, York University, Toronto, Ontario, Canada

Emma S. Wiedenmann
Department of Psychology, Carl von Ossietzky University

of Oldenburg, Oldenburg, Germany

Virtual reality (VR) displays are an increasingly popular
medium for experiments on visual perception. This
presents the challenge of showing precisely controlled
stimuli on devices that were not primarily designed for
research. Here we describe methods for controlling
stimulus luminance in VR experiments created in Unity
using the Built-in Render Pipeline. We discuss the
Gamma/Linear setting, measuring luminance in a VR
headset, and using color grading in Unity’s
Post-Processing Stack to make stimulus luminance
proportional to achromatic RGB value. We provide
MATLAB code that uses luminance measurements from
a VR headset to generate the lookup table that Unity
requires for linearizing luminance. We emphasize that
when creating experiments in this complex
environment, it is important to experiment with the
rendering process to confirm that stimuli are displayed
as expected. We show results of several such tests and
provide code as a starting point for readers who wish to
run further tests related to their own research.

Introduction

Virtual reality (VR) devices have existed in various
forms for many years, but a recent wave of consumer
models has made this medium newly accessible and easy
to use (Greengard, 2019). For vision researchers, VR
provides the flexibility of computer-generated displays
while also simulating to some extent the immersive,
multimodal, and interactive nature of physical reality.
This makes new kinds of experiments possible but also
brings new challenges. Some challenges are broad, such
as understanding the extent to which visual perception
in VR is similar to perception in real environments.
Others are more practical, such as developing methods
of controlling key stimulus properties.

Here we address a problem that is limited in
scope but crucial for many experiments: how to
luminance-calibrate a VR headset in the Unity

environment (version 2020.1.5f1; Unity Technologies,
2020). Luminance is a fundamental stimulus property,
and so is contrast, which is determined by the luminance
profile of a stimulus. Luminance and contrast have
dramatic effects on human performance in a wide range
of tasks, and it is important to be able to control them
in perceptual experiments. However, recent papers
using VR methods in vision research have typically
paid little attention to the luminance or colorimetric
properties of stimuli. Two exceptions are Toscani et
al. (2019) and Rodriguez et al. (2022), who reported
color calibration methods for an HTC Vive display
in the Unreal Engine environment. They found that
with a suitable configuration of rendering software, the
apparatus met several assumptions behind standard
color calibration methods, such as color channel
additivity (Brainard et al., 2002). Furthermore, they
found that stimulus luminance was proportional to
rendered RGB values. Another example of attention
to calibration issues is Diaz-Barrancas et al. (2021),
who showed that color calibration can be carried out in
Unity’s High-Definition Render Pipeline by integrating
a standard color calibration model (Brainard et al.,
2002), written in custom software, into the render
pipeline.

We describe methods for controlling luminance in
Unity’s Built-in Render Pipeline, which is a widely
used environment for developing VR experiments.
Considering a specific software environment
allows us to make concrete suggestions, and we
also provide software tools in the Supplementary
Material (https://doi.org/10.17605/OSF.IO/RYTE5).
Furthermore, several of the issues we address also have
wider relevance (e.g., we expect that the methods we
describe can be extended to control additional stimulus
properties such as color). The focus of this article is
on software, and we do not address hardware-specific
issues, such as differences between models of VR
headsets.

Citation: Murray, R. F., Patel, K. Y., & Wiedenmann, E. S. (2022). Luminance calibration of virtual reality displays in Unity. Journal
of Vision, 22(13):1, 1–9, https://doi.org/10.1167/jov.22.13.1.

https://doi.org/10.1167/jov.22.13.1 Received February 18, 2022; published December 1, 2022 ISSN 1534-7362 Copyright 2022 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Downloaded from jov.arvojournals.org on 12/01/2022

https://www.yorku.ca/rfm
mailto:rfm@yorku.ca
mailto:khushbup@my.yorku.ca
mailto:emma.wiedenmann@uni-oldenburg.de
https://doi.org/10.17605/OSF.IO/RYTE5
https://doi.org/10.1167/jov.22.13.1
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Vision (2022) 22(13):1, 1–9 Murray, Patel, & Wiedenmann 2

Unity is a powerful environment for creating
interactive experiments, but a recurring theme of this
article is that it was primarily developed for creating
games, not for research. As a result, it is important to
experiment with the rendering process, to test whether
rendered images are what we expect them to be. We
provide several examples of such experiments and
include supporting code as a starting point for further
tests. Most of the information about Unity that we
report here is the result of experimentation, so we
believe it will be novel and useful to other researchers.
We frame this article as addressing calibration issues in
VR, but the methods we describe can also be used to
control luminance in Unity experiments on traditional
flat-panel displays.

Calibration steps

We start with a point-by-point summary of the
procedure we describe below for calibration, in order to
give an overview of the calibration strategy.

1. Confirm that the Unity project is in Gamma
rendering mode, which is the default mode in recent
versions of Unity. If it is not, then put it into
Gamma mode.

2. Measure the luminance generated in the uncalibrated
VR headset by a series of achromatic RGB values.
These data should follow an expansive nonlinearity,
like the red data points in Figure 3a. (Throughout
this article, we use the term “RGB value” to
denote the three integers in the range 0 to 255
that represent a pixel in video memory (as in the
present case), or that specify the color of a Unity
object; these are distinct from the luminance or
colorimetric coordinates of the light generated by
the corresponding pixels on the physical display.)

3. Use these measurements to generate a LUT texture
image (a PNG file), using the MATLAB code
provided in the Supplementary Material.

4. Configure Unity’s Post-Processing Stack (see
Supplementary Material, Section 1(f)), and load the
LUT texture created in the previous step into the
Color Grading component.

5. Stimulus luminance on the headset should now be
proportional to achromatic RGB value. Confirm this
by again measuring the luminance generated in the
headset by a series of achromatic RGB values. These
data should be linear, like the green data points in
Figure 3a.

Unity settings
The Gamma/Linear setting

Unity has hundreds of settings, and one challenge
is finding a good configuration for experiments.

Figure 1. The scene used to examine rendering in Gamma and
Linear modes. Here, the white Lambertian test square is shown
at a slant of 30◦ relative to the camera. The illumination is an
achromatic, directional light source directly behind the camera.
The surrounding blue background does not contribute to the
lighting.

The Gamma/Linear mode setting is one important
parameter. The Unity documentation provides some
information about this setting (Unity User Manual,
2020, https://docs.unity3d.com/2020.1/Documentation/
Manual/LinearLighting.html), but to investigate it
more thoroughly, we ran some tests of the rendering
process.

We created a scene where a Lambertian1 test patch
was rotated through a range of angles relative to a
distant, directional light source, and at each angle, we
recorded the RGB value of the rendered test patch
(Figure 1). We provide the code as Supplementary
Material. For a Lambertian surface, the rendered RGB
value should ideally be proportional to the cosine of
the angle between the surface normal and the lighting
direction, for angles in the range [−90◦, 90◦] (Pharr et
al., 2017). Figure 2 shows that this is true in Gamma
mode (panel a) but not in Linear mode (panel b), where
the RGB values appear to have been transformed by
a compressive nonlinearity. We reasoned that this
nonlinearity might be the inverse of the sRGB transfer
function that approximately characterizes many
monitors, and Figure 2b confirms that if we transform
the Linear mode RGB values by the sRGB transfer
function (approximately2 f (x) ∼ x2.2), they fall into the
expected cosine pattern.

Thus, in Gamma mode, the displayed RGB value
is proportional to the result of a Lambertian shading
calculation, and the displayed luminance is subject to

Downloaded from jov.arvojournals.org on 12/01/2022

https://docs.unity3d.com/2020.1/Documentation/Manual/LinearLighting.html

Journal of Vision (2022) 22(13):1, 1–9 Murray, Patel, & Wiedenmann 3

Figure 2. (a) Rendered RGB value of an achromatic Lambertian surface as a function of angle relative to light source, in Gamma mode.
(b) Corresponding results in Linear mode and results transformed by the sRGB gamma function. (c) Rendered RGB value of an
achromatic Lambertian surface as a function of its assigned RGB color, in Gamma mode and Linear mode. The surface was rendered
under directional light with unit intensity, in the direction of the surface normal.

the gamma function of the VR headset. In Linear mode,
the result of the shading calculation is transformed
by an inverse gamma function f −1(x) ∼ x−2.2, so that
if the display has the anticipated gamma function
f (x) ∼ x2.2, then the two transformations cancel
and the luminance displayed is proportional to the
physically correct values for the rendered scene.

We recommend using the Gamma setting (which is
the default in recent versions of Unity) and correcting
for the VR headset’s luminance nonlinearity using the
color grading method described below. One reason for
taking this approach is that, if stimulus calibration is
important, then it should be based on measurements
from individual displays instead of industry standards
such as sRGB. Another reason is that in Linear mode,
Unity does not consistently apply the inverse gamma
transformation to all stimuli. Figure 2c shows the
rendered RGB value of an achromatic Lambertian
surface whose RGB color ranges from (0, 0, 0) to (255,
255, 255), rendered in both Gamma mode and Linear
mode. Here there is no difference between the two
modes, unlike in panels (a) and (b). This shows that the
Linear mode does not consistently apply a nonlinearity,
which makes it difficult to render images in this mode
that are even approximately guided by physical realism.

Measuring luminance

The focus of this article is on using Unity to calibrate
luminance, but if this information is to be useful, then
we also need a way of measuring luminances in a VR
headset display. In this section, we briefly describe three
such methods.

VR photometer. Specialized photometers and
colorimeters are available for VR headsets. These

devices produce calibrated measurements of the
stimulus an observer sees when wearing a headset,
and these measurements can be used with the color
grading methods described below to linearize the
relationship between achromatic RGB value and
luminance. However, these devices are expensive, and
many labs that run VR experiments do not have one, so
we consider other approaches to measuring luminance
as well.

Spot photometer. We used a Konica-Minolta LS-110
spot photometer to measure display luminance in an
Oculus Rift S headset (single fast-switch LCD display,
2560 × 1440 resolution, 80 Hz refresh rate). We found
that when the photometer’s front lens was placed a
few centimeters from the headset’s eyepiece, after
some positional adjustments, the view through the
photometer showed a small patch of the LCD display.
There was substantial blur, but images displayed in
the headset were easily seen, and individual pixel
boundaries were visible. It is important to keep in
mind that this arrangement combines two devices with
proprietary optical properties that were not designed
to be interfaced with one another. Nevertheless, in
Appendix A, we show that it is possible to use this
configuration to make luminance measurements for
calibration. We show that the main requirement
for this approach is simply to display a very large
calibration patch in the headset when measuring
luminance, in order to minimize the effect of light
scatter.

Pinhole camera. In the following section (“Color
grading”), we describe an experiment where we used a
pinhole camera to validate the luminance measurements
made from a VR headset with a spot photometer.
It is also possible to use such a pinhole camera to
make the luminance measurements for calibration
directly, bypassing the use of a spot photometer.

Downloaded from jov.arvojournals.org on 12/01/2022

Journal of Vision (2022) 22(13):1, 1–9 Murray, Patel, & Wiedenmann 4

This is a simple and effective approach that provides
calibration data without relying on assumptions about
proprietary imaging systems. Appendix B describes an
easy-to-build pinhole camera that can be used for this
purpose.

Color grading

The Post-Processing Stack is an optional Unity
package that provides several tools for modifying
rendered images before display, including simulations
of optical effects such as chromatic aberration
(Post-Processing Stack v2, n.d.). It provides a method
called “color grading,” whose purpose is to adjust the
color appearance of a rendered scene. Here we show
that color grading can be used to compensate for a
VR headset’s nonlinear luminance response and make
luminance proportional to achromatic RGB value.

Suppose we choose three 256 × 256 × 256 arrays of
integers from 0 to 255. We call them R, G, and B and
denote their entries as Ri jk, Bi jk, and Gi jk, in the usual
matrix- and tensor-like fashion, except that subscript
indices begin at zero instead of 1.We can use these arrays
to define a function M that transforms RGB triplets by
mapping (r, g, b) to M(r, g, b) ≡ (Rrgb,Grgb,Brgb). For
example, the RGB value (50, 100, 150) is mapped to
M(50, 100, 150) = (R50,100,150,G50,100,150,B50,100,150).

Color grading in Unity uses such a mapping, with
two modifications. First, the maximum array size is
32 × 32 × 32, and the full range of RGB values (0–255)
is mapped using interpolation. Second, the arrays R, G,
and B are encoded as a single n × n2 × 3 color image. To
construct this image, we rearrange the n × n × n array
R described above into an n × n2 array R′ as follows.
Let R::k denote the n × n subarray of R obtained by
holding the third subscript constant at some value k.

Then we define

R′ = [R::0 R::1 . . . R::n−1] (1)

That is, the n × n slices of R obtained by setting k = 0,
k = 1, and so on are concatenated left to right. More
concisely,

R′
i, j = Ri,(j mod n),� j/n� (2)

for 0 ≤ i < n and 0 ≤ j < n2 − 1, where “mod” is
modulus and � j/n� is integer division. Arrays G and B
are rearranged into G′ and B′ in the same way. Finally,
we construct an 8-bit color image with R′, G′, and B′ as
the three color channels and save the image in a lossless
format such as PNG. In the Unity documentation, such
an image is called a “lookup table (LUT) texture.”When
the LUT texture is loaded into the Post-Processing
Volume component, the LUT transformation described
above is applied as a late stage of calculating rendered
RGB values. In the Supplementary Material, we provide
MATLAB code for generating LUT texture images
and instructions for incorporating the Post-Processing
Stack into a Unity project (Supplementary Material,
Section 1(f)).

Figure 3a shows that the color grading methods
described here succeed in linearizing luminance on an
Oculus Rift S headset. The red symbols show luminance
measurements (made with an LS-110 spot photometer)
from a set of achromatic RGB values assigned to
a planar object with an “Unlit” material type and
displayed in the headset. The plane was large enough
to fill the headset’s field of view, as recommended in
Appendix A. The luminance values follow a typical
expansive nonlinearity. The green symbols show the
corresponding measurements after a LUT texture
generated by code provided in the Supplementary
Material was loaded into the Post-Processing Volume
component. With the LUT in place, luminance is
proportional to achromatic RGB.

0 50 100 150 200 250
RGB

0

10

20

30

40

50

60

lu
m

in
an

ce
 (c

d/
m

2)

(a)with LUT
without LUT

0 50 100 150 200 250
RGB

0

10

20

30

40

50

60

70

lu
m

in
an

ce
 (c

d/
m

2)

(b)

Figure 3. (a) Luminance versus achromatic RGB, with and without a linearizing LUT texture. The fit to the data without a LUT is a
gamma function. The fit to the data with a LUT is a straight line constrained to pass through the origin. (b) Linearization confirmed
with measurements from a pinhole camera.

Downloaded from jov.arvojournals.org on 12/01/2022

Journal of Vision (2022) 22(13):1, 1–9 Murray, Patel, & Wiedenmann 5

Figure 4. Rendered RGB value of an achromatic Lambertian surface as a function of its assigned RGB color, in Gamma mode, with
color grading. (a) With a LUT texture that represents the identity mapping. (b) Same data as in panel (a), but showing a smaller range
to highlight small departures from the identity mapping. (c) With a LUT texture that represents a triangular wave oscillating between
RGB values of 100 and 200; note that the rendered RGB value does not usually reach 100 or 200.

Figure 5. Effect of color grading on rendered achromatic RGB with various Unity settings. (a) Lambertian material. (b) Standard
material. (c) Standard material with achromatic texture. (d) Standard material with baked lighting. In each panel, the red curve shows
the RGB values of individual pixels rendered with and without color grading. The green curve shows the data from panel (a),
superimposed on each red curve, to demonstrate that the four curves are identical.

As a further test of whether we had succeeded in
linearizing luminance, Figure 3b shows luminance
measurements made with the LUT in place, using
the pinhole camera described in Appendix B, which
does not rely on the model of light scatter used in
Appendix A. Here too, luminance is proportional to
achromatic RGB. We do note a slight dip in measured
luminance below the linear fit at low luminances and a
slight increase above at high luminances. This may be
due to small calibration errors in the pinhole camera.

The Unity documentation reports that color grading
interpolates RGB values linearly between the values
specified in the LUT texture. We find that there are
sometimes small departures from this claim. For
example, Figures 4a and 4b show the result of repeating
the experiment of Figure 2c but with color grading
based on a LUT texture that represents the identity
mapping. Here we expect rendered RGB to be equal

to the Lambertian material’s RGB value. This is
approximately true, but the zoomed-in plot in Figure 4b
shows that there are small and consistent deviations.
Figure 4c shows a more demanding version of this test,
with a LUT texture that has just eight samples and
represents a triangular wave that oscillates between
RGB values of 100 and 200. Rendered RGB follows
the expected pattern approximately, but again with
some deviations. Except for unusual mappings like the
triangular wave, departures from linear interpolation
usually seem to be limited to just one RGB value, so
in most applications, they will not interfere with using
color grading to linearize luminance. We mention these
approximations, though, as another example of the
need to examine rendered stimuli closely.

We wished to confirm that the effect of color
grading was the same in a few other common Unity
configurations. We rendered a sphere with (a) a

Downloaded from jov.arvojournals.org on 12/01/2022

Journal of Vision (2022) 22(13):1, 1–9 Murray, Patel, & Wiedenmann 6

Lambertian material (Legacy/Diffuse), (b) a Standard
material with default settings, (c) a Standard material
with an achromatic texture, and (d) a Standard material
with baked lighting. We rendered each sphere with and
without color grading, using a LUT texture generated
by the software in the Supplementary Material to
linearize luminance in the Oculus Rift S headset
used throughout this article. Figure 5 shows how
color grading transformed the images, by plotting the
achromatic RGB value rendered for each pixel with
color grading against the achromatic RGB value of the
same pixel without color grading. The effect of color
grading was identical in all four cases.

Color grading in Unity differs from some other
lookup table methods that readers may be familiar
with, such as the one implemented for MATLAB in
the Psychophysics Toolbox (PTB; Brainard, 1997).
One difference is that the PTB lookup table is a 256
× 3 matrix (or n × 3 for greater color depths), which
we can call L, and an RGB triplet (r, g, b) is mapped
to (Lr1,Lg2,Lb3). This means that each component of
the triplet is transformed independently of the other
components. In Unity color grading, the mapping
of each component can depend on the values of the
other components as well (recall that each component
is effectively looked up in an n × n × n array), so the
transformation is much more flexible. With this degree
of flexibility, it should be possible to use color grading
to implement standard methods for color calibration
as well as luminance calibration (Brainard et al.,
2002).

Another difference is that the PTB lookup table does
not affect the RGB values in video memory. Instead,
the lookup table is written to graphics hardware, and
RGB values in video memory are transformed en route
to being displayed on the monitor. The RGB values in a
screen capture, for example, are unaffected by the PTB
lookup table. In Unity, the LUT texture is used in a late
stage of the rendering process, and it does modify the
RGB values written to video memory. One consequence
is that if a display has a PTB-type lookup table, then it
still needs to be controlled by some mechanism other
than Unity color grading.

Discussion

VR is a promising tool that opens the way to creative
new approaches to perceptual experiments. However,
Unity and VR headsets are two complex, not always
transparent, interfacing systems that were not primarily
designed for research. As a result, it is important
to take a cautious approach to stimulus generation.
Which stimulus features call for the most attention will
differ from one research area to another. Our research
with VR has centered on lightness constancy, so we

have examined the luminance properties of stimuli.
In the work reported here, we have done this only for
a subset of the many components available in Unity
(materials, lighting types, render settings, etc.), so we
still recommend a test-as-you-go approach. One feature
that makes such experiments easier is that however
complex the rendering process may be, Unity provides
access to the pixel-by-pixel RGB values of the rendered
images (see MainScript.cs in the Supplementary
Material for a code-based method of taking screen
captures in Unity), so with a few simple tests, it is
usually possible to tell whether the stimulus is what we
expect it to be.

There are other tools that are useful for developing
VR experiments, which we have not explored here.
As we have mentioned, specialized equipment
is available for measuring luminance, color, and
optical properties of headset displays. Another
tool is the C# source code for Unity itself, which
is available for reference (https://github.com/
Unity-Technologies/UnityCsReference, https:
//github.com/Unity-Technologies/PostProcessing).
This is a potentially valuable resource, but it is a large,
complex, and evolving code base. It seems unlikely that
many perception labs will thoroughly master this code,
so experimental tests of rendered stimuli will continue
to be important.

We have focused on software tools for luminance
calibration in Unity. We have not discussed possible
hardware limitations, which are also important for
some applications. These limitations include pixel
independence, color channel constancy, color channel
additivity, and spatiotemporal homogeneity. These
issues are not specific to VR displays and are discussed
at length by Brainard et al. (2002). Color channel
constancy and additivity are investigated for Unreal
Engine and the HTC Vive by Toscani et al. (2019).
The methods we have described here provide sufficient
control over displayed RGB values to also make these
tests straightforward in Unity.

We have discussed Unity’s Built-in Render Pipeline,
which is the default pipeline. Unity has alternative
pipelines available as well. The Scriptable Render
Pipeline allows users to program their own rendering
routines, such as custom shaders. The Universal
Render Pipeline is designed to render images on a
wide range of platforms, and the High Definition
Render Pipeline aims to provide greater physical
realism. These alternatives are also worth investigating
for VR experiments (e.g., Diaz-Barrancas et al.,
2021), as they have the potential to provide greater
transparency and flexibility and to allow users to
create more realistic and precisely controlled virtual
environments.

Keywords: virtual reality, methods, luminance, color,
calibration

Downloaded from jov.arvojournals.org on 12/01/2022

https://github.com/Unity-Technologies/UnityCsReference
https://github.com/Unity-Technologies/PostProcessing

Journal of Vision (2022) 22(13):1, 1–9 Murray, Patel, & Wiedenmann 7

Acknowledgments

The authors thank Matthew Cutone, Vijay Singh,
and Laurie Wilcox for helpful comments. This work
was funded in part by an NSERC Discovery Grant to
RFM and a VISTA Doctoral Scholarship to KYP.

Supplementary Material is available at https:
//osf.io/ryte5.

Commercial relationships: none.
Corresponding author: Richard, F. Murray.
Email: rfm@yorku.ca.
Address: Department of Psychology and Centre for
Vision Research, York University, Toronto, Ontario,
Canada.

Footnotes
1The default Unity material, called “Standard,” is not Lambertian with its
initial settings. To create a Lambertian surface, a material of type “Legacy
Shaders/Diffuse” can be assigned to an object.
2The sRGB nonlinearity consists of a small linear segment joined
to a nonlinear curve, and together they are closely approximated by
f (x) ∼ x2.2.

References

Brainard, D. H. (1997). The psychophysics toolbox.
Spatial Vision, 10, 433–436.

Brainard, D. H., Pelli, D. G., & Robson, T. (2002).
Display characterization. In J. Hornak (Ed.),
Encyclopedia of imaging science and technology (pp.
172–188). Hoboken, NJ: John Wiley & Sons, Inc.

Diaz-Barrancas, F., Cwierz, H., & Pardo, P. J. (2021).
Real-time application of computer graphics
improvement techniques using hyperspectral
textures in a virtual reality system. Electronics,
10(22):2852, 1–10.

Greengard, S. (2019). Virtual reality. Cambridge, MA:
MIT Press.

Pharr, M., Wenzel, J., & Humphreys, G. (2017).
Physically based rendering (3rd ed.). New York:
Morgan Kaufmann Publishers.

Post-Processing Stack v2. (n.d.). https://docs.unity3d.
com/Packages/com.unity.postprocessing@3.2/
manual/index.html.

Rodriguez, R. G., Bayer, F., Toscani, M., Guarnera, D.,
Guarnera, G. C., & Gegenfurtner, K. R. (2022).
Colour calibration of a head mounted display for
colour vision research using virtual reality. SN
Computer Science, 3(22), 1–10.

Toscani, M., Gil, R., Guarnera, D., Guarnera, G.
C., Kalouaz, A., & Gegenfurtner, K. R. (2019).

Assessment of OLED head mounted display
for vision research with virtual reality. In K.
Yetongnon, A. Dipanda, G. Sanniti di Baja, L.
Gallo, & R. Chebir (Eds.), 15th Annual Conference
on Signal-Image Technology and Internet-Based
Systems (SITIS) (pp. 738–745). Los Alamitos, CA:
IEEE Computer Society.

Unity Technologies. (2020). Unity, version 2020.1.5f1.
Retrieved from https://unity.com

Unity User Manual 2020.1. (2020). https://docs.unity3d.
com/2020.1/Documentation/Manual/UnityManual.
html.

Appendix A. Measurements with a
spot photometer

We noted in the main text that there appears to
be substantial light scatter when viewing the Oculus
Rift S display through a Konica-Minolta LS-110
photometer. To confirm this impression, we measured
the luminance of a series of achromatic disks with a
fixed luminance and a range of diameters, displayed
on a black background, shown on the Rift S headset
and on a flat-panel LCD monitor (2017 iMac, 27 in.).
The nominal integration region of the LS-110 has
a diameter of 0.33 degrees of visual angle, and we
aimed this region at the center of each disk. Figure
6 shows that on the flat-panel monitor, additional
stimulus area outside the integration region had
little effect on measured luminance. On the VR
headset, however, stimulus areas well outside the
nominal integration region contributed to luminance
measurements.

This raises the question of whether it is valid to use
this apparatus to measure luminance on a VR display.
In this appendix, we show that so long as we use a large
calibration stimulus, this light scatter is not problematic
for luminance calibration.

An idealized photometer reading p∗ from a
luminance image I (x) on the headset display is the
average luminance in a small target region RT :

p∗ = 1
A(RT)

∫
RT

I (x) dx (3)

Here, A(RT) is the area of region RT .
In fact, we find that the photometer we used

(Konica-Minolta LS-110) captures significant stray
light from within the headset (Oculus Rift S), as can
be confirmed by noting that high-luminance patches
outside the target region affect the luminance reading
(Figure 6). The optics of the headset and photometer
are presumably linear, so a more realistic and general
model of the photometer reading p is a weighted

Downloaded from jov.arvojournals.org on 12/01/2022

https://osf.io/ryte5
https://docs.unity3d.com/Packages/com.unity.postprocessing@3.2/manual/index.html
https://unity.com
https://docs.unity3d.com/2020.1/Documentation/Manual/UnityManual.html

Journal of Vision (2022) 22(13):1, 1–9 Murray, Patel, & Wiedenmann 8

integral of the luminance image over the entire display
region R:

p =
∫

R
w(x)I (x)dx (4)

The weighting function w(x) varies with the position
and orientation of the photometer.

During calibration, we might show an image
T (x) f (u) that just fills the ideal photometer’s sensitive
region RT . Here, T (x) is a spatial luminance pattern,
such as a small disk, and the scaling function f (u)
represents the fact that we can control the luminance
of this pattern with a parameter u. For example,
T (x) f (u) could be a small disk rendered with RGB
triplet (u, u, u). We assume that f (0) = 0, and because
the display is not completely dark even at RGB value
(0, 0, 0), we represent the calibration stimulus as
I (x) = T (x) f (u) + B(x), where B(x) is the residual
background image corresponding to u = 0. In general,
B(x) extends over the full display region R. The ideal
photometer’s response to this stimulus I (x) is

p∗ = f (u)
A(RT)

∫
RT

T (x) dx + 1
A(RT)

∫
RT

B(x) dx (5)

whereas the response of a photometer with light scatter
is

p = f (u)
∫

RT

w(x)T (x) dx +
∫

R
w(x)B(x) dx (6)

Figure 6. Luminance measurements from a photometer
directed at the center of disks with a range of diameters and
fixed luminance. The black vertical line at 0.33◦ indicates the
diameter of the nominal integration region of the photometer.

If (a) T (x) and B(x) are constant within region
RT , and if (b) the integrand in the second integral
in Equation 4 is nonzero only over the target region
RT , then these two readings are proportional to each
other as a function of u, and we can use p as a proxy
for p∗ that simply loses an overall scale factor. We can
meet condition (a), as the target region RT is small, so
stimuli with constant RGB values have approximately
constant luminance over this area. Meeting condition
(b), however, is more difficult: Due to scattering, light
from a large area of the background image contributes
to the photometer’s response, so an unknown constant
is added to all luminance readings relative to the ideal
photometer’s response.

A natural solution is to make the image T (x) cover
the entire display, just like the background B(x), so that
a large area of T (x) contributes to the measurement
as well. Under certain conditions, this approach
succeeds. We cannot usually show a calibration image
T (x) = t f (u) that is constant over the whole display,
as most displays are brighter at the center than in the
periphery. Instead, we assume that the stimulus I (x)
is the ideal calibration stimulus T ′(x) = t f (u) and
ideal background image B′(x) = b (both of which
are independent of x), spatially modulated by some
function g(x):

I (x) = g(x)
(
t f (u) + b

)
(7)

The responses of the idealized and light-scattering
photometers to this stimulus are

p∗ = t f (u) + b
A(RT)

∫
RT

g(x) dx (8)

p = (
t f (u) + b

) ∫
R
g(x)w(x) dx (9)

These responses are proportional as a function of u, so
if the assumptions supporting this approach are met,
we can use a spot photometer to measure luminance
in a headset up to a scale factor, even with substantial
light scatter.

The main assumption in this approach is that the
scaling function f (u) is the same across the display.
(This allows us to move f (u) outside the integrals in
Equations 8 and 9.) This is a reasonable assumption,
and it underlies the calibration procedures used
in practically all psychophysical experiments with
flat-panel monitors, where it is assumed that a single
pointwise transformation can linearize the relationship
between RGB and luminance across the display.
Nevertheless, we tested this assumption by measuring
the luminance of a test patch as a function of u at
several locations on the headset display. To make these
measurements without relying on our model of light
scatter, we used a custom-built pinhole camera. We
describe the construction and calibration of the camera
in Appendix B. We used this apparatus to measure the

Downloaded from jov.arvojournals.org on 12/01/2022

Journal of Vision (2022) 22(13):1, 1–9 Murray, Patel, & Wiedenmann 9

Figure 7. Luminance measurements at several locations across
the central 5 to 10 degrees of the VR headset display.
Luminance is shown as a function of achromatic RGB value,
fitted with power functions constrained to have a common
exponent.

luminance displayed as a function of achromatic RGB
value, at four locations separated by 5 to 10 degrees of
visual angle, in the central region of the headset display.
Figure 7 shows that luminances at different locations
were fit well by power functions f (x) = kxγ + δ sharing
a common exponent γ , consistent with the assumption
being tested here.

Another assumption of this method is that the
same function g(x) spatially modulates the test and
background images. (This allows the terms t f (u)
and b to be grouped together in Equations 8 and
9.) This assumption is more difficult to test without
specialized equipment, but it is also less important if the
photometer’s response to the background image B(x) is
much smaller than its response to the calibration image
T (x) f (u). We find that when the calibration image
covers the whole display, the photometer reading for
RGB value (0, 0, 0) is 0.19 cd/m2, and the reading for
(255, 255, 255) is 59 cd/m2. Thus, the background makes
only a small contribution to luminance measurements
from a full-field stimulus, and differences in the spatial
modulation g(x) of the foreground and background
images should create only small departures from
proportionality between ideal and real photometer
readings.

A separate, more practical issue is that the
photometer may capture stray light from the physical
environment. We find that even when the photometer is

aimed directly into the headset, turning the room lights
on and off changes the luminance reading. To address
this problem, we cover the photometer and headset
with an opaque veil during calibration.

In the section “Color grading” in the main article,
we show that calibration of a VR headset with
measurements from a spot photometer can be validated
using measurements from the pinhole camera described
in Appendix B.

Appendix B. Measurements with a
pinhole camera

Here we describe a pinhole camera apparatus that
we constructed to measure luminance on a VR headset
display, in order to validate the measurements we made
with a spot photometer. We created pinhole pupils in
the eyes of a life-sized mannequin head by drilling
small holes (diameter ∼1.0 mm) in discs of thin steel
sheet metal (diameter 2 cm, thickness 0.002 in.), and
mounting these disks on the outer side of larger holes
drilled through the eyes of the mannequin. We painted
the inside of the mannequin head matte black to
increase opacity and reduce stray light. A clamp that we
mounted inside the apparatus held a photodiode (model
PIN-10-AP; OSI Optoelectronics) approximately 10
cm behind one of the pinholes. The spectral sensitivity
of the photodiode closely matched the CIE photopic
spectral luminous efficiency function. The active
area of the photodiode measured 1 cm × 1 cm, so
at a distance of 10 cm from the pupil, it integrated
light over 5.7 × 5.7 degrees of visual angle. We used
the photodiode in photovoltaic mode and passed
its output through a current-to-voltage converter, a
passive low-pass filter, a voltage amplifier, and finally
the analog-to-digital converter of an Arduino UNO
board. This apparatus provided a digital readout of the
illuminance at the photodiode, in arbitrary units. We
calibrated the readout by placing the apparatus (with
the photodiode inside the mannequin head) in front of
a calibrated flat-panel LCD monitor and measuring
the mapping from known luminances on the monitor
to digital readings from the apparatus. This allowed us
to calculate the inverse mapping and to convert digital
readings to luminance measurements in cd/m2. We
confirmed that after this calibration procedure, we were
able to use the apparatus to measure known luminances
displayed on the flat-panel monitor to within a few
percent. We mounted the VR headset on the mannequin
head and used the apparatus to measure luminance
on the headset display. To measure luminance at
different locations on the display, we manually
adjusted the position of the photodiode inside the
apparatus.

Downloaded from jov.arvojournals.org on 12/01/2022

