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ABSTRACT: Robust and accurate analysis of cell-population
heterogeneity is challenging but required in many areas of
biology and medicine. In particular, it is pivotal to the
development of reliable cancer biomarkers. Here, we prove
that cytometry of reaction rate constant (CRRC) can facilitate
such analysis when the kinetic mechanism of a reaction
associated with the heterogeneity is known. In CRRC, the
cells are loaded with a reaction substrate, and its conversion
into a product is followed by time-lapse fluorescence
microscopy at the single-cell level. A reaction rate constant
is determined for every cell, and a kinetic histogram “number of cells versus the rate constant” is used to determine quantitative
parameters of reaction-based cell-population heterogeneity. Such parameters include, for example, the number and sizes of
subpopulations. In this work, we applied CRRC to a reaction of substrate extrusion from cells by ATP-binding cassette (ABC)
transporters. This reaction is viewed as a potential basis for predictive biomarkers of chemoresistance in cancer. CRRC proved
to be robust (insensitive to variations in experimental settings) and accurate for finding quantitative parameters of cell-
population heterogeneity. In contrast, a typical nonkinetic analysis, performed on the same data sets, proved to be both
nonrobust and inaccurate. Our results suggest that CRRC can potentially facilitate the development of reliable cancer
biomarkers on the basis of quantitative parameters of cell-population heterogeneity. A plausible implementation scenario of
CRRC-based development, validation, and clinical use of a predictor of ovarian cancer chemoresistance to its frontline therapy
is presented.

Cell populations within the same tissue are inherently
heterogeneous, and this heterogeneity may be so

extensive that distinct subpopulations become identifiable.1,2

For example, populations of cancer cells are comprised
typically of at least two subpopulations: bulk tumor cells
(that are often sensitive to chemotherapy) and tumor-initiating
cells (that are often chemotherapy-resistant).3,4 In general, cell-
population heterogeneity is caused by differences in molecular
reactions between the cells. When a specific reaction is
associated with cell-population heterogeneity, it can serve as a
basis for characterizing this heterogeneity.5 Measurements of
reaction rate constant were used to characterize heterogeneity
with a general approach, which we refer to as cytometry of
reaction rate constant (CRRC), that results in a kinetic
histogram “number of cells versus rate constant”.6−11 CRRC
covers all methods that characterize cell population hetero-
geneity by (i) utilizing the rate constant(s) of a confirmed
reaction mechanism and (ii) analyzing a statistically significant
number of cells for high-confidence determination of

quantitative parameters of cell-population heterogeneity. The
kinetic nature of CRRC suggests that it should be able to
support robust and accurate characterization of reaction-based
cell-population heterogeneity. Accordingly, it may be poten-
tially suitable for the development of reliable cancer
biomarkers built upon such heterogeneity.
The concept of CRRC is schematically depicted in Figure 1.

First, the cells are loaded with a fluorescent (or fluorogenic)
substrate, and the substrate is naturally involved into the
cellular reaction of interest. Second, kinetics of change of
intracellular substrate concentration is followed by imaging a
large number of cells microscopically and measuring the
fluorescence intensity in individual cells as a function of time.
Third, the reaction rate constant for a known kinetic
mechanism of the reaction is determined for every cell.
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Fourth, the rate constant values are used to construct a kinetic
histogram: “number of cells versus the rate constant”. The
kinetic histogram can be utilized for multifaceted character-
ization of cell population heterogeneity.
There are a number of quantitative parameters used to

characterize cell-population heterogeneity (Figure 2).12,13 If

the cell population is unimodal, it is represented by a single
peak in a cytometry histogram “number of cells versus measure
x characterizing cells”. In classical flow cytometry, x is simply
fluorescence intensity. A single peak is comprehensively
characterized by peak position (e.g., a median value of x),
peak width (e.g., interquartile range), and peak asymmetry
(e.g., skewness) (Figure 2, left).14,15 If the cell population is
bimodal, for example, consists of two distinct subpopulations,
it is represented by two peaks. For the two subpopulations to
be distinguishable, the two peaks should be separated; the
quality of separation is characterized by peak resolution
(Figure 2, right). The key parameters characterizing a bimodal
cell population are sizes of the two subpopulations, which can
be found as areas of the corresponding peaks.
In this work, we examined CRRC in its ability to determine

the five quantitative parameters characterizing unimodal and
bimodal cell populations. The bimodal cell population was
created by the controlled mixing of two very closely related cell
lines. To place CRRC results in the quantitative context of a
non-CRRC approach typically used in such studies, we utilized
a typical nonkinetic measure x obtained from the CRRC data
sets.
We found that CRRC was robust to variations in

experimental conditions, while its nonkinetic counterpart was
nonrobust. A 2-fold change in the substrate concentration or
analysis time resulted in only less than 16% changes in all
heterogeneity parameters determined by CRRC, but in more
than 14% and as high as multifold changes of these parameters
determined with the nonkinetic analysis. The only exception
was the peak width, which was found to be robust in both

kinetic and nonkinetic analyses. Importantly, CRRC could
determine the size of a small subpopulation in the bimodal cell
population with accuracy of approximately 10%, which is likely
controlled by the accuracy of preparing the bimodal population
via mixing the two cell lines. The robustness and accuracy of
CRRC suggest that this approach can potentially facilitate the
development of reliable cancer biomarkers based on
quantitative parameters of cell-population heterogeneity.

■ RESULTS

Reaction Choice for CRRC. Substrate extrusion from cells
by membrane proteins, known as ATP-binding cassette
transporters (ABC transporters), was chosen as a reaction
for assessing robustness and accuracy of CRRC.16 This
reaction is a driving force of multidrug resistance (MDR) of
cancer cells and is usually called MDR transport.17 MDR
transport should not be confused with MDR: MDR is a
clinically observed nonsensitivity of cancer to multiple drugs,
while MDR transport is a specific reaction of substrate efflux by
ABC transporters. ABC transporters have low substrate
specificity, and, therefore, fluorophores can be used as
substrates in studies of MDR transport.18 To avoid
misunderstandings, it should be explicitly stated that studying
MDR transport does not require fluorescent anticancer
drugs.19

Nonkinetic histograms were used to characterize MDR-
based heterogeneity of cancer cell populations; the size of a cell
subpopulation with increased MDR transport activity was used
as a heterogeneity parameter to develop predictive biomarkers
of clinical resistance of cancer to chemotherapy.20,21 All such
biomarkers, however, have proven to be unreliable clin-
ically,22,23 likely due to the nonrobustness and inaccuracy of
the nonkinetic analysis employed for their derivation. Hence,
finding a robust and accurate approach for characterizing
MDR-based cell-population heterogeneity may have significant
clinical benefits. While the medical relevance of MDR
transport served as an important justification for using this
reaction in previous studies,8−11 its use here is mainly a matter
of convenience. This work did not aim to prove the suitability
of MDR-transport assessment for the development of cancer
biomarkers.

Kinetic Mechanism of MDR Transport. Mechanistically,
an ABC transporter (T) binds the substrate (S) on the inner
side of the membrane, “turns” around, and releases S on the
outer side of the membrane (Figure S1).24 The MDR transport
proceeds through the formation of an intermediate complex
(TS) and, thus, can be described by the Michaelis−Menten
equation (commonly used for enzymatic reactions):25

+ → +
−

T S TS T S
k

k k
in ex

1

1 2X Yoo
(1)

Figure 1. Schematic depiction of cytometry of reaction rate constant. See text for details.

Figure 2. Schematic depiction of unimodal (left) and bimodal (right)
cytometry histograms defining quantitative parameters used to
characterize cell-population heterogeneity. See text for details.
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where Sin is intracellular substrate and Sex is extracellular
substrate. This process can be characterized by a unimolecular
rate constant of MDR transport, kMDR, which is a ratio between
the maximum reaction rate, Vmax, and the Michaelis constant,
KM:

26,27

=k V K/MDR max M (2)

Our earlier work has proven that the single-cell kinetics of
MDR follow the Michaelis−Menten mechanism,8−11 and, thus,
kMDR (as defined above) is suitable for the analysis of MDR-
based cell-population heterogeneity by CRRC.
Timeline of a CRRC Experiment for MDR Transport.

The timeline of our experiment is schematically shown in
Figure 3 (for a single cell). The experiment starts with cells

being in a Petri dish on a microscope stage. A fluorescent
substrate of MDR transport and an inhibitor of ABC
transporters are added simultaneously to the cell media to
initiate substrate loading into the cells. When fluorescence
intensity from a cell approaches its saturation at level I0, the
substrate loading is stopped by removing the extracellular
substrate while keeping the inhibitor in the media. This
initiates the “substrate leakage” process that includes both
passive substrate diffusion from the cell and photobleaching of
the intracellular substrate. The substrate leakage process is
accompanied by fluorescence intensity decrease to level I1. The
MDR-mediated efflux then is initiated by removing the MDR-
transport inhibitor, and the cumulative substrate loss by both
the substrate leakage process and the MDR transport is
followed.
A kinetic curve of substrate efflux consists of (i) an initial

segment (from t0 to t1) representing the substrate leakage
process and (ii) the main segment (after t1) that corresponds
to the cumulative effect of the substrate leakage process and
MDR transport. The substrate leakage process from a cell is
accompanied by exponential decrease of cellular fluorescence
intensity:

= −I t I( ) e k t
leak 0

leak (3)

where I0 is the initial intensity, and kleak is a unimolecular rate
constant characterizing the substrate leakage process. Fluo-
rescence intensity decreases to I1 relatively slowly so that (I0 −

I1)/I0 ≪ 1. This allows the calculation of kleak from the near
linear initial segment using the following approximate
equation:

≈
−

−
k

I I
I t t

1
( )leak

0 1

0 1 0 (4)

This value of kleak can then be used to determine kMDR from the
main exponential segment of the kinetic trace.
The decrease of fluorescence intensity caused by MDR

transport after t1 is also exponential (provided that [Sin] ≪
KM):

= −I t I( ) e k t
MDR 1

MDR (5)

The cumulative substrate efflux is driven by two first-order
processes (leakage and MDR transport) and is, therefore, also
the first-order process. It is accompanied by an exponential
decrease of cellular fluorescence intensity with a cumulative
rate constant kleak + kMDR:

=+
− +I t I( ) e k k t

leak MDR 1
( )leak MDR (6)

Note that I0, kleak, I1, and kMDR are unique for every cell. The
value of kMDR for a single cell is determined from a single
kinetic curve by finding kleak from eq 4 and placing it in eq 6,
which is then used to fit the main segment on this kinetic curve
with kMDR being a variable parameter. If kleak ≪ kMDR, the
procedure of kMDR determination can be simplified by
neglecting kleak and finding kMDR from the main segment on
the kinetic trace (after t1) using eq 5.
Robustness and accuracy of our kinetic analysis were studied

in comparison to those of the common nonkinetic analysis of
the same data set. A kinetic curve utilized for finding kMDR (see
Figure 3) was also used to calculate a nonkinetic measure of
MDR transport, a relative decrease of fluorescence intensity,
(I1 − I2)/I1,

28−30 and construct the nonkinetic histogram
“number of cells versus (I1 − I2)/I1”. The value of (I1 − I2)/I1
corresponds to a fraction of the MDR substrate extruded from
the cell.

Experimental Design for Assessing Accuracy and
Robustness of CRRC. In this study, we used two types of
A2780 cultured ovarian cancer cells: a drug-sensitive parental
cell line with a basal MDR activity and its derivative drug-
resistant subline with increased MDR activity.31 The drug-
sensitive line models bulk tumor cells, while the drug-resistant
subline models tumor-initiating cells.32 Fluorescein was used as
a substrate of MDR transport (a known substrate for the MRP-
type ABC transporters predominantly expressed in these
cells),33 and glyburide was used as an inhibitor of MRP
transporters.34

The choice of substrate concentration is governed, in
general, by two considerations. On one hand, the substrate
concentration should be as high as possible to facilitate a
maximum dynamic range of fluorescent measurements. On the
other hand, the value of substrate concentration should be
much less that the value of KM to ensure the first-order regime
of substrate efflux required for applicability of eq 6. A rule of
thumb is to choose the substrate concentration that is 1 order
of magnitude below KM. In our case, the literature data suggest
KM as low as 14 μM for fluorescein in the reaction depicted in
eq 1.33,35 Thus, fluorescein concentration should not exceed
3.0 μM. Any experimental protocol should be robust to
changes in substrate concentration within a meaningful range,
for example, within √2-fold in either direction from the

Figure 3. Schematic depiction of the timeline of CRRC experiment
aiming to determine the rate constant of MDR efflux, kMDR. See text
for details.
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concentration of choice.36 If we choose fluorescein concen-
tration of 2.12 μM as a “protocol concentration”, then the
range will be from 1.5 to 3.0 μM. An additional advantage of
ensuring the first-order regime is that it renders the assay
calibration-free (intracellular substrate concentration does not
need to be known) and, thus, increases its reliability and
robustness.
Time-lapse fluorescence imaging of all cells in the field of

view with 3 min intervals started after replacing fluorescein-
containing media with fluorescein-free media (t0 in Figure 3)
and ended after 2−3 h. The images are archived in supporting
file Timeseries.zip. Individual cells were identified in every
image and traced through the entire time series. Mean
fluorescence intensity for every cell in a single image was
calculated and used to create a kinetic curve for every cell
(Note S1). We found that for our experimental system kleak <
0.1 × kMDR, and, therefore, eq 5 was used instead of eq 6 for
finding kMDR. The values of kMDR and (I1 − I2)/I1 were
determined as described above and used to construct kinetic
and nonkinetic histograms, respectively (archived in support-
ing file Plotteddata.zip). The above-described procedures were
used for three sets of experiments that assessed the quantitative
performance of the kinetic analysis as well as of the nonkinetic
one.
Analysis of Heterogeneity of a Unimodal Histogram.

In the first set of experiments, we compared the robustness of
the kinetic and nonkinetic analyses in characterizing
heterogeneity of a unimodal histogram (containing only a
single peak) obtained for the drug-sensitive cell line. Substrate
concentration and observation time are typical variable
parameters.37 Even when protocols prescribe a specific
concentration and a specific observation time, these parameters
vary from experiment to experiment due to inaccuracy of
measuring devices, human errors, attempts to optimize
protocols (e.g., via shortening observation time), etc. Such
variations may cause nonrobustness of the analysis. Such
nonrobustness is further aggravated when different laboratories
use protocols and integrate them into other practices, such as
surgical protocols, etc. Therefore, we studied the robustness of
analysis results to variations in fluorescein concentration and
observation time. The parental drug-sensitive cell line was used
in this part of our study.
To understand analysis robustness to substrate concen-

tration, we utilized two fluorescein concentrations in the cell
media, 1.5 and 3.0 μM; the justification for this choice was
provided above. An observation time of 2 h is common for
MDR assays;38,39 it was used as a default value throughout this
study. Note that longer substrate-loading times will be required
if spheroids or tissue slices are used instead of dispersed cells.
Also, CRRC studies of slower transport or enzymatic processes
will require longer time-lapse observations to unsure the
conversion of most of the substrate into the product.
Fluorescence images of >1000 cells each were processed
(kinetic traces for all cells are archived in Kinetictraces.zip),
and kinetic and nonkinetic histograms were plotted (Figure 4,
top). As expected for a pure cell line, both histograms were
unimodal and could be characterized by the median values of
kMDR and (I1 − I2)/I1, respectively, interquartile range (a
measure of peak width), and peak skewness (a measure of peak
asymmetry).15

Doubling the substrate concentration did not cause
significant changes in the kinetic histogram (Figure 4, top,
left): the median value of kMDR, the interquartile range, and

peak skewness changed not more than 3% (kMDR, both 1.98
h−1; interquartile range, 0.72 and 0.72 h−1, and skewness, 1.55
and 1.56). In contrast, the nonkinetic analysis (Figure 4, top,
right) revealed a much greater dependence of these parameters
on the substrate concentration. Upon increasing fluorescein
concentration from 1.5 to 3.0 μM, the median value of (I1 −
I2)/I1 decreased from 0.70 to 0.60 (p < 0.05 for the entire
experimental set), and skewness dropped from 1.09 to 0.27 (p
< 0.01 for the entire experimental set). Thus, the kinetic
analysis was very robust to changing substrate concentration
while its nonkinetic counterpart showed rather dramatic
nonrobustness.
We then studied the robustness of the kinetic and nonkinetic

analyses with regards to shortening the observation time in the
assay. In general, shortening the observation time is beneficial
as it allows for a faster assay. Accordingly, the values of kMDR
and (I1 − I2)/I1 were determined from the default 2-h kinetic
traces and from truncated 1-h traces for each of >1000 cells
(archived in Kinetictraces.zip), and kinetic and nonkinetic
histograms were constructed for 2- and 1-h observation times
(Figure 4, bottom). The results were similar to those for the
different substrate concentrations. The effects of changing
observation time on the median value of the MDR transport
measure and peak skewness were much greater for the
nonkinetic analysis (Figure 4, bottom, right) than for the
kinetic analysis (Figure 4, bottom, left).
To summarize, the results of experiments with different

substrate concentrations and different observation times
proved that the kinetic CRRC analysis, in contrast to its
nonkinetic counterpart, was robust to variations in two major
assay conditions, when used to determine parameters of a
unimodal distribution in the histogram.

Resolving Drug-Sensitive and Drug-Resistant Cells.
In the second set of experiments, we assessed the ability of the
kinetic and nonkinetic analyses to distinguish cells with
different levels of MDR activity, to resolve the drug-sensitive
cell line from the drug-resistant subline. The concentration of

Figure 4. Effect of 2-fold changes in substrate concentration (top)
and observation time (bottom) on kinetic (left) and nonkinetic
(right) histograms obtained from single-cell time dependence of
intracellular fluorescence of MDR substrate. The arrows indicate
positions of median kMDR and (I1 − I2)/I1 for the respective peaks.
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substrate was 1.5 μM, and the observation time was 2 h. Single-
cell kinetic traces were recorded for the drug-sensitive line and
drug-resistant subline (>1000 cells each), in two separate
experiments (archived in Kinetictraces.zip). The values of kMDR
and (I1 − I2)/I1 were found as described above and used to
construct kinetic and nonkinetic histograms, respectively, for
both types of cells (Figure 5).

The median values of kMDR for the resistant and sensitive
cells differed by a factor of 2.3. The median value of (I1 − I2)/
I1 for resistant and sensitive cells differed only by a factor of
1.2. Resolution R of peaks corresponding to drug-resistant and
drug-sensitive cells was defined as

=
| − |

+
R

M M
W W( )

1 2
1
2 1 2 (7)

where M1 and M2 are the median values of the two
distributions (drug-sensitive and drug-resistant), and W1 and
W2 are their widths calculated as interquartile ranges.15 On the
basis of the histograms in Figure 5, resolution between the
peaks in the kinetic assay was 3.5; in the nonkinetic assay it was
only 1.0 (p < 0.05 for the entire experimental set). For accurate
analysis of the peaks, a resolution of 1.5 (i.e., baseline
resolution) is required.40 These results proved that the kinetic
assay had a much greater resolving power than the nonkinetic
one for two subpopulations with different reaction rates.
Determining Size of a Subpopulation of Drug-

Resistant Cells. In the third and final set of experiments,
we assessed the ability of kinetic and nonkinetic analyses to
determine robustly and accurately the size of a small
subpopulation of cells with a reaction rate distinct from that
of a larger subpopulation. A bimodal cell population required
for such a study was prepared by mixing 80% of the drug-
sensitive cells with 20% of the drug-resistant cells. The
accuracy of preparation for the small subpopulation was
approximately 10% due to intrinsic heterogeneity of each
subpopulation and errors in cell counting.
The experiments for the bimodal cell populations were

conducted for two different substrate concentrations, 1.5 and
3.0 μM, to test analysis robustness with regards to the varying
substrate concentration. Fluorescence images were processed
to determine kMDR and (I1 − I2)/I1 for each of 791 cells
(archived in Kinetictraces.zip), and the corresponding kinetic

and nonkinetic histograms were plotted (Figure 6; archived in
Plotteddata.zip).

Because the drug-resistant subline had 2.3 times higher
kMDR, the kinetic histogram was bimodal for both concen-
trations of fluorescein. The resolution was 4.5 for both 1.5 and
3.0 μM, respectively, suggesting great robustness of CRRC in
peak resolution. The relative area of the peak with higher kMDR
is defined by the fraction of drug-resistant cells in the cell
population, which was 20% in our experiments. The measured
values of this relative area were 19% and 18% for 1.5 and 3.0
μM fluorescein, respectively. A deviation of less than 10% from
the expected value proved that the kinetic analysis was both
accurate and robust with regards to variations in the substrate
concentration.
In contrast, the nonkinetic analysis was nonrobust in

resolving the peak. When the concentration of fluorescein
increased from 1.5 and 3.0 μM, resolution dropped from 2.4 to
uncertain as the second peak disappeared. Obviously, such
nonrobustness is detrimental for analytical use of the
nonkinetic approach. Further, the nonkinetic analysis was
both nonrobust and inaccurate in finding the size of drug-
resistant subpopulation. The measured size was 13% for 1.5
μM fluorescein (over 30% difference from the actual size),
while the size could not be determined at all for 3.0 μM
fluorescein due to the lacking peak resolution. At 3.0 μM
fluorescein, the nonkinetic histogram became unimodal with
no boundary between the drug-sensitive and drug-resistant
peaks. Thus, the kinetic analysis of the size of a subpopulation
of cells with a distinct MDR transport rate was both robust and
accurate, while the nonkinetic analysis lacked both robustness
and accuracy.
Challenges associated with quantifying a relatively small cell

subpopulation in the presence of a relatively large one are
similar to those arising in quantifying a small peak adjacent to a
large one in chromatography. Approaches suitable for
addressing these challenges are also similar to the chromato-
graphic ones: the small peak should be resolved from the large
peak, and the size of the small peak should be greater than the
limit of quantitation. In the context of subpopulation analysis,
these requirements translate to the following. In addition to a
good resolution of the peaks, a statistically significant number
of cells in the small subpopulation are required for its reliable
identification and for accurate and robust measurement of its

Figure 5. Resolution of peaks corresponding to the drug-sensitive cell
line (with basal MDR activity) and drug-resistant subline (with
elevated MDR activity) in kinetic (left) and nonkinetic (right)
histograms obtained from single-cell time dependence of intracellular
fluorescence of MDR substrate. The vertical arrows indicate positions
of median values of kMDR and (I1 − I2)/I1, and the shaded areas show
interquartile ranges for the respective peaks.

Figure 6. Quantitation of the relative size of drug-resistant cells in a
bimodal cell population consisting of both drug-resistant and drug-
sensitive cells. The left panel illustrates the composition of the
bimodal cell population, which was made by mixing drug-resistant and
drug-sensitive cells at a 1:4 ratio. The middle and right panels show
the comparison of kinetic and nonkinetic histograms for 1.5 and 3.0
μM fluorescein. Question marks reflect an inability to distinguish
between cell populations.
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size. The total number of cells analyzed should increase with
decreasing relative size of the small subpopulation.

■ DISCUSSION

The demonstrated robustness and accuracy of CRRC suggest
that it should be preferred over the nonkinetic approach for
discovery and validation of disease biomarkers based on cell-
population heterogeneity. Discovery and validation of
biomarkers require the analysis of a thousand or more clinical
samples and processing them as a single data set. This large
number of samples necessitates the participation of multiple
hospitals and analytical laboratories and the availability of a
quantitatively robust protocol. Such a protocol can be
supported by CRRC but not by the nonkinetic approach.
Indeed, let us hypothetically consider that CRRC is used for
the development and validation of biomarkers based on the
relative size of the resistant subpopulation determined from the
kinetic histogram “number of cells versus kMDR”. Let us also
assume that an optimum protocol for measuring the relative
size of the resistant subpopulation is developed. This protocol
will be used by personnel in a large number of laboratories to
accumulate a sufficient data set. Let us further assume that the
protocol is based on [Substrate] = 2.25 μM. Substrate
concentration can vary from analysis to analysis by a factor
of √2 due to multiple factors including but not limited to
inaccuracy of measuring devices and human errors. The CRRC
approach can withstand this variation in substrate concen-
tration and recover the accurate size of the resistant
subpopulation while the nonkinetic approach becomes
absolutely inaccurate. As a result, an attempt to validate a
biomarker with the nonkinetic approach will fail due to
method nonrobustness. This failure will result in a tremendous
loss of human and material resources put into the development
and validation effort. In contrast, the accuracy and robustness
of CRRC will provide a realistic chance to successfully develop
and validate biomarkers based on the relative size of resistant
cell subpopulation. Furthermore, CRRC can be potentially
applied to tumor types for which tumor initiating cells could
not be reliably identified with classical methods.22

It is important to emphasize that the development of
biomarkers, in particular, those that are based on cell-

population heterogeneity, is also hindered by “biological
non-robustness and inaccuracy”. There may be significant
intrinsic sample-to-sample variation in cell-population hetero-
geneity parameters associated with the biological difference
between the samples. For example, we observed a difference in
peak resolution between experiments with earlier passages
(Figure 5) and later passages (Figure 6) of cells. Such
differences obviously cannot be compensated but can be
studied with CRRC. Having a robust and accurate cytometric
method eliminates doubts in the origin of variations; if any
variations are observed, they are biological rather than
methodological.
We coin a new term, MDRmetry, for the adaptation of

CRRC to assess the MDR-based heterogeneity that is outlined
in this study. MDRmetry will be important practically for
continuing attempts to develop accurate predictors of MDR-
mediated chemoresistance in cancer. When research funds
became available, we will use MDRmetry to develop and
validate a reliable predictor of chemoresistance of ovarian
cancer to its frontline platinum/taxane therapy. Our current
study proved that MDRmetry can accurately determine two
parameters comprehensively characterizing the drug-resistant
subpopulation: its relative size (RS, ratio between numbers of
cells in the drug-resistant and main drug-sensitive subpopula-
tions) and relative activity (RA, ratio between median kMDR
values of the drug-resistant and main drug-sensitive sub-
populations) (Figure 7, top). Our current study also proved
that |RS,RA| (a combination of RS and RA for a specific
specimen) is robust to changes in the concentration of MDR
substrate and observation time. We will, thus, be building a
predictor based on accurate and robust measurements of
|RS,RA|.
The predictor will be developed and validated using the

following approach (Figure 7, middle). Tumor tissues will be
collected from patients before the application of primary
chemotherapy. |RS,RA| will determined for every specimen.
Time to tumor progression (TTP, a measure of cancer
response to therapy) after primary chemotherapy will be
accurately determined for every patient. An accurate and
robust three-dimensional predictor plot TTP versus |RS,RA|
will be constructed on the basis of TTP and |RS,RA| data

Figure 7. Scenario of using MDRmetry for development, validation, and clinical utilization of a predictor of ovarian cancer resistance to its frontline
therapy. See text for detailed explanation.
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collected in different facilities to achieve the statistically
significant number of patients (the accuracy and robustness of
TTP and |RS,RA| allow pooling these data into a single set).
Further, a predictor function TTP = f(RS,RA) will be derived
by fitting the points in the predictor plot with a polynomial
function. The predictor function will be validated with the |
RS,RA,TTP| data obtained by using tissues from another pool
of patients of a statistically significant size.
If the developed predictor is successfully validated, it will be

clinically utilized as follows (Figure 7, bottom). Tumor tissue
will be collected from a patient to be tested before applying
primary chemotherapy. |RS,RA| will determined, and the
predicted TTP (TTPpr) will be calculated from the validated
predictor function: TTPpr = f(RS,RA). This value will be
compared to the clinically accepted threshold TTP: TTPthr. If
TTPpr < TTPthr, the patient will be deemed to have MDR-
dependent chemoresistance, and an alternative treatment will
be considered instead of primary chemotherapy. If TTPpr ≥
TTPthr, then primary chemotherapy should be used, while
chances remain that the patient will present with MDR-
independent chemoresistance driven by the other two major
resistance mechanisms: drug degradation by intracellular
enzymatic cascades and repair of drug-induced DNA damage
by nuclear enzymes.41,42 It is important to emphasize that
CRRC-based technologies similar to MDRmetry can be
created and used for the development of predictors based on
activities of the two additional drug-resistance mechanisms.
Further, we envision the development of a “cumulative”
chemoresistance predictor built upon all three drug-resistance
mechanisms. Such predictors belong to a class of activity-based
biomarkers; their development requires more analytical
insights, but they are viewed as potentially more accurate
than expression-based biomarkers.
CRRC has been applied only to cell suspension so far. We

foresee that CRRC can potentially be applied to intact live-
tissue slices, but such an application is more challenging
methodologically. We have conducted some preliminary work
with spheroids and found that cells dispersed from spheroids
retain their phenotype during 96 h.43,44 Therefore, our initial
plan is not to use intact tissue slices but to use cell suspensions
prepared by dispersal of tissue specimens.
CRRC has a few limitations. First, CRRC requires that a

kinetic mechanism of the reaction of interest be known; in
essence, this requirement necessitates a separate experimental
study to confirm this mechanism. Some research on kinetic
mechanisms of clinically relevant cellular reactions has already
been conducted.45 We expect that our results will convince
equipped laboratories to focus on such kinetic studies. Second,
in the presented here version of CRRC, the initial substrate
concentration in cells should be in the range needed for the
first-order assumption; on the other hand, it should be within
the dynamic range of fluorescence detection. This requirement
may become very limiting if the substrate concentration that
satisfies the first-order assumption is too low for the kinetic
traces to be recorded. For example, a Michaelis mechanism
with KM = 0.1 μM requires that the initial intracellular
substrate concentration be as low as 10 nM, which is below the
limit of quantitation of regular fluorescence microscopes. This
limitation may be overcome by abandoning the requirement
for first-order kinetics; we have previously demonstrated
CRRC-based determination of KM and Vmax via non-first-
order kinetic analysis followed by finding kMDR with eq 2.

10 It is
important to note that using non-first-order kinetics makes the

analysis noncalibration-free; for example, finding KM requires
knowing intracellular substrate concentration, which is
impossible without calibrating fluorescent signal with respect
to substrate concentration. Improving signal-to-noise ratio in
fluorescence microscopy is an attractive way of overcoming the
limitation of substrate concentration without abandoning the
first-order approximation. This study may serve as a motivation
for efforts aiming to find technical solutions for such
improvements. Some approaches utilized in highly sensitive
fluorescence detectors can be potentially transferred to
fluorescence microscopy of live cells.46,47 Third, CRRC
becomes much more difficult to implement when more than
one reaction constant needs to be determined for the same
reaction. Determining more than one constant may require
measuring kinetic traces for each cell under different
conditions, for example, under different starting substrate
concentrations; such measurements may be very cumbersome.
It should be noted that the above limitations are a natural cost
of the analytical advantages of CRRC, its quantitative accuracy
and robustness.
Modern microscopes and image processing software allow

automation of CRRC for fast and reliable acquisition of kinetic
data for thousands of cells, a requirement for determining
statistical significance of the heterogeneity parameters. The
availability of required hardware and software suggests that the
use of CRRC can gain momentum rapidly. We foresee that
CRRC will potentially facilitate the development of reliable
disease biomarkers based on parameters of reaction-based cell-
population heterogeneity.48−52 We also envision a multiplexed
version of CRRC, in which several parameters (e.g., cell status,
phenotypes, kinetic constants of parallel processes) are
evaluated either in parallel or sequentially.8

■ MATERIALS AND METHODS

Cell Preparation. Cells were grown and prepared by
following standard procedures published elsewhere.27 Briefly,
human ovarian carcinoma cells A2780, and their cisplatin-
resistant variant A2780-cp, were grown under standard cell
culture conditions in Dulbecco’s Modified Eagle’s medium
(DMEM; supplement liquid containing 4500 mg L−1 of
glucose, 1500 mg L−1 of sodium bicarbonate, 1 mM of sodium
pyruvate, and 4 mM of L-glutamine) at 37 °C in a humidified
atmosphere of 5% CO2. DMEM produced by ATCC (30-
2002) was purchased from Cedarlane (Burlington, Ontario,
Canada). The cell culture medium contained conventional
supplements (100 IU mL−1 penicillin, 100 μg mL−1

streptomycin, and 10% fetal bovine serum) purchased from
Invitrogen (Burlington, Ontario, Canada).

Image Acquisition. Single cells were dispersed in 35 mm
dishes at 60−80% confluence in cell-support medium (self-
prepared Krebs-Ringer bicarbonate buffer, KRB-buffer) con-
taining 115 mM NaCl, 5.9 mM KCl, 2.5 mM CaCl2, 1.2 mM
MgCl2, 1.2 mM NaH2PO4, 15 mM NaHCO3, 10 mM glucose;
pH of KRB-buffer was 7.4. Fluorescein (1.5 μM or 3.0 μM; see
main text) and glyburide (10 μM; also called glibenclamide),
an MDR transport inhibitor,34 were added to the cell
suspension for substrate and inhibitor loading into the cells.
The loading was continued until fluorescence intensity
approaches its saturation at level I0 (Figure 3). Reagents
were obtained from Sigma-Aldrich (Oakville, Ontario,
Canada), Fluka AG (Buchs, Switzerland), and BDH Chemicals
Ltd. (Poole, England).

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.9b00388
Anal. Chem. 2019, 91, 4186−4194

4192

http://dx.doi.org/10.1021/acs.analchem.9b00388


The loading was stopped by removing the extracellular
substrate by gently replacing the cell support medium with
fresh KRB-buffer supplemented with 10 μM glyburide
(inhibitor) but not with fluorescein. This initiated passive
substrate leakage through the membrane was accompanied by
a fluorescence intensity decrease to level I1 (Figure 3). Leakage
was monitored by a fluorescence microscope (see below).
Finally, the MDR-mediated efflux was initiated by replacing the
cell support medium with pure KRB-buffer (i.e., no inhibitor,
no substrate). The fluorescence intensity decrease (caused by
the MDR transport) was further monitored.
Time-lapse fluorescence imaging of all cells in the field of

view with 3 min intervals started after replacing fluorescein-
containing media with a fluorescein-free one (t0 in Figure 3)
and ended after 2−3 h. Imaging was performed with an
Olympus Fluoview FV300 laser scanning confocal fluorescence
microscope, using an argon-ion laser (Melles Griot; λexc = 488
nm; maximum power of 100 mW; used at 10% intensity) and
an Omega Optical XF75 filter set. Images were acquired with
an open pinhole to collect signal from the whole depth of the
cell. Excitation scans were done using a 10× lens; each full
picture scan took 1.69 s. For each time series, the dynamic
range of imaging had to be adjusted to prevent signal
saturation in highly loaded cells; the majority of images were
taken with 600−700 V photomultiplier (PMT) voltage, 1.0×
gain, and 10% offset.
For each experiment, 3−4 time-series, each covering another

200−400 cells, were recorded as TIF-files, each containing
40−60 images (2−3 h recording in 3 min intervals); TIF-files
are archived in Timeseries.zip. We organized the time series to
correspond to their respective figures in the main text; color
names in brackets of the folder name refer to the respective
colors of the curve in the figures.
Extraction and Analysis of Kinetic Traces. The time

series were evaluated using ImageJ software with the Time
Series Analyzer V3 plugin to obtain kinetic traces for 1092 cells
per experiment. Each single-cell trace was transferred to
OriginPro software and subjected to kinetic and nonkinetic
assessment. There was a small fraction of cells showing a very
rapid decrease of fluorescence intensity. Such a fast loss of
intracellular substrate was considered to be a sign of cell
damage. A viability marker can be in principle included in
analysis to assess plasma membrane integrity.8 However, in the
current study, we simply excluded these cells from further
analysis; after excluding these cells, each data set still contained
over 1000 cells. The kinetic assessment is illustrated using a
sample kinetic trace in Figure S2. Briefly, the rate constant of
leakage (kleak) was determined from a linear fit of the initial
segment, while the cumulative rate constant (ktotal) of both
leakage and MDR efflux (kleak + kMDR) was determined simply
from an exponential fit of the main segment (see eq 5)
because, for the majority of A2780 cells, the contribution of
kleak was negligible in our system. For nonkinetic assessment
parameter (I1 − I2)/I1 was determined for each trace. Further
details on the extraction and analysis can be found in Note S2.
Cell Population Analysis. MDR transport of an entire cell

population of one experiment was characterized by histograms
presenting distributions of individual cell kMDR and (I1 − I2)/
I1. Histograms were plotted in OriginPro software using
Automatic Binning mode, and characterized by median,
interquartile range (middle 50%), and skewness coefficient
(adjusted Fisher−Pearson standardized moment coefficient53).
All of these parameters were determined using OriginPro’s

Descriptive Statistics tool. The final histogram data together
with the plots of Figures 4−5 are archived in Plotteddata.zip.
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Figure S1. Schematic depiction of the MDR transport catalysed by ABC transporters (ABCT): 
1) extracellular substrate (Sex) and intracellular substrate (Sin) are in equilibrium with each other; 
2) ABCT and Sin are forming a complex SABCT 
3) SABCT is flipping and Sex is released outside the cell. 
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Note S1: Extraction of kinetic traces from cell images 

The time series, which are archived in timeseries.zip, were evaluated in five steps specified below. 
ImageJ software (1.46v; https://imagej.nih.gov/ij/) with the Time Series Analyzer V3 
(https://imagej.nih.gov/ij/plugins/time-series.html) plugin was used for this evaluation. 
 

 
 

 
1. Opening the time-series in 

ImageJ. 
2. Adjusting the threshold 

(Image→Adjust→Threshold) to 
facilitate cell identification in the 
next step(s). We used “Auto” (i.e. 
IsoData algorithm) and adjusted 
the threshold to match manual cell 
count (“gold standard”). 

3. Due to technical limitations of the 
Time Series Analyzer plugin, only 
149 cells could be analyzed at 
once. Therefore, we divided the 
time-series into sections (yellow 
rectangle in the example picture 
above) and analyzed them 
separately in ImageJ. 

   

  

4. Analyzing particles (Analyze->Analyze Particles; do not process all 
images). Settings: Size: 0-4 (Pixel units); Circularity: 0.00-1.00; 
Show: Outlines; Display results; Clear results; Add to Manager. 

5. Running Time Series Analyzer 
plugin (we used Get Average) 
resulting in the time traces for each 
cell of the evaluated section (see 
Step 3) and a time trace average 
curve. 

The sections of each time trace and the time traces of one experiment were merged into a single CSV 
file containing the kinetic curves of 1092 cells; CSV files of all traces can be found in kinetictraces.zip. 
We organized the traces in a manner similar to that of time series organization (see Image acquisition in 
the main text for more details). 
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Note S2: Analysis of kinetic traces 

The kinetic traces were subjected to kinetic and non-kinetic assessment by OriginPro software 
(https://www.originlab.com). Among 1092 traces in each CSV file, there were a few that were not 
suitable for evaluation because of very fast fluorescence decay. They were excluded from further 
analysis, but each data set typically still contained over 1000 cells. This data were subjected to both 
kinetic and non-kinetic assessment. 
 
The kinetic assessment is illustrated in Figure S2 below. The rate constant of leakage efflux (kleak) was 
determined from a linear fit of the initial segment (red, I0 to I1). The cumulative rate constant (ktotal) of 
the leakage process and MDR transport (kleak + kMDR) was determined from an exponential fit of the 
main segment (blue, I1 to I2) using ExpDec1 function constrained to non-negative y0. The value of kMDR 
was calculated by kMDR = ktotal – kleak. For the majority of A2780 cells, the following relation was 
satisfied: kleak < 0.1 × ktotal. It rendered the contribution of kleak to ktotal negligible in our system and the 
following was assumed ktotal ≈ kMDR. 
 
For the non-kinetic assessment, parameter (I1 – I2) / I1 was determined for each kinetic trace. 
 
 
 

 

Figure S2. Example of finding kleak and kMDR from an experimental kinetic curve. The value of kleak 
was found as kleak = −b / a (equals eq 3 in the main text). The value of kMDR was found as kMDR = 1 / d 
(blue fitting function equals eq 5 in the main text). 


