
Dijkstra’s Algorithm

Given a graph G = (V,E), assume G has the following properties:

1. for each edge e ∈ E connecting vertices u and v, we assign an associated positive
number d(u, v) referred to as the length of  edge e - but may represent any measurable
quantity.

2. there is an initial vertex v0.

3. the length of  a path from a vertex v to the initial vertex v0 is the sum of  the lengths of
the path’s constituent edges.

4. to each vertex v ∈ V an associated number λ(v) is assigned.
It is initially defined such that λ(v0) = 0 and for all other vertices λ(v) = ∞

1 Description of  Algorithm

The goal of  Dijkstra’s algorithm is to construct for each vertex v a shortest path from v to v0.
Dijkstra’s algorithm is a recursive algorithm which at each stage constructs a set S of visited
vertices. A visited vertex v ∈ S has the property that among all paths from v to v0 containing
only vertices in S.

1. there is a shortest such path whose length is then recorded as λ(v).

2. The path itself  is recorded as a sequence of  vertices.

The set U = V \S is referred to as the set of unvisited vertices. The algorithm recursively adds
points from U to S.

At each iteration of  the algorithm a current vertex vc ∈ U is chosen. Initially the current
vertex is vc = v0. At each iteration three things happen.

1



1. For each vertex v ∈ U that is adjacent to vc, the length λ(v) of  the shortest path back
to v0 is newly calculated and recorded. The path itself  is recorded as a sequence of
vertices.

Note that : (1) λ(v) may have already been calculated in some previous iteration and
(2) λ(vc) will have been calculated in the previous iteration as in step 2 below. We then
now calculate

λ(v) = min{λ(v), λ(vc) + d(vc, v)}

2. A new current vertex w ∈ U is chosen so that for every u ∈ U,
λ(w) ≤ λ(u).
Note that : for those unvisited vertices u that have not been adjacent to some current
vertex, we have λ(v) = ∞ - so we may restrict attention to vertices u for which λ(u)
has already been calculated.

3. Preparing for the next iteration:

(a) move vc in set of  visited vertices - renaming S as S ∪ vc

(b) set vc = w.

The algorithm terminates when S = V.
Alternatively, if  the shortest path to a specified vertex is desired, t he algorithm may terminate
when this vertex becomes visited.

2 Complexity

Assume ∀v ∈ V, deg(v) ≤ k for some constant k.

Assume V = {v0, v1, · · · , vn} has n+ 1 elements.

Each of  the vertices will in some iteration become the current vertex vc. For such an iteration
with current vertex vc, let τ(vc) be the time to calculate λ(v) for each vertex v adjacent to vc.
Choose a constant r such that for each current vertex vc, r ≥ τ(vc).

The time to complete this stage of  the algorithm for each current vertex is thus less than r
times the number of  vertices - namely rn.

Next, in an arbitrary iteration there is a search among all unvisited vertices for the shortest
path back to v0. That is, a search for

2



min{λ(v) : v ∈ U} - most often this is search can be restricted to those vertices v ∈ U that
are adjacent to vc

If  at an arbitrary iteration, U has m elements, we know this search is of  complexity O(m).
Thus there is a constant s such that the time to find the shortest path is is less than sm.

Thus the time to complete this iteration is less than kr + sm.

Then for all iterations the time is less than

(rk + sn) + (rk + s(n− 1) + · · ·+ (rk + s) = nrk + s(n+ (n− 1) + · · ·+ 1) =

nrk + sn(n+1)
2

= s
2
n2 − s

2
n+ nrk =

s
2
n2 + n(rk − s

2
) ≤ n2( s

2
+ (rk − s

2
)) = rkn2.

This shows that Djikstra’s algorithm has complexity at worst O(n2). Careful coding allows
improvements.

Example: Consider the following diagram. The vertex a is considered to be the initial vertex
and with λ(a) = 0. To apply the algorithm we set up a table with the vertices labelling columns
and our progressive choices of  current vertices labelling the rows.

Figure 1: Dijkstra diagram

The first row of  the table will indicate the the starting position of  the algorithm i n which the
various λ values are indicated Note that for each vertex other than a we have a value of ∞.
Looking at the first row, we search for the vertex with the least λ. This vertex will become the

3



first current vertex. The vertex is of  course is a. We place a in the second row in the current
vertex column. We can now construct the second row of  the table by examining the vertices
adjacent to a, these are b and c. We record the lengths of  the paths back to a, as 4 for b and 3
for c. We now consider a to be visited vertex, setting S = {a}.

Next we look for the vertex adjacent to a whose distance back to a is least. This vertex is c.
The new current vertex is thus chosen equal to c. The third row is then labeled at the left with
the letter c. We now go to the next iteration looking at those vertices not in S that are adjacent
to c. They are b, d and e, and for each we calculate the distance of  the shortest path back to a
and record the results in the table with 4 in the column labeled b, 6 in the column labeled d and
9 in the column labeled e. We now consider c as visited and add c to S - setting S = {a, c}.
Next we calculate the shortest distance back to a from each of b, d, e and record the results
in the fourth row. The vertex c is now visited and is placed in the set S - so S = {a, c}.

In the 3rd row we now look for the vertex with the shortest path back to a - this vertex is b
- so b becomes the new current vertex and is laced in the first column to label the fourth row.
The process now continues in the same way. T he full table is shown below.

4



Figure 2: Dijkstra TAble

5


