
1 Logic

Mathematics aims at trying to express ideas as clearly and unambiguously as
possible. But this is not such an easy task - sometimes the ideas that we wish
to express are complex, and it is easy for readers to become overwhelmed. Most
people are unaccustomed to reading for precise meaning. We read novels and
descriptive texts in which ambiguity is often part of the author’s style. However
for complicated texts the best way to minimize ambiguity is to use principles
of logic - these rules are a tremendous aide to lazy people such as myself who
do not wish to spend time meditating on what might otherwise be perceived as
obscure writing. Using the ideas of logic simplifies life enormously. In these
notes I give a very brief introduction - just enough so we can deal with some
of the more abstract concepts. These notes then are very informal. The idea
behind them is to introduce principles with a minimum of fuss.

What is meant by the word logic? In its broadest sense logic refers to
mental patterns used thinking, and in this sense, logic is very much a cultural
attribute. The related question of what is thought has occupied the efforts of
most philosophers. Without attempting a definition we can however list charac-
teristics - one being that thought is a process of identifying and interpreting
stimulus of the outside world. The nature of the stimulus elicits particular
responses. With repetition, the responses become patterns that grow more
complex with time and firmly define parameters of action. People with differ-
ent patterns interpret events in varying ways. Aboriginal peoples lived close to
nature and were finely attuned to changes of season and weather. Their way
of interpreting experience is worlds apart from that of the modern city dweller.
But irrespective of differences there is always the problem of discerning meaning
from events. This is a universal problem that runs across all cultures.

In the western tradition patterns of modern analytic thought may be traced
back to the philosophic traditions of the ancient Ionians. Zeno ( circa 450
B.C.) with the careful reasoning in his paradoxes shows understanding of the
principles of logic. Only slightly later come the early contributors to what is
now known as Euclidean geometry, Hippocrates of Chios, Archytas, Eudoxus,
each of whom is credited with portions of Euclid’s work. Also, in the writings of
Plato and Aristotle one finds in the quality of the argument firm understanding
of principles of logic. By this time what we consider as analytic logic was in
common use.

An understanding and appreciation of the methods of logic seems to have
arisen spontaneously in different cultures. There is a tradition in Tibetan Bud-
dhism in which part of a monk’s training consists of intense competition in
logical debate. Similarly among Hebraic scholars there is an ancient tradition
of logical analysis and debate with regard to interpretation of biblical text and
various commentaries.

In this logic only data which is quantifiable in a direct sensory fashion is
allowed for consideration. The data is subjected to detailed investigation re-
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sulting in certain statements and theories. Only theories arising from such an
process are worthy of consideration. Today the notion of logic has been re-
fined to a set of rules for manipulating statements and their meanings. These
rules form a model for analytic thought often referred to as Aristotelian or
deductive logic. But it is after all only a model - a simplified model that allows
us to untangle meaning in certain circumstances.

The following exercises are meant to highlight the fact that in simple dis-
course problems of finding meaning can without some training can be puzzling.

Exercise 1 A man was looking at a portrait in a castle in Scotland. The
person standing next to him asked, "Whose picture are you looking at?"
The man answered, "Brothers and sisters have I none, but this man’s
father is my father’s son." Whose picture was he looking at?

Exercise 2 In a far away land there is a village in which the inhabitants
are of two distinct types, knaves who always lie and knights who always tell
the truth. One day while walking through the village I needed directions
to the nearest post office and I approached 3 inhabitants of the village
standing at a street corner. I have forgotten their names but lets call
them A,B, and C. Of course to get a good answer I needed to know if
whom I was speaking to was a knight or a knave. I approached A and
asked,"Are you a knight or a knave?" He muttered something which I
couldn’t understand so I turned to B and asked," What did A say?" B
replied, "A said that he is a knave." At this point the third person, C,
said, "Don’t believe B; he is lying!" The question then is, what are B and
C - knights or knaves?

Exercise 3 In the same village suppose there are only two people, A and
B. A makes the following statement: "At least one of us is a knave."
What are A and B?

Exercise 4 Again in the same village suppose A says, "Either I am a
knave or B is a knight." What are A and B?

1.1 Arguments

If certain initial statements are assumed true deductive logic is the mental pro-
cess by which conclusions are reached concerning the initial statements. The
importance is that if the initial statements are considered true and there are no
errors made in argument, then the conclusions should also be considered true.
The difficulty comes in determining what makes a valid argument allowing one
to get from assumptions to conclusion. As logic first developed the ability of
determining a valid argument was a talent which came with practice in the
analysis of simple arguments. Initial assumptions are called premises and an
exercise consists of an argument consisting of stated premises and a conclu-
sion. The reader is then asked to describe the logic by which the conclusion
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was reached and the to classify the argument as valid or invalid. Following are
some examples of what is meant.

Following is an example of what is meant.
For the following premises:
(1) Socrates is a man and
(2) All men have green hair, we correctly deduce the conclusion:
Conclusion: Socrates had green hair.
Notice that not both of the premises are considered to be true. A good way

to analyze the argument is to draw a Venn diagram to indicate the various
categories mentioned in the premises

We argue from the picture that since the category of men is in the category of
green-haired beings and since Socrates is in the category of men, it must follow
that Socrates is also in the category of green-haired beings; so he himself has
green hair. Thus the argument is valid, although we suspect that the conclusion
is false. Suppose now that on the basis of some archeological evidence it is
known that Socrates had black hair. Then substitute the word black for green
in the argument. We then have now an example in which the premises are false,
since not all beings have black hair, but the conclusion is true.

Now lets consider an example on an invalid argument.
Premises:
(1) All activities in the street are dangerous.
(2) Hang gliding is not done in the street.
Conclusion:
Hang gliding is not dangerous

In this example the premises would be considered true and the conclusion
false. Lets analyze the argument with a Venn diagram
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The first premise tells us that the category of activities in the street is
contained in the category of dangerous activities which in turn is in the category
of all activities. Premise 2 simply says that hang gliding is not an activity in the
street. It therefore can be either dangerous or not dangerous as indicated by the
diagram. Thus the logic giving the conclusion that hang gliding is dangerous is
invalid.

The reasoning process by which one gets from a set of premises to a conclu-
sion is the core of deductive logic. In the 19th century this process was analyzed
by the mathematician George Boole (1815-1864) and reduced to a study of
symbolic operations. The following subsection provides a brief introduction.

Exercise 5 State whether the following argument is valid or invalid. Give
reasons
Premises: All those who are drug addicts drank milk as a child. Joe drank
milk as a child
Conclusion: Joe will become a drug addict

Exercise 6 State whether the following argument is valid or invalid. Give
reasons.
Premises:If you do every problem in the book, then you will learn the
subject. You learned the subject
Conclusion: You did every problem in the book.

Exercise 7 State whether the following argument is valid or invalid. Give
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reasons.
Premises: If it snows today, the university will close. The university is
not closed today
Conclusion: It did not snow today.

1.2 Propositions

Logic talks about propositions.

Definition 8 A proposition is any sentence whose truth can always be
determined

Propositions are abstractly denoted with letters - we will for instance say,
let p be a proposition. This means that the letter p stands for an arbitrary
proposition. Given a proposition p, we also talk about its negation which we
denote ∼p - and which we call not p.

Definition 9 Given a proposition p, its negation ∼p is the proposition
that is true whenever p is false and is false whenever p is true.

In logic we only distinguish proposition from another by the conditions under
which they are true. In fact we say that two propositions are equivalent if one
is true precisely whenever the other is true. That is - two propositions may
use different words in their construction, but we consider them the same if they
have the same truth values.

Definition 10 Given two propositions p and q. The proposition p is
equivalent to the proposition q provided: (1) p is true whenever q is true
and (2) p is false whenever q is false. We write p ≡ q.

1.2.1 Combining propositions

There are several ways in which propositions can be combined to form new
propositions. For instance if p stands for the proposition: “He has big feet”
and q stands for the proposition: “He has green hair” , then p and q stands
for the proposition: “He has big feet and he has green hair”. Alternatively
we write: p ∧ q - where the symbol ∧ means and. Similarly we can combine
with the word or. For instance if p is the proposition: “the newest flu virus
causes will cause a severe cough ” and if q stands for the proposition: “the
newest flu virus causes a high fever”, then the proposition p or q stands for
the proposition: “the newest flu virus causes either a severe cough or a high
fever” . Alternatively we can write p ∨ q, where the symbol ∨ stands for the
word or. In logic the word or is used in such a way that the a proposition is
considered to be true if both propositions are simultaneously true. Thus for in
our example, p or q is true when p is true, when q is true, and when both
p and q are true.
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Figure 1: figure 3

In the following diagram, in which the propositions p and q stand for: p =
she is hard working and q = she gets good grades the dark blue and pink regions
stand for the category of all people who are hard-working and the pink and green
regions stand for the category of all people that get good grades. Then the
pink region stands for the category of people who are both hard working and
get good grades; whereas the dark blue, pink, and green regions stand for the
category of people who either are hard working or get good grades or both.

1.2.2 Forming the negation

Suppose now that we are given a compound statement such as: she works hard
and she gets good grades. How do we form the negation of such a statement?
One way is to consider Venn diagrams, and to argue from the picture. In
general this is not a good method. Pictures get complicated and it is easy to
make a mistake. But just for one last time, lets give it a try. We want to
be able to describe in a simple way the negation of the proposition p ∧ q. In
particular we want to describe the proposition ∼ (p ∧ q) in a more simple way
in which the negation symbol does not stand in front of a more complicated
expression. Consider diagram 3. If it is not true that a she works hard and
gets good grades, then she can belong anywhere except in the pink region nor.
That is if ∼ (p ∧ q) is true, she must lie outside the pink region. Now lets
consider the case in which she does not work hard - namely ∼ p is true. She
then belongs to either the green region or the light blue region. Similarly if she
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does not get good grades - namely ∼ q, she then belongs to either the light or
dark blue regions. All we need to do now is to realize that if she does not work
hard or she does, not get good grades - namely the expression ∼ p∨ ∼ q is true,
then she belongs to the green, region or the dark blue region or the light blue
region. What we have shown then is that each of the expressions ∼ (p∧q) and
∼ p∨ ∼ q describe equally well which category our heroine might belong. We
say that the two compound statements ∼ (p∧ q) and ∼ p∨ ∼ q are equivalent.
We could run through a similar argument to show that expressions ∼ (p ∨ q)
and ∼ p∧ ∼ q are equivalent, but all of this is much easier if we first introduce
truth tables.

1.2.3 Truth Tables

The truth table for a given compound statement involving statements p and q
is a list of letters T or F indicating when the compound statement is true for
various combinations of p and q being either true or false. The truth tables
for p ∨ q and p ∧ q are shown below. Note that p ∧ q is true only when both
components p and q are true, whereas p ∨ q is false only when both p and q
are false.

p q
T T
T F
F T
F F

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p ∨ q p ∧ q
T T
T F
T F
F F

The truth table of the negation of a proposition is simply achieved by reversing
T ′s and F ′s. We then have the following

p q
T T
T F
F T
F F

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∼ p ∼ q ∼ p∨ ∼ q ∼ (p ∧ q)
F F F F
F T T T
T F T T
T T T T

and since the two expressions ∼ p∨ ∼ q and ∼ (p ∧ q) can be shown to have
the same truth values - one being true precisely when the other is - we say
that the two expressions are equivalent. We write ∼ p∨ ∼ q ≡ ∼ (p ∧ q)

1.2.4 The " if p, then q" statement

Most confusing however is the so called if-then combination - that is: given two
propositions p and q, we can form the proposition if p, then q, which we write
informally as p ⇒ q. Sometimes we also say p implies q - where the symbol ⇒
stands for the word implies. The if-then statements is confusing because the
statement is about causal connection and only secondarily does it involve the
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individual propositions. For an example, let p stand for the proposition, “it
is raining”, and let q stand for the statement “the street is wet”. Then p ⇒ q
becomes the statement: “if it is raining, then the street is wet”.

So what’s the negation of this statement? Well - we need to express the
negation of the causal connection between raining and the street becoming wet.
We get the result: “it is raining and the street is not wet” Symbolically this
is then: p∧ ∼ q - or : “ p and not q”. In general then we have the following
result.

Remark 11 Given two propositions p and q, the negation of the proposi-
tion p ⇒ q is the statement p∧ ∼ q We write

∼ (p ⇒ q) ≡ p∧ ∼ q

Now, given an if-then statement p ⇒ q, we can alter it as follows:

• q ⇒ p , the converse of p ⇒ q. In our example, this gives: “if the
street is wet, then it is raining”

• ∼ q ⇒ ∼ p, the contrapositive of p ⇒ q, which gives : “if the street
is not wet, then it is not raining”

• ∼ p ⇒ q, the inverse of p ⇒ q, which gives: “if it is not raining, then
the street is wet.

With a little bit of effort you may be able to convince your self of the fact
that in general the statements p ⇒ q and the contrapositive, ∼ q ⇒ ∼ p, are
equivalent; that is, p ⇒ q is true precisely when ∼ q ⇒ ∼ p is true. This task
is made immeasurably more easy by the consideration of truth tables. Below
there are two tables, and between them is shown all 16 possible combinations
of four of the two letters T or F. Each column corresponds to the truth values
associated with the compound proposition at the head of the column. The
column labeled T stands for truth values of the statement what is known as the
"universal affirmative" - namely any statement that is always true independent
of p or q. Similarly the column labeled F stands for the truth values of the
statement known as the "universal negation" - a statement that is always false.
All of the other columns can be obtained from the rules for determining whether
p∨ q, p∧ q, or p ≡ q are true or false. As an exercise, make sure you know how
each column is arrived at.

p q
T T
T F
F T
F F

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∼ p ∼ q p ∨ q p ∧ q p ≡ q T F
F F T T T T F
F T T F F T F
T F T F F T F
T T F F T T F

8



p q
T T
T F
F T
F F

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p∧ ∼ q ∼ p ∧ q ∼ p∨ ∼ q ∼ p∧ ∼ q p∨ ∼ q ∼ p ∨ q ∼ (p ≡ q)
F F F F T T F
T F T F T F T
F T T F F T T
F F T T T T F

One of the first things you might notice in examining these truth tables is
that there is no column labeled p ⇒ q. What should we do? Examining p ⇒ q
we know that it must be true when both p and q are true, and it must be false
when p is true and q is false. Now lets see which of the columns above begin
with a T then an F. There are 3: p ∧ q, p ≡ q, and ∼ p ∨ q. Which should we
assign to p ⇒ q. Since the first two are already taken up with well understood
statements, we are left with assigning the truth values of p ⇒ q to the column
presently labeled ∼ p ∨ q. This however creates some initial confusion, for it
tells us that the statement p ⇒ q is always true whenever p is false. This would
mean that the statement: "2+2 =5 implies the moon is made of blue cheese" is
in fact a true statement. Culturally we are not accustomed to using the p ⇒ q
statement in the case that the first statement is false - that is in common speech
we only use the first two rows of the truth table for p ⇒ q.

Exercise 12 Prove using truth tables that p ⇒ q ≡ (∼ q ⇒ ∼ p) - namely
a statement p ⇒ q is equivalent to its contra-positive. Why does this also
show that the inverse is equivalent to the converse?

Exercise 13 Prove using truth tables that ∼ (p ∨ q) ≡ ∼ p∧ ∼ q and
∼ (p ∧ q) ≡ ∼ p∨ ∼ q .

Exercise 14 Construct the converse, inverse and contrapositive of the fol-
lowing statements:
(i) If the sun is shining, it will not snow in August
(ii) If the moon is made of blue cheese, Paul Martin is the prime minis-
ter.
(iii) If you do not eat, you will starve.

Exercise 15 Construct truth tables for the propositions:
(i) (p ∨ q)∧ ∼ p
(ii) (p ∨ q)∨ ∼ p
(iii) ∼ (p ∧ q) ⇒∼ (p ∨ q)
(iv) q ⇒ (p ∨ q)
(v) (p ⇒ q) ∧ (q ⇒ p)

1.3 Quantifiers

Certain propositions are more complicated than others - even before they are
combined in the ways talked about above. Some propositions make reference to
a large group of objects- sometimes called the universe of discourse. Consider
the proposition, “ all politicians are dishonest”. This is statement about an
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entire group of people. Consider also - “ there exists at least one politician that
is not dishonest” . Again we are referring to the entire category of politicians.
Such statements are intrinsically more complicated than say, “the street is wet”,
and are examples of quantified statements. These examples can be rephrased
slightly in a way that will allow further analysis. For instance, in the case that
the universe of discourse is the set of all people, we can rephrase, “ all politicians
are dishonest” as

• “for every person x, if x is a politician, then x is dishonest”.

The other, “there exists at least one politician that is not a dishonest” can be
rephrased as:

• “ there exists a person x such that x is a politician and x is not a dishon-
est”.

It is also evident that the second statement above is the negation of the first
Now with this example, lets see how we might generalize. As before let p

and q be arbitrary propositions - say p is the proposition “ x is a politician”
and q is the proposition “x is dishonest”. Then letting the symbol ∀ stand for
the words for every and the symbol ∃ stand for the words there exists, and
letting U stand for the set of all people then the above quantified statements
can be expressed respectively as

1. ∀x, in U, p ⇒ q and

2. ∃ x in U such that p∧ ∼ q

Considering the original examples, it is clear that the second is the negation
of the first. Symbolically, using the symbol ∈ to mean "is an element of" we
can then write:

∼ (∀x ∈ U, p ⇒ q ) ≡ ∃ x such that p∧ ∼ q

In more general terms, what we have said here is that to negate a statement
with the quantifier ∀, change ∀ to ∃ and then negate the following statement.
That is ∼ (∀x, p ⇒ q ) is equivalent to: ∃ x such that ∼ (p ⇒ q) − which in
turn is equivalent to: ∃ x such that p∧ ∼ q. All of this is true in yet more
generality. Given a statement made up of a string of quantifiers and a final
statement. The rule for negating such a statement runs as follows.

Remark 16 To negate a propositions constructed from a string of quanti-
fiers ∃ and ∀ followed by a final statement p, do the following: (1) change
every occurrence of ∀ to ∃, (2) change every occurrence of ∃ to ∀, (3)
negate the proposition p, (4) adjust the use of language so the sentence
reads nicely.
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Exercise 17 Let the universe of discourse U be the collection all students.
For x ∈ U and y ∈ U, let C(x) stand for the proposition: x has a computer
and let F (x, y) stand for the proposition: x and y are friends. Translate the
following statement

∀x C(x) ∨ ∃y(C(y) ∧ F (x, y)

noting that sometimes one needs to insert a few words to make the sen-
tence readable

In the above exercise observe that if one were to place all quantifiers at the
beginning of the expression, we do not alter the meaning. Thus the expression
in the exercise could have been written

∀x∃y C(x) ∨ (C(y) ∧ F (x, y)

Exercise 18 Translate the statement

∃x∀y∀z (((F (x, y) ∧ F (x, z) ∧ (y 6= z)) ⇒ ∼ F (y, z))

where the universe of discourse and F are as in the previous exercise.

Exercise 19 In the previous two exercises form the negations both of the
symbolic expressions and their English equivalents

With the tools so far we can now express arguments symbolically. Consider
the following example

Example 20 Premises:
All lions are fierce.
Some lions do not drink coffee.
Conclusion:
Some fierce creatures do not drink coffee

In the example let the universe of discourse be the set of all "creatures".
Let P (x), Q(x), R(x) be the statements: x is a lion, x is fierce, and x drinks
coffee. We can then rewrite the argument as:

∀x (P (x) ⇒ Q(x))
∃x(P (x)∧ ∼ R(x))
∃x(Q(x)∧ ∼ R(x))

Lets take a close look at the second premise as we have expressed it symbol-
ically. Could we instead have written ∃x(P (x) ⇒∼ R(x)). Observe however
that P (x) ⇒∼ R(x) is true whenever x is not a lion. Thus the entire statement
is true as long as there is one creature that is not a lion - even if every lion
drinks coffee. With the same reasoning, the third statement cannot be written
∃x(Q(x) ⇒∼ R(x)).
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Exercise 21 Consider the following argument:
Premises:
All hummingbirds are richly colored
No large birds live on honey.
Birds that do not live on honey are dull in color
Conclusion:
Hummingbirds are small
Let P (x), Q(x), R(x), S(x) be the statements: x is a hummingbird, x is large,
x lives on hone, x is richly colored. Assuming that the universe of dis-
course is the set of all birds, express the argument symbolically as in the
previous example.

1.3.1 More truth tables

What I have briefly described in the preceding paragraphs is otherwise known as
the prepositional calculus. By this I mean the rules that allow one to formally
manipulate statements. The truth tables that were developed assumed that
there were only always two propositions p and q that were under discussion.
This of course is not always the case, but using the same principles truth tables
can be constructed for any number of propositions. Suppose for instance that
we are considering statements involving 3 propositions, p, q, and r. Considering
all the possibilities for each proposition being either true or false, we would then
need to examine columns of T ′s and F ′s of length 8 such as in the following
table

p q r
T T T
T F T
F T T
F F T
T T F
T F F
F T F
F F F

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(p ∨ q) ∧ r (p ∧ q) ∨ r
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?

2 Brief epilogue

Although the principles of logic had been known for millennia, the formulation
as the propositional calculus came about only in the latter part of the 19th cen-
tury, as part of the attempt at that time to put the foundations of mathematics
and hence all scientific discourse on a more firm foundation. By that time the
fabric of mathematics had out grown the Euclidean foundations. In particular
the discovery of the possibility of non-euclidean geometry presented a dilemma.
Interestingly enough the foundations in all the years had not yet deeply exam-
ined. The goal of the 19th century logicians was to place the foundations of
mathematics on logic - that is: replasce the Euclidean axions and postulates
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with principles built bit by bit only from principles of logic. What could be
more fundamental? This was a grand and ambitious programme to which many
prominent mathematicians, logicians, and philosophers devoted their careers.
The formulation of logic in terms of the propositional calculus is the work of
George Boole (1815-1864) an English mathematician. Following is a quote from
another 19th century English mathematician Augustus De Morgan

Boole’s system of logic is but one of many proofs of genius and patience
combined. ... That the symbolic processes of algebra, invented as tools of
numerical calculation, should be competent to express every act of thought,
and to furnish the grammar and dictionary of an all-containing system of
logic, would not have been believed until it was proved. When Hobbes ...
published his "Computation or Logique" he had a remote glimpse of some
of the points which are placed in the light of day by Mr Boole.

Boole’s work was taken up by others but the grand scheme of placing math-
ematics on the foundation of logic came across a number of bumps in the road.
In particular there is the so called "Russell paradox" that was constructed by
then a young and brash Englishman of the name Bertrand Russell in (1901).
There followed in 1931 the so called "Gödel paradox" due to the Czech-born
mathematician Kurt Gödel. Today the work on foundations continues.

.

3 Real Numbers

3.1 Taxonomy

The set of real numbers or all the points on a straight line consist of

• the natural numbers - or counting numbers - namely {1, 2, 3, 4, · · · · ·}
which are denoted with the symbol N

• the integers - otherwise known as whole numbers - namely the set {· · ·,
−3 − 2,−1, 0, 1 , 2 , 3, · · · } which is denoted by the symbol Z

• the rational numbers - namely the set of all fractions in lowest terms
where fractions of the form p

1 are identified with the integer p. This set
is denoted with the symbol Q

• the irrational numbers - namely all those numbers that are not frac-
tions. Among the irrationals there are those that are the roots of equa-
tions such as

√
2 and those which are not the root of any equation such

as π - the latter are called transcendental numbers.

The entire set of real numbers itself is denoted with the symbol R.
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3.2 A model for the real numbers

The set of real numbers can be identified with the collection of all equivalent
infinite decimal expressions. That is the number 1 is identified with the infinite
decimal expression 1.00000··· = 0.999999999999····, the number 1

2 is identified
with the infinite decimal expression .50000000··· = .49999···. It is fairly obvious
that the normal procedure of converting a fraction into a decimal by dividing
the denominator into the numerator allows only a finite number of remainders
at any stage and that thus eventually a remainder will repeat. When this
happens an entire block of digits in the quotient begins to repeat. Try dividing
7 into 2 - you will see what I mean.

The interesting fact is that the converse is also true. That is, given an infinite
decimal representation that eventually repeats some pattern, this decimal is
the representation of some rational number. Here is how it works. We will
illustrate this fact by example. Suppose we have the infinite decimal x =
1.24523232323 · · · · which eventually repeats infinitely the block of digits 23.
Multiply x by 10n where n is the length of the repeating block. In this case
we multiply by 102 getting 100x = 124.523232323 · · · · . Now subtract x from
100x

−
124.523232323 · ··

1.24523232323 · ··
123.2780000000 · ··

or in other words 100x− x = x(99) = 123278
1000 or x = 123278×99

1000 = 6102 261
500 which

is a rational number. We now can state the following result.

Proposition 22 Every rational number, which includes integers and nat-
ural numbers, has a representation as an infinite decimal expression that
eventually repeats a certain fixed pattern of digits. Conversely, any infi-
nite decimal expression that eventually repeats a certain fixed pattern of
digits is the representation of some rational number.

With this proposition at our disposal it is easy to lay hands on irrational
numbers. They are simply those numbers which do not have an eventually re-
peating decimal expression. Such a decimal expression is 1.01001000100001000001·
·· where the block of zeros grows in length indefinitely.
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