Solutions to First Assignment

Section 1.1

28. a) Converse: If I stay home, then it will snow tonight. Contrapositive: If I do not stay at home, then it will not snow tonight. Inverse: If it does not snow tonight, then I will not stay home.
b) Converse: Whenever I go to the beach, it is a sunny summer day. Contrapositive: Whenever I do not go to the beach, it is not a sunny summer day. Inverse: Whenever it is not a sunny day, I do not go to the beach.
c) Converse: If I sleep until noon, then I stayed up late. Contrapositive: If I do not sleep until noon, then I did not stay up late. Inverse: If I don't stay up late, then I don't sleep until noon.
29. To construct the truth table for a compound proposition, we work from the inside out. In each case, we will show the intermediate steps. In part (d), for example, we first construct the truth tables for $p \wedge q$ and for $p \vee q$ and combine them to get the truth table for $(p \wedge q) \rightarrow(p \vee q)$. For parts (a) and (b) we have the following table (column three for part (a), column four for part (b)).

$$
\begin{array}{cccc}
\frac{p}{\mathrm{~T}} & \frac{\neg p}{\mathrm{~F}} & \frac{p \rightarrow \neg p}{\mathrm{~F}} & \frac{p \leftrightarrow \neg p}{\mathrm{~F}} \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F}
\end{array}
$$

For parts (c) and (d) we have the following table.

$\underline{p} \quad q$	$p \vee q$	$\underline{p \wedge q}$	$\underline{p \oplus(p \vee q)}$	$\underline{(p \wedge q)} \rightarrow(p \vee q)$
T T	T	T	F	T
T F	T	F	F	T
F T	T	F	T	T
F F	F	F	F	T

For part (e) we have the following table.

Section 1.3

10. We construct a truth table for each conditional statement and note that the relevant column contains only T's. For part (a) we have the following table.

$\frac{p}{2}$	q	$\frac{\neg p}{\mathrm{~T}}$	$\frac{p \vee \vee q}{\mathrm{~T}}$	$\frac{\neg p \wedge(p \vee q)}{\mathrm{F}}$	F
T	F	F	T	F	$[\neg p \wedge(p \vee q)] \rightarrow q$
F	T	T	T	T	T
F	F	T	F	F	T
T					

For part (b) we have the following table. We omit the columns showing $p \rightarrow q$ and $q \rightarrow r$ so that the table will fit on the page.

p	q	r	$(p \rightarrow q) \rightarrow(q \rightarrow r)$	$q \rightarrow r$	
T	T	T	T		$[(p \rightarrow q) \rightarrow(q \rightarrow r)] \rightarrow(p \rightarrow r)$
T	T	F	T	T	
T	F	T	T	T	T
T	F	F	F	T	F
F	T	T	T	F	T
F	T	F	F	T	T
F	F	T	T	T	F
F	F	F	T	T	F
		T	T		

For part (c) we have the following table.

$\frac{p}{\mathrm{~T}}$	q	$\frac{p \rightarrow q}{\mathrm{~T}}$	$\frac{p \wedge(p \rightarrow q)}{\mathrm{T}}$	T

16. The first of these propositions is true if and only if p and q have the same truth value. The second is true if and only if either p and q are both true, or p and q are both false. Clearly these two conditions are saying the same thing.

Assignment 2

Sectiion 2.2

22. First we show that every element of the left-hand side must be in the right-hand side as well. If $x \in A \cap(B \cap C)$, then x must be in A and also in $B \cap C$. Hence x must be in A and also in B and in C. Since x is in both A and B, we conclude that $x \in A \cap B$. This, together with the fact that $x \in C$ tells us that $x \in(A \cap B) \cap C$, as desired. The argument in the other direction (if $x \in(A \cap B) \cap C$ then x must be in $A \cap(B \cap C)$) is nearly identical.
23. First suppose x is in the left-hand side. Then x must be in A but in neither B nor C. Thus $x \in A-C$, but $x \notin B-C$, so x is in the right-hand side. Next suppose that x is in the right-hand side. Thus x must be in $A-C$ and not in $B-C$. The first of these implies that $x \in A$ and $x \notin C$. But now it must also be the case that $x \notin B$, since otherwise we would have $x \in B-C$. Thus we have shown that x is in A but in neither B nor C, which implies that x is in the left-hand side.
24. a) We cannot conclude that $A=B$. For instance, if A and B are both subsets of C, then this equation will always hold, and A need not equal B.
b) We cannot conclude that $A=B$; let $C=\varnothing$, for example.
c) By putting the two conditions together, we can now conclude that $A=B$. By symmetry, it suffices to prove that $A \subseteq B$. Suppose that $x \in A$. There are two cases. If $x \in C$, then $x \in A \cap C=B \cap C$, which forces $x \in B$. On the other hand, if $x \notin C$, then because $x \in A \cup C=B \cup C$, we must have $x \in B$.
25. We note that these sets are increasing, that is, $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \cdots$. Therefore, the union of any collection of these sets is just the one with the largest subscript, and the intersection is just the one with the smallest subscript.
a) $A_{n}=\{\ldots,-2,-1,0,1, \ldots, n\}$
b) $A_{1}=\{\ldots,-2,-1,0,1\}$
