Solutions to First Assignment

Section 1.1

- 28. a) Converse: If I stay home, then it will snow tonight. Contrapositive: If I do not stay at home, then it will not snow tonight. Inverse: If it does not snow tonight, then I will not stay home.
 - b) Converse: Whenever I go to the beach, it is a sunny summer day. Contrapositive: Whenever I do not go to the beach, it is not a sunny summer day. Inverse: Whenever it is not a sunny day, I do not go to the beach.
 - c) Converse: If I sleep until noon, then I stayed up late. Contrapositive: If I do not sleep until noon, then I did not stay up late. Inverse: If I don't stay up late, then I don't sleep until noon.
- 32. To construct the truth table for a compound proposition, we work from the inside out. In each case, we will show the intermediate steps. In part (d), for example, we first construct the truth tables for $p \wedge q$ and for $p \vee q$ and combine them to get the truth table for $(p \wedge q) \rightarrow (p \vee q)$. For parts (a) and (b) we have the following table (column three for part (a), column four for part (b)).

For parts (c) and (d) we have the following table.

p	q	$p \lor q$	$p \wedge q$	$p \oplus (p \vee q)$	$(p \wedge q) \to (p \vee q)$
\mathbf{T}	\mathbf{T}	${f T}$	${f T}$	\mathbf{F}	${f T}$
\mathbf{T}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	${f T}$
F	\mathbf{T}	${ m T}$	\mathbf{F}	${f T}$	${f T}$
F	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$

For part (e) we have the following table.

p	q	$\neg p$	$q\rightarrow\neg p$	$p \leftrightarrow q$	$(q ightarrow eg p) \leftrightarrow (p \leftrightarrow q)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{F}
F	\mathbf{T}	\mathbf{T}	${f T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	${f T}$	${f T}$	${f T}$

Ti /(c) 1 /1 (11 · /11

Section 1.3

10. We construct a truth table for each conditional statement and note that the relevant column contains only T's. For part (a) we have the following table.

p - q	$\overline{\neg p}$	$p \lor q$	$ eg p \wedge (p ee q)$	$\overline{\left[\neg p \wedge (p \vee q)\right] \to q}$
T T	\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$
T F	\mathbf{F}	${f T}$	\mathbf{F}	${ m T}$
$\mathbf{F} \mathbf{T}$	\mathbf{T}	${ m T}$	${f T}$	${ m T}$
$\mathbf{F} - \mathbf{F}$	${f T}$	\mathbf{F}	\mathbf{F}	${ m T}$

For part (b) we have the following table. We omit the columns showing $p \to q$ and $q \to r$ so that the table will fit on the page.

-					
p	q	r	(p o q) o (q o r)	q ightarrow r	[(p ightarrow q) ightarrow (q ightarrow r)] ightarrow (p ightarrow r)
\mathbf{T}	\mathbf{T}	\mathbf{T}	T	${f T}$	${f T}$
\mathbf{T}	\mathbf{T}	\mathbf{F}	F	${f T}$	${f T}$
\mathbf{T}	\mathbf{F}	\mathbf{T}	${ m T}$	${f T}$	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	F	\mathbf{F}	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	${f T}$	${f T}$	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	F	${f T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	${f T}$	${f T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	${f T}$

For part (c) we have the following table.

p	q	p ightarrow q	$p \wedge (p \to q)$	$[p \land (p \to q)] \to q$
\mathbf{T}	\mathbf{T}	${f T}$	${f T}$	${f T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	${f T}$
\mathbf{F}	\mathbf{T}	${f T}$	\mathbf{F}	${f T}$
\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{F}	${ m T}$

16. The first of these propositions is true if and only if p and q have the same truth value. The second is true if and only if either p and q are both true, or p and q are both false. Clearly these two conditions are saying the same thing.

Assignment 2

Sectiion 2.2

- 22. First we show that every element of the left-hand side must be in the right-hand side as well. If $x \in A \cap (B \cap C)$, then x must be in A and also in $B \cap C$. Hence x must be in A and also in B and in C. Since x is in both A and B, we conclude that $x \in A \cap B$. This, together with the fact that $x \in C$ tells us that $x \in (A \cap B) \cap C$, as desired. The argument in the other direction (if $x \in (A \cap B) \cap C$ then x must be in $A \cap (B \cap C)$) is nearly identical.
- **24.** First suppose x is in the left-hand side. Then x must be in A but in neither B nor C. Thus $x \in A C$, but $x \notin B - C$, so x is in the right-hand side. Next suppose that x is in the right-hand side. Thus x must be in A-C and not in B-C. The first of these implies that $x \in A$ and $x \notin C$. But now it must also be the case that $x \notin B$, since otherwise we would have $x \in B - C$. Thus we have shown that x is in A but in neither B nor C, which implies that x is in the left-hand side.
- **30.** a) We cannot conclude that A = B. For instance, if A and B are both subsets of C, then this equation will always hold, and A need not equal B.
 - b) We cannot conclude that A = B; let $C = \emptyset$, for example.
 - c) By putting the two conditions together, we can now conclude that A = B. By symmetry, it suffices to prove that $A \subseteq B$. Suppose that $x \in A$. There are two cases. If $x \in C$, then $x \in A \cap C = B \cap C$, which forces $x \in B$. On the other hand, if $x \notin C$, then because $x \in A \cup C = B \cup C$, we must have $x \in B$.
 - 48. We note that these sets are increasing, that is, $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$. Therefore, the union of any collection of these sets is just the one with the largest subscript, and the intersection is just the one with the smallest subscript.

a)
$$A_n = \{\dots, -2, -1, 0, 1, \dots, n\}$$
 b) $A_1 = \{\dots, -2, -1, 0, 1\}$

b)
$$A_1 = \{\dots, -2, -1, 0, 1\}$$