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Top-down view

à What is f (x,y)?



Announcements & Key Concepts (re Today)

Ø "Swarming" & flocking

Some relevant underlying concepts of the day…

à Final exam: Saturday, Dec. 14 (start preparing!)

à Written HW #2: Posted and due Friday 11/15 in class

Ø Aside re entropy

Ø Fick's Law & Diffusion equation

Ø Motility



Berg (1993)

Diffusion: Microscopic à Macroscopic



Ø Multivariate functions are important in many various contexts 
throughout science

Note: Concentration of a solute in a 
solution (c) depends upon both 
spatial location (x) and time (t)

“Diffusion math” à Multivariable functions

f

x, y

- dependent variable

- independent variables

Multivariable function



From Graham�s observations (~1830):

�A few years ago, Graham published an extensive investigation on the diffusion of 
salts in water, in which he more especially compared the diffusibility of different 
salts. It appears to me a matter of regret, however, that in such an exceedingly valuable 
and extensive investigation, the development of a fundamental law, for the operation 
of diffusion in a single element of space, was neglected, and I have therefore 
endeavoured to supply this omission.�

- A. Fick (1855)

Note: This is a multi-
variable function(!!)

Diffusion: Macroscopic



Concentration - of solute in solution [mol/m3]

Position [m], Time [s]

Flux - net # of moles crossing per unit time t
through a unit area perpendicular to the x-axis
[mol/m2·s]

From Graham�s observations (~1830):

Note: flux is a vector!

Diffusion (1-D)



Profile 1 Profile 2

Fick’s 1st Law (1-D) Note: Here time (t) is “fixed”

In short, there is a net 
movement down a 
concentration gradient



Diffusion Constant (D)

constant of proportionality?

§ diffusion constant is always positive (i.e., D > 0)
§ D determines time it takes solute to diffuse a given distance in a medium
§ D depends upon both solute and medium (solution)
§ Stokes-Einstein relation predicts that D is inversely proportional to solute molecular radius



Diffusion

Diffusion equation
(combo of Fick's Law and continuity equation; 
we do not derive this here)

(Fick�s Law)

à PDEs are beyond the scope of 1420 Note: This is a PDE(!!)

§ diffusion constant is always positive (i.e., D > 0)
§ D determines time it takes solute to diffuse a given distance in a medium
§ D depends upon both solute and medium (solution)
§ Stokes-Einstein relation predicts that D is inversely proportional to solute molecular radius



Impulse Response: Point-source of particles (no mol/cm2) at t = 0 and x = 0
[Dirac delta function d(x)]

[Aside: solution can be found by a # of different methods, one being by separation of variables and using a Fourier transform]

Solution
(for t > 0)

need to solve:

given the inital/boundary conditions:

Batschelet Fig.12.5

Diffusion processes

Note: Historically, this ties in 
directly w/ the development 
of “Fourier analysis”



Berg (1993)

Diffusion: Microscopic à Macroscopic

Solution to "diffusion equation"

Note: “concentration” is a function 
of more than one variable!

à Time-dependent Gaussian!!



“Diffusion math” à Multivariable functions

Solution to
diffusion equation



Weiss Fig.3.14 (modified)

Diffusion



Freeman

Question: How long does it take (t1/2) for ~1/2 the solute 
to move at least the distance x1/2?

Gaussian function with zero mean and 
standard deviation: 

For small solutes 
(e.g. K+ at body temperature)

Importance of scale



Tangent: Why is a cell “cell-sized”?

Ø Cells are typically 1-100 um or so in size. Why?

Ø Non-trivial question and likely a # of factors (e.g., optimizing volume to 
surface area), but….

Ø … limits stemming from 
diffusion are likely central



Summary (re Diffusion)

à Diffusion is a macroscopic movement of stuff 
stemming from lots of  random walks at the 
microscopic level

Note: Lots of "objects in direct contact" here!



Knight

Goal now is to build up a theme focusing on one of these in particular....

... and that is a key principle underlying conduction

Summary (re Diffusion)

à We have delved into a physical means by which conduction occurs 



Example problem



Recall: Biophysical notion of  Passive vs Active

Ø Passive: movement is subject to the 
medium you are in moving you around

Ø Active: you move yourself around (e.g., swim)

à What happens when you have a LOT of (random?) swimmers together?



wikipedia (swarming motility)

Bacteria of the species Bacillus subtilis were 
inoculated at the center of a dish with gelose
containing nutrients. The bacteria start mass-
migrating outwards about twelve hours after 
inoculation, forming dendrites which reach 
the border of the dish

Case study: Swarming

à They can work 
together to move 
a certain way!



Ø Notion of collective 
dynamics

à The “whole” is 
more/different from the 
sum of the parts

Ø Key idea here is that the 
swimmers can interact

Case study: Swarming



Case study: Flocking

wikipedia (flocking)

A swarm-like flock of starlings



Case study: Flocking

Note: Plenty of mathematical 
concepts here we've dealt w/ 
in 1420!



Interdisciplinary Connection: Entropy

à Entropy is a key consideration in 
chemistry and thermodynamics



Related: “Flying spaghetti monster,”

wikipedia (Siphonophorae, flocking)
http://www.slate.com/articles/video/video/2015/08/flying_spaghetti_monster_video_strange_sea_creature_off_angola_video.html

Ø “Although a siphonophore
appears to be a single 
organism, each specimen is 
actually a colony composed 
of many individual animals”



Aside: Entropy

t = 0

t = 50

Note also:



Aside: Entropy



% ### EXcoffee.m ###    11.16.14    {C. Bergevin}
% [modified version of EXrandomWalk2D.m motivated by the problem shown in
% Giordano (1997) Fig.7.18ff]
% **NOTE**: There is a minor bug in this version such that it is possible for
% some 'cream' to leave the 'cup' (despite the specifed boundary conditions)
clear;
% -------------
N= 10;      % one plus sqrt of total # of (independent) walkers (each starts at unique x,y point about origin)
M= 300;      % Total # of steps for each walker
method= 2;  % see comments above
BND= 10;    % bounding limits for initial grid of walkers at t=0
axisLim= 100;   % size of coffee cup
diffC= 1;   % diffusion const. (i.e., scaling factor for step size)
framerate= 1/30;    % pause length [s] for animation
Sgrid= 8;           % grid spacing for entropy calculation
% -------------
% +++
space= (2*BND)/N;
[X,Y]= meshgrid(-BND:space:BND,-BND:space:BND);
E= size(X,1); % # of elements
SgridX= linspace(-axisLim,axisLim,Sgrid);   % set grid bounds for entropy calc.
SgridY= linspace(-axisLim,axisLim,Sgrid);

figure(1); clf; grid on; xlabel('x-postion'); ylabel('y-postion');
% visualize before onset?
if (1==1), plot(X,Y,'ko','MarkerSize',5); axis([-axisLim axisLim -axisLim axisLim]);   end
% +++
% To do
% - apply boundary condition (i.e., ensure no steps past walls)
% - fix entropy calc. (i.e., if prob.=0??)
for r= 1:M

if method==1
% random L/R and U/D step with equal probability
tempX= rand(E,E);   tempY= rand(E,E);  % determine random vals.
temp2X= tempX<0.5;  temp2Y= tempY<0.5;  % determine L vs R and U vs D
X(temp2X)= X(temp2X)+1; X(~temp2X)= X(~temp2X)-1;
Y(temp2Y)= Y(temp2Y)+1; Y(~temp2Y)= Y(~temp2Y)-1;

else
% sample step from normal distribution
stepX= randn(E,E); stepY= randn(E,E);
X= X+ diffC*stepX;  Y= Y+ diffC*stepY;
% verify step is not past walls; if so, bounce back in opposite direction
[aa,bb]= find(abs(X)>axisLim); [cc,dd]= find(abs(Y)>axisLim); 

% +++ --> correct for points that have moved past the walls
% not quite right, but kinda works
X(aa,bb)= X(aa,bb)-2*diffC*stepX(aa,bb); Y(cc,dd)= Y(cc,dd)-2*diffC*stepY(cc,dd);

% more right (I think), but doesn't work
%X(aa,bb)= sign(X(aa,bb))*2*axisLim-X(aa,bb); Y(cc,dd)= Y(cc,dd)-2*diffC*stepY(cc,dd);

% uncomment to allow for flagging when 'cream' leaves the cup
if(max(abs(X(:))>axisLim)), return;  end

end
% visualize
figure(1)
plot(X,Y,'ko','MarkerSize',5); axis([-axisLim axisLim -axisLim axisLim]); pause(framerate);
% do binning to determine 'probability' distribution 
histS= hist2(X(:),Y(:),SgridX,SgridY)/E^2; % use external function hist2.m; and normalize to a probability
histS= histS(:);    % convert to a single column vector
zeroI= ~histS==0; % need to filter out states with zero elements so to avoid computational error (since 0*log(0)= NaN)
S(r)= -sum(histS(zeroI).*log(histS(zeroI))); % calculate entropy (S) 

end;

figure(2)
plot(S,'LineWidth',2); hold on; grid on;
xlabel('time step'); ylabel('entropy');

EXcoffee.m

100 2-D non-interacting 
random walkers

Note: Cream in reality likely mixes w/ 
coffee primarily more via convection 
and "conduction" 



EXcoffee.m

timestep 0

Aside: Entropy



EXcoffee.m

timestep 1

Aside: Entropy



EXcoffee.m

timestep 30

Aside: Entropy



EXcoffee.m

timestep 300

Aside: Entropy



EXcoffee.m

à Can determine the associated 
entropy as a function of time!

Giordano (1997)

Aside: Entropy



EXcoffee.m

Giordano (1997)


