Post
Published on November 28, 2022
Researchers at the Lassonde School of Engineering at York University are working to develop innovative methods for the detection of microplastics in bodies of water. Recently, a group of researchers successfully designed and prototyped an affordable and simple device for the detection of microplastics.
Water sources often contain pollutants due to the breakdown of large plastics and commercial product development, some of these pollutants are undetectable to the naked eye. One example of such pollutants are micro-and nano-plastics, which are harmful both to the environment and living organisms, including humans. That’s why researchers at the Lassonde School of Engineering at York University are working to develop innovative methods for the detection of microplastics in bodies of water. Although there are some standard laboratory-based methods to detect microplastics, they often have significant drawbacks, including both time and cost, which prevent their use in detailed investigations of aquatic environments.
Recently, a group of researchers from Lassonde Professor Pouya Rezai’s lab in the Department of Mechanical Engineering have designed and prototyped an affordable and simple microfluidic device for the on-site detection of microplastics. The team of researchers includes two postdoctoral fellows and former Lassonde PhD candidates Alireza Zabihihesari and Arezoo Khalili and one MSc student Mohammad-Javad Farshchi-Heydari. They fabricated the device with replica molding of two polydimethylsiloxane (PDMS) layers onto 3D-printed master molds.
The microfluidic device consists of a straight microchannel in which the water sample enters from one end and leaves from the other. Simultaneously, a DC sweep current is applied to two microwires crossing the microchannel. Applying an electrical current to microwires induces an attractive electrophoretic force, which leads to microplastics accumulating on the positive or negative electrode (microwires), thereby changing the electrical resistance.
This approach was tested using sparked microplastics in water at different concentrations. In the future, this sensor can be integrated into a hand-held device, enabling on-site detection of microplastics in aquatic environments. Currently, Rezai’s research group is working to expand the application of their sensor for detecting microplastics of different shapes, types and sizes in real samples collected from lakes, seas and oceans with various concentrations of salt.
Their manuscript is now available online and for the past few weeks it has been listed on Social Science Research Network’s (SSRN) Top Ten download list for: Analytical Chemistry eJournal and ChemRN: Fluidics.
The manuscript is available online: Simple Microfluidic Device for Simultaneous Extraction and Detection of Microplastics in Water Using Dc Electrical Signal.
Originally published by Yfile(November 25, 2022).
Themes | Global Health & Humanitarianism |
Status | Active |
Related Work |
N/A
|
Updates |
N/A
|
People |
You may also be interested in…
2022-2023 Dahdaleh Global Health Graduate Scholarships Awarded to Eight Outstanding Scholars
The Dahdaleh Institute for Global Health Research is delighted to announce and congratulate the recipients of the 2022-2023 Dahdaleh Global Health Graduate Scholarships. DI associate director and committee Chair, Mary Wiktorowicz, says, “We are impressed …Read more about this Post
Black History Month 2023: Black Resistance
A series of panels remembering achievements in the face of struggles. Black History Month is a distinct period for honouring history, negotiating current realities, and imagining potential futures for Black communities. In recent years, the Harriet …Read more about this Post
Spotlight: Global Health Intern Alum – Tiana Putric
Congratulations to Tiana Putric – a remarkable alum of the Dahdaleh Institute’s global health internship program! Tiana was a Dahdaleh Institute global health intern in the 2020-21 and 2021-22 academic years. While working with Jennie …Read more about this Post