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Figure 1: Picture-reveal puzzle game – an exergame to explore cervical range of motion (ROM). (a) No mobility restriction. (b)
Soft collar mobility restriction. (c) Rigid collar mobility restriction. Puzzle difficulty varied through two levels of gain (high,
low) and two configurations of tiles. (d) 13×10 tiles. (e) 7×5 tiles.

ABSTRACT
Cervical range of motion (ROM) is a crucial aspect of assessment
following a neck injury and prior to cervical rehabilitation. We ex-
plored using an exergame with a head-tracker to predict the degree
of cervical ROM. Using head movement, users moved a cursor over
a picture-reveal puzzle to remove tiles and reveal an underlying
picture. In a within-subjects user study, we controlled mobility re-
striction by fitting participants with either a rigid cervical collar
(severe restriction), a soft cervical collar (moderate restriction), or
no collar (no restriction). We also controlled task difficulty through
two levels each of number of tiles (13×10, 7×5) and gain (high, low).
Selection rate by mobility restriction ranged from ≈30% for severe
to ≈95% with none, and ≈50% for moderate. Results suggest the fol-
lowing ascending ranks for difficulty based on number of tiles and
gain: (1) 7×5, high gain, (2) 7×5, low gain, (3) 13×10, high gain, and
(4) 13×10, low gain. This ascending difficulty order is recommended
for presenting the puzzles to people with cervical conditions to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
INTERACCION 2024, June 19–21, 2024, A Coruña, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1787-1/24/06
https://doi.org/10.1145/3657242.3658589

avoid overexertion. The collected data were also used in machine
learning with a Random Forest model. Mobility restriction cate-
gory (severe, moderate, none) was correctly predicted in 80.6% of
36 samples. The results are a first step in using an exergame and
machine learning to automatically categorize patients according to
their cervical ROM.
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1 INTRODUCTION
Neck pain is a common and significant health issue in our society
[7, 18], and one of the most important musculoskeletal conditions
in terms of prevalence and years lived with a disability. It is chronic
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in 30–50% of cases [6, 12]. Despite that, neck pain has received little
attention from eHealth applications. We have developed a system
called RehbeCa in the field of digital health. The system addresses
therapeutic exercise for cervical rehabilitation and consists of a
mobile application (used by patients) and a web application (used
by physiotherapists), allowing the remote monitoring of patient
performance, compliance, and progress.

The mobile application integrates a serious game designed to en-
courage patients to perform therapeutic neck exercises, adapting to
their capability and evolution during recovery (guided by a physio-
therapist). It is designed with clinical criteria and includes a variety
of exercises in a home physiotherapy regime. In this way, a phys-
iotherapist individualizes the treatment and adjusts the exercise
program according to the needs and evolution of the patient.

The traditional way of assessing cervicalgia involves several
steps, including the measurement of the neck range of motion
(ROM). See Figure 2. ROM is the totality of movement that a joint
of a body part is capable of. ROM measurements are an integral to
assessment, as they allowmonitoring a patient’s status and progress.
Therefore, the physiotherapist combines the measures of the neck
with the patient’s performance in the serious game to adapt the
treatment over time. The goal of the current research is to determine
if we can use an exergame to categorize a patient into a level of
neck injury (i.e., degree of cervical ROM).

Figure 2: ROMmeasurements done by a physiotherapist with
a goniometer.

In this paper, we used a picture-reveal puzzle game to detect a
user’s mobility status – i.e., cervical mobility in terms of range of
motion – based on his/her performance on a task. The first step is
to determine if different cervical mobility conditions correlate with
task performance. To do this, we designed an experiment controlling
neck mobility and examined the effect on user performance in the
picture-reveal puzzle game. The neck mobility conditions were
combined with additional conditions – number of tiles and gain of
the head-tracking system – to vary the game difficulty.

In addition, the collected data from our experiment were used
as a dataset to train and test a Random Forest model. Preliminary
results give promise to the possibility of predicting the level of
cervical ROM using the measures of performance extracted from
the exergame. This constitutes a first step to using the exergame to
automatically categorize patients according to their cervical ROM.

1.1 Related Work
Research has consistently demonstrated that incorporating games
into therapeutic exercise enhances its efficacy and promotes ad-
herence [1, 24]. Consequently, serious exergames exist for rehabili-
tation, utilizing both off-the-shelf commercial games and devices
within a rehabilitation context [1, 9]. Shahmoradi et al. [22] provide
a detailed review.

Serious exergames are effective in addressing a range of neuro-
logical and musculoskeletal conditions [2, 8]. Notably, the develop-
ment of virtual reality (VR) serious games for rehabilitation, both
immersive and non-immersive, has surged in recent years [2, 17].
When targeting specific body parts, such as the neck, developers
often resort to wearable sensors attached to a body part or utilize
full-body camera detection [16].

Baranyi et al. [2, 3] pioneered the development of a serious
game system for post-stroke rehabilitation that integrates with
smartphones or mobile devices, leveraging their built-in sensors.
AlthoughMihajlovic et al. [15] created a virtual reality serious game
for the neck region, immersion necessitates the use of a headset by
the patient. Additionally, some researchers explored neck exercise
systems using integrated sensors in mobile devices, such as camera-
based head trackers [13]. Although capable of calculating neck
flexion and monitoring head posture during smartphone use, these
systems do not detect or monitor other directions of movement.

Quah et al. [19] proposed a portable computer vision-based
marker-less head tracking exergame for neck rehabilitation which
also incorporates movement modulation during posture overcom-
pensation. They report promising results, but provide no rigorous
user testing or validation of the system’s precision. Also, their work
does not report methods to assess the neck range of motion of the
users.

As far as we know, the challenge of predicting the neck ROM
using an exergame in a mobile device remains to be addressed.

2 NECK MOBILITY RESTRICTIONS
As an exploratory study, we did not work with people with cervical
conditions, but with healthy subjects. However, we needed users
to performed the task with different degrees of mobility restriction.
For this purpose, we created three levels of mobility restriction:

(1) Severe – applying a rigid cervical collar (Fig. 3a).
(2) Moderate – applying a soft collar (Fig. 3b).
(3) None – healthy subject without an external restriction (Fig. 3c).

(a) (b) (c)

Figure 3: Three mobility restrictions: (a) severe restraint – a
rigid cervical collar, (b) moderate restraint – a soft cervical
collar, and (c) no mobility restraint. Setup includes wearing
a ENLAZA inertial sensor to measure neck range of motion.

Then, we studied the mobility limitation caused by the collars to
determine if they aptly serve as experimental conditions by mim-
icking the ROM for patients with a neck injury. To do this, we
performed ROMmeasurements in flexion, extension, lateral flexion,
and rotation of the neck. See Fig. 4. Flexion is bending the head
forward towards the chest from an upright position, with a normal
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Figure 4: Cervical area movements. See text for discussion.

ROM up to 45º (Fig. 4a). Extension is the opposite movement, bend-
ing the head backwards from an upright position, with a normal
ROM up to 45º (Fig. 4b). Lateral flexion is tilting the head to the side,
trying to reach the shoulder with the ear (without moving the chin
tip), with a ROM of 45º each side (Fig. 4c). Rotation is turning the
head to the side, with the chin parallel to the floor, with a normal
ROM of 70º each side (Fig. 4d).

These measurements were repeated under the three mobility
restriction conditions: rigid collar (severe), soft collar (moderate),
and no restraint (none). See Fig. 5.

Figure 5: Movements performed under the three mobility
restriction conditions. From left to right, the movements are
extension, flexion, right lateral flexion, and left lateral flex-
ion, right rotation, left rotation. The first row corresponds to
severe mobility restriction (rigid collar), the second row to
moderate mobility restriction (soft collar), and third row to
no mobility restriction.

Ten healthy participants (five female) were recruited among staff
and students from a local university. To be included, participants
had to be aged 18 to 70. The average age was 41.2 years (𝑆𝐷 = 11.8).
They were excluded if they reported or complained of neck, shoul-
der, and/or head impairments or if they had experienced pain in
the preceding month. Participants were measured in an experiment
room, seated in a chair in an upright position. They were asked to
follow the instructions provided by the physiotherapist to perform
three movements in each direction of the anatomical plane (flexion,
extension, left lateral flexion, right lateral flexion, left rotation, right
rotation). Fig. 4 illustrates the movements.

Neck movements were measured using two inertial sensors,
ENLAZA [23], which recorded real-time movements performed
by participants. The ranges captured by the sensors facilitated
kinematic analyses. Following the manufacturer’s protocol, one
sensor was placed on the subject’s forehead and another on the T1-
T2 thoracic vertebrae (see Sensor 1 and Sensor 2 in Fig. 3c). Sensor 1

acted as the movable arm of a goniometer, while Sensor 2 served as
the stationary part of the goniometer over the fulcrum of movement,
enabling real-time angle measurements in the coronal, sagittal, and
transverse anatomical planes.

Figure 6: Range of motion (ROM) obtained from the mea-
surements with the three mobility restriction conditions
compared to normal mobility data of the population.

Fig. 6 and Table 1 depict the ROMs measured with the mobility
restriction conditions. The measurements obtained without mobil-
ity restriction agree with the normal mobility data of the population
where cervical area mobility is 45◦ flexion, 45◦ extension, up to 45◦
lateral flexion (each side), and 70◦ rotation (each side) [4, 11, 18].
Our measurements with no restraint yielded means of 46.9◦ flexion
(𝑆𝐷 = 9.5), 47.0◦ extension (𝑆𝐷 = 12.3), 29.7◦ right lateral flexion
(𝑆𝐷 = 7.3), 29.3◦ left lateral flexion (𝑆𝐷 = 4.9), 62.2◦ right rotation
(𝑆𝐷 = 9.4), and 67.2◦ left rotation (𝑆𝐷 = 11.1).

The ROMs obtained from the measurements with the soft cervi-
cal collar showed moderate limited mobility, with means of 24.4◦
flexion (52% of the non-restraint ROM), 30.9◦ extension (66% of
the non-restraint ROM), 23.1◦ right lateral flexion (78% of the non-
restraint ROM), 22.5◦ left lateral flexion (77% of the non-restraint
ROM), 34.4◦ right rotation (55% of the non-restraint ROM), and
35.8◦ left rotation (54% of the non-restraint ROM).

The ROMs obtained from the measurements with the rigid cer-
vical collar showed severe limited mobility, with means of 11.0◦
flexion (23% of the non-restraint ROM), 22.5◦ extension (48% of
the non-restraint ROM), 8.7◦ right lateral flexion (29% of the non-
restraint ROM), 10.3◦ left lateral flexion (35% of the non-restraint
ROM), 14.1◦ right rotation (23% of the non-restraint ROM), and
13.8◦ left rotation (21% of the non-restraint ROM).

These results indicate that the three mobility restriction condi-
tions were valid as experimental conditions to limit cervical mobil-
ity. This serves as a prelude to a user study to determine how the
mobility restrictions impact user performance in a mobile puzzle
exergame.

3 METHOD
This experiment explores whether the cervical range of motion
(ROM) allowed by the neck mobility restrictions affects user per-
formance in a picture-reveal exergame puzzle. User performance
refers to the percentage of tiles selected (i.e., removed) and the time
interacting with each puzzle. Difficulty was varied further by the
number of tiles in a puzzle and the gain of the head tracker.
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Table 1: Mean over all participants of the maximum range of motion (ROM) by mobility restriction. Results of the 𝐹 -tests
showing 𝐹 -statistic and significance. Results of a Scheffé post hoc analysis for significance between pairs.

Mobility Restriction F-Test Scheffé post hoc (sig.)
Movement Severe Moderate None 𝐹2,18 sig. rigid vs. soft rigid vs. none soft vs. none

Flexion 11.0◦ 24.4◦ 46.9◦ 92.1 *** ** *** ***
Extension 22.5◦ 30.9◦ 47.0◦ 125.6 *** *** ** ***
Right lateral flexion 8.7◦ 23.1◦ 29.7◦ 62.6 *** *** *** .
Left lateral flexion 10.3◦ 22.5◦ 29.3◦ 37.4 *** ** *** -
Right rotation 14.1◦ 34.4◦ 62.2◦ 74.4 *** ** *** ***
Left rotation 13.8◦ 35.8◦ 67.2◦ 73.5 *** ** *** ***
Note: ’-’ = 𝑝 < 1, ’.’ = 𝑝 < .1, ’*’ = 𝑝 < .05, ’**’ = 𝑝 < .01, ’***’ = 𝑝 < .001.

3.1 Participants
A gender-balanced set of twelve healthy participants (six females)
were recruited from staff and students at a university campus in
Spain. To be included, participants had to be aged 18 to 70 years.
The mean age was 42.8 years (𝑆𝐷 = 10.5). They were excluded if
they reported or complained of neck, shoulder, or head impairments
or if they had experienced pain in the preceding month.

3.2 Apparatus
The experiment was conducted on an Apple iPad (9th generation)
with a resolution of 2160 × 1620 px and a pixel density of 264 ppi.

The software implemented a picture-reveal puzzle game. A pic-
ture was covered with an 𝑛 ×𝑚 grid of tiles in two configurations.
See Fig. 7. Using head movement, participants moved a cursor over
tiles to remove them and to uncover the picture. A tile was selected
and removed immediately when the cursor (red circle in Fig. 7)
passed through the tile. This selection mode is equivalent to a 0-ms
dwell-time criterion.

(a) (b)

Figure 7: Screenshots with annotations of the picture-reveal
puzzle game with the two configurations of tiles: (a) 13×10,
and (b) 7×5. The cursor appears as a red circle.

The game uses a camera-based head-tracker. Input uses move-
ment of the head which in turn moves the cursor. This transforms
the game into a cervical exergame. The head-tracker was previ-
ously validated with users with and without disabilities [14, 20].
Head movement is monitored by detecting the nose position in the
images provided by the front camera of the mobile device. It works
without additional sensors or elements on the user.

The head-tracker includes a gain factor – the amount of cursor
movement in response an amount of movement of the user’s head
in the camera images. The gain affects the velocity of the cursor
in pixels/frame. For a cervical rehabilitation application, the head-
tracker gain is crucial for clinical criteria and rehabilitation goals.
A high gain allows users to perform despite having less mobility,
while a low gain requires increased movement, as well as more
motor control for holding the cursor steady. See Roig-Maimó et al.
[21] for details of the integrated head-tracker interface.

3.3 Procedure
The experiment was conducted by three members of the research
team, including a physiotherapist. All received training on the
procedure. Before testing, participants were given a study overview
and with clarification on the informed consent process. Informed
consent was obtained from all participants.

Participants were instructed how to play the picture-reveal puz-
zle game using the provided iPad. In the game, they uncovered
a hidden picture by moving the cursor over the tiles of a puzzle
using head movements. Participants sat upright on a fixed chair in
front of a table, so they could comfortably rest their arms and hold
the mobile device naturally. See Fig. 1. This seating arrangement
was designed to minimize compensatory movements. Participants
were instructed to move the cursor by holding the device still and
moving their head only; they were asked not to move the device
while interacting with the application. The only requirement was
that their entire face was visible by the front camera of the device.

Then, participants proceeded to conduct the experiment for each
mobility restriction condition.

It was anticipated that participants might not be able to remove
all the tiles in some experimental conditions. In such cases, they
were instructed to terminate the trial by performing a three-finger
touch anywhere on the display surface. They did this when they felt
unable to remove more tiles. Participants rested as needed between
sequences. Testing lasted ≈30 minutes per participant.

3.4 Design
The experiment design was 3 × 2 × 2 within-subjects with the
following independent variables and levels:

• Mobility restriction: severe, moderate, none.
• Number of tiles: 13×10, 7×5.
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• Gain: high (2.0), low (1.5).

For each condition, two trials were performed. The primary in-
dependent variable was mobility restriction with three levels (rigid
collar, soft collar, no collar). Number of tiles and gain were varied
to ensure the trials covered a reasonable range of task difficulties.
The gain independent variable corresponds to the gain factor of the
head-tracker, i.e., the velocity of the cursor (see Section 3.2).

For each puzzle difficulty (number of tiles × gain), participants
performed a sequence of𝑛 ×𝑚 sub-tasks, where𝑛 ×𝑚 is the number
of tiles to remove in solving the puzzle.

The three mobility restrictions were counterbalanced using six
groups covering all combinations. The number of tiles and gain
conditions were randomized within sequences.

The dependent variables were selection rate (%) and time (s). Se-
lection rate was the number of selected tiles divided by the number
of tiles in a puzzle. Time corresponded to the time to complete a
puzzle or the time until a participant decided they had reached their
limit in selecting tiles.

The total number of trials (i.e., puzzles) was 12 participants
× 3 mobility restrictions × 2 number of tiles × 2 gains × 2 tri-
als/condition = 288.

Following the sex and gender equity in research (SAGER) guide-
lines [10], we also investigated whether there was a difference by
sex over the dependent variables. And so, we gathered a balanced
set of participants and included sex as a factor in the analysis. For
the effect of sex, we used a between-subjects design where the
primary independent variable was sex with levels female and male.

4 RESULTS AND DISCUSSION
This section gives results for selection rate and time. First, we note
that the group effect was not statistically significant on selection
rate (𝐹5,6 = 0.76, ns) nor on time (𝐹5,6 = 1.99, 𝑝 > .05). Thus, coun-
terbalancing had the desired effect of offsetting order effects.

Then, we examined the learning effect over the two trials for
each condition. The learning effect (i.e., trial effect) on selection
rate was not statistically significant (𝐹1,11 = 0.83, ns), while on time
the effect of trial was statistically significant (𝐹1,11 = 5.21, 𝑝 < .05).
Participants were about 6% faster in completing the puzzle in the
second trial, suggesting some degree of adaptation with the task.
However, as we are particularly interested in analyzing the tiles
that participants were able to remove, no matter the time needed,
subsequent analyses used the data for both trials per puzzle.

4.1 Selection Rate
The grand mean for selection rate was 59.7%. Recall that selection
rate is the percentage of tiles removed in solving a puzzle. The
results for selection rate by mobility restriction, number of tiles,
and gain are shown in Fig. 8.

The mean selection rate for severe mobility restriction was 31.1%.
This was about 59% lower than the mean 53.1% for moderate mo-
bility restriction. This suggests that the severe restriction seriously
hampered participants’ ability to navigate and interact with the puz-
zle. As expected, participants with no mobility restriction achieved
a higher mean selection rate of 94.8%, indicating a marked im-
provement in performance when mobility was not restrained. The

statistical analysis further confirmed the significance of these find-
ings (𝐹2,22 = 84.93, 𝑝 < .001) indicating that the effect of mobility
restriction on selection rate was not due to chance.

Additionally, a Scheffé post hoc analysis revealed that the dif-
ferences between all pairs (severe vs. moderate, severe vs. none,
moderate vs. none) were statistically significant, further reinforcing
the impact of mobility restriction on task performance.

The mean selection rate for puzzles with more tiles (13×10) was
56.8%, while with fewer tiles (7×5), the selection rate was about
10% higher at 62.5%. An ANOVA revealed a significant effect of the
number of tiles on selection rate (𝐹1,11 = 42.24, 𝑝 < .0001).

The effect of gain on selection rate was also statistically signif-
icant (𝐹1,11 = 12.54, 𝑝 < .01). The mean selection rate with high
gain was 61.0%, while with low gain the selection rate was ≈4%
lower at 58.3%. This is inline with the expected effect for gain of the
head-tracker described in Section 3.2: A higher gain allows users to
perform despite less mobility (increasing their range of movement
on the device screen), while a lower gain requires greater cervical
movement.

Fig. 9 shows the results for selection rate by mobility restriction
and puzzle difficulty (number of tiles × gain). For each mobility
restriction, selection rate increased from left to right: light blue,
dark blue, light orange, dark orange (from hardest to easiest). With
reference to the legend in Fig. 9 and the means of selection rate
by puzzle difficulty (number of tiles × gain), we note the following
levels in order for decreasing difficulty:

(1) 13×10, low gain: 56.0% selection rate.
(2) 13×10, high gain: 57.7% selection rate.
(3) 7×5, low gain: 60.7% selection rate.
(4) 7×5, high gain: 64.3% selection rate.
Fig. 10 shows patterns for success by mobility restriction and

puzzle difficulty (number of tiles × gain). As with previous results,
we observed similar patterns for puzzles with 13×10 tiles (high and
low gain). See Fig. 10a-b. Increased difficulty (Fig. 10c-d) coincides
with more opacity, implying more tiles left in place and obscuring
the underlying picture. The reverse pattern is seen as mobility
restriction decreases (from severe to none). Accordingly, tiles at the
center of the screen are the most transparent as they are the easiest
to remove. For each condition, success decreases for tiles closer to
the corners; i.e., tiles near the corners are the hardest to remove.

Fig. 11 gives examples of participant path traces. Although no
specific order was required, participants tended to use a strategy
under no mobility restriction: removing tiles row by row or column
by column. See Fig. 11c. When participants performed with moder-
ate mobility restriction, they tried to act the same but left tiles in
place in inaccessible areas: around the corners of the display. See
Fig. 11b. However, when performing with severe mobility restric-
tion, movements became erratic: They just wandered around trying
to remove as many tiles as their mobility allowed. See Fig. 11a. This
path behavior is observed in people with multiple sclerosis with
different degrees of mobility and head control and with people with
no mobility restriction when using a head-tracking interface [14].

4.2 Time
The grand mean for time was 21.9 s. This is the time participants
took to solve a puzzle or the time until they felt they could not
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Figure 8: Results for selection rate (%) by mobility restriction, number of tiles, and gain. Asterisks show the means.

Figure 9: Results for selection rate (%) by mobility restriction
and puzzle difficulty (number of tiles × gain). Within each
mobility restriction, difficulty decreases from left to right.
Asterisks show the means.

continue beyond their current effort. The results for time (s) by
mobility restriction, number of tiles, and gain are shown in Fig. 12.

The mean completion times for mobility restriction were 18.2 s
for severe, 23.0 s for moderate, and 24.7 s for none. However, the
effect of mobility restriction on time was not statistically significant
(𝐹2,22 = 2.63, 𝑝 > .05). The maximum times to complete a puzzle by
mobility restriction were 61 s (severe), 60 s (moderate), and 67 s
(none). Therefore, future user studies could set a maximum time
of one minute to measure the selection rate in solving a puzzle
without overexertion, independent of the mobility restriction of
the patient. The mean completion time for 13×10 tiles was 29.5 s
while the mean for 7×5 tiles was ≈50% less at 14.4 s. The effect of
number of tiles on time was statistically significant (𝐹1,11 = 68.97,
𝑝 < .001). However, the effect of gain on time was not statistically
significant (𝐹1,11 = 3. 37, 𝑝 > .05).

4.3 Sex and Age
The results for sex are shown in Table 2. Statistical significance was
not obtained for the effect of sex on selection rate (𝐹1,286 = 1.05, 𝑝 >
.05) or on time (𝐹1,286 = 3.48, 𝑝 > .05).

Table 2: Selection rate (%) and time (s) by sex.

Measure Female Male Mean

Selection rate (%) 57.7% 61.7% 59.7%
Time (s) 20.5 s 23.4 s 22.0 s

(a) (b) (c) (d)

Figure 10: Level of success over all trials and participants
for each mobility restriction (rows) and difficulty (columns).
Opacity of a tile shows the level of success: an opaque
tile means it has never been removed, a transparent tile
means it was removed in all trials. Rows from top to bottom
correspond to mobility restriction: severe, moderate, none.
Columns left to right correspond to increasing difficulty: (a)
13×10, low; (b) 13×10, high; (c) 7×5, low; and (d) 7×5, high.

As there was a wide spread in age among the participants (from
25 to 58 years), we looked for a relationship between age and per-
formance (i.e., selection rate). The correlation between selection
rate and age was very low (𝑟 = 0.128). Therefore, we report no effect
of age on selection rate (with this limited sample of participants).

5 USING MACHINE LEARNING TO PREDICT
CERVICAL MOBILITY

One motivation for the present study was to explore the potential
to predict a user’s cervical mobility using machine learning models.
To this end, data from the present experiment served as a prelimi-
nary dataset. Even with this limited data, choosing an appropriate
machine learning model is paramount to ensure reliable results. De-
cision trees were used due to their simplicity, interpretability, and
ability to efficiently handle small datasets. By employing decision
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(a) (b) (c)

Figure 11: Example path traces from one participant to solve
different puzzle conditions. First row: 13×10 tiles, second row:
7×5 tiles. Columns are for mobility restriction: (a) severe, (b)
moderate, and (c) none.

trees, we will determine which models offer viable solutions to use
in the future with additional data. As well, selected features from the
present experiment will be analyzed without designer intervention
to study their importance for cervical mobility categorization.

For this study, the features are selection rate and time for each
puzzle difficulty (number of tiles × gain) and sex. This leads to nine
features. See Fig. 13. The goal was to correctly label the mobility
restriction in the test data as severe, moderate, or none. For this, we
used first-trial data for learning and second-trial data as test data.
This results in 36 samples each for learning and testing, where each
sample is the trial data for four difficulty conditions. Using only a
decision tree, as expected, the model overfits. Therefore, a Random
Forest model [5] was selected. After setting the hyperparameters,
the best accuracy was with 100 trees and a maximum depth of three
levels. For the 36 test samples, 29 (80.6%) were correctly labeled.
The seven incorrectly labeled correspond to false positives or false
negatives involving the moderate mobility restriction; that is, an
extreme mobility restriction sample (severe or none) incorrectly
labelled as moderate, or a moderate sample incorrectly labelled
as one of the extremes. Samples of moderate mobility restriction
blur the thresholds with the extreme mobility restrictions (severe or
none). Taking into account the small dataset, this result is promising.
Concerning the moderate mobility restriction condition, users in
this condition had more variance in ROM. We attribute this to the
soft collar restraint: Wearing a soft collar, movements of the neck
are easily forced, depending on the motivation of the participant
(even if they were instructed not to force the movements), because
they were healthy participants and, therefore, had no pain; actual
patients will be restrained by pain.

Upon completion of training, the Random Forest model possesses
inherent mechanisms for elucidating the importance of features in
classification tasks. Fig. 13 shows the importance of each feature for
predicting the mobility categorization. While the sex feature has
marginal importance, the most informative features are the four
selection rates for each puzzle difficulty condition. This leads us to

the conclusion that all of the puzzle difficulty conditions must be
considered (jointly with selection rate).

6 CONCLUSION AND FUTUREWORK
In this paper we presented an experiment to explore the feasibility
of using a mobile exergame (a picture-reveal puzzle) to categorize
a patient’s cervical mobility. The exergame required participants
to control a cursor moving their head to remove tiles covering an
underlying picture. Puzzle difficulty varied through two configu-
rations of tiles (13×10, 7×5) and two levels of gain (high, low). We
collected user performance in terms of selection rate and time.

To analyze if the collected data could be used to infer different
degrees of mobility restriction, we simulated three levels of mobility
restriction by applying mechanical restraints: severe (wearing a
rigid collar), moderate (wearing a soft collar), and none (without
mechanical restriction). Then, participants tried to solve the puzzle
with each mobility condition. A gender-balanced set of twelve
healthy participants was recruited for a within-subjects user study.

As expected, there was a significant difference on selection rate
by mobility restriction, from ≈30% for severe to almost 95% with
none, and ≈50% for moderate. This result encourages us to use
selection rate as a measure to classify degrees of mobility restriction.

Furthermore, a common pattern of success emerged: The easiest
tiles to remove were those at the center of the screen, with difficulty
increasing for tiles near the corners. Therefore, the present research
provides empirical evidence of an anticipated behavior: A decrease
in the radius of the circular pattern of the tiles removed is coincident
with increased mobility restriction.

Regarding solving strategies, participants acted rationally in
removing tiles under no mobility restriction. Their strategy became
more chaotic with increased mobility restriction. Based also on
selection rate, we ranked the four puzzle difficulties (number of
tiles × gain) in ascending difficulty: (1) 7×5, high gain, (2) 7×5, low
gain, (3) 13×10, high gain, and (4) 13×10, low gain. This ascending
difficulty order is recommended for presenting the puzzles to people
with cervical conditions (to avoid overexertion). Results obtained
for time were not promising to be used for degrees of mobility
restriction classification. We found no difference by sex nor by age.

In addition, the collected data were used to train and test a
Random Forest model. Despite the small dataset, preliminary results
were promising and lead to the possibility of predicting the degree of
mobility restriction using the measures of selection rate of the four
difficulty conditions. This opens the door to using the developed
exergame with people with cervical conditions to generate a dataset
to train an AI classifier to predict the user’s cervical mobility status.

These findings are a step forward in utilizing an exergame for
automated patient categorization according to cervical range of mo-
tion (ROM), offering potential benefits for personalized treatment,
remote monitoring, and assisting as a diagnostic tool for physio-
therapists. However, further research is warranted to validate and
refine our findings and to explore scalability and generalizability
across diverse patient populations and clinical settings.
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