(Return to index)
I shall devote the body of this paper to a description of experiments
with rats. But I shall also attempt in a few words at the close
to indicate the significance of these findings on rats for the
clinical behavior of men. Most of the rat investigations, which
I shall report, were carried out in the Berkeley laboratory. But
I shall also include, occasionally, accounts of the behavior of
non-Berkeley rats who obviously have misspent their lives in out-of-State
laboratories. Furthermore, in reporting our Berkeley experiments
I shall have to omit a very great many. The ones I shall talk
about were carried out by graduate students (or underpaid research
assistants) who, supposedly, got some of their ideas from me.
And a few, though a very few, were even carried out by me myself.
Let me begin by presenting diagrams for a couple of typical mazes,
an alley maze and an elevated maze. In the typical experiment
a hungry rat is put at the entrance of the maze (alley or elevated),
and wanders about through the various true path segments and blind
alleys until he finally comes to the food box and eats. This is
repeated (again in the typical experiment) one trial every 24
hours and the animal tends to make fewer and fewer errors (that
is, blind-alley entrances) and to take less and less time between
start and goal-box until finally he is entering no blinds at all
and running in a very few seconds from start to goal. The results
are usually presented in the form of average curves of blind-entrances,
or of seconds from start to finish, for groups of rats.
All students agree as to the facts. They disagree, however, on theory and explanation.
(1) First, there is a school of animal psychologists which believes
that the maze behavior of rats is a matter of mere simple stimulus-response
connections. Learning, according to them, consists in the strengthening
of some of these connections and in the weakening of others. According
to this 'stimulus-response' school the rat in progressing down
the maze is helplessly responding to a succession of external
stimuli-sights, sounds, smells, pressures, etc. impinging upon
his external sense organs-plus internal stimuli coming from the
viscera and from the skeletal muscles. These external and internal
stimuli call out the walkings, runnings, turnings, retracings,
smellings, rearings, and the like which appear. The rat's central
[p.190] nervous system, according to this view, may be likened
to a complicated telephone switchboard.
There are the incoming calls from sense-organs and there are the
outgoing messages to muscles. Before the learning of a specific
maze, the connecting switches (synapses according to the physiologist)
are closed in one set of ways and produce the primarily exploratory
responses which appear in the early trials. Learning, according
to this view, consists in the respective strengthening and weakening
of various of these connections; those connections which result
in the animal's going down the true path become relatively more
open to the passage of nervous impulses, whereas those which lead
him into the blinds become relatively less open.
It must be noted in addition, however, that this stimulus-response
school divides further into two subgroups.
(a) There is a subgroup which holds that the mere mechanics involved in the running of a maze is such that the crucial stimuli from the maze get presented simultaneously with the correct responses more frequently than they do with any of the incorrect responses. Hence, just on a basis of this greater frequency, the neural connections between the crucial stimuli and the correct responses will tend, it is said, to [p.191] get strengthened at the expense of the incorrect connections.
(b) There is a second subgroup in this stimulus-response school
which holds that the reason the appropriate connections get strengthened
relatively to the inappropriate ones is, rather, the fact that
the responses resulting from the correct connections are followed
more closely in time by need-reductions. Thus a hungry rat in
a maze tends to get to food and have his hunger reduced sooner
as a result of the true path responses than as a result of
the blind alley responses. And such immediately following need-reductions
or, to use another term, such 'positive reinforcements' tend somehow,
it is said, to strengthen the connections which have most closely
preceded them. Thus it is as if-although this is certainly not
the way this subgroup would themselves state it-the satisfaction-receiving
part of the rat telephoned back to Central and said to the girl:
"Hold that connection; it was good; and see to it that you
blankety-blank well use it again the next time these same stimuli
come in."
These theorists also assume (at least some of them do some of
the [p.192] time) that, if bad results-'annoyances,' 'negative
reinforcements'-follow, then this same satisfaction-and annoyance-receiving
part of the rat will telephone back and say, "Break that
connection and don't you dare use it next time either."
So much for a brief summary of the two subvarieties of the 'stimulus-response,' or telephone switchboard school.
(2) Let us turn now to the second main school. This group (and
I belong to them) may be called the field theorists. We believe
that in the course of learning something like a field map of the
environment gets established in the rat's brain. We agree with
the other school that the rat in running a maze is exposed to
stimuli and is finally led as a result of these stimuli to the
responses which actually occur. We feel, however, that the intervening
brain processes are more complicated, more patterned and often,
pragmatically speaking, more autonomous than do the stimulus-response
psychologists. Although we admit that the rat is bombarded by
stimuli, we hold that his nervous system is surprisingly selective
as to which of these stimuli it will let in at any given time.
Secondly, we assert that the central office itself is far more
like a map control room than it is like an old-fashioned telephone
exchange. The stimuli, which are allowed in, are not connected
by just simple one-to-one switches to the outgoing responses.
Rather, the incoming impulses are usually worked over and elaborated
in the central control room into a tentative, cognitive-like map
of the environment. And it is this tentative map, indicating routes
and paths and environmental relationships, which finally determines
what responses, if any, the animal will finally release. [p.193]
Finally, I, personally, would hold further that it is also important
to discover in how far these maps are relatively narrow and strip-like
or relatively broad and comprehensive. Both strip-maps and comprehensive-maps
may be either correct or incorrect in the sense that they may
(or may not), when acted upon, lead successfully to the animal's
goal. The differences between such strip maps and such comprehensive
maps will appear only when the rat is later presented with some
change within the given environment. Then, the narrower and more
strip-like the original map, the less will it carry over successfully
to the new problem; whereas, the wider and the more comprehensive
it was, the more adequately it will serve in the new set-up. In
a strip-map the given position of the animal is connected by only
a relatively simple and single path to the position of the goal.
In a comprehensive-map a wider arc of the environment is represented,
so that, if the starting position of the animal be changed or
variations in the specific routes be introduced, this wider map
will allow the animal still to behave relatively correctly and
to choose the appropriate new route.
But let us turn, now, to the actual experiments. The ones, out
of many, which I have selected to report are simply ones which
seem especially important in reinforcing the theoretical position
I have been presenting. This position, I repeat, contains two
assumptions: First, that learning consists not in stimulus-response
connections but in the building up in the nervous system of sets
which function like cognitive maps, and second, that such cognitive
maps may be usefully characterized as varying from a narrow strip
variety to a broader comprehensive variety.
The experiments fall under five heads: (1) "latent learning," (2) "vicarious trail and error" or "VTE," (3) "searching for the stimulus," (4) "hypotheses" and (5) "spatial orientation."[p.194]
(1) "Latent Learning" Experiments. The first
of the latent learning experiments was performed at Berkeley by
Blodgett. It was published in 1929. Blodgett not only performed
the experiments, he also originated the concept. He ran three
groups of rats through a six-unit alley maze, shown in Fig. 4.
He had a control group and two experimental groups. The error
curves for these groups appear in Fig. 5. The solid line shows
the error curve for Group I, the control group. These animals
were run in orthodox fashion. That is, they were run one trial
a day and found food in the goal-box at the end of each trial.
Groups II and III were the experimental groups.
The animals of Group II, the dash line, were not fed in the maze
for the first six days but only in their home cages some two hours
later. On the seventh day (indicated by the small cross) the rats
found food at the end of the maze for the first time and continued
to find it on subsequent days. The animals of Group III were treated
similarly except that they first found food at the end of the
maze on the third day and continued to find it there on subsequent
days. It will be observed that the experimental groups as long
as they were not finding food did not appear to learn much. (Their
error curves did not drop.) But on the days immediately succeeding
their first finding of the food their error curves did drop astoundingly.
It appeared, in short, that during the non-rewarded trials these
animals had been learning much more than they had exhibited. This
learning, which did not manifest itself until after the food had
been introduced, Blodgett called "latent learning."
Interpreting these results anthropomorphically, we would say that
as long as the animals were not getting any food at the end of
the maze they continued to take their [p.195] time in going through
it-they continued to enter many blinds. Once, however, they knew
they were to get food, they demonstrated that during these preceding
non-rewarded trials they had learned where many of the blinds
were. They had been building up a 'map,' and could utilize the
latter as soon as they were motivated to do so.
Honzik and myself repeated the experiments (or rather he did and
I got some of the credit) with the 14-unit T-mazes shown in Fig.1,
and with larger groups of animals, and got similar results. The
resulting curves are shown in Fig.6. We used two control groups-one
that never found food in the maze (HNR) and one that found it
throughout (HR). The experimental group (HNR-R) found food at
the end of the maze from the 11th day on and showed the same sort
of a sudden drop. But probably the best experiment demonstrating
latent learning was, unfortunately, done not in Berkeley but at
the University of Iowa, by Spence and Lippitt. Only an abstract
of this experiment has as yet been published. However, Spence
has sent a preliminary manuscript from which the following account
is summarized.
A simple Y-maze (see Fig.7) with two goal-boxes was used. Water
was at the end of the right arm of the Y and food at the end of
the left arm. During the training period the rats were run neither
hungry nor thirsty. They were satiated for both food and water
before each day's trials. However, they were willing to run because
after each run they were taken out of whichever end box they had
got to and put into a living cage, with other animals in it. They
were given four trials a day in this fashion [p.196] for seven
days, two trials to the right and two to the left.
In the crucial test the animals were divided into two subgroups
one made solely hungry and one solely thirsty. It was then found
that on the first trial the hungry group went at once to the left,
where the food had been, statistically more frequently than to
the right; and the thirsty group went to the right, where the
water had been, statistically more frequently than to the left.
These results indicated that under the previous non-differential
and very mild rewarding conditions of merely being returned to
the home cages the animals had nevertheless been learning where
the water was and where the food was. In short, they had acquired
a cognitive map to the effect that food was to the left and water
to the right, although during the acquisition of this map they
had not exhibited any stimulus-response propensities to go more
to the side which became later the side of the appropriate goal.
There have been numerous other latent learning experiments done
in the Berkeley laboratory and elsewhere. In general, they have
for the most part all confirmed the above sort of findings.
Let us turn now to the second group of experiments.
(2) "Vicarious Trial and Error" or "VTE."
The term Vicarious Trial and Error (abbreviated as VTE) was
invented by Prof. Muenzinger at Colorado[2]
to designate the hesitating, look-[p.197] king-back-and-forth,
sort of behavior which rats can often be observed to indulge in
at a choice-point before actually going one way or the other.
Quite a number of experiments upon VTEing have been carried out in our laboratory. I shall report only a few. In most of them what is called a discrimination set-up has been used. In one characteristic type of visual discrimination apparatus designed by Lashly (shown in Fig.8) the animal is put on a jumping stand and faced with two doors which differ in some visual property say, as here shown, vertical stripes vs. horizontal stripes.
One of each such pair of visual stimuli is made always correct
and the other wrong; and the two are interchanged from side to
side in random fashion. The animal is required to learn, say,
that the vertically striped door is always the correct one. If
he jumps to it, the door falls open and he gets to food on a platform
behind. If, on the other hand, he jumps incorrectly, he finds
the door locked and falls into a net some two feet below from
which he is picked up and started over again.
Using a similar set-up (see Fig. 9), but with landing platforms
in front of the doors so that if the rat chose incorrectly he
could jump back again and start over, I found that when the choice
was an easy one, say between a white door and a black door, the
animals not only learned sooner but also did more VTEing than
when the choice was difficult, say between a white door and a
gray door (see Fig.10). It appeared further (see Fig.11) that
the VTEing began to appear just as (or just before) the rats began
to learn. After the learning had become established, however,
the VTE's began to go down. Further, in a study of individual
dif-[p.198] ferences by myself, Geier and Levin[3]
(actually done by Geier and Levin) using this same visual discrimination
apparatus, it was found that with one and the same difficulty
of problem the smarter animal did the more VTEing.
To sum up, in visual discrimination experiments the better
the learning, the more the VTE's. But this seems contrary to what
we would perhaps have expected. We ourselves would expect to do
more VTEing, more sampling of the two stimuli, when it is difficult
to choose between them than when it is easy.
What is the explanation? The answer lies, I believe, in the fact
that the manner in which we set the visual discrimination problems
for the rats and the manner in which we set similar problems for
ourselves are different. We already have our 'instructions.'
We know beforehand what it is we are to do. We are told, or we
tell ourselves, that it is the lighter of the two grays, the heavier
of the two weights, or the like, which is to be chosen. In such
a setting we do more sampling, more VTEing, when the stimulus-difference
is small. But for the rats the usual problem in a discrimination
apparatus is quite different. They do not know what is wanted
of them. The major part of their learning in most such experiments
seems to consist in their dis-[p.199] covering the instructions.
The rats have to discover that it is the differences in visual
brightness, not the differences between left and right, which
they are to pay attention to. Their VTEing appears when they begin
to 'catch on.' The greater the difference between the two stimuli
the more the animals are attracted by this difference. Hence the
sooner they catch on, and during this catching on, the more they
VTE.
That this is a reasonable interpretation appeared further, from
an experiment by myself and Minium (the actual work done, of course,
by Minium) in which a group of six rats was first taught a white
vs. black discrimination, then two successively more difficult
gray vs. black discriminations. For each difficulty the rats were
given a long series of further trials beyond the points at which
they had learned. Comparing the beginning of each of these three
difficulties the results were that the rats did more VTEing for
the easy discriminations than for the more difficult ones. When,
however, it came to a comparison of amounts of VTEing during the
final performance after each learning had reached a plateau, the
opposite results were obtained. In other words, after the rats
had finally divined their instructions, then they, like human
beings, did more VTEing, more sampling, the more difficult the
discrimination.
Finally, now let us note that is was [p.200] also found at Berkeley by Jackson[4] that in a maze the difficult maze units produce more VTEing and also that the more stupid rats do the more VTEing. The explanation, as I see it, is that, in the case of mazes, rats know their instructions. For them it is natural to expect that the same spatial path will always lead to the same outcome. Rats in mazes don't have to be told.
But what, now, is the final significance of all this VTEing? How
do these facts about VTEing affect our theoretical argument? My
answer is that these facts lend further support to the doctrine
of a building up of maps. VTEing, as I see it, is evidence that
in the critical stages-whether in the first picking up of the
instructions or in the later making sure of which stimulus is
which-the animal's activity is not just one of responding passively
to discrete stimuli, but rather one of the active selecting and
comparing of stimuli. The brings me then to the third type of
experiment.
(3) "Searching for the Stimulus." I refer
to a recent, and it seems to me extremely important experiment,
done for a Ph.D. dissertation by Hudson. Hudson was first interested
in the question of whether or not rats could learn an avoidance
reaction in one trial. His animals were tested one at a time in
a living cage (see Fig.13) with a small striped visual pattern
at the end, on which was mounted a food cup. The hungry rat approached
this food cup and ate. An electrical arrangement was provided
so that when the rat touched the cup he could be given an electric
shock. And one such shock did appear to be enough. For when the
rat was replaced in this same cage days or even weeks afterwards,
he usually demonstrated immediately strong avoidance reactions
to the visual pattern. The animal withdrew from that end of the
[p.201] cage, or piled up sawdust and covered the pattern, or
showed various other amusing responses all of which were in the
nature of withdrawing from the pattern or making it disappear.
But the particular finding which I am interested in now appeared as a result of a modification of this standard procedure. Hudson noticed that the animals, anthropomorphically speaking, often seemed to look around after the shock to see what it was that had hit them. Hence it occurred to him that, if the pattern were made to disappear the instant the shock occurred, the rats might not establish the association. And this indeed is what happened in the case of many individuals. Hudson added further electrical connections so that when the shock was received during the eating, the lights went out, the pattern and the food cup dropped out of sight, and the lights came on again all within the matter of a second. When such animals were again put in the cage 24 hours later, a large percentage showed no avoidance of the pattern. Or to quote Hudson's own words:
"Learning what object to avoid...may occur exclusively during
the period after the shock. For if the object from which
the shock was actually received is removed at the moment of the
shock, a significant number of animals fail to learn to avoid
it, some selecting other features in the environment for avoidance,
and others avoiding nothing."
In other words, I feel that this experiment reinforces the notion
of the largely active selective character in the rat's building
up of his cognitive map. He often has to look actively for the
significant stimuli in order to form his map and does not merely
passively receive and react to all the stimuli which are physically
present.
Turn now to the fourth type of experiment.
(4) The "Hypothesis" Experiments. Both the notion
of hypotheses in rats and the design of the experiments to demonstrate
such hypotheses are to be credited to Krech. Krech used a four-compartment
discrimination-box. In such a four-choice box the correct door
at each choice-point may be determined by the experimenter in
terms of its being lighted or dark, left or right, or various
combinations of these. If all [p.202] possibilities are randomized
for the 40 choices made in 10 runs of each day's test, the problem
could be made insoluble.
When this was done, Krech found that the individual rat went through
a succession of systematic choices. That is, the individual animal
might perhaps begin by choosing practically all right-handed doors,
then he might give this up for choosing practically all left-hand
doors, and then, for choosing all dark doors, and so on. These
relatively persistent, and well-above-chance systematic types
of choice Krech called "hypotheses." In using this term
he obviously did not mean to imply verbal processes in the rat
but merely referred to what I have been calling cognitive maps
which, it appears from his experiments, get set up in a tentative
fashion to be tried out first one and then another until, if possible,
one is found which works.
Finally, it is to be noted that these hypothesis experiments,
like the latent learning, VTE, and "looking for the stimulus"
experiments, do not, as such, throw light upon the widths of the
maps which are picked up but do indicate [p.203] the generally
map-like and self-initiated character of learning.
For the beginning of an attack upon the problem of the width of the maps let me turn to the last group of experiments.
(5) "Spatial Orientation" Experiments. As early as 1929, Lashley reported incidentally the case of a couple of his rats who, after having learned an alley maze, pushed back the cover near the starting box, climbed out and ran directly across the top to the goal-box where they climbed down in again and ate. Other investigators have reported related findings. All such observations suggest that rats really develop wider spatial maps which include more than the mere trained-on specific paths. In the experiments now to be reported this possibility has been subjected to further examination.
In the first experiment, Tolman, Ritchie and Kalish (actually
Ritchie and Kalish) used the set-up shown in Fig.15.
This was an elevated maze. The animals ran from A across the open
circular table through CD (which had alley walls) and finally
to G, the food box. H was a light which shone directly down the
path from G to F. After four nights, three trials per night, in
which the rats learned to run directly and without hesitation
from A to G, the apparatus was changed to the sun-burst shown
in Fig.16. The starting path and the table remained the same but
a series of radiating paths was added.
The animals were again started at A [p.204] and ran across the
circular table into the alley and found themselves blocked. They
then returned onto the table and began exploring practically all
the radiating paths. After going out a few inches only on any
one path, each rat finally chose to run all the way out on one.
The percentages of rats finally choosing each of the long paths
from 1 to 12 are shown in Fig.17. It appears that there was a
preponderant tendency to choose path No.6 which ran to a point
some four inches in front of where the entrance to the food-box
had been. The only other path chosen with any appreciable frequency
was No.1-that is, the path which pointed perpendicularly to the
food-side of the room.
These results seem to indicate that the rats in this experiment had learned not only to run rapidly down the original roundabout route but also, when this was blocked and radiating paths presented, to select one pointing rather directly towards the point where the food had been or else at least to select a path running perpendicularly to the food-side of the room.
As a result of their original training, the rats had, it would seem, acquired not merely a strip-map to the effect that the original specifically trained-on path led to food but, rather, a wider comprehensive map to the effect that food was located in such and such a direction in the room.
Consider now a further experiment done by Ritchie alone. This experiment tested still further the breadth of the spatial map which is acquired. In this further experiment the rats were again run across the table-this time to the arms of a simple T. (See Fig.18.)
Twenty-five animals were trained for seven days, 20 trials in
all, to find food at F1; and twenty-five animals were
trained to find it at F2. The L's in the diagram indicate
lights. On the eighth day the starting path and table top were
rotated through 180 degrees so that they were now in the position
shown in Fig.19. The dottted lines represent the old position.
And a series of radiating paths was added. What happened? Again
the rats ran across the table into the central alley. When, however,
they found themselves blocked, they turned back onto the table
and this time also spent many seconds touching and trying out
for only a few steps practically all the paths. Finally, however,
within seven minutes, 42 of the 50 rats chose one path and ran
all the way out on it. The paths finally chosen by the 19 of these
animals that had been fed at F1 and by the 23 that
had been fed at F2 are shown in Fig.20. [p.205]
This time the rats tended to choose, not the paths which pointed
directly to the spots where the food had been, but rather paths
which ran perpendicularly to the corresponding sides of the room.
The spatial maps of these rats, when the animals were started
from the opposite side of the room, were thus not completely adequate
to the precise goal positions but were adequate as to the correct
sides of the room. The maps of these animals were, in short, not
altogether strip-like and narrow.
This completes my report of experiments. There were the latent learning experiments, the VTE experiments, the searching for the stimulus experiment, the hypothesis experiments, and these last spatial orientation experiments.
And now, at last, I come to the humanly significant and exciting problem: namely, what are the conditions which favor narrow strip-maps and what are those which tend to favor broad comprehensive maps not only in rats but also in men?
There is considerable evidence scattered throughout the literature
bearing on this question both for rats and for men. Some of this
evidence was obtained in Berkeley and some of it elsewhere. I
have not time to present it in any detail. I can merely summarize
it by saying that narrow strip maps rather than broad comprehensive
maps seem to be induced: (1) by a damaged brain, (2) by an inadequate
array of environmentally presented cues, (3) by an [p.206]
[p.207] overdose of repetitions on the original trained-on path
and (4) by the presence of too strongly motivational or of too
strongly frustrating conditions.
It is this fourth factor which I wish to elaborate upon briefly in my concluding remarks. For it is going to be my contention that some, at least, of the so-called 'psychological mechanisms' which the clinical psychologists and the other students of personality have uncovered as the devils underlying many of our individual and social malajustments can be interpreted as narrowings of our cognitive maps due to too strong motivations or to too intense frustration.
My argument will be brief, cavalier, and dogmatic. For I am not myself a clinician or a social psychologist. What I am going to say must be considered, therefore, simply as in the nature of a rat psychologist's ratiocinations offered free.
By way of illustration, let me suggest that at least the three dynamisms called, respectively, "regression," "fixation," and "displacement of aggression onto outgroups" are expressions of cognitive maps which are too narrow and which get built up in us as a result of too violent motivation or of too intense frustration.
(a) Consider regression. This is the term used for those cases in which an individual, in the face of too difficult a problem, returns to earlier more childish ways of behaving. Thus, to take an example, the overprotected middle-aged woman (reported a couple of years ago in Time Magazine) who, after losing her husband, regressed (much to the distress of her growing daughters) into dressing in too youthful a fashion and into competing for their beaux and then finally into behaving like a child requiring continuous care, would be an illustration of regression. I would not wish you to put too much confidence in the reportorial accuracy of Time, but such an extreme case is not too different from many actually to be found in our mental hospitals or even sometimes in ourselves. In all such instances my argument would be (1) that such regression results from too strong a present emotional situation and (2) that it consists in going back to too narrow an earlier map, itself due to too much frustration or motivation in early childhood. Time's middle-aged woman was presented by too frustrating an emotional situation at her husband's death and she regressed, I would wager, to too narrow adolescent and childhood maps since these latter had been originally excessively impressed because of overstressful experiences at the time she was growing up.
(b) Consider fixation. Regression and fixation tend to go hand in hand. For another way of stating the fact of the undue persistence of early maps is to say that they were fixated. This has even been demonstrated in rats. If rats are too strongly motivated in their original learning, they find it very difficult to relearn when the original path is no longer correct. Also after they have relearned, if they are given an electric shock they, like Time's woman, tend to regress back again to choosing the earlier path.
(c) Finally, consider the "displacement of aggression onto outgroups." Adherence to one's own group is an ever-present tendency among primates. It is found in chimpanzees and monkeys as strongly as in men. We primates operate in groups. And each individual in such a group tends to identify with his whole group in the sense that the group's goal's become his goals, the group's life and immortality, his life and immortality. Furthermore, each individual soon learns that, when as an individual he is frustrated, he must not take out his aggressions on [p.208] the other members of his own group. He learns instead to displace his aggressions onto outgroups. Such a displacement of aggression I would claim is also a narrowing of the cognitive map. The individual comes no longer to distinguish the true locus of the cause of his frustration. The poor Southern whites, who take it out on the Negroes, are displacing their aggressions from the landlords, the southern economic system, the northern capitalists, or wherever the true cause of their frustration may lie, onto a mere convenient outgroup. The physicists on the Faculty who criticize the humanities, or we psychologists who criticize all the other departments, or the University as a whole which criticizes the Secondary School system or, vice versa, the Secondary School system which criticizes the University-or, on a still larger and far more dangerous scene-we Americans who criticize the Russians and the Russians who criticize us, are also engaging, at least in part, in nothing more than such irrational displacements of our aggressions onto outgroups.
I do not mean to imply that there may not be some true interferences by the one group with the goals of the other and hence that the aggressions of the members of the one group against the members of the other are necessarily wholly and merely displaced aggressions. But I do assert that often and in large part they are such mere displacements.
Over and over again men are blinded by too violent motivations and too intense frustrations into blind and unintelligent and in the end desperately dangerous hates of outsiders. And the expression of these their displaced hates ranges all the way from discrimination against minorities to world conflagrations.
What is the name of Heaven and Psychology can we do about it? My only answer is to preach again the virtues of reason-of, that is, broad cognitive maps. And to suggest that the child-trainers and the world-planners of the future can only, if at all, bring about the presence of the required rationality (i.e., comprehensive maps) if they see to it that nobody's children are too over-motivated or too frustrated. Only then can these children learn to look before and after, learn to see that there are often round-about and safer paths to their quite proper goals-learn, that is, to realize that the well-beings of White and of Negro, of Catholic and of Protestant, of Christian and of Jew, of American and of Russian (and even of males and females) are mutually interdependent.
We dare not let ourselves or others become so over-emotional, so hungry, so ill-clad, so over-motivated that only narrow strip-maps will be developed. All of us in Europe as well as in America, in the Orient as well as in the Occident, must be made calm enough and well-fed enough to be able to develop truly comprehensive maps, or, as Freud would have put it, to be able to learn to live according to the Reality Principle rather than according to the too narrow and too immediate Pleasure Principle.
We must, in short, subject our children and ourselves (as the
kindly experimenter would his rats) to the optimal conditions
of moderate motivation and of an absence of unnecessary frustrations,
whenever we put them and ourselves before that great God-given
maze which is our human world. I cannot predict whether or not
we will be able, or be allowed, to do this; but I can say
that, only insofar as we are able and are allowed,
have we cause for hope.
[4] L.L. Jackson, V.T.E. on an elevated maze. J.comp.
Psychol., 1943, 36, 99-107.