Functional Notation Addendum to Chapter 4

Logic Notation Systems

We have seen three different, but equally powerful, notational methods for describing the behavior of gates and circuits:

Boolean expressions
logic diagrams
truth tables

Recall that...

Boolean expressions are expressions in Boolean algebra, a mathematical notation for expressing two-valued logic.

This algebraic notation is an elegant and powerful way to demonstrate the activity of electrical circuits.

Recall further that...

Logic diagram A graphical representation of a circuit Each type of gate is represented by a specific graphical symbol.

Truth table A table showing all possible input value and the associated output values.

A Fourth System

In addition to these three, there is another widely used system of notation for logic.

Functional Notation

Functional Notation

- Uses a function name followed by a list of arguments in place of the operators used in Boolean Notation.
- For example:

A' becomes NOT(A)

Functional Equivalents

Boolean Notation	Functional Notation
X=A'	X=NOT(A)
X = A + B	X=OR(A,B)
X=A • B	X=AND(A,B)
X = (A + B)'	X=NOT(OR(A,B))
X=(A • B)'	X=NOT(AND(A,B))

XOR

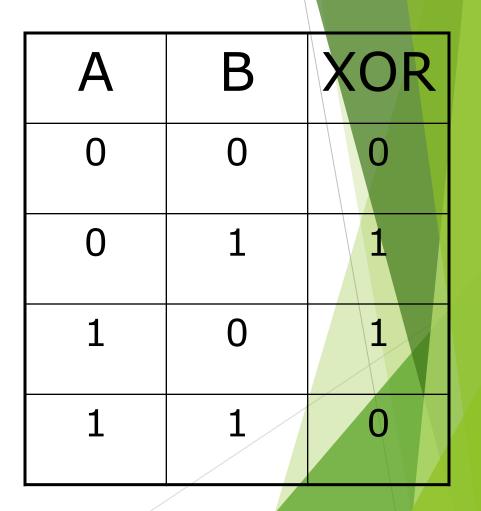
If/when the XOR function is not available, it must be defined in terms of the 3 logic primitives: AND, OR, and NOT

Recall its explanation:

"one or the other but not both"

In Boolean Notation this becomes:

 $X = (A + B) \bullet (A \bullet B)'$

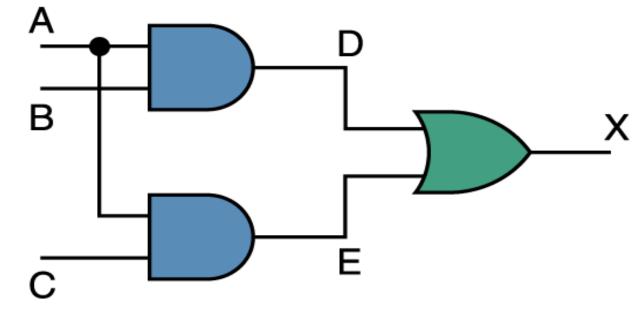

In Functional Notation:

X=AND(OR(A,B),NOT(AND(A,B)))

XOR

The truth table for XOR reveals a hint for simplifying or expression.

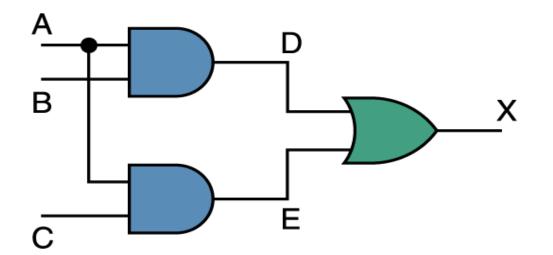
Note that XOR is false (0) when A and B are the same, and true (1) when they are different.



XOR

So XOR can be expressed very simply as:

X=NOT(A=B)or X=A<>B


Consider this familiar circuit

X=(AB + AC)

How will this expression look in functional notation?

Equivalent expressions

X = (AB + AC)X = OR (AND (A, B), AND (A, C))

The equivalent circuit А A(B + C)В С B + CX = A (B + C)X=AND(A, OR(B,C))