Functional Notation

Addendum to Chapter 4

Logic Notation Systems

- We have seen three different, but equally powerful, notational methods for describing the behavior of gates and circuits:
- Boolean expressions
- logic diagrams
> truth tables

Recall that...

- Boolean expressions are expressions in Boolean algebra, a mathematical notation for expressing two-valued logic.

This algebraic notation is an elegant and powerful way to demonstrate the activity of electrical circuits.

Recall further that...

- Logic diagram A graphical representation of a circuit

Each type of gate is represented by a specific graphical symbol.

Truth table A table showing all possible input value and the associated output values.

A Fourth System

In addition to these three, there is another widely used system of notation for logic.

Functional Notation

Functional Notation

- Uses a function name followed by a list of arguments in place of the operators used in Boolean Notation.
- For example:

A' becomes NOT(A)

Functional Equivalents

Boolean Notation	Functional Notation
$X=A^{\prime}$	$X=\operatorname{NOT}(A)$
$X=A+B$	$X=\operatorname{OR}(A, B)$
$X=A \bullet B$	$X=\operatorname{AND}(A, B)$
$X=(A+B)^{\prime}$	$X=\operatorname{NOT}(\operatorname{OR}(A, B))$
$X=(A \bullet B)^{\prime}$	$X=\operatorname{NOT}(\operatorname{AND}(A, B))$

XOR

If/when the XOR function is not available, it must be defined in terms of the 3 logic primitives: AND, OR, and NOT Recall its explanation:
"one or the other but not both"
In Boolean Notation this becomes:

$$
X=(A+B) \bullet(A \bullet B)^{\prime}
$$

In Functional Notation:

$$
X=\operatorname{AND}(O R(A, B), \operatorname{NOT}(\operatorname{AND}(A, B)))
$$

The truth table for XOR reveals a hint for simplifying or expression.
Note that XOR is false (0) when A and B are the same, and true (1) when they are different.

A	B	XOR
0	0	0
0	1	1
1	0	1
1	1	0

XOR

So XOR can be expressed very simply as:

$\mathrm{X}=\mathrm{NOT}(\mathrm{A}=\mathrm{B})$

or

$$
X=A<>B
$$

Consider this familiar circuit

$$
X=(A B+A C)
$$

How will this expression look in functional notation?

Equivalent expressions

$X=(A B+A C)$
$X=O R(\operatorname{AND}(A, B), \operatorname{AND}(A, C))$

The equivalent circuit

$$
\begin{gathered}
X=A(B+C) \\
X=A N D(A, O R(B, C))
\end{gathered}
$$

