Towards clinical evaluation of frequency selectivity using stimulus frequency otoacoustic emissions

Christopher Bergevin

Dept. of Physics & Astronomy, York University, Toronto, Ontario, Canada

David Purcell

Communications & Sciences and Disorders, Western University, London, Ontario, Canada

IHLC 2019

<u>Note</u>: Selectivity = *tuning*

Audiometers measure sensitivity, not selectivity

Different means to measure tuning

Different means to measure tuning

(2018 argument) Combining OAE, ANF, and PSY tuning measures in ferret confirms *sharper tuning in humans*

Sumner et al (PNAS 2018)

SFOAEs of clinical use to quantify tuning?

- Can SFOAEs be used to rapidly/objectively *estimate tuning in individuals* (w/ normal-hearing)?
- If so, to what extent can these methods be extended to measure tuning in hearing-impaired individuals?

Hearing Research 370 (2018) 201-208

Contents lists available at ScienceDirect

Hearing Research

journal homepage: www.elsevier.com/locate/heares

Research Paper

No otoacoustic evidence for a peripheral basis of absolute pitch

Larissa McKetton ^a, David Purcell ^b, Victoria Stone ^b, Jessica Grahn ^c, Christopher Bergevin ^{d, *}

^a Biology, York University, Toronto, ON, Canada

^b Communication Sciences and Disorders, University of Western Ontario, London, ON, Canada

^c Psychology, University of Western Ontario, London, ON, Canada

^d Physics & Astronomy, York University, Toronto, ON, Canada

Better characterization of SFOAEs

→ Highly nonlinear behavior....

<u>Present goal</u> — Better characterize SFOAE (& SOAEs) in normal-hearing adults

Constraining cochlear models...

Another fine mess...

Nature Vol. 261 June 10 1976

review article

Simple mathematical models with very complicated dynamics

Robert M. May*

Logistic map

$$X_{t+1} = aX_t (1-X_t)$$

→ Even the simplest nonlinearities can greatly complicate matters!

