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Lizard ears produce otoacoustic emissions with characteristics often strikingly reminiscent of those
measured in mammals. The similarity of their emissions is surprising, given that lizards and
mammals manifest major differences in aspects of inner ear morphology and function believed to be
relevant to emission generation. For example, lizards such as the gecko evidently lack traveling
waves along their basilar membrane. Despite the absence of traveling waves, the phase-gradient
delays of gecko stimulus-frequency otoacoustic emissions (SFOAEs) are comparable to those
measured in many mammals. This paper describes a model of emission generation inspired by the
gecko inner ear. The model consists of an array of coupled harmonic oscillators whose effective
damping manifests a small degree of irregularity. Model delays increase with the assumed sharpness
of tuning, reflecting the build-up time associated with mechanical resonance. When tuning
bandwidths are chosen to match those of gecko auditory-nerve fibers, the model reproduces the
major features of gecko SFOAESs, including their spectral structure and the magnitude and frequency
dependence of their phase-gradient delays. The same model with appropriately modified parameters
reproduces the features of SFOAESs in alligator lizards. Analysis of the model demonstrates that the
basic mechanisms operating in the model are similar to those of the coherent-reflection model
developed to describe mammalian emissions. These results support the notion that SFOAE delays

provide a noninvasive measure of the sharpness of cochlear tuning.
© 2010 Acoustical Society of America. [DOI: 10.1121/1.3303977]

PACS number(s): 43.64.Bt, 43.64.Jb, 43.64.Kc [ADP]

I. INTRODUCTION

Sounds evoked from the ear, known as otoacoustic emis-
sions (OAEs), provide a noninvasive window on the me-
chanics of hearing. In mammalian ears, two broad classes of
OAE generation mechanisms—so-called “wave-fixed” and
“place-fixed”—have been identified on the basis of emission
phase-versus-frequency functions (Kemp and Brown, 1983;
Shera and Guinan, 1999). The characteristics of place-fixed
emissions—those with rapidly rotating phases or, equiva-
lently, long phase-gradient delays—appear well described by
the coherent-reflection model (Zweig and Shera, 1995; Tal-
madge ef al., 2000; Shera et al., 2005). In this model, the
emissions arise when pressure-difference waves traveling
within the cochlear duct encounter intrinsic micromechanical
irregularities in the organ of Corti. According to the cochlear
model equations, mechanical irregularities give rise to a re-
verse energy flow through a process analogous to the scat-
tering of waves by perturbations in the impedance of the
medium (e.g., the scattering of light within a medium of
variable refractive index). Place-fixed OAEs are therefore
also known as “reflection-source” otoacoustic emissions.

Although the coherent-reflection model was developed
to account for mammalian place-fixed OAEs, recent work
shows that a similar place- versus wave-fixed distinction
among OAE mechanisms also pertains in certain non-
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mammalian vertebrates such as the chicken and the gecko
(Bergevin et al., 2008). The existence in lizards of OAEs
with steep phase gradients and other characteristics of mam-
malian reflection-source OAEs presents a serious challenge.
Although lizard ears evidently produce OAEs with spectral
levels and phase gradients comparable to those found in
many mammals (Bergevin et al., 2008), important aspects of
their inner ear morphology and physiology are rather differ-
ent. Most significantly for models of emission generation,
lizards evidently lack a clear analog of the mammalian trav-
eling wave (e.g., Peake and Ling, 1980; Manley, 1990), and
their tonotopy is thought to arise micromechanically at the
level of the hair-cell bundle (Manley et al., 1999; Aranyosi
and Freeman, 2004). Despite these major functional differ-
ences between the inner ears of mammals and lizards, the
striking similarities in their emission characteristics suggest
that the underlying mechanisms of OAE generation are
somehow equivalent (e.g., Koppl, 1995).

The following conundrum thus arises: If the coherent-
reflection model applies in mammals, how can similar
mechanisms be operating in the lizard, where there are no
waves to be reflected? Alternatively, might some other as yet
unidentified generation mechanism be operating in both
cases? At a minimum, any candidate model must account for
the long phase-gradient delays found in both mammalian and
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FIG. 1. Schematic cross-section of the model showing two chambers filled
with incompressible fluid and separated by a rigid partition (papilla) at-
tached to the left-hand wall by a stiff, lossy hinge (©). An array of masses
(bundles, n=1,...,N) sits atop the papilla, each coupled to the papilla
through an elastic element. The bundles are arranged longitudinally, parallel
to the x-axis. Vibration of the stapes induces a papilla rotation through the
angle 6 with the horizontal, which is taken parallel to the y-axis. In the
small-angle limit, rotation of the papilla has two important effects: It moves
the center of the basilar membrane (®) vertically (i.e., parallel to the z-axis)
by an amount £ = r6, where 2r is the papilla width, and it drags the bundles
horizontally through the fluid. The total horizontal displacement of bundle n
is denoted &,. The elastic force on each bundle is taken proportional to its
displacement relative to the top surface of the papilla (i.e., to §,—§&, where
&,=h0is the papilla displacement just below the bundle and 4 is the papilla
height). Bundle motion is damped by viscous losses in the fluid. The reso-
nant frequencies and quality factors of the bundle oscillators are taken to
vary systematically along the papilla.

non-mammalian ears (typically 1-10 ms or longer, depend-
ing on stimulus frequency and intensity). These substantial
delays are not due to middle-ear transmission, whose contri-
bution amounts to only several tens of microseconds (e.g.,
Guinan and Peake, 1967; Rosowski et al., 1985; Manley et
al., 1988). Inner-ear dimensions may play a role but can
hardly be invoked to explain why geckos (whose basilar pa-
pilla measures 1.5-2 mm in length) have phase-gradient de-
lays similar to those of cats (whose basilar membrane is
some 15 times longer). Thus, although delays associated with
wave propagation presumably contribute in mammals, the
origin of the long delays in non-mammals, especially those
lacking basilar-membrane (BM) traveling waves (or, as in
amphibians, a flexible BM altogether), remains unclear.

In this paper, we address questions raised by the exis-
tence of long-latency reflection-source OAEs in lizard. In
particular, we develop a simplified model inspired by the
lizard inner ear to determine whether the basic principles and
predictions of coherent-reflection theory might somehow ap-
ply even in the absence of traveling waves. In the process,
we test the conjecture (Shera, 2003; Shera and Guinan, 2008)
that the generation of realistic reflection-source OAEs re-
quires nothing more than a slightly irregular array of tuned
mechanical resonators.

Il. A MODEL INSPIRED BY THE GECKO INNER EAR

To explore possible mechanisms of OAE generation, we
adopt a highly simplified model inspired by the functional
anatomy of the gecko inner ear (see Fig. 1). Detailed descrip-
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tions of the anatomy and physiology of the gecko ear are
available elsewhere (e.g., Wever, 1978; Koppl and Authier,
1995; Manley et al., 1999; Bergevin et al., 2008). Briefly, the
gecko inner ear consists of 1000-2000 hair cells sitting atop
the relatively rigid basilar papilla. Although gecko hair cells
lack the somatic motility characteristic of mammalian outer
hair cells (Koppl et al., 2004), they presumably manifest
mechanisms of active amplification within their bundles.
Whereas the low-frequency portion of the papilla is covered
by a continuous tectorial membrane, the hair cells sensitive
to frequencies above ~1 kHz are covered by discrete sec-
tions of tectorium (sallets), which couple small groups of
hair cells together into a single radial row (Wever, 1978).
Although gecko ears apparently lack analogs of BM travel-
ing waves (Manley et al., 1999), they produce robust otoa-
coustic emissions (Manley et al., 1996; Bergevin et al.,
2008) and have auditory-nerve fiber (ANF) responses with
thresholds and frequency tuning comparable to many mam-
mals (Eatock et al., 1981; Sams-Dodd and Capranica, 1994;
Manley et al., 1999).

Since our purpose here is to explore the origin of long-
latency OAEs in a mechanical system without basilar-
membrane traveling waves, we simplify the analysis by boil-
ing the many exquisite details of gecko functional anatomy
down to a few idealized mechanical elements. Taken to-
gether, these elements provide perhaps the simplest realiza-
tion of a mechanically tuned inner ear. Although the physical
framework we adopt was inspired by the gecko—and ap-
pears isomorphic to other, more physically and biologically
realistic models of the lizard inner ear (e.g., Weiss et al.,
1985; Authier and Manley, 1995)—we make no attempt to
faithfully represent the complex inner ear morphology or
mechanics of any particular species. Although our model is
therefore an abstract representation of lizard functional
anatomy, it is not unphysical. The hydromechanical system
we describe could, in principle, be built and experimented
upon in the laboratory.

Figure 1 shows a schematic of the model, which consists
of two rigid-walled cavities (the scala vestibuli and tympani)
filled with incompressible fluid and separated by a rigid par-
tition (papilla). Tuned mechanical elements representing hair
bundles (or groups of hair bundles coupled by sallets) sit
atop the papilla. The pressures in the two scalae (p, and p,)
are driven by the motions of the stapes and round window,
and are presumed uniform throughout their respective cavi-
ties. The papilla and the hair cells on its surface are repre-
sented as linear, passive resonators (e.g., Authier and Man-
ley, 1995; Aranyosi and Freeman, 2004). The hair-cell
resonators (hereafter referred to as “bundles”) are elastically
coupled to the movement of the papilla. Much like the pa-
pilla in the alligator lizard (Frishkopf and DeRosier, 1983;
Holton and Hudspeth, 1983), the model papilla rotates about
a longitudinal axis. For simplicity, we locate the axis of ro-
tation along one edge of the papilla, parallel to the x-axis.
For small-angle motions,1 rotation about this axis can be re-
garded as the superposition of a bulk translational motion
and a pure rotation about the center of the basilar membrane
(® in Fig. 1). The translational motion of the papilla pro-
duces a net vertical fluid displacement that couples to the

C. Bergevin and C. A. Shera: Modeling emissions without traveling waves 2399



motion of the stapes, and the rotational motion stimulates the
bundles by dragging them horizontally through the fluid.
Analogues of these two coupled modes of motion have been
observed in the alligator lizard (Aranyosi and Freeman,
2005).

A. Motion of the papilla and the bundles

The model papilla rotates as a rigid body driven both by
the pressure difference across its surface and by forces from
the bundles. Although the spatial arrangement of the bundles
is not important in the model (due to the rigidity of the
papilla), we facilitate bookkeeping by assuming that the
bundles are uniformly distributed along the papilla and are
numbered in order of increasing distance from the apical
end. Summing the forces on the papilla, including those from
each of the N bundles, and applying Newton’s second law
yields

N
10+ RO+ KO+h2 k(& ~ £) = rA(p, = p). (1)

n=1

where diacritical dots represent time derivatives. In this
equation, the clockwise angular displacement of the papilla
about its “hinge” at the left edge is denoted 6; the symbols 1,
R, and K represent the corresponding rotational mass (mo-
ment of inertia), damping, and stiffness of the papilla. The
papilla has length L in the x direction, width 2r in the y
direction, and height & in the z direction. Each of the N
bundles acts through an elastic element (stiffness k,) to pro-
duce a torque proportional to its horizontal displacement (&)
relative to that of the top of the papilla (£,). The effective
moment arm is the papilla height %; in the small-angle limit,
&,=h0. The quantity rA(p,—p,) on the right represents the
torque arising from the trans-papilla pressure. The moment
arm r is the papilla half-width, and A is the effective area of
the papilla in the xy-plane (A=2rL). Note that vertical (or
transverse) displacements of the papilla are defined as posi-
tive toward scala tympani (i.e., in the direction produced by
stapes displacements info the inner ear).

Each bundle is a miniature harmonic oscillator driven by
the elastic element that couples it to the horizontal motion
(&) of the top of the papilla:

M, + 1oy + ky(§,— ) =0. )

The effective mass of each bundle is denoted m,,. The damp-
ing force (proportional to r,) is taken to be dominated by the
viscous drag of the bundle as it moves back and forth
through the fluid (assumed stationary in the horizontal direc-
tion). Exploiting the assumed linearity, we adopt harmonic
time dependence and represent dynamical variables by Fou-
rier coefficients (uppercase) at angular frequency w=2mf
[i.e., &,(t)=E (w)e']. Equation (2) then simplifies to

—
=

1-B+iB,J0,

where B, is normalized frequency (i.e., B,=f/CF,, with

I

n=

CF,=\k,/m,/2 representing the resonant frequency of
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bundle n) and Q, is the quality factor of the resonance (Q,
=\m,k,/r,).

Equation (3) for the bundle response is consistent with
previous studies in lizards (e.g., Weiss and Leong, 1985; Au-
thier and Manley, 1995), which have found that the “micro-
mechanical transfer function” (,/E,) is well approximated
by a second-order system. Combining Egs. (1) and (3) and
using the small-angle approximation (@ =X /h) yields

N 2 .
E,| (o)’ I+ioR+K+h*2, kw]
n=1 1- :Bn + an/Qn
=rhA(P,-P), (4)

an equation that relates the horizontal displacement of the
papilla beneath the bundle to the driving pressure force.

B. Coupling to the middle ear

The inner ear couples to the middle ear, and thereby to
the external acoustic environment, through the motions of
the oval and round windows. Conservation of mass requires
that the volume velocity of the papilla equal that of the oval
window,

iwAE,=U,,, (5)

where U,, is the volume velocity of the oval window
(stapes) and == rO is the mean vertical displacement of the
papilla. Because of fluid incompressibility, the volume ve-
locities of the oval and round windows are equal in magni-
tude but opposite in phase.

The mechanics of the papilla and its bundles can be
represented by an acoustic impedance, defined as Z;.=(P,
—P)/U,,, where the subscript stands for “inner ear.”” Solv-
ing for Z;, using Egs. (4) and (5) yields

N
1 h)\? - B2+iB,/0,
ZieEZp"'._( )Ekn anz IBQ 5

nm1 1= B, +iB/0,

iw
where Z,=(K,/iw) (1—,8}27+iﬂp/Qp)/A2 is the acoustic im-
pedance of the papilla expressed in terms of its effective
stiffness (K,=K/ %), normalized resonant frequency (By),
and quality factor (Q,). The summation over n implies that
every bundle affects the impedance of the inner ear, and is
thereby coupled to the middle and external ears. Equation (6)
indicates that when tuning is sufficiently sharp any given
bundle contributes maximally to the impedance Z;, near the
bundle’s resonant frequency (B,=1).

rA ©)

C. Bundle irregularity

Anatomical studies in tokay geckos and other lizards
find spatial irregularities throughout the inner ear, including
the width and thickness of the papilla, the number of hair
cells in a given radial cross-section, and the heights of the
hair bundles (e.g., Miller, 1973; Wever, 1978; Koppl and
Authier, 1995). We parametrize these and other variations
not so apparent in the anatomy by assuming that the me-
chanical properties of the bundles vary somewhat irregularly
from row to row. A similar approach has been used to model
the generation of reflection-source OAEs in the mammalian
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TABLE I. Parameter values used to compute model SFOAEs in gecko and alligator lizard. Values for alligator
lizard (see Sec. V B) are listed only when they differ from gecko.

Gecko Alligator lizard
Papilla length L 1.7 mm® 0.3 mm"™
Papilla area A 0.15 mm? ¢ 0.04 mm? ©
Papilla resonant frequency I 1.5 kHz* 2 kHz"
Papilla quality factor 0, 2° 0.5"
Papilla volume compliance G, 0.57X 10 mm?/Pa *
Papilla stiffness K, A?/ C,
Papilla aspect ratio hir 1.0°" 1.0
No. of bundles (rows) N 250" 130"
Maximum bundle CF CFpnax 5 kHz" 6 kHz"
Tonotopic map space constant 4 0.5 mm* 0.16 mm®™
Bundle Qg g (at 1 kHz) 010 a8 2.3 1.1°
Q10 a5 power-law exponent 0.35" 0.55
Bundle stiffness k, K,/N
Irregularity size rms(e,) 0.03 (or 3%)
Round-trip middle-ear gain Goe 0.25%
Stimulus pressure P 20 dB SPL®

“Manley et al. (1999).
°Weiss et al. (1976).
“Wever (1978).
Manley (1990).
“Chiappe (2006).
fPeake and Ling (1980).

cochlea (Shera and Zweig, 1993; Zweig and Shera, 1995)
and the production of spontaneous OAESs in the bobtail lizard
(Vilfan and Duke, 2008). Specifically, we take the quality
factors Q, that characterize the tuning of the bundles to
manifest small fractional deviations €, about some mean

value that varies with location along the papilla. Thus, Qn
=Q,(1-¢,), where Q, varies smoothly with n and we have
used the diacritical tilde to indicate the presence of mechani-
cal irregularity. Although we have placed the effective me-
chanical irregularity in the bundle damping, based on the
physical expectation that irregularities in this parameter will
dominate near resonance, locating the irregularity in other
mechanical properties of the bundle gives similar results.

D. Impedance and pressure changes

The effects of bundle irregularity on the impedance of
the inner ear (now denoted Ze) can be quantified by comput-
ing the difference AZ= Zie—Zie, where Z;. is the impedance of
the corresponding “smooth” model (€,=0). Equation (6) im-
plies that to first order in the irregularity €,

I - kB0,

A i i) @

When transmitted through the middle ear, the impedance
change AZ produces a change AP in the calibrated ear-canal
pressure P. When the fractional changes AZ/Z;, and AP/P
are both small (as they are here), the two are proportional. To
first order, the pressure change therefore has the form

AP =G, .(AZIZ,)P, (®)

where G, is the “proportionality constant.” Physically, G,,.
depends on both the acoustics of the stimulus source and the
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€Rosowski er al. (1985).

"Koppl and Authier (1995).

Mulroy(1974).

iInferred from SFOAE magnitudes, which fall off
above about 6 kHz in alligator lizard.

*Bergevin et al. (2008).

combined effects of forward and reverse middle-ear trans-
mission. At any given frequency, the value of G, can be
found from explicit models of the transducer and middle ear
(e.g., Rosowski et al., 1985) or, more generally, by represent-
ing the transducer by its Thevenin equivalent, and the middle
ear as an acousto-mechanical two-port network characterized
by a transfer matrix (e.g., Shera and Zweig, 1992; Puria,
2003; Songer and Rosowski, 2007).}

The pressure change AP given by Eq. (8) is the
stimulus-frequency otoacoustic emission (SFOAE) produced
by the model. As we demonstrate below, this computational
definition of the SFOAE extracts what amounts to a delayed
component from the total ear-canal pressure. In actual
SFOAE measurements, the delayed component can be ob-
tained using a variety of methods (e.g., by exploiting me-
chanical nonlinearity or by using signal-processing tech-
niques to smooth the measured frequency response), all of
which yield equivalent results, at least in humans (Kalluri
and Shera, 2007).

E. Parameter values

Although the model simplifies the morphology of the
gecko inner ear, we have chosen parameter values with an
eye toward capturing some of the relevant physiology. Most
important to the questions explored here are the parameters
that characterize the frequency tuning of the bundles. On the
supposition that peripheral tuning is predominantly mechani-
cal in origin, we have selected the parameters of bundle tun-
ing to match neurophysiological estimates of ANF tuning in
the tokay gecko (Gekko gecko). Table 1 summarizes all pa-
rameters.

We assume that the N~250 bundles are spaced uni-
formly along the papilla, with spacing Ax=L/N, where L is

C. Bergevin and C. A. Shera: Modeling emissions without traveling waves 2401



20- Tokay gecko SFOAEs

T T T T T T T
1.0 20 3.0 4.0 5.0 6.0

Frequency (kHz)

20+ Model SFOAEs

10 20 30 40 50 60
Frequency (kHz)

FIG. 2. Measured and model stimulus-frequency OAEs. Panel A: Representative SFOAEs at probe levels of 20 dB SPL in the tokay gecko (G. gecko) from
the study of Bergevin et al. (2008). Black and gray lines show data from two different geckos. Error bars on the data points give the standard error of the mean
(35 measurements at each frequency in each gecko). The dotted line shows the acoustic noise floor. Panel B: Simulated SFOAEs AP computed from Eq. (8)
using random micromechanical irregularities and the parameter values given in Table I. The emission magnitudes have been scaled up by 45 dB to
approximate those of the measurements (see text). Black and gray lines show model results for two different “ears” (i.e., different irregularity patterns).

the length of the papilla (L=1.7 mm giving Ax=7 um). In
accord with ANF tracing experiments (Manley ef al., 1999),
which determine the characteristics of ANF tuning as a func-
tion of location along the papilla, we take the bundle reso-
nant frequencies to vary exponentially with position. More
precisely, CF,=CF, e /¢, where CF,,=5 kHz, x,=(n
—1)Ax, and the distance €=0.5 mm is the space constant
of the tonotopic map (Manley ef al., 1999).* Note that x is
the distance from the apical end of the papilla; the gecko’s
tonotopic map is reversed and fibers tuned to low frequencies
innervate the basal end (Manley ef al., 1999). The quality
factors @, of the bundle resonators are assumed to
vary with CF as Q,=30,¢ 4s(CF,), where Q;q 45(CF)
=2.3(CF/kHz)*® is a power-law fit to tokay gecko ANF
tuning data (Manley et al., 1999). For internal consistency,
we use tuning data from the same study that determined the
tonotopic map (Manley et al., 1999). The factor of 3 that
converts physiological O,y 4g values to equivalent Q, values
is an approximation valid for second-order filters (e.g., Hart-
mann, 1998).

Although most of the other model parameters have little
impact on our basic results—they primarily affect overall
OAE amplitude, which we make no attempt to match due to
the absence of active bundle amplification in the model—
several do warrant mention. We used the papilla volume
compliance reported in alligator lizard (Rosowski et al.,
1985) to determine the stiffness K. We then arbitrarily set
the stiffness of the individual bundles to the value k,
=K, /N, independent of n. Taking the bundle stiffness pro-
portional to that of the papilla, but scaled down by a factor of
N, compensates for the summation over bundles and guaran-
tees that the papilla and the bundles make similar order-of-
magnitude contributions to the inner ear impedance Z;. If
this rough equality of impedances were grossly violated, spe-
cifically if the net bundle impedance were much smaller than
that of the papilla, then the bundles would have negligible
effect on ear-canal pressure and could not generate appre-
ciable OAEs. For simplicity, and because delays introduced
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by middle-ear transmission are small compared to OAE de-
lays, we assumed a constant value of round-trip middle-ear
pressure gain G.. Our value of G, is roughly consistent
with that predicted by the model of Rosowski ef al. (1985) in
alligator lizard. Finally, the irregularities €, were assumed to
vary randomly from bundle to bundle. In the numerical
simulations, values of €, were obtained by sampling from a
Gaussian distribution with zero-mean and standard deviation
0.03; thus, the rms fractional irregularity was 3%. This value
was chosen for consistency with that used in models of
mammalian SFOAEs (e.g., Talmadge et al., 2000; Shera er
al., 2005); the amount of irregularity may well be substan-
tially larger in lizards. Because mean emission amplitudes
vary in direct proportion to the size of the irregularities, the
value of €, makes a significant contribution to overall OAE
levels.

lll. COMPARISON WITH GECKO EMISSIONS

Figure 2 compares model simulations with representa-
tive SFOAEs measured in the tokay gecko (Bergevin et al.,
2008). Model results for two different “ears” were obtained
by using different patterns of irregularities. Despite the sim-
plicity of the model, the simulated SFOAEs are in strong
qualitative agreement with the data. An exception, of course,
is the overall emission magnitude. With our choice of param-
eters, OAE levels are some 45 dB smaller than the measure-
ments; including active mechanisms and/or larger irregulari-
ties would presumably narrow that gap substantially. Both
the measurements and the model manifest relatively broad
spectral maxima, punctuated at irregular intervals by sharp
notches. The model predicts that the spectral structure char-
acteristic of a given measurement reflects the distinctive pat-
tern of mechanical irregularity in that ear. At stimulus fre-
quencies above the maximum CF represented along the
papilla (~5 kHz), both measured and model SFOAE mag-
nitudes fall off sharply. The patterns of phase variation
across frequency are also strikingly similar. In both cases,
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SFOAE phase rotates rapidly, accumulating a phase lag of
8-10 cycles over the operative 4.5 kHz span of the figure.
Phase gradients vary with frequency but correspond, on av-
erage, to a delay of about 2 ms.

IV. THE ORIGIN OF THE EMISSION PHASE
GRADIENT

To explore the origin of the rapidly rotating OAE phase
predicted by the model, we derive an approximate analytic
expression for the emission phase-gradient delay. In a nut-
shell, the derivation indicates that the rapid rotation of OAE
phase originates in mechanical phase shifts (delays) associ-
ated with the frequency tuning of the bundles. Because of
their frequency selectivity, the bundles take time to respond,
and the resulting delays are reflected in SFOAE phase gra-
dients. At any given frequency, the delay associated with
mechanical filtering by the bundle increases with the sharp-
ness of tuning. As a result, we find that the predicted emis-
sion delay (expressed in periods of the stimulus frequency) is
proportional to the quality factor of the resonance [Eq. (14)
below]. The derivation sketched below generally parallels
analysis of the coherent-reflection model; further discussion
and technical details can be found in previous publications
(e.g., Zweig and Shera, 1995; Talmadge ef al., 2000; Shera
and Guinan, 2008).

A. Analytic approximation for the delay

We begin the derivation by noting that the delay in the
model arises predominantly from the factor AZ in Eq. (8);
delays associated with the factors G,,. and Z;, are negligible.
Approximating the finite array of resonators [Eq. (7) for AZ]
by a continuum and converting the sum over bundles into an
integral over position yields

L
) _ ek3/0
wAAZ(w) = J;) —(1 —ﬁ2+i,8/Q)2dx’

where k is the bundle stiffness per unit length and all quan-
tities in the integrand are regarded as functions of position.
To simplify the derivation without any significant effect on
the outcome, we henceforth assume that k and Q are con-
stant. Using the exponential tonotopic map to rewrite the
spatial integral in terms of B(x,f)=f/CF(x) yields

BL
e Te?dp, (10)

)

wA’AZ(w) = (€kIQ)
Bo

where dx=€(dB/B), € is the space constant of the map,
By =f/CF{0,L}), and Te'’=1/(1-p*+iB/Q) is the
transfer function of the harmonic oscillator [with magnitude
T(B) and phase ¢(B)].

Decomposing the irregularity function e(x) into spatial-
frequency components « facilitates description of phase-
cancellation effects between contributions to the emission
arising from different spatial locations (Shera and Zweig,
1993; Zweig and Shera, 1995). Just as in the coherent-
reflection model, not all spatial frequencies « contribute
equally to the emission. In particular, the integral in Eq. (10)
is dominated by spatial frequencies in a relatively narrow
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range about an “optimal” value, denoted k. For irregularities
arrayed at this special spatial frequency, contributions from
adjacent bundles tend to combine coherently rather than can-
cel one another. To see this, and find the value of kK, we
consider the case of a single (unspecified) spatial frequency
and take e(x)—2 cos(kx)=e"*+e7* For k>0, it suffices
to consider only the term ei"x,6 which can be written in the
form e/<‘MB'0) The integral in Eq. (10) then becomes

B
o~ixtin Bof t TZ(’B)ei[Kfln ,3+2¢(B)]dﬂ‘ (11)
By

When the oscillators are sharply tuned, the factor T2(f) is

strongly peaked at some value [AB near 8= 1. The spatial fre-
quency that yields the dominant contribution to the emission
can be found by applying the principle of stationary phase
and requiring that the phase of the integrand be constant near

its magnitude peak at é This yields
d PR
ﬁ[mfln B+2d(B)lz=0= k=-2B¢'/L, (12)

where ¢’ =dg/ 0",8|L} is the slope of the transfer function
phase at the magnitude peak.

To determine how the predicted emission phase varies
with frequency, we exploit the “local scaling” manifest by
the bundle responses in the model. Local scaling means that,
at least near their magnitude peaks, the frequency responses
depend on normalized frequency B=f/CF, rather than on
frequency and CF independently (Zweig, 1976). Local scal-
ing applies in the model and also approximates the tip region
of gecko ANF tuning curves (Manley er al, 1999). As a
consequence of local scaling, the value of the integral in Eq.
(I1) does not depend strongly on frequency except at fre-
quencies close to the ends of the tonotopic map (indeed, if
the papilla were infinite, the integral over 8 would evaluate
to a constant, independent of frequency). Consequently, the
frequency dependence of the phase is determined principally
by the argument of the phasor ¢ <" Ao that multiplies the
integral. The phase-gradient delay of AZ expressed in stimu-
lus periods [succinctly expressed as —d(£ AZ/27)/d In f] is
therefore well approximated by the value k€/2r. Substitut-

ing the value of & from Eq. (12) and using ,ézl gives

Nspoae = = 2(¢'/12m), (13)

where Ngpoag is the emission delay in periods (the symbol N
was chosen to denote the number of stimulus periods). Note
that —¢'/27 is just the peak phase-gradient delay of the
harmonic oscillator transfer function expressed in periods of
the characteristic frequency; Nggoag 1S twice this value.”

Computing Ngpoag Using the explicit form for Te'® em-
ployed in the model gives

Nsroag = 20/7m=60¢ g8/ 7, (14)

where we have evaluated ¢’ for the harmonic oscillator at
resonance (3=1) using the excellent approximation ¢'(3
=1)=-2Q. As discussed in Sec. Il E, the factor of 3 relating
QO and Q g is valid for second-order filters. Although our
derivation of Eq. (14) assumes, for simplicity, that Q is con-
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FIG. 3. Measured and model SFOAE phase-gradient delays Ngposp versus
frequency. Delays are expressed in periods of the stimulus frequency. The
symbols X and [J show delays measured in the tokay gecko at probe levels
of 20 dB SPL (ten ears) and 30 dB SPL (three ears), respectively (Bergevin
et al., 2008). Data points whose corresponding SFOAE magnitudes fell
within 10 dB of the noise floor are not shown. The gray dots show model
Ngroag values obtained from numerical simulations of 25 different ears (i.e.,
irregularity patterns). The solid curve is a loess trend line (Cleveland, 1993)
fit to the pooled model results. The dashed line gives the analytic approxi-
mation 60, 45/ 7 [Eq. (14)], where Q,, 45(CF) is a power-law fit to ANF
data (Manley et al., 1999).

stant along the papilla, the result can be expected to hold so
long as the change in Q over a distance corresponding to the
bandwidth of the resonator remains small (i.e., so long as
|d In Q/d In CF|<1). According to this analysis, the mean
value of Ngpoag at any given frequency is directly propor-
tional to the quality factor of the bundle tuning at that fre-
quency: the sharper the tuning (higher the Q, 4g), the longer
the delay in periods (larger the value of Ngpoap)-

B. Computational validation

Figure 3 shows model simulations that verify the ap-
proximate proportionality between Nggoag and Qg 4 pre-
dicted by Eq. (14). The dashed line in the figure is propor-
tional to the empirical function Qy 45(CF) used to determine
the model value of Q, at each CF [Q,=30, 45(CF,)]. Re-
call that Q,, 4g(CF)=2.3(CF/kHz)*% is a power-law fit to
ANF measurements of the sharpness of tuning in the tokay
gecko (Manley et al., 1999). The gray dots and their trend
(solid line) give the resulting model values of Ngpoag Versus
frequency obtained from the phase-versus-frequency func-
tions of simulated SFOAESs similar to those shown in Fig. 2.
To improve the statistics, we computed and pooled the re-
sults for 25 different irregularity patterns (ears). Comparing
the simulated SFOAE delays with the mean Nggosg Values
predicted by Eq. (14) shows that the analytic approximation
60, qg/ 7 correctly predicts the trend of the model results.
Although at any given frequency, the approximate formula
60,0 4g/ 7 slightly overestimates the mean Nqpgag Value ob-
tained from the model, it captures the slope of the variation
across frequency almost exactly. A least-squares fit to the
numerical values of Ngpoap (gray dots) gives a power-law
exponent of 0.355*0.01, where the uncertainty represents
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the 95% confidence interval computed using bootstrap
resarnpling:{.8 The power-law exponent characterizing the re-
lationship between SFOAE delay and frequency in the model
is thus statistically indistinguishable from the value 0.35
used to set the quality factors of the bundle resonators (see
Table I). Evidently, model variations in the value of Q4 4
along the length of the papilla produce corresponding
changes in SFOAE delay, Nggoag-

Why does the analytic approximation [Eq. (14)] system-
atically overestimate the mean phase-gradient delay actually
predicted by the model (compare the dashed and solid lines
in Fig. 3)? By evaluating the phase-gradient delay —¢' /2 at

the response peak (B), the analytic formula assumes, in ef-
fect, that the entire emission originates at this point. In fact,

however, the emission arises from a region about ,é whose
effective spatial extent depends on such things as the sharp-
ness of tuning. Because the value of ¢’ varies somewhat
over the peak region [with |¢'(B8)|=|’'| for the harmonic
oscillator], the phase-gradient delay of the actual emission is
smaller than that estimated from the analytic approximation.
Numerical simulations verify that the accuracy of the ana-
Iytic approximation improves when the spatial region about

B that contributes to the emission is artificially reduced by
restricting the summation in Eq. (7) to bundles in the imme-
diate vicinity of the peak.

C. Correlations between tuning and delay in the
gecko

For comparison with the delays predicted by the model,
Fig. 3 also plots values of Ngposp Obtained from SFOAE
measurements in the tokay gecko (Bergevin et al., 2008).
Measured values of Nggosg are shown at probe levels of 20
and 30 dB sound pressure level (SPL), roughly correspond-
ing to the typical thresholds for the auditory-nerve fibers
used to determine the dependence of Q,, 45 on CF (Manley
et al., 1999). The delays are slightly shorter at the higher
stimulus level, consistent with the trend observed in humans
(e.g., Schairer et al., 2006). Although our linear model does
not explicitly capture this nonlinear effect, Eq. (14) repro-
duces the empirical trend when supplemented with the near
ubiquitous observation that peripheral tuning broadens with
increasing intensity.

The tokay SFOAE delays generally appear somewhat
longer than those found in the model. Since the otoacoustic
and neural measurements were made on different animals
under different conditions, the discrepancy may reflect actual
differences in the sharpness of tuning between the two
groups. We note that tokay gecko ANF Q,q 4g values vary
somewhat across studies (e.g., Eatock er al., 1981; Sams-
Dodd and Capranica, 1994). At least in part, however, the
discrepancy must reflect our choice to model the bundle
resonators as harmonic oscillators, a form which is presum-
ably too simple. Despite the model’s underestimation of ab-
solute SFOAE delay, the frequency dependence of the em-
pirical trend is well described by an approximate
proportionality between Ngpoap and Qqq 4. as predicted by
Eq. (14).
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Empirical evidence for the proportionality between tun-
ing and delay predicted by the model is especially clear
above 1-2 kHz. Although the data below 1 kHz are limited,
they hint at possible deviations from the trend established at
higher frequencies. In particular, SFOAE delays appear sys-
tematically shorter than those predicted by the model. Inter-
estingly, a similar low-frequency deviation between mea-
sured SFOAE delays and those predicted by the coherent-
reflection model appears in chinchilla (Shera and Guinan,
2003; Siegel er al., 2005; Shera et al., 2008), where it may
stem from mixing between OAEs generated by multiple
source mechanisms. Like mammals, geckos show evidence
for both place- and wave-fixed generation mechanisms (Ber-
gevin et al., 2008); the present model describes only a place-
fixed mechanism. In the gecko, possible correlates of the
otoacoustic trend include a change in the morphology of the
tectorial membrane near the 1 kHz location (Manley et al.,
1999), suggesting a change in the coupling between bundles.
Another possible explanation for the discrepancy at low fre-
quencies is that tuning in this region of the papilla may be
primarily electrical in origin, rather than mechanical (Eatock
et al., 1991; Aranyosi, 2002). If so, the mechanisms of
SFOAE generation at these frequencies may be quite differ-
ent from those proposed here.

V. DISCUSSION

This paper addresses the observation that so-called
reflection-source OAEs with phase-gradient delays compa-
rable to those found in many mammals can readily be mea-
sured in nonmammalian species that lack any clear analog of
the mammalian traveling wave (Bergevin et al., 2008). To
keep the analysis tractable, we adopted a simplified model
inspired by the functional anatomy of the gecko inner ear.
Parameters were chosen to match the measured CF range and
tuning of tokay gecko auditory-nerve fibers. The model de-
scribed here thus serves to test the conjecture that realistic
reflection-source OAEs can be produced by nothing more
than a slightly irregular array of tuned oscillators (Shera,
2003; Shera and Guinan, 2008). Despite the simplicity of the
assumptions—but consistent with the conjecture—the model
produces SFOAEs with characteristics in qualitative and
quantitative agreement (aside from a significant disparity in
overall emission magnitude) with those measured in the
tokay gecko. The unrealistically small emissions produced
by the model result from the small coefficient of irregularity
and the absence of any form of active amplification. In all
other respects, however, the model reproduces the prominent
features of tokay SFOAE:s, including their overall spectral
structure and the approximate value and frequency depen-
dence of their phase-gradient delay.

A. Generality of the model results

The structure and assumptions of the present model are
broadly consistent with the comprehensive model of Weiss et
al. (1985), who developed a quantitative description of the
entirety of the lizard auditory periphery, albeit for a species
with free-standing stereocilia and minimal overlying tectorial
membrane (the Southern alligator lizard, Elgaria multicari-
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FIG. 4. Measured and model SFOAE phase-gradient delays Ngroap Versus
frequency in alligator lizard. The format is the same as Fig. 3. The symbol
X shows delays in stimulus periods measured at a probe level of 20 dB SPL
(six ears) using methods described elsewhere (Bergevin et al., 2008). Data
points within 10 dB of the noise floor are not shown. The gray dots show
model Ngpoap Values obtained from numerical simulations of 25 different
irregularity patterns. The solid curve is a loess trend line fit to the model
results. The dashed line gives the analytic approximation 6Q, 4g/ 7 [Eq.
(14)], where Q,, 45(CF) is a power-law fit to ANF data (Weiss er al., 1976).
Data are taken the study of Bergevin et al. (2010).

nata). Their model, summarized by mechanoelectric circuit
analogs representing the various macro- and micro-
mechanical stages (Rosowski et al., 1985; Weiss and Leong,
1985), was carefully derived from biophysical considerations
and a wealth of physiological data. Whenever possible we
employed this more comprehensive model of the lizard au-
ditory periphery to probe the validity of the simplifying as-
sumptions made here. For example, we used their model of
the lizard middle ear (Rosowski et al., 1985) to validate our
approximations regarding the round-trip middle-ear gain
G- Most importantly, we note that the papilla and the hair
bundles in the Weiss et al. (1985) model are represented, as
they are here, by harmonic oscillators, that is, by second-
order linear band-pass filters (Eatock er al., 1991). Because
of the isomorphism between these superficially distinct
model representations of the lizard inner ear, we are confi-
dent that our principal conclusions regarding SFOAE genera-
tion (e.g., the origin of the rapidly rotating OAE phase and
the approximate proportionality between Ngpoag and Q1 4g)
would survive if analogous OAE generation mechanisms
were embedded in this more detailed and realistic model of
the lizard ear.

B. Extension to the alligator lizard

The structural similarity between our model, inspired by
the gecko and models of other lizard ears, suggests that the
approach might provide a quantitative account of SFOAE
phase gradients measured in other species. To test this con-
jecture, we adapted the model parameter values to approxi-
mate the features of the high-frequency region of the alliga-
tor lizard papilla, where the hair bundles are free-standing
rather than grouped into sallets as in the gecko (see Table I).
Figure 4 compares model results with measured SFOAE de-
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lays in alligator lizard (Bergevin et al., 2010). The overall
agreement remains close; as predicted by the model, tuning
and delay are strongly correlated. Note that both Ngpoag and
Q1o ¢ are somewhat smaller in the alligator lizard than in
the gecko. Although the inner ears of the gecko and alligator
lizard manifest major morphological differences—including
the presence or absence of tectorial sallets, the overall length
of the papilla, and the slope and orientation of the tonotopic
map—our results suggest that the most important parameters
for reproducing SFOAE delays are those controlling the
sharpness of tuning with CF.

C. Robustness to changes in the bundle oscillators

Although we follow historical precedent and represent
the hair bundles as harmonic oscillators, our main conclu-
sions do not depend on this choice. For example, replacing
the harmonic oscillators with gammatone filters’ modifies
quantitative details of the relationship between Ngpoap and
Q1o 4, but leaves SFOAE characteristics nearly unchanged.
Similarly, replacing the model’s passive oscillators with ac-
tive oscillators of the form derived from mammalian basilar-
membrane data by Zweig (1991) complicates the analysis
but does not affect our principal conclusions. The reason for
the robustness of our results is not difficult to see: The analy-
sis of the origin of the rapid rotation of SFOAE phase, cul-
minating in Eq. (14) for Ngpoag, depends in no essential way
on the precise form of the underlying oscillators. We sought
to emphasize the generality of the arguments following Eq.
(10) by adopting the generic nomenclature 7(B)e'#® for the
oscillator response. Similar arguments would apply, and
similar results would be obtained, no matter what the de-
tailed functional form of the excitation pattern and associated
mechanical phase shifts, so long as the response remains
strongly peaked somewhere along the papilla and the prin-
ciple of stationary phase can be applied. To underscore this
point, note that Eq. (14) for Ngpoag is identical—modulo the
entropy of changes in notation—to equations derived using
models of the mammalian cochlea [e.g., Egs. (51)—=(53) of
Zweig and Shera (1995)], where excitation patterns take the
form of basilar-membrane traveling waves.

D. Coherent reflection by any other name

The analysis presented in Sec. IV demonstrates that the
mechanisms responsible for producing SFOAEs in the model
are closely analogous to those of the coherent-reflection
model. The only real difference is this: There are no basilar-
membrane traveling waves. But the absence of traditional
mammalian traveling waves in the gecko does not mean that
there are no mechanical phase shifts between the responses
of different bundles arrayed along the papilla. These me-
chanical phase shifts, and the fact that they couple back to
the stapes via the papilla, come to play for the gecko the
same role in the generation of reflection-source OAEs that
traveling waves and their associated phase shifts play in the
mammal.

Although the terminology of the coherent-reflection
model derives from the mammalian case (Zweig and Shera,
1995), the basic mechanisms operating in the gecko model
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are fundamentally the same. In both models, the effects of
intrinsic micromechanical irregularities couple back to the
stapes, where they affect the impedance of the inner ear. In
models of the mammalian cochlea, this coupling occurs via
traveling pressure-difference waves. In the gecko model, the
coupling between hair bundles and the stapes is mediated by
the bulk motion of the papilla. In both models, contributions
to the response at the stapes arise all along the partition,
although the emission is usually dominated by contributions
that arise near the peak of the mechanical response (the equa-
tions indicate that coupling to the stapes is strongest in this
region).

Although the irregularities located within the peak re-
gion may be spatially “noisy” (i.e., the cell-to-cell variations
in the mechanics may contain many different spatial-
frequency components), their net contribution to the imped-
ance is smoothed out by a filtering process whose analog in
the mammal has been dubbed “coherent-reflection filtering”
(Zweig and Shera, 1995). Filtering occurs because of phase-
interference effects among contributions that arise from dif-
ferent locations within the peak region. The filtering process
effectively eliminates contributions from all but a relatively
narrow range of spatial frequencies (i.e., those near ). Con-
tributions from spatial frequencies near k combine coher-
ently and can therefore sum up to a large value; all others
effectively cancel one another out. This is why mechanically
smooth cochleae do not produce appreciable reflection-
source OAEs: The spatial variation of their mechanical prop-
erties does not contain significant spatial-frequency compo-
nents near K.

Because of the filtering, the net effect of the irregulari-
ties is to produce quasiperiodic spectral oscillations in the
impedance Z,. (If no filtering occurred, the impedance
would be a noisy function of frequency, mirroring the noisy
spatial pattern of irregularities.) Interpreted in the time do-
main, quasiperiodic spectral oscillations in the impedance
represent the addition of a delayed component (i.e., an echo
or emission) to the pressure measured in the ear canal. At any
given frequency, the mean delay is determined by the value
of the dominant spatial frequency k. As outlined in Sec. 1V,
stationary-phase analysis shows that & is determined by the
gradient of the response phase near the magnitude peak [Eq.
(12)]. Filter theory indicates that this phase gradient is, in
turn, proportional to the sharpness of tuning.

E. Invariance under spatial rearrangement of the
bundles

Although our parameter values reflect the (reversed) ex-
ponential tonotopic organization of gecko hair cells (Manley
et al., 1999), the model requires no ordered array of CFs.
Indeed, the model predictions are invariant under spatial per-
mutation of the bundles. [Addition is commutative, and the
expression for AZ in Eq. (7) is a discrete sum over indepen-
dent bundles.] Unlike in the mammalian cochlea, where the
basilar membrane participates in the tuning and the driving
pressure forces are spatially nonuniform (e.g., Olson, 2001),
in the lizard, the supporting structure (papilla) that couples
the bundles to one another and to the stapes moves approxi-
mately as a rigid body; consequently, all places along the
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papilla are created equal. In the model, the mechanical drive
and response of any given bundle remain the same no matter
where it may reside along the papilla and no matter who its
neighbors happen to be. (Of course, the model simplifies the
in-vivo physics; the actual papilla is not perfectly rigid and
hydrodynamic coupling between adjacent salletal groups
may sometimes be important.) Although concepts such as the
“spatial pattern” or the “spatial-frequency content” of the
irregularities are convenient for the analysis—and entirely
appropriate in the tokay, where the tonotopy appears
regular—they conceal the full generality of the model. What
matters in the model is not the arrangement of the bundles or
their irregularities with respect to spatial position, but their
arrangement with respect to characteristic frequency (when
the frequency-position map is smooth and monotonic, the
two are simply related). Bundles are operationally “close” to
one another if they have similar CFs, whether they reside in
adjacent rows or at opposite ends of the papilla. The model
therefore predicts that the principles of OAE generation op-
erating in the normal lizard continue to apply even in some
hypothetical mutant in which the regular exponential tono-
topy of the papilla becomes radically, even randomly, reor-
ganized during development.

F. Correlations between peripheral tuning and SFOAE
delay

Independent of any model, the otoacoustic and neural
data in Fig. 3 demonstrate an empirical correlation between
measurements of Ngpoag and Qqq gg in geckos. The covaria-
tion of SFOAE phase-gradient delay and the sharpness of
tuning established here in geckos provides a reptilian analog
of correlations previously demonstrated in mammals (Shera
et al., 2002; Shera and Guinan, 2003). Our model of SFOAE
generation in the gecko accounts for this relationship [Eq.
(14)], just as coherent-reflection theory accounts for it in the
mammalian ear (Zweig and Shera, 1995).

The model predicts that species differences in the sharp-
ness of tuning among lizards should correlate with differ-
ences in SFOAE delay. For example, Manley et al. (1996)
report species differences between tokay and leopard geckos
(Gekko gecko and Eublepharis macularius) in the relative
bandwidths of suppression tuning curves obtained by mea-
suring the response of SOAE:s to external tones. As reviewed
by Manley er al. (1996), the properties of SOAE suppression
tuning curves generally match those obtained from neural
measurements. The authors report that the values of Qg 4g in
tokay geckos are generally larger than in leopard geckos by
an average factor of 1.3—1.4. The biophysical origins of this
species difference in the sharpness of gecko tuning are not
known. But if the difference arises or is manifest mechani-
cally, our model predicts that SFOAE phase-gradient delays
should differ correspondingly [Eq. (14)]. We test this predic-
tion in Fig. 5, which compares values of Ngpoag measured in
the two gecko species (Bergevin et al., 2008). As predicted
by the model, the emission data show that Ngpoar is larger in
tokay than in leopard geckos. Indeed, at frequencies above 2
kHz, where the SOAE suppression tuning curves were mea-
sured, the ratio of the SFOAE delays averages 1.4-1.5, in
close agreement with reported ratios of tuning sharpness.
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FIG. 5. SFOAE phase-gradient delays versus frequency in tokay and leop-
ard geckos. The symbols X and @ show delays Ngpoag (in periods) mea-
sured, respectively, in tokay (G. gecko, ten ears) and leopard geckos (E.
macularius, 12 ears). The loess trend lines demonstrate that Ngpoap values
are generally larger in the tokay, consistent with the sharper tuning measured
in this species (Manley ez al., 1996). Emission data are taken from the study
of Bergevin et al. (2008). Probe levels were 20 dB SPL. Data points whose
corresponding SFOAE magnitudes fell within 10 dB of the noise floor are
not shown.

Extending these ideas to other lizards, we note that pre-
vious studies have suggested that an overlying tectorial
membrane, when present, may somehow act to enhance the
frequency selectivity of mechanical tuning (Manley et al.,
1988; Authier and Manley, 1995). If the presence of a tecto-
rial membrane correlates with sharper tuning, then, all other
things being equal (a significant caveat), our model predicts
that SFOAE delays should generally be shorter in lizards that
lack a tectorial covering over much of their papilla. If corre-
lations between peripheral tuning and SFOAE delay hold
more generally among vertebrates, then the frog may be an
exception that tests the rule. At stimulus frequencies below
1-2 kHz (depending on species), frog SFOAE delays are
significantly longer than those in geckos and many mammals
(Meenderink and Narins, 2006; Bergevin et al., 2008). De-
spite their longer OAE delays, frogs appear to have broader
ANF tuning (Ronken, 1991). Reconciling these observations
with the correlations between tuning and delay observed in
other species requires additional mechanisms in the frog—
perhaps traveling waves on the tectorial curtain of the am-
phibian papilla (Hillery and Narins, 1984)—that contribute
significant mechanical delay without a corresponding effect
on the sharpness of tuning.

Although traveling waves along both the basilar and tec-
torial membranes (Ghaffari et al., 2007) also occur in mam-
mals, the great bulk of the delay measured in mammalian
cochlear mechanics and otoacoustic emissions appears well
correlated with tuning (Shera et al., 2007). To put it another
way, signal-front delays constitute a relatively small fraction
of the total mechanical delay (Temchin ef al., 2005), most of
which is associated with “filter build-up.” Unlike the waves
that may propagate along the tectorial curtain in frogs, trav-
eling waves in mammals propagate along and are influenced
by the tuned structure itself. Since the mechanical response

2407



builds up as the wave propagates, tuning and delay are inex-
tricably linked in mammals, just as they appear to be in
lizards.
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]Aranyosi and Freeman (2005) report papilla angular displacements in the
alligator lizard of about 1° at sound levels of 120 dB SPL in the fluid
(equivalent to 85-100 dB SPL at the eardrum). Thus, the small-angle
approximation holds well, even at high sound levels; at the sound levels
typically used to evoke SFOAEs (e.g., 20-40 dB SPL), the approximation
is even better.

Consistent with conventions in the mammalian literature, the stapes, an-
nular ligament, and round window are here regarded as parts of the middle
ear and are therefore not included in Z;.

The round-trip pressure gain G, has the value G,.=T e e/ (1
+Zio/ Zyy), wWhere Ty and Ty, are the forward and reverse middle-ear
pressure transfer functions, and Z, is the “output impedance” of the
middle ear seen from the inner ear (cf. Shera, 2003).

“Extrapolating the exponential curve of Manley ez al. (1999) for the tono-
topic map all the way to the apical end of the papilla (x=0) gives a
maximum CF of about 7.5 kHz. Because no ANF fibers with CFs greater
than 5 kHz have been reported, and because OAE magnitudes fall off quite
sharply above 5 kHz, we have adjusted the value of CF,,, down to this
value.

5Equation (7) indicates that varying the bundle stiffness with position
changes mean OAE amplitudes systematically with frequency but has neg-
ligible effect on SFOAE phase and delay (so long as the model tuning is
not unrealistically broad).

®As discussed elsewhere (Zweig and Shera, 1995), the term e™** makes
negligible contribution to the integral in Eq. (10). The reason, in a nut-
shell, is that the stationary-phase condition is never satisfied with x>0,
and the integral is therefore always small.

” Although perhaps reminiscent of the factor of 2 associated with the round-
trip propagation of pressure-difference waves in the mammalian cochlea
(Shera et al., 2008), the numerical factor that relates the value of Ngpoag to
the peak phase-gradient delay of the bundle filter (here, a second-order,
harmonic oscillator) depends on the type and order of the filter. It gener-
alizes to a factor of (m+1)/m for the mth-order gammatone filters.

8If the confidence intervals seem small given the apparent scatter in the
data, note that whereas the visual impression of the figure is dominated by
the outliers, the statistics are dominated by the large number of overlap-
ping points close to the regression line.

°Gammatone filters, whose impulse response is the product of a sinusoid
with the probability density function for a Gamma distribution (with shape
parameter /m), capture many of the linear features observed in mammalian
ANF data (e.g., de Boer, 1975; Carney and Yin, 1988). Heuristically, the
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