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Although lizards lack the basilar-membrane traveling waves evident in mammals,
their ears produce stimulus-frequency otoacoustic emissions (SFOAEs) with latencies
comparable to those measured in many mammals (1–2 ms or greater). To probe the ori-
gin of these relatively long OAE delays, we developed a model of SFOAE generation in
the gecko. The model inner ear comprises a collection of linear, coupled oscillators (hair
bundles and associated tectorium) whose effective damping manifests a small degree of
irregularity. The model reproduces the major qualitative features of gecko SFOAEs, in-
cluding their substantial delays. The SFOAE delays predicted by the model increase with
the assumed sharpness of tuning, reflecting the build-up time associated with mechanical
resonance.

1. Introduction

Stimulus-frequency otoacoustic emissions (SFOAEs) exhibit significant phase-

gradient delays in both mammalian [1] and non-mammalian ears [2]. Although

mammalian SFOAE delays are often attributed to basilar-membrane (BM) trav-

eling waves, the origin of the delay in non-mammals, especially those lacking BM

waves, remains unclear. Here we explore the origin of OAE delay in the gecko, a

species in which SFOAE phase-gradient delays are 1–2 ms or greater, comparable

to those measured in many mammals. Lizard ears lack BM traveling waves [3], and

their tuning and tonotopy are thought to arise micromechanically at the level of

the hair-cell bundle [4,5]. Our goal is to determine whether a simple model of the

gecko inner ear—a collection of coupled oscillators representing the hair bundles,

associated structures, and adjacent fluid—can account for measured SFOAE delays.

2. The Model

We simplify the gecko inner ear morphology as shown in Fig. 1. Middle-ear delays

are assumed negligible [6]. The model consist of two rigid-walled cavities (the scala

vestibuli and tympani) filled with incompressible fluid and separated by the papilla.

The papilla is assumed to vibrate as a rigid body in the transverse direction only,

driven by the pressure difference (Pv −Pt) between the two scalae. The scalae pres-

sures Pv and Pt are assumed uniform at the frequencies of interest. The papilla

and the hair cells on its surface are represented by linear oscillators (i.e., masses,
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Fig. 1: Left: Simplified transverse-radial cross-sectional schematic of the gecko inner-ear anatomy
showing hair cells embedded in the papilla. The papilla has an effective area Abp and length L

(∼ 1 cm). The gecko is one of many lizard species with sallets, discretized sections of tectorium
that are thought to behave as resonant filters. White regions are fluid-filled, gray region represent
the overlying tectorium, gray striped areas represent bone, and stippled areas are supporting cellu-
lar structures. Abbreviations: BM–basilar membrane, TM–tectorial membrane, SA–sallet. Right:

Longitudinal-transverse cross-section of the model, consisting of a collection of n linear oscillators
coupled only by the motion of the basilar papilla.

springs, and dashpots). We assume harmonic time dependence and represent dy-

namical variables by Fourier coefficients at angular (driving) frequency ω.

By analogy with models of mammalian OAEs, SFOAEs are produced by intro-

ducing micromechanical irregularity [7]. Studies of lizard inner-ear anatomy [8,9]

show irregular variations in features such as the width and thickness of the BM and

basilar papilla, the number of hair cells in a given radial cross-section, and the cou-

pling between the hair bundles and overlying tectorium. We quantify the emission

as the pressure ∆P (ω), defined by

∆P (ω) ≡
[

Z̃(ω) − Z(ω)
]

Uow , (1)

where Uow is the stapes volume velocity, Z̃(ω) and Z(ω) are the cochlear input

impedances [(Pv − Pt)/Uow] computed with and without micromechanical irregu-

larity, respectively.

We compute the input impedance by solving the equations of motion for the

system. Newton’s second law implies that

ZbpVbp = Abp(Pv − Pt) +
∑

n

kn

iω
(Vn − Vbp) . (2)

In this equation, Vbp is the transverse velocity of the papilla, and Abp and Zbp are

its effective cross-sectional area and mechanical impedance, respectively. Vn and kn

represent the velocity and effective stiffness of the nth hair bundle. The individual

bundles are coupled only through the motion of the underlying papilla and satisfy

the equation

iωmnVn = −rnVn −
kn

iω
(Vn − Vbp) , (3)
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where mn, rn, and kn are the effective mass, damping, and stiffness of bundle n.

Thus, each bundle exerts a force on the papilla proportional to the difference in

transverse displacement between the bundle and the papilla. Solving Eq. (3) for the

velocity Vn of bundle n yields

Vn =
1

1 − β2
n + iβn/Qn

Vbp , (4)

where βn ≡ ω/ωn is normalized frequency, with ωn and Qn representing the bun-

dle’s resonant frequency and quality factor (ωn ≡
√

kn/mn and Qn ≡ kn/rnωn).

Substituting Eq. (4) into Eq. (2) and using conservation of mass (Uow = AbpVbp)

to solve for the input impedance yields

Z(ω) ≡
Pv − Pt

Uow
=

1

iωA2
bp

[

Zbp +
∑

n

kn

−β2
n + iβn/Qn

1 − β2
n + iβn/Qn

]

. (5)

We introduced micromechanical irregularity into the model by including a small

stochastic element in the effective damping of each oscillator (Qn). Specifically, we

took Q̃n = Qn(1 + ǫn), where Qn is the unperturbed value (see below) and ǫn is a

small random value close to zero.

3. Analytic Approximation for the Delay

To derive an approximate analytic expression for the emission phase-gradient delay

we make several simplifying assumptions (validated using numerical analysis). First,

we convert the sum to an integral and neglect spatial variations in bundle stiffness

(k = ko). Expressing the integral in terms of β yields

∆P ≈
Uowkoℓ

ωA2
bp

∫ βL

β0

(ǫ/Q)(Aeiθ)2 dβ , (6)

where ℓ is the exponential space constant of the papilla tonotopic map, βL ≡ ω/ωmin,

β0 ≡ ω/ωmax, and A(β)eiθ(β) ≡ 1/(1 − β2 + iβ/Q) is the transfer function of

the harmonic oscillator. Following the analysis of the coherent-reflection model [7],

we decompose the irregularity function, ǫ(x), into spatial-frequency components

and assume that the value of the integral is dominated by spatial frequencies in

a (relatively) narrow range about some “optimal” value κopt. The integral then

becomes

∆P ∝ e−iκoptℓ ln β0

∫ βL

β0

A2(β)

Q(β)
ei[κoptℓ ln β+2θ(β)]dβ , (7)

(constant terms contributing only to the magnitude have been dropped to simplify

the notation). Because the amplitude of the integrand is sharply peaked, the value of

the integral does not depend strongly on frequency except near frequencies close to

the ends of the tonotopic map. The principal frequency dependence of the emission

phase (φ ≡ ∠∆P ) therefore arises from the argument of the exponential outside

the integral and depends on the value of κopt. We determine κopt by applying
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Fig. 2: Left: Representative SFOAE data at probe levels of 20 dB SPL from both a leopard gecko
and tokay gecko [2]. The dashed line shows the acoustic noise floor. Right: Model values of ∆P (ω)
(simulated SFOAEs) based on random micromechanical irregularities. The model papilla com-
prised 150 bundles with CFs logarithmically distributed from 0.2 to 5 kHz. A roughness factor of
3% was used. Model results are shown for two different “ears” (i.e., different irregularity patterns).
The overall model SFOAE magnitude was scaled to approximate that of the measurements.

the principle of stationary phase and requiring that the phase of the integrand be

constant near its magnitude peak (i.e., near β ≈ 1). This yields

∂

∂β
[κoptℓ lnβ + 2θ(β)]

∣

∣

∣

∣

β=1

= 0 =⇒ κopt = −
2

ℓ

∂θ

∂β

∣

∣

∣

∣

β=1

. (8)

For the harmonic oscillator, one can show that ∂θ
∂β

|β=1 = −Q/π. Combining our

expressions to compute NSFOAE, the emission phase-gradient delay expressed in

stimulus periods (− ω
2π

∂φ
∂ω

), yields the approximation

NSFOAE ≈
2Q

π
. (9)

According to this analysis, the emission phase-gradient delay (in periods) is propor-

tional to the sharpness of tuning.

4. Comparison with Experiment

Figure 2 compares model simulations with published SFOAEs measured in the gecko

[2]. The figure shows the magnitude and phase of ∆P computed from Eq. (1) using

Eq. (5) for Z(ω). Parameter values were obtained by assuming that bundle resonant

(or characteristic) frequencies (CF) are distributed logarithmically along the papilla

[4] with a constant density of oscillators per octave. In the absence of irregularity,

the quality factors Qn were assumed to vary with CF according to the power law

Qn = 3Q10(CFn) where Q10(CF) = 2.3[CF/(kHz)]0.355 is a power-law fit to tuning

data obtained from gecko auditory-nerve fibers [4].a ǫn was randomly sampled from

aWe used the data of Manley et al. [4] but note that gecko ANF Q10 values vary considerably across
studies. The factor of 3 used to convert to Q10 to Qn is an approximation valid for second-order
filters.
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Fig. 3: Model SFOAE phase-gradient delays expressed in stimulus periods. The solid curve is a
trend line computed from the results for 20 different simulated ears (grey circles) and trend line
(solid line). The analytic approximation given by Eq. (9) is also plotted (dashed line).

a Gaussian distribution with zero-mean and standard deviation 0.03.

As shown in Fig. 2, the model captures many of the qualitative features seen

in the emission data. For example, the model reproduces the frequency-dependent

variations in SFOAE magnitude, such as spectral notches unique to a particular ear

and the high frequency roll-off at frequencies outside the range of the tonotopic map.

In addition, both the simulated emissions and the SFOAE data exhibit substantial

phase accumulation. These qualitative features are relatively insensitive to model

parameters such as the bundle stiffness and the total number of bundles.

When the model Q values are chosen to match ANF responses, the model pre-

dicts generally realistic OAE delays. Below 1 kHz, however, the predicted delays are

longer than those measured. This low-frequency deviation is similar to that observed

in mammals between measures of Q and NSFOAE and may stem from interference

between multiple emission source mechanisms. Whereas only one mechanism is rep-

resented in the current model, the gecko shows evidence for at least two different

OAE generation mechanisms [2]. In both the model and the lizard, substantial

SFOAE delays occur despite the absence of BM traveling waves.

Figure 3 demonstrates that the mean phase-gradient delay is well approximated

by the analytic expression derived in Eq. (9). Variations in the value of Q along

the length of the papilla produce corresponding changes in NSFOAE. These results

indicate that the emission phase-gradient delay (NSFOAE) is proportional to the

sharpness of tuning (Q).

5. Summary

We have described a simple model for the gecko inner ear in order to predict SFOAE

magnitude and phase. When the sharpness of tuning of the model resonators is cho-
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sen to match ANF responses, the model captures many of the qualitative features of

gecko SFOAEs. In particular, the model reproduces the substantial phase-gradient

delays in spite of the absence of a tuned BM or traveling waves. The model predicts

that SFOAE phase-gradient delays are proportional to the sharpness of tuning of

the resonators inside the ear (i.e., the hair cells and associated tectorium). Despite

the absence of traveling waves, many mechanisms in the model are qualitatively

similar to those of coherent reflection filtering [7] in the mammalian cochlea (e.g.,

the role of a dominant spatial frequency in determining SFOAE delay). The oscil-

lators used here are presumably too simple (e.g. passive, linear, no fluid coupling

between adjacent bundles). Nevertheless, we conjecture that the proportionality be-

tween SFOAE delays and sharpness of tuning described here holds in more realistic

models.
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