Are basilar-membrane traveling waves necessary for long OAE delays?

Christopher Bergevin

Harvard-MIT Speech and Hearing Biosciences and Technology Program (worked performed with Christopher Shera and Dennis Freeman)

QUESTION

Are BM traveling waves necessary for long OAE delays?

MOTIVATION

How is energy propagated through the mammalian cochlea? If BM traveling waves are absent, would delays be smaller?

Comparative Approach

Systematic examination in wide range of ears where anatomy & physiology vary significantly

HUMANS

CHICKENS

GECKOS (two species)

FROGS

HUMAN

CHICKEN

GECKO

FROG

[Frog has two papillae]

COMPARING ACROSS SPECIES

SIMILARITIES:

hair cells, tectorial membrane, ossicular/tympanic middle ear

DIFFERENCES:

tuned/flexible membrane, somatic motility, different sizes, fewer HCs

HEARING ACUITY:

- low thresholds (at least 20 dB SPL)
- tuned responses
- poor high frequency hearing

How long is long?

Middle ear delays: ~ 0.05-0.1 ms

(possibly shorter in non-mammals)

Inner ear: ~ 1500 m/s (speed of sound in water)

~ 0.001-0.03 m (range of inner ear dimensions)

 \Rightarrow 0.001-0.02 ms

ballpark: ~0.1 ms (excluding traveling waves)

METHODS

- Stimulus frequency otoacoustic emissions (SFOAEs) (suppression paradigm)

- Phase response (frequency gradients) in steady-state used to determine delays

- 'Low-Level' stimuli used: Lp=40 dB SPL, Ls=55 dB SPL

SFOAES Lp=40 dB SPL, Ls=55 dB, fs=fp+40 Hz

SUMMARY

Long delays (>1 ms) observed in all species

(being significantly largest in human)

QUESTION: Are BM traveling waves necessary for long OAE delays?

<u>ANSWER:</u> NO, *long* delays (~1 ms or longer >> 0.1 ms) arise in species lacking a tuned/flexible BM

Extending Further

Not due to differences between mammals and nonmammals nor size

[cat and guinea pig data from Shera and Guinan, 2003]

Extending Further

⇒ So where does the additional delay come from?

TUNING

Tuned Responses Take Time

Second Order System (resonant frequency ω_o)

 \Rightarrow External driving force at frequency ω

$$x(t) = A(\infty) \left[1 - e^{(-t/\tau)} \right]$$

$$\tau = Q/\omega_o$$

Q and Phase Gradients Co-vary

Second Order System

(resonant frequency ω_o)

$$Q = \omega_o / (2\pi \text{ x BANDWIDTH})$$

$$N = \omega_o$$
 x Phase Gradient $/2\pi$ (at ω_o)

$$Q \alpha N$$

(Shera, Oxenham and Guinan, 2007)

Plot Delay in Dimension-less Form as N

Lp=40 dB SPL, Ls=55 dB, fs=fp+40 Hz

Comparison of N (SFOAE) to Q-value (ANF)

SUMMARY (II)

Similar frequency dependence between N and Q

[for human, chicken and gecko]

Sharper tuning in human would account for differences

[N-values relative to other species]

Additional delay not associated with tuning in frog

⇒ Due to unique anatomy ('tectorial curtain')?

Connection between tuning and traveling waves?

CONCLUSIONS

What has the comparative approach revealed?

BM traveling waves not needed for *long* OAE delays

Similarity in frequency dependence between OAE phase gradients and Q-values suggest tuning can account for delays in most species

Fini

QUESTION 1

SFOAEs: Nonlinear suppression paradigm

Phase can reveal time delays

Input (stimulus we present)

Output (response we measure)

Phase Gradient

[cat and guinea pig data from Shera and Guinan, 2003]

