
Background

FIGURE 2 - Retrograde motion of Mars [Kuhn, 1992]. 

FIGURE 3 - Overview of an epicycle-deferent 
model. Panel B shows the looped motion generated 
in the plane of the ecliptic, while panel C shows a 
portion (1-2-3-4) of the motion in B as it is seen by an 
observer on the central earth, E [Kuhn, 1992]. 

FIGURE 4 - Epicycle on an epicycle on- a deferent.  
Successively complicated behavior can be obtained 
by such a theoretical framework [Kuhn, 1992]. 

FIGURE 1 - 
Geocentric 
model of the 
heavens 
[redorbit.com]. 

Copernican Revolution - Mankind has long pondered the 
heavens and strived to come up with a conceptual framework 
(i.e., a model) for understanding such. Up until the 17th century, 
the dominant view was a geocentric model where the Earth sat 
in a collection of nested spheres (Fig.1). Complexities, such as 
the retrograde motion of Mars (Fig.2) could be explained in the 
Ptolemaic system by means of epicycles (Fig.3). Such an idea 
could be extended (Fig.4) to describe even more complex ob-
servations. As the models got more complicated, it became 
harder to assert their validity [Kuhn]. Pioneered in part by Co-
pernicus, a ‘shift’ took place towards a heliocentric model 
(Fig.5,15). A key advantage with this major change in physical 
assumptions was a much simpler conceptual framework more 
capable of explaining the wide range of observational data.

Inverse Problems - The basic issue was that the 
development of an astronomical model essentially 
amounted to an ill-posed question: Given our limited 
observational point of view, can we come up with a 
all-encompassing model of the universe? The chal-
lenge with ‘inverse problems’, where you know the so-
lution but not necessarily the question being asked, is 
that there is often (many) more than one suitable 
answer. Consider that while the Ptolemaic model pro-
vided a seemingly reasonable answer to the problem 
of retrograde motion, the basic underlying assump-
tion proved to be fundamentally wrong. Given that 
widely accepted models generally carry a large degree 
of momentum in the scientific community, it typically 
takes a good deal of time/energy/resources to make 
corrections (Kuhn’s ‘paradigm shift’). 

Questions - Motivated by the fact that many areas 
of modern science deal with inverse problems, our 
goal here was to create a simple model and examine 
the pitfalls/challenges associated with having to 
reverse-engineer it from knowledge of the model’s 
output alone. For example, how complex can the ob-
served behavior of a simple system become? What 
sort of conceptual frameworks might give rise to simi-
lar behaviors? How fundamentally different are these 
types of models from one another?   

 The observed pattern of I(t) exhibited complex behavior. The e!ect upon the period-
icity of I(t) for di!erent conditions are summarized as follows:
 Single oscillator    rational     → periodic signal
 Two oscillators    rational 1, 2   → periodic signal  (Fig. 9)
 Single oscillator    irrational     → periodic signal
 Two oscillators    irrational 1, 2  → aperiodic signal (Fig. 10)

 The nature of the POV only allows observation of the compound (i.e., superpostion of 
two oscillators) and not the individual periods. We surmise that the compound period 
(T) may be computed by  T = LCM[ T1, T2 ], where T and LCM stands for the Least-
Common-Multiple. Note that T does not exist if T1 and T2 are irrational (i.e, an aperiodic 
 signal is expected to arise, consistent with Fig.10). A function de"ned by an LCM is e-
xpected to vary with its arguments in a complex fashion (Fig.11, black curve). Periodicities
 extracted from simulations con"rm this prediction (Fig.11, red curve). Note that this
 curve is subject to sudden changes which would be a challenge to characterize had the
 input periods been unknown.

 The observer only creates a digital signal. Thus, the analog position of the object 
would have little impact on the output. However, if small mechanical disturbances are 
added to the system such that the position of the object spontaneously changes by 
nominal amounts, it should be observable that the system is sensitive to noise near the 
POV and not at all far from the POV. This is because near the POV the slight shift is able to 
move the object either into or out of the POV thus completely changing the output. 

 As shown in Fig.12, an increasing degree of variation in the initial starting velocity of 
one of the oscillators causes an increasing e!ect upon I(t) (e.g., change in compound 
period, loss of periodicity). Thus by and large, the system does exhibit a degree of sensit-
vity to initial conditions. 

Methods

POV

FIGURE 7 - Schematic of model .  An observer (O) is positioned at 
the center and looks ‘out’ with point-of-view (POV) towards a 
source (S). Around the observer rotate two objects: each spans 
some radial distance and has a unique (constant) radial velocity. 
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FIGURE 8 - Schematic of model 
output.  Oscillators properties: 

 =0.75 cycles/s,  =0.5 rad, 

 =0.5,  =1.
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FIGURE 6 - London Eye. When 
looking ‘through’ (left), a strikingly 
complex criss-crossing pattern of the 
support wires can be observed, 
despite a straight-forward design 
(top).

FIGURE 9 - Rational frequencies.  Oscillators properties: 
T  = 5 s,  = 0.5 rad, T  = 0.5, and  = 0.5. Note that T

I(
t)

     Drawing inspiration from the 
London Eye (Fig.6), we developed a 
model consisting of two nested phase 
oscillators (Fig.7), each with constant 
angular velocities. The model ‘output’ 
I(t) was derived from the digital projec-
tion of a line onto a point (Figs.7,8), akin 
to a ‘0-D Radon transform’ (i.e., an inte-
gral transform onto a straight line, con-
volved with a delta function).

     Model simulations were done using Matlab. One strategy to examine the model’s output was to assess the presence of 
periodicity. This was done via the development of an auto-correlation function (ACF), which is the comparison of a segment 
of itself at one point in time to itself at all other points in time. The normalized ACF here was defined as:

When periodicities were present, the ACF exhibited global maximums (ACF=1) that could be used to infer repeatability. 

where (i.e., at t=0)

Discussion

Results

FIGURE 15 - The infinite Copernican universe of 
Thornas Digges (Perfit Description of the Caelestiall 
Orbes,1576) [Kuhn, 1992]. 

FIGURE 5 -  Re!ned 
model: Copernicus’ he-
liocentric framework 
for retrograde motion - 
Here, the earth (E) re-
volves around the sun 
(S), as does a superior 
planent (P) (e.g., Mars). 
The apparent progres-
sion of the planet upon 
the stellar sphere exhib-
its a brief retrograssion 
(from 3 to 5) [Kuhn, 
1992]. 
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FIGURE 10 - Irrational frequencies.  Oscillators properties: 
T  = 5 s,  = 0.5 rad, T  = , and  = 0.5. 
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FIGURE 11 - Comparison of model periodicity and LCM. [Black] 
Change in the Least-Common-Multiple (LCM) with respect to T2 while 
keeping T1 fixed at 1 s. [Red dashed] Periodicity extracted from model 
via ACF for similar manipulations of the periods.

0.5 1 1.5 2 2.5 3−30

−25

−20

−15

−10

−5

0

5

10

Frequency (kHz)

M
ea

su
re

d 
Le

ve
l (

dB
 S

PL
)

FIGURE 14 - Examples of other types of inverse problems. Top plot 
shows an overview of the peripheral auditory system and an example of a 
spontaneous otoacoustic emission (red curve). Bottom schematic shows 
an overview of x-ray crystallography, a technique commonly used for 
identifying atomic/molecular structure (e.g., proteins) [Nolting].

FIGURE 13 - Double-pendulum. Snapshot of time evolution of 
the free end (2). Shading corresponds to velocity (darker = 
slower, lighter = faster).  [Adapted from Paul Nathan]

FIGURE 12 - Sensitivity 
to (noisy) variation in 
initial conditions.  Raster 
plot showing 90 trials 
(left), where a variation 
(sampled from a normal 
distribution) in T  was 
gradually increased from 0 
to 10% of the base value 
(top) from bottom to top. 

Oscillators (base) properties: T  = 5 s,  = 0.5 rad, T  = 10/3, and  = 0.7. T  
was held constant. Note that the noisy oscillator can be compared to a 
stable one by virtue of the regular vertical lines beside the irregular ones.

0 5 10 15 20 25 30 35

10

20

30

40

50

60

70

80

90

Time [s]

Tr
ia

l #

0 10 20 30 40 50 60 70 80 90
1

1.1

1.2

1.3

1.4

1.5

1.6

Trial #

1

1

one standard deviation

Simple models can exhibit complex behavior - Despite the simplicity of our model (Fig.7), the output can be strikingly complex (e.g., Figs.9-12). For ex-
ample, the combination of two periodic components can give rise to something aperiodic. A chief consideration here is that we are assessing the system in a very 
simplistic way: the observational point of view is a single point and effectively ignores most of the information about the oscillators (thereby creating apparent 
complexity). However, such a facet bears consideration in that much of observational science typically takes a limited point of view of that which is being observed. 
Furthermore, it is not hard to envision how a slightly more complicated model (e.g., addition of third oscillator) could give rise to further complexities in the output. 
Consider again the London Eye and a projection through the support wires as the wheel rotates.

Linearity/Nonlinearity - Nonlinearity can give rise to highly complicated dynamics, even for ‘simple’ systems (e.g., Lorenz attractor, cellular automata). One 
question thus worth exploring is to what extent our model (as described in Fig.7) is linear or not. The oscillators themselves are linear, as would be any transforms 
that completely map the system (e.g., a 1-D Radon transform that projected the motion onto a straight line). However, given the way that I(t) is defined (i.e., a point 
projection), we surmise that the system is not strictly linear. To what extent this aspect may in fact be responsible for the observed ‘complexity’ remains to be deter-
mined.

Other potential models? - We conjecture here other (broadly classed) types of models that could exhibit similar dynamics to those of our nested oscillator 
model. These include: 
   - Passing of blades from a system of overlapped wind turbines through a point
   - Digital logic circuit with an AC driven gate
   - Flow of traffic due to pedestrians in a crosswalk with no traffic lights
   - Crossing of a double pendulum back over itself (Fig 13])
   - Spiking signals from a firing neuron (whether alone or embedded in a network) 
 Though potentially governed by different mechanics, these systems can exhibit both periodic and aperiodic regimes in their ‘digital’ output

Testability - Based upon I(t) alone, development of a model to describe such is a fundamentally ill-posed 
question, as there are likely an infinite number of possibilities. To get something meaningful, any model de-
veloped has to be able to make testable predictions that can be used to verify/nullify a specific hypothesis. 
The ‘problem solving procedure’ of Polya is also valuable to consider with regard to model building [Polya, 
2004].

Paradigm Shifts - Connecting back to the ‘Copernican Revolution’: History has taught us that it can take 
long periods of time for changes in thought once a reasonable model has taken hold (i.e., Kuhn’s ‘paradigm 
shift’). Thus it is of critical importance to remember that we must continually critically assess our underlying 
assumptions and their validity

Occam’s Razor - In striving for the most efficient comprehensive model, it is worthwhile to keep in mind 
the lex parsimoniae of William of Ockham:  
           One should proceed to simpler theories until simplicity can be traded for greater explanatory power.
While more of a sound guiding principle rather than a fundamental rule, perhaps Albert Einstein put it rather 
more succinctly/effectively: “Keep it as simple as possible, but not simpler.” Determining the simplest effec-
tive hypothesis is one of the greatest challenges scientists face.

Ubiquity of inverse problems in science - Aside from astronomy, many classical physics experiments es-
sentially dealt with inverse problems. For example, the bombardment of gold foil by alpha particles to determine 
the atomic structure by E. Rutherford is a classic example (aka the Geiger–Marsden experiment). Similarly, modern 
x-ray crystallography techniques used to determine atomic/molecular structures share a similar nature (Fig.14). 
Many other examples abound, such as using the emission of sound (otoacoustic emissions, OAEs) from healthy 
ears as a means to probe cochlear mechanics (Fig.14 inset). Many of these problems have a common foundation: 
we are looking at a single measure from systems whose underlying properties are substanially more labyrinthine. 
When using such data to construct models, it may not be immediately obvious if we have sufficiently observed 
essential features that allow for optimized decisions upon chosen assumptions.
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Abstract: Centuries of careful observation of the nighttime skies prior to the 16th century could not get around 
one simple fact: Our limited observational perspective and desire to develop a physical theory of the heavens 
essentially amounted to an inverse problem. The Copernican Revolution, the shift from a geocentric to 
heliocentric model of the solar system, represented a watershed in scientific theory as it cleared away the overly 
complicated Ptolemaic approach and brought forth a more coherent and encompassing framework. Here, we 
were motivated by the ubiquity of inverse problems in modern science and aim to gain insight into how 
successful theoretical frameworks are initially developed. Towards this end, we developed a simple model 
consisting of a point-projection of two nested phase oscillators. Despite its simplicity, the behavior of the model 
exhibited remarkable complexity. One approach taken was to consider what other types of 'models' would 
produce similar behavior. That is, though we already had the 'answer', we (re-)created an inverse problem to 
examine the range of possible models that could have arisen. Using the 'paradigm shift' led by Copernicus as a 
lens, we attempted to tie our analysis back to understanding what strategies exist to optimize the decisions 
leading towards the development of successful theoretical frameworks.


