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Reflection-source otoacoustic emission phase-gradient delays are widely used to obtain noninvasive

estimates of cochlear function and properties, such as the sharpness of mechanical tuning and its

variation along the length of the cochlear partition. Although different data-processing strategies

are known to yield different delay estimates and trends, their relative reliability has not been estab-

lished. This paper uses in silico experiments to evaluate six methods for extracting delay trends

from reflection-source otoacoustic emissions (OAEs). The six methods include both previously

published procedures (e.g., phase smoothing, energy-weighting, data exclusion based on signal-to-

noise ratio) and novel strategies (e.g., peak-picking, all-pass factorization). Although some of the

methods perform well (e.g., peak-picking), others introduce substantial bias (e.g., phase smoothing)

and are not recommended. In addition, since standing waves caused by multiple internal reflection

can complicate the interpretation and compromise the application of OAE delays, this paper develops

and evaluates two promising signal-processing strategies, the first based on time-frequency filtering

using the continuous wavelet transform and the second on cepstral analysis, for separating the direct

emission from its subsequent reflections. Altogether, the results help to resolve previous disagree-

ments about the frequency dependence of human OAE delays and the sharpness of cochlear tuning

while providing useful analysis methods for future studies.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4730916]
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I. INTRODUCTION

Some of the energy evoked from active processes in the

inner ear leaks out into the ear canal and appears as sound

(Kemp, 1978). These sounds, known as otoacoustic emis-

sions (OAEs), provide a noninvasive window on the

mechanics of the cochlea. Although emission levels serve as

convenient assays of cochlear function, important informa-

tion is also carried by emission phase (e.g., Shera and

Guinan, 1999). For example, measurements of reflection-

source OAE phase—or its time-domain counterpart, la-

tency—have been used to probe mechanisms of emission

generation (e.g., Zweig and Shera, 1995; Siegel et al., 2005;

Shera et al., 2008; Bergevin and Shera, 2010; Meenderink

and van der Heijden, 2010), to estimate the wavelength and

delay of cochlear traveling waves (e.g., Neely et al., 1988;

Shera and Guinan, 2003; Moleti and Sisto, 2008; Harte

et al., 2009), to explore the effects of olivocochlear efferent

feedback to the cochlea (e.g., Francis and Guinan, 2010),

and to determine the characteristics of peripheral frequency

selectivity in humans and other species (e.g., Shera et al.,
2002, 2010; Schairer et al., 2006; Sisto and Moleti, 2007;

Moleti et al., 2008; Bergevin et al., 2008; Lineton and Wild-

goose, 2009; Bergevin et al., 2010; Bentsen et al., 2011;

Bergevin, 2011; Joris et al., 2011).

In many of these applications, the frequency gradient of

reflection-source emission phase—the phase-gradient

delay—is used to infer characteristics of mechanical

responses within the cochlea, a possibility suggested by mod-

els of emission generation (Zweig and Shera, 1995; Bergevin

and Shera, 2010). However, the interpretation of emission

phase-gradient delays can be seriously confounded by their

large and irregular fluctuations across frequency (i.e., by the

delay counterpart of OAE macrostructure). At the signal-to-

noise ratios (SNRs) typical of most OAE recordings from

healthy ears, emission phase measurements are quite repro-

ducible. Even though fluctuations due to noise are magnified

by taking the derivative to obtain the phase-gradient delay,

the great bulk of the observed variation is not generally due

to measurement uncertainty. Rather, large fluctuations in

OAE phase-gradient delays and their correlations with fluctu-

ations in emission amplitude (Zweig and Shera, 1995; Tal-

madge et al., 2000; Sisto et al., 2007) are intrinsic to the

emission process itself. Thus, the most troublesome and inter-

esting issue—the one that cannot be addressed simply by

improving the measurement frequency resolution or by

increasing the number of averages—is not the reliability of

the numerical differentiation needed to compute the delay but

the fact that the emission itself is intrinsically irregular. The

coherent-reflection model indicates that the frequency fluctu-

ations in emission magnitude and phase trace their origin to

spatial irregularities in cochlear micromechanics that give

rise to reverse-traveling waves. Evidently, micromechanical
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irregularities are both a blessing and a curse: Although essen-

tial to the process of emission generation that permits nonin-

vasive exploration of cochlear mechanics, irregularities also

introduce fluctuations in the frequency response that obscure

the information one hopes to recover.1

A variety of strategies have been adopted for extracting

phase-gradient delays while mitigating the impact of intrin-

sic fluctuations and measurement noise. These include fitting

trend lines to delay data pooled across subjects after exclud-

ing measurements with low SNR (e.g., Shera and Guinan,

2003), computing SNR-weighted averages across frequency

(e.g., Lineton and Wildgoose, 2009), and smoothing the

measured phase by fitting regression lines (e.g., Francis and

Guinan, 2010) or smoothing splines (e.g., Schairer et al.,
2006) before computing the gradient. Although each of these

strategies seems a priori reasonable, they do not all yield the

same result. For example, smoothing the phase produces

delay trends that differ systematically from those obtained

without smoothing (Schairer et al., 2006; Bentsen et al.,
2011). Although Schairer et al. (2006) emphasize the bene-

fits of the smoothing procedure—it allows inclusion of addi-

tional data with lower SNR—the optimal method for

obtaining delay trends has not been established.

Here we address the problem of determining reliable

and physically meaningful phase-gradient delay trends from

reflection-source OAE data. Our approach is to analyze

simulated but realistic data obtained from a phenomenologi-

cal model of the emission process. Because the parameters

of the model are known, we can evaluate different proce-

dures and determine which yield the most reliable estimates

of the underlying model trend.2 In addition to exploring

existing methods (namely, phase smoothing, energy-

weighting, and SNR-based data exclusion), we describe and

evaluate two novel ones (all-pass factorization and peak-

picking). The first of these, motivated by hints in the litera-

ture that macrostructure of stimulus-frequency OAEs

(SFOAEs) might be minimum-phase, proves unreliable. The

second, however, not only performs well but also helps

explain why other strategies succeed or fail. We also show

that estimates of emission latencies can be distorted by mul-

tiple internal reflection and the buildup of standing waves

inside the cochlea. Obtaining reliable estimates of the delays

associated with cochlear filtering requires that these effects

be removed from the data, and we develop two new strat-

egies—one based on time-frequency filtering and the other

on cepstral analysis—for separating the direct emission from

its subsequent reflections.

II. GENERAL METHODS

A. Simulating emissions

We represent the measured SFOAE pressure at fre-

quency f as an OAE signal with additive noise as follows:

PSFOAEðf Þ ¼ P̂SFOAEðf Þ þ Nðf Þ: (1)

When multiple internal reflection within the cochlea can be

neglected (see Sec. V), the model emission pressure has the

following form (Shera, 2003):

P̂SFOAE ¼ P0GMER; (2)

where P0(f) is the stimulus source pressure, GME(f) charac-

terizes roundtrip middle-ear transmission, and R(f) is the

cochlear reflectance, representing the complex amplitude of

the reverse-traveling wave (normalized by the ingoing wave)

at the stapes. We describe the production of reverse-

traveling waves within the cochlea using an equation bor-

rowed from the coherent-reflection model of reflection-

source OAE generation (Shera et al., 2005, 2008):

Rðf Þ �
ð
�ðxÞW2 ðx; f Þ dx; (3)

where �ðxÞ represents the micromechanical irregularity

and Wðx; f Þ is a weighting function summarizing fluid-

membrane coupling and roundtrip pressure-difference wave

propagation between the stapes and the site of scattering at

cochlear position x. Although the integral sums contributions

to the emission from wavelets scattered throughout the coch-

lea, the emission at any given frequency is dominated by

wavelets originating from the peak region of the traveling

wave. Near the peak, located at x̂ðf Þ, we approximate

Wðx; f Þ by a Gaussian envelope and a locally linear phase, a

phenomenological description previously used to capture the

essential features of the coherent-reflection model (Zweig

and Shera, 1995; Talmadge et al., 2000),

Wðx; f Þ ¼ Ŵe�½ðx�x̂Þ=2Dx�2 e�2piðx�x̂Þ=k̂: (4)

The parameters k̂ and Dx determine, respectively, the local

wavelength and spatial spread of the traveling-wave envelope.

To approximate the variation in tuning, wavelength, and delay

believed characteristic of the human cochlea (e.g., Shera and

Guinan, 2003), we allow the parameters to vary with location

[or, equivalently with the local characteristic frequency,

which we take to vary exponentially with position,

CF(x)¼CF(0)e�x/l, with x̂ðf Þ satisfying CFðx̂ðf ÞÞ ¼ f , and

where l is the space constant of the tonotopic map; in humans,

CFð0Þ ffi 20 kHz and l% 7.2 mm (Greenwood, 1990)]. Spe-

cifically, for the wavelength we take k̂ðCFÞ ¼ l=NWðCFÞ,
with NW(CF)¼ 5.5�(CF/kHz)c with c¼ 0.5 for CF < 1 kHz

and c¼ 0.37 for CF > 1 kHz. In practice, we eliminate the

discontinuity in c by changing its value smoothly over a span

of a few hundred hertz. For the spatial spread of the wave, we

take Dx ¼ l=
ffiffiffiffiffiffi
2p
p

QERB, with QERB(CF)¼ 10�(CF/kHz)0.3.

When the irregularity function �ðxÞ contains spatial fre-

quencies near 2=k̂ (e.g., when the irregularities are truly

irregular or random), coherent-reflection theory indicates

that the resulting emissions manifest a mean phase-gradient

delay3 given by �sSFOAEðf Þ ffi 2l=k̂f (Zweig and Shera,

1995). For the parameters used here, the expected emission

delay expressed in periods of the emission frequency

ð �NSFOAE � f�sSFOAEÞ therefore becomes4

�NSFOAEðf Þ ¼ 2NWðCFÞjCF¼ f ¼ 11 � ðf=kHzÞc: (5)

We opt to express the emission delay in dimensionless form

to facilitate comparison with other dimensionless parameters
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of hearing, such as the quality factors that measure the sharp-

ness of cochlear tuning. Because the power-law exponents

characterizing the variation of QERB(CF) and �NSFOAEðf Þ are

nonzero, the model incorporates deviations from scaling

similar to those found in otoacoustic and neural measure-

ments (e.g., Shera and Guinan, 2003). The change in the

power-law exponent c simulates the “bend” observed in

human NSFOAE(f) curves near 1–1.5 kHz (Shera and Guinan,

2003).5 The frequency where this bend occurs provides an

otoacoustic estimate of the location of the transition between

apical-like and basal-like behavior in the cochlea (Shera

et al., 2010).

Computations of the reflectance using the integral in Eq.

(3) were performed numerically by partitioning the cochlea

into 3500 longitudinal segments. SFOAEs for different in
silico subjects were obtained by varying �ðxÞ from subject to

subject using different samples of Gaussian spatial noise; all

other model parameters were fixed across subjects. We fixed

the root-mean-square (rms) value of the irregularity function

�ðxÞ at 0.03 and then exploited the linearity of the model by

taking GME ¼ Ŵ ¼ 1 and adjusting the stimulus amplitude

P0 to yield a mean emission level of �0 dB SPL. After com-

puting P̂SFOAEðf Þ using Eq. (2), we added a complex-valued,

Gaussian noise component N(f) at each frequency to obtain

PSFOAE(f) from Eq. (1). The rms noise level was adjusted so

that the ratio jP̂SFOAE=Nj2, averaged across frequency,

equaled the desired mean SNR. Unless otherwise specified,

we employed a mean SNR of 15 dB.

We computed SFOAEs at frequencies spanning

0.4–8 kHz (4.3 octaves) with a frequency resolution of 65

points/octave (Schairer et al., 2006). Except when the emis-

sion fell into the noise, or when an SFOAE magnitude notch

and associated phase transition was exceptionally sharp, this

frequency spacing proved sufficient to resolve ambiguities in

phase unwrapping, and simulations performed with higher

resolution gave similar results. Phase-gradient delays were

computed from the unwrapped phase using three-point cen-

tered differences (e.g., Press et al., 2007, Sec. 5–7). In some

cases (described in the following), the unwrapped phase was

smoothed prior to taking the derivative.

B. Loess smoothing

Trend lines to NSFOAE data were computed using robust

loess smoothing (Cleveland, 1993, Sec. 3.2). Loess smooth-

ing is a nonparametric, statistical procedure that employs

local regression to find a smooth curve that captures the sec-

ular variation or trend of “noisy” or irregular data. Because

we plot NSFOAE versus frequency data on logarithmic axes,

both coordinates were log-transformed before finding the

trend. Log-transforming the ordinate is necessary to equalize

the variance of the data across frequency. Although comput-

ing log NSFOAE necessitates eliminating non-positive values,

the discarded data were invariably outliers with negligible

influence on the trend (as assayed using fits performed with-

out the log transformation). The loess smoothing parameters

kloess and aloess specify, respectively, the degree of the local

fitting polynomial and the size of the moving window as a

fraction of the total number of data points. We used kloess¼ 1

and aloess¼ 0.2, which at any given frequency produces a

locally linear regression based on the nearest 20% of the

data. Because we used data taken at log-spaced frequency

intervals and performed loess smoothing on log-transformed

coordinates, a constant value of the smoothing parameter

aloess produces a moving window that spans a constant num-

ber of octaves (in our case, 0.2� 4.3¼ 0.86 octaves).6

Unless otherwise specified, the loess fits were performed

using uniform weights (in some cases, they were energy-

weighted). We circumvented potential singularities in the fit-

ting procedure caused by multiple data points at the same ab-

scissa by randomly dithering the frequencies by 0.1%.

Confidence intervals on the trend were computed using boot-

strap resampling.

III. SIMULATED EMISSIONS

Figure 1 shows example computations of PSFOAE(f)
obtained for two different in silico subjects using Eq. (1) and

standard parameter values. The simulated emissions repro-

duce the major features of measured SFOAEs, including

their notchy magnitude spectra and rapidly rotating phases

(e.g., Shera and Guinan, 1999; Siegel et al., 2005). Wobbles

in the phase correlate with undulations and notches in

FIG. 1. Simulated SFOAEs in two in silico subjects. Top to bottom, the

three panels show model SFOAE level, unwrapped phase, and delay in

periods (NSFOAE) computed using Eq. (1) for two different irregularity pat-

terns (i.e., subjects) using standard parameters. The two subjects are shown

using different line types (solid and dashed). Delays shown using the regular

(4) and inverted triangles (5) were computed from the solid and dashed

phase curves, respectively. The model trend used in the simulations,
�N SFOAEðf Þ, is shown in the bottom panel (solid line). The bottom panel also

gives the loess trend (dashed line) and its 95% confidence intervals (dotted

lines) computed from the pair of subjects. In this example, the mean SNR is

21 dB.
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emission magnitude, as expected from constraints imposed

by causality (Sisto et al., 2007). Although barely visible in

the phase itself on this scale—note that the phase falls

through 40 cycles over the frequency range of the figure—

the impact of phase wobbles is readily apparent in the phase-

gradient delay. Although the model values of NSFOAE(f) gen-

erally increase with frequency, as expected from the trend
�NSFOAEðf Þ predicted by coherent-reflection theory, there are

major local deviations, sometimes as large as a few hundred

percent. Some of this variability arises from the additive

measurement noise, N(f), whose effects are magnified by the

frequency derivative taken to compute the delay. But at all

but the lowest SNRs, most of the variance about the overall

trend reflects the randomness inherent in the process of emis-

sion generation itself (i.e., through the irregular distribution

of micromechanical perturbations responsible for scattering

the wave).

Figure 1 thus illustrates the problem addressed in this

paper: How best to analyze measurements of PSFOAE(f) to

reduce the effects of noise and the inherent variability in

emission magnitude and phase in order to reliably estimate

characteristics of the mechanical response (e.g., the wave-

length and delay of the traveling wave).

IV. EVALUATING THE ANALYSIS METHODS

We used computer simulations to evaluate six different

methods for estimating the underlying model delay trend,
�NSFOAEðf Þ from SFOAE measurements. These six methods

included both previously published procedures (e.g., phase

smoothing, energy-weighting, SNR-based data exclusion),

novel strategies (e.g., peak-picking, all-pass factorization),

and a control (nothing special). The rationale and implemen-

tation details for all but one of the methods are outlined in

separate upcoming sections, following a brief presentation of

the results. The method left undescribed is the control

method identified as “nothing special.” Living up to its

name, this method is easy to summarize: no special signal

processing, data selection, or massaging was performed, and

the loess trends were computed using uniform weighting and

all the available data, regardless of SNR.

To perform the evaluations, we generated SFOAEs for

1500 different in silico subjects (i.e., different irregularity

patterns), randomly divided them into 100 groups of 15, and

computed phase-gradient delays for every subject using each

method. For each method, we pooled the delays across sub-

jects within each group and computed loess trend lines to

find the group trend, NSFOAE(f). The percent estimation error

(perr) for each method in each group was obtained using the

formula perrðf Þ ¼ 100½1 � NSFOAEðf Þ= �NSFOAEðf Þ�. Finally,

the mean and standard deviations of perr(f) were computed

across the 100 groups.

Figures 2–5 summarize our analysis of the six methods

for obtaining group NSFOAE(f) trends. As shown in Figs. 2

and 3, the majority of the methods produced reliable

estimates of the underlying model trend, �NSFOAEðf Þ, with

estimation errors and their standard deviations averaging

less than a few percent. In all cases, the variance of the esti-

mation error increases at the extremes of the measured

frequency range (Fig. 3), where the loess smoothing proce-

dure is least (and asymmetrically) constrained. Two of the

six methods (phase smoothing and all-pass factorization),

however, produced significant systematic error. The phase-

smoothing method, for example, manifests a frequency-

dependent bias, overestimating the delay at low frequencies

and underestimating it at medium and high.

Figure 4 shows how the estimation error varies with the

mean SNR employed in the simulations. With the exception,

again, of the phase-smoothing and all-pass factorization

methods, the trends across SNR appear similar. At high

SNRs, the SNR-based selection criterion has no effect, and

the method becomes equivalent to doing “nothing special.”

At mean SNRs lower than the 15 dB criterion, the selection

becomes too restrictive and the method begins to fail; even-

tually the method cannot be evaluated without lowering the

criterion. (If the selection criterion were lowered enough, the

method would again become equivalent to doing nothing

special.) Overall, the peak-picking and energy-weighting

FIG. 2. Mean percent estimation errors versus frequency for six methods of

computing group NSFOAE(f) trends. The mean error shown here was obtained

by averaging the percent estimation error, perr(f), across 100 groups. In each

group, the trend was computed using pooled simulated data from 15 in silico
subjects. The same subjects and groups were used to evaluate each method.

The mean SNR in the simulations was set to 15 dB.

FIG. 3. Standard deviations of the percent estimation errors shown in Fig.

2. Results are shown versus frequency for the six methods of computing

NSFOAE(f) trends. At each frequency, standard deviations were computed

across the 100 groups of 15 subjects. The variability of the estimates is larg-

est near the edges of the data (i.e., at the low- and high-frequency extremes),

where the loess smoothing procedure is least constrained. The approximate

span of the 95% confidence intervals for the trends shown in Fig. 2 can be

computed by multiplying the standard deviations shown here by 0.4

(¼ 2 � 2=
ffiffiffiffiffiffiffiffi
100
p

).
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methods perform best, with peak-picking winning out at the

lowest SNR.

To explore the dependence on the number of subjects in

the group, we varied the number of subjects (Nsubj) used to

compute the group trends and then found the mean absolute

deviation of the resulting estimation error, averaged across

groups and frequency. The statistic assesses the variability

of the estimation error and thus measures the uncertainty in

the group trend, whatever that trend may be. Results are

shown in Fig. 5. For all but the phase-smoothing method,

whose mean precision plateaus, the uncertainty of the group

trend decreases as N
�1=2
subj as the number of subjects in the

group increases.

Combining the results from Figs. 2–5, the top overall

performers are peak-picking and energy-weighting. Details

of the various methods are presented in the following

sections.

A. Peak-picking

We begin by describing an algorithm we dub “peak-

picking,” which performs well and helps explain the success

of other methods. The method was motivated by our obser-

vation that the model values of NSFOAE(f) lying closest to the

expected trend often occur at frequencies near local maxima

in emission level. Figure 6 illustrates this correlation in an

individual subject. The gray dots in Fig. 6(B) show values of

the delay NSFOAE(f) obtained from the model computations

of PSFOAE(f) level and phase reproduced in Fig. 6(A); the

solid line in Fig. 6(B) gives the expected trend, �NSFOAEðf Þ.
Data points that fall within 10% of the trend are highlighted

in black. The black dots in Fig. 6(A) mark data at the same

frequencies as those identified in Fig. 6(B) based on proxim-

ity to the delay trend, �NSFOAEðf Þ. In the plot of jPSFOAEj
shown in the top of Fig. 6(A), most (although not all) of the

FIG. 4. Means and standard deviations of the frequency-averaged estima-

tion error versus the mean SNR employed in the simulation. At each SNR,

percent estimation errors for each group, computed as indicated in Fig. 2,

were averaged across frequency and the mean of the result then computed

across the 100 groups. Results are shown for each of the six methods of

computing group NSFOAE(f) trends; as before, the same subjects and groups

were used to evaluate each method. All SNRs are multiples of 3 dB; data

points whose symbols or error bars would otherwise overlap have been

slightly offset from one another along the abscissa for clarity. Note that for

SNR < 9 dB, too many data points were discarded to evaluate the method

involving the SNR selection criterion of 15 dB.

FIG. 5. Mean absolute deviations (MADs) of the percent estimation errors

for the six ways of computing group NSFOAE(f) trends. The MADs, averaged

across frequency, are shown as a function of the number of subjects (n) used

to compute each of the 100 group trends. The mean SNR was set to 15 dB.

FIG. 6. Basis for and results of the peak-picking algorithm. (A) Example

simulated SFOAE level curve (top) and wrapped phase (bottom). Black dots

mark data points determined using the delay values in (B). (B) Emission

phase-gradient delay in periods, NSFOAE (gray and black dots), computed

from the unwrapped phase. The solid line gives the trend, �NSFOAE, used in

the model computations. The black dots, here and in (A), identify data at fre-

quencies where the value of NSFOAE lies within 10% of the model trend,
�N SFOAE. (C) Values of NSFOAE (black dots) selected by the peak-picking

algorithm. The data points are those from panel B that occur at frequencies

straddling local maxima in SFOAE level. Each peak is represented by three

points—the maximum itself and one value on either side. The model trend

is shown for comparison (solid line).
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black dots lie close to peaks in emission magnitude; in the

plot of wrapped phase shown in the bottom of Fig. 6(A), the

black dots generally line up along the more locally linear

segments of the curve, skipping over regions of significant

phase curvature (e.g., those correlated with notches in the

magnitude spectrum).

The peak-picking method for extracting phase-gradient

delays inverts the procedure used to select the black dots in

Figs. 6(A) and 6(B). Rather than using proximity to the delay

trend to mark emission peaks, the method uses peak loca-

tions to identify delays NSFOAE likely to be near the trend.

Thus, the algorithm considers only those values of NSFOAE(f)
that occur near frequencies corresponding to peaks in

jPSFOAEðf Þj; other data points are ignored when computing

NSFOAE(f) trends. For the example illustrated in Fig. 6, the

NSFOAE data selected using this method are shown in Fig.

6(C). In the implementation tested here, the selection

included the three data points straddling a peak frequency

(i.e., the peak itself and the points on either side). To reduce

the impact of noise on the identification of peak frequencies,

emission levels were gently smoothed using Savitzky–Golay

filters (e.g., Press et al., 2007, Sec. 14–9) prior to locating

the maxima. Smoothing generally had only modest effects

on the results—peaks, by virtue of being peaks, tend to have

better SNRs than other regions of the emission spectrum.

B. SNR-based exclusion criteria and energy-weighting

The success of the peak-picking strategy suggests that

other procedures whose net effect is to emphasize delays

near magnitude maxima may also perform well. Among

these are popular strategies such as applying data-exclusion

criteria based on local SNR [e.g., ignoring delay values at

frequencies where SFOAE level is less than a specified

amount above the noise floor (e.g., Shera and Guinan, 2003;

Bergevin, 2011)] and computing energy-weighted delays [in

which delay values are weighted in proportion to a measure

of the local emission “energy” and then averaged over some

frequency band or group of subjects (e.g., Lineton and Wild-

goose, 2009; Bentsen et al., 2011)]. For our tests of the

SNR-based exclusion method, we set the criterion so that

delays at frequencies with SNR < 15 dB—the mean SNR

employed in the computation of PSFOAE—were excluded

when computing the loess trend.7 The exclusion criterion

was thus applied as late in the process as possible (i.e., to the

delay values rather than to the phase before the derivative

was computed). In our version of energy-weighting, the

weighting by local SFOAE energy was performed during the

loess smoothing. Delay values were weighted by the value

jPSFOAE=PREFj2, where PREF was taken as the mean value of

jPSFOAEj over the one-octave range about each data point.

C. Phase smoothing

Noise and other fluctuations in the phase-gradient delay

can be substantially reduced by smoothing the phase prior to

taking the derivative. We followed the procedure outlined by

Schairer et al. (2006) and smoothed the phase using smooth-

ing splines as implemented in MATLAB’s csaps function (The

MathWorks, Natick, MA). As in Schairer et al. (2006), data

with SNR less than 6 dB were excluded from the fitting pro-

cedure but were otherwise weighted by their SNR; all splines

were computed with respect to log f. The amount of smooth-

ing is controlled by a parameter, s, whose value (0	 s	 1)

specifies the relative weight given to reducing the global

(integrated) squared curvature of the fit and to minimizing

local weighted deviations from the data points.8 At the

extremes, the value s¼ 0 (no smoothing) gives a standard

cubic spline that passes through every data point, and the

value s¼ 1 (maximum smoothing) performs a linear regres-

sion to obtain the best fit with zero curvature (i.e., a straight

line). The value of s that one chooses depends on assump-

tions, prior knowledge, or conviction about how smooth the

fit should be. Schairer et al. explored a range of possible val-

ues and settled on the value s¼ 0.9 as appropriate for their

data. With this value, the smoothing retains the curve’s

large-scale features but irons out much of the microstructure

and noise (cf. Schairer et al., 2006, Fig. 5). In simulations

performed at similar SNR, but extending over a slightly

larger frequency range, we found that this same value of s
yielded visually comparable amounts of smoothing for our

data.

Unfortunately, smoothing the phase proved generally

undesirable. Figure 7 shows how even modest phase smooth-

ing (top panel) can bias estimates of phase-gradient delay

(bottom panel). Although the smoothing procedure main-

tains the overall shape of the phase—indeed, the raw and

smoothed phase curves are nearly indistinguishable when

viewed on a scale encompassing the full frequency range

(0.4–8 kHz) of the data—the smoothing not only eliminates

excursions due to phase microstructure (e.g., the delay notch

near 3.3 kHz), but also distorts the gradient near SFOAE

magnitude peaks (dots), where the delay is generally most

representative of the trend. The net result is to preserve the

global shape of the phase curve while significantly underesti-

mating the delay trend actually used in the model computa-

tions (dotted line). The extent of the bias depends, of course,

on the amount of smoothing performed (i.e., on s), as well as

FIG. 7. Effects of phase smoothing on phase-gradient delay. (Top) A seg-

ment of simulated SFOAE phase both before (solid line) and after smooth-

ing (dashed line). Triplets of dots indicate frequencies straddling local

maxima in SFOAE magnitude (as might be used in the peak-picking algo-

rithm). (Bottom) The corresponding values of phase-gradient delay. The

dotted line shows the actual delay trend, �sSFOAEðf Þ, used in the model com-

putations. The phase smoothing was performed on the entire 0.4–8 kHz

phase curve using a smoothing parameter of s¼ 0.9.
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on factors that affect the integrated curvature of the phase

(e.g., the total frequency span of the data and the amount of

measurement noise). Previous applications of phase smooth-

ing to real data found that the resulting delay estimates were

significantly shorter than those obtained without smoothing

(Schairer et al., 2006; Bentsen et al., 2011), consistent with

these results.

D. Smoothing by all-pass factorization

This method is based on the possibility that the spectral

notches and phase wobbles that constitute SFOAE macro-

structure can be “divided out” to recover a smoothly varying

delay. To be effective, the method requires that SFOAE

macrostructure be minimum-phase, at least to a useful

approximation. We know that stimulus-frequency OAEs are

causal functions (Shera and Zweig, 1993). In the time do-

main, causality requires that the emission not precede the

stimulus. In the frequency domain, causal functions can be

written as the product of a minimum-phase and an all-pass

component consisting of a (possibly frequency-dependent)

delay (e.g., Papoulis, 1962, Sec. 10–3). Applying this facto-

rization to SFOAEs, we let

PSFOAEðf Þ � PMPðf Þei/APðf Þ; (6)

where PMP(f) is minimum-phase and the all-pass component

consists of a phasor with phase /AP ¼ �2p
Ð
sAPðf Þdf defined

by the delay, sAP(f). Because PMP(f) is minimum-phase,

the logarithm of its magnitude ðlogjPMPj ¼ logjPSFOAEjÞ and

its phase (/MP � ffPMP) are not independent; one can be

computed from the other using the Hilbert transform. As

a consequence, spectral variations in logjPMPðf Þj (i.e., the

macrostructure in SFOAE level) have necessary counter-

parts in the phase /MP and its phase-gradient delay

(2psMP¼�d/MP/df).
Note that if the troublesome phase transitions and wob-

bles evident in /SFOAE were largely confined to /MP, then

one could remove their influence on sSFOAE by simply sub-

tracting them out prior to computing the phase-gradient

delay (i.e., by computing the derivative of /SFOAE � /MP

rather than of /SFOAE). In other words, one could potentially

reduce or eliminate the variance due to spectral macrostruc-

ture by extracting the all-pass component of PSFOAE, whose

phase /AP¼/SFOAE � /MP and delay sAP¼ sSFOAE � sMP

would (ideally, and at sufficient SNR) be relatively smooth

functions of frequency. As empirical support for this sugges-

tion, several studies have noted correlated variations in

SFOAE spectral level and group delay (Siegel et al., 2005;

Sisto et al., 2007); correlated fluctuations in level and delay

are also evident in the simulated SFOAEs shown in Fig. 1.

Thus, at least some of the spectral fluctuations in sSFOAE

appear consistent with the minimum-phase behavior required

by the proposed analysis method.

Although the all-pass factorization method appears a
priori promising, the estimation errors reported in Fig. 2

indicate that the method fails in practice. Figure 8 provides

an example showing that even at high SNR, the delay, sAP,

computed from the all-pass component of the SFOAE,9 is

generally no smoother than the delay sSFOAE itself. Although

the method smooths out some phase wobbles (e.g., in the

region near 3.5 or 4.5 kHz in Fig. 8), it accentuates others

(e.g., near 5.5 kHz). Overall the method provides little

smoothing and introduces a bias in the delay trend.

V. MITIGATING THE EFFECTS OF MULTIPLE
INTERNAL REFLECTION

When they encounter the impedance mismatch at the

cochlear boundary with the middle ear, reverse-traveling

waves are partially reflected back into the cochlea, where

they can serve as the stimulus for additional reemission (e.g.,

Shera and Zweig, 1991; Dhar et al., 2002). This iterated pro-

cess of multiple internal reflection gives rise to a succession

of emission components with longer and longer delays.

Under many circumstances, these higher-order contributions

to the total emission can be neglected, and the discussion so

far has assumed that the measured SFOAE is dominated by

waves emitted directly from the region of generation. In this

case, the emission pressure P̂SFOAE is well approximated by

Eq. (2). However, when jRj is large—as it might be at low

stimulus levels in strongly emitting subjects—multiple-

internal reflections can make a significant contribution to the

SFOAE. More generally, P̂SFOAE has the form (Shera, 2003)

P̂SFOAE ¼
P0GMER

1 � RRstapes

ffi P̂
0

SFOAE

�
�

1 þ RRstapes þ ðRRstapesÞ2 þ ���
�
; (7)

where Rstapes(f) is the stapes reflection coefficient for retro-

grade cochlear waves and P̂0
SFOAE represents the component

due to direct emission. The infinite series, which converges

for jRRstapesj < 1, encapsulates the process of multiple

reflection.

By modifying the emission amplitude and phase, these

additional terms, when significant, can bias efforts to deter-

mine emission delays and relate them to underlying proc-

esses of cochlear mechanics. The most serious problems

occur at frequencies where the phase of RRstapes is close to 0

(mod 2p). At such frequencies, higher-order reflections

FIG. 8. SFOAE delay and its minimum-phase and all-pass components. The

dashed line shows SFOAE phase-gradient delay sSFOAE(f) computed from

PSFOAE(f) in an example in silico subject with no added noise (SNR

> 200 dB). The gray line shows the delay sMP of the minimum-phase com-

ponent and the black line shows the delay sAP of the all-pass component.

Note that sSFOAE¼ sMP þ sAP. The minimum-phase and all-pass compo-

nents were computed using Hilbert transforms, as implemented in MATLAB’s

RCEPS function.
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combine in phase with one another, creating a peak in

jP̂SFOAEj and, in the limiting case, a spontaneous emission or

SOAE (Shera, 2003). Figure 9 illustrates magnitude peaks

arising from multiple internal reflection using simulated val-

ues of PSFOAE computed using parameters that yield a rela-

tively large mean value of jRRstapesj to highlight the effect.

At these same peak frequencies, the phase-gradient delay

becomes anomalously large, reflecting the fact that the ree-

mission process is spread out over a long time (multiple

roundtrips). In the limiting case when the multiple reflections

give rise to self-sustaining intracochlear standing waves

(SOAEs), the “group delay” of the evoked emission becomes

effectively infinite. If naively applied, normally effective

analysis procedures, such as peak-picking or energy-

weighting, will therefore overestimate the actual phase-

gradient delays of interest, which are those of the direct

emission, P0
SFOAE, unbiased by multiple internal reflection.

In this section we develop two methods for removing the

confounding effects of multiple reflection from SFOAE

measurements.

A. Time-frequency prefiltering using the CWT

Wavelet transforms can be used both to visualize multi-

ple reflections across time and frequency and to remove

them from the measurements. The continuous wavelet trans-

form (CWT) is a linear time-frequency analysis tool (Morlet

et al., 1982) that decomposes signals into a superposition of

“daughter” wavelets, each consisting of frequency-scaled

and time-shifted copies of an underlying oscillatory, wave-

like function known as the “mother” wavelet, whose form

can be chosen to fit the application. Like other time-

frequency analysis techniques, such as the short-time Fourier

transform (STFT), the CWT provides information on the

time evolution of the different frequency components of the

response. Unlike the STFT, the duration of the analysis win-

dow is not fixed, but varies with frequency, providing

improved time resolution at high frequencies and improved

frequency resolution at low frequencies. Several helpful

introductions to wavelet analysis and its application to click-

evoked OAEs are available elsewhere (e.g., Wit et al., 1994;

Tognola et al., 1997). Although the property has seldom (if

ever) been employed in otoacoustic applications, the CWT is

also invertible, allowing the reconstruction of signals from a

set of (possibly modified) wavelet coefficients. We exploit

that feature in the algorithm developed here.

At delay s and frequency f, the continuous wavelet

transform of the signal p(t) is defined by the following

integral:10

wpðs; f Þ ¼
ð

pðtÞ
ffiffiffi
f

p
w�
�

f ðt � sÞ
�

dt; (8)

where wðtÞ is the mother wavelet. In our application, the

mother wavelet is complex-valued, and the asterisk repre-

sents the operation of complex conjugation. Given the trans-

form wp(s, f), the signal can be reconstructed using the

inverse CWT, defined by

pðtÞ ¼ C�1
w

ð ð
wpðs; f Þ

ffiffiffi
f

p
w
�

f ðt � sÞ
�

ds df ; (9)

where C�1
w is a constant that depends on the wavelet. We use

a complex Morlet mother wavelet of the form,

wðtÞ � e2pite�t2 ; (10)

a function whose real and imaginary parts are plane waves

(or pure tones) localized by a Gaussian window. Other rea-

sonable choices of the mother wavelet—such as those previ-

ously used to analyze click-evoked emissions (e.g., Wit

et al., 1994; Tognola et al., 1997; Sisto et al., 2007) and

whose temporal envelope resembles the frequency response

of a low-pass Butterworth filter [e.g., wavelets of the form

wðtÞ � cosðx0tÞ=ð1 þ jtjnÞ]—yield similar results.

Figure 10 (top) shows a grayscale image of the magni-

tude of the complex CWT, jwpðs; f Þj, computed for the

same simulated SFOAE shown in Fig. 9. The time-domain

SFOAE waveform used in the analysis, pSFOAE(t), was com-

puted from PSFOAE(f) using the inverse fast Fourier trans-

form (FFT). Long-lasting emission components are visible at

multiple frequencies, and are especially prominent in the

region about 1 kHz, corresponding to the two tall peaks in

Fig. 9. The solid line gives the value of the energy-weighted

group delay, as computed from the CWT using the following

formula:

sEWðf Þ �
ð

sjwpðs; f Þj2ds

�ð
jwpðs; f Þj2 ds; (11)

where the value jwpðs; f Þj2 provides a measure of the

SFOAE energy at every location (s, f) in the time-frequency

plane. The integration extends over the full extent of the

time waveform. Although the image in Fig. 10 is truncated

at s¼ 35 ms, the transform was continued until the emission

disappeared into the noise, and the computation of sEW(f) is

therefore not biased downward by the display. To ensure

that the value of sEW(f) is not biased upward by noise, whose

energy continues at long times and tends to increase the

FIG. 9. Simulated SFOAEs in a model subject with significant internal

reflection. The solid line shows |PSFOAE(f)| computed using |Rstapes|¼ 0.8

(with max |R|¼ 1). Standing-wave resonances due to multiple internal

reflection are clearly visible. For comparison, the dotted line shows the

SFOAEs computed for the same in silico subject using Rstapes¼ 0. The two

dashed lines show estimates of the direct emission obtained using signal-

processing methods described in the text. The gray dashed line shows

jP0
SFOAEðf Þj computed using the continuous wavelet transform (CWT) to

perform time-frequency filtering (see also Fig. 10). The black dashed line

shows jP0
SFOAEðf Þj computed using cepstral smoothing and the /FFT. The

mean SNR was 25 dB.
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energy-weighted group delay, we thresholded the transform

jwpðs; f Þj, setting to zero those coefficients with magnitudes

less than 6 dB above the corresponding value of the trans-

form of the measured noise. (After resynthesis, this amounts

to a wavelet-based de-noising.)

For comparison, the dotted line in Fig. 10 shows the

phase gradient delay, �sSFOAEðf Þ, expected for the direct

emission P̂0
SFOAE based on the underlying model. As antici-

pated, a multiple internal reflection prolongs the energy-

weighted delay. Although sEW � �sSFOAE at all frequencies,

the ratio of the two varies irregularly with frequency in a

manner idiosyncratic to each subject. In this example, the

largest effect occurs about 1 kHz (i.e., near the sharp spectral

peaks evident in Fig. 9), where standing waves increase the

group delay by almost a factor of 2. The presence of signifi-

cant multiple reflection thereby complicates interpretation of

the emission delay, rendering it an unreliable guide to the

value of model parameters.

Measures of delay more easily associated with the under-

lying mechanics can be obtained by removing the confound-

ing influence of higher-order reflections from the data. The

invertibility of the CWT suggests that this might be accom-

plished by time-frequency filtering. For example, if all wave-

let coefficients except those dominated by the direct emission

were identified and set to zero (e.g., by multiplying the trans-

form by an appropriate time-frequency mask), an estimate of

p0
SFOAEðtÞ, and hence of P0

SFOAEðf Þ, could be obtained by

inverting the masked transform using Eq. (9). Any of the

techniques previously described for estimating delay trends

could then be applied to the extracted direct SFOAE.

Figure 10 (bottom) shows the results of applying an

appropriate time-frequency filter (mask) to the transform

given in Fig. 10 (top). The mask removes the long-latency

components and yields a transform that closely resembles

the transform of the direct emission computed from the same

subject (i.e., using the same model parameters and irregular-

ities, but with Rstapes¼ 0 to preclude the possibility of multi-

ple internal reflection). The energy-weighted group delay

computed from the masked transform (solid line) provides a

good estimate of both the group delay of the actual direct

emission (dashed line) and of the underlying model trend

(dotted line). The gray dashed line in Fig. 9 shows the mag-

nitude of P0
SFOAEðf Þ obtained by synthesizing an estimate of

p0
SFOAEðtÞ from the masked wavelet coefficients using the

inverse transform. The results provide a good approximation

to the emission magnitude computed with Rstapes¼ 0 (dotted

line in Fig. 9).

The mask used to obtain the bottom panel of Fig. 10 by

filtering out higher-order reflections was computed using an

empirical estimate of the energy-weighted group delay of

the direct emission. How was this estimate and its depend-

ence on frequency obtained? We begin by regarding the time

evolution of the emission revealed by the CWT in a band

centered on frequency f as a succession of “bursts” corre-

sponding to the terms in the power series in Eq. (7) (Zweig

and Shera, 1995; Konrad-Martin and Keefe, 2003). We

denote the group delay of the first burst (i.e., of the direct or

zeroth-order emission) at frequency f by s0
SFOAE. Since the

group delay measures the latency of roundtrip energy propa-

gation, we expect the center of energy of the second burst

(i.e., of the first-order reflection, proportional to RRstapes) to

occur around time 2s0
SFOAE. If we imagine labeling the

energy by its association with one burst or the other, then

sometime between times s0
SFOAE and 2s0

SFOAE the energy

switches over from being associated primarily with the first

burst to being associated primarily with the second. If the

bursts had equal amplitudes, the switch-over would occur

near 1:5s0
SFOAE. However, because jRRstapesj < 1, the first

burst is generally the larger of the two, and the switch-over

occurs somewhat later (i.e., around the time we denote by

as0
SFOAE, where the value of the multiplicative constant a is

somewhere in the range 1.5 < a < 2).

We now define the “partial group delay,” sEW(f, t), as

the group delay computed based on the energy at frequency f
that returns before time t as follows:

sEWðf ; tÞ �
ðt

0

sjwpðs; f Þj2 ds

�ðt

0

jwpðs; f Þj2 ds: (12)

With this definition, the group delay of the first burst (the

direct emission) can be approximated by the partial group

delay

s0
SFOAEðf Þ ffi sEWðf ; as0

SFOAEÞ: (13)

In other words, at frequency f we approximate the delay of

the direct emission (s0
SFOAE) by the group delay of the first

FIG. 10. Continuous wavelet transforms of pSFOAE(t) for an in silico subject

with significant internal reflection (|Rstapes|¼ 0.8 and max |R|¼ 1). The gray-

scale images show the magnitude of the complex CWT versus time and fre-

quency. Figure 9 shows a section of |PSFOAE(f)| for the same simulated

subject. The bottom panel shows an estimate of the CWT of the direct emis-

sion, obtained using the procedure described in the text (wavelet coefficients

at times s > as0
SFOAE, with a¼ 1.9, have been masked out). In both panels,

the solid lines show values of the energy-weighted group delay computed

from the corresponding CWT using Eq. (11). The dotted lines show the

trend �sSFOAEðf Þ used in the model computations. In the bottom panel, the

dashed line shows the group delay for SFOAEs computed using the same

model parameters but no internal reflection (Rstapes¼ 0).
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“burst,” defined as the partial group delay of the energy that

returns before a times the delay of the direct emission

(as0
SFOAE). Although the description sounds circular because

the functional equation for s0
SFOAEðf Þ cannot be directly eval-

uated—the delay s0
SFOAE appears on both sides of the equals

sign—the equation can be solved by iteration. Specifically,

s0
SFOAEðf Þ ffi lim

n!1
sðnÞðf ; aÞ; (14)

where

sðnÞðf ; aÞ ¼ sEW

�
f ; asðn�1Þ� ðn ¼ 1; 2; …Þ; (15)

with s(0)(f, a)¼ sEW(f, 1). In practice, one terminates the

iteration when the change between successive estimates

(e.g., the fractional difference j1 � sðn�1Þ=sðnÞj averaged

over frequency) is less than some criterion value.11

Given the estimate of s0
SFOAEðf Þ obtained in Eq. (14),

the mask at frequency f is just a window that tapers quickly

to zero at times greater than as0
SFOAEðf Þ. In our application,

we used tenth-order recursive exponential windows (Shera

and Zweig, 1993). We note that this procedure for estimating

P0
SFOAEðf Þ by resynthesizing it from the masked transform

makes no assumption about how the latency of the direct

emission varies with frequency; rather, the latency s0
SFOAEðf Þ

is derived from the data. The procedure does, however,

depend on the value of a, but only weakly. We used a¼ 1.9

but found that values anywhere in the range 1.6–1.9 gave

very similar results, independent of the value of RRstapes.
12

To evaluate the utility of time-frequency prefiltering

using the CWT, we performed multiple simulations of the

type used to produce Fig. 2, but with jRstapesj ¼ 0:8. After

removing higher-order reflections (standing waves) from the

data using the CWT as in Fig. 10, we used the peak-picking

algorithm to extract estimates of the model delay trend
�NSFOAEðf Þ. Figure 11 shows the resulting mean estimation

errors for �NSFOAEðf Þ. When trends are extracted without ben-

efit of CWT prefiltering (lines marked with solid squares),

standing waves bias estimates of the underlying delay trend

upward; for the parameters used here the mean bias amounts

to roughly 20%–30%. Although the averaging across sub-

jects performed here yields a mean bias substantially lower

than extremes seen in some subjects (cf. Fig. 10, where the

bias approaches 100% near 1 kHz), the bias remains signifi-

cant. Prefiltering with the CWT reduces the bias almost

entirely (black lines with solid diamonds); after filtering, the

expected estimation error, averaged across frequency, drops

to less than 1%, with the largest errors below 1 kHz.

An ideal filtering method would eliminate standing

waves from data sets that have them while leaving data with-

out such components unchanged. To see how closely CWT

prefiltering approaches the ideal, we also applied the method

to data from the same in silico subjects computed using

Rstapes¼ 0. The results shown in Fig. 11 (gray lines with

open diamonds) indicate that prefiltering data that lack

standing-wave components lead to a small bias in the nega-

tive direction, underestimating the trend by an average of

5% (more at lower frequencies, less at higher frequencies).

B. Cepstral smoothing using the /FFT

Although time-frequency prefiltering using the CWT

yields good results overall, the estimation errors vary signifi-

cantly across frequency. In particular, the method performs

less well below 1 kHz, where deviations from scaling, both

in our model and in real data, are largest. In addition, the

method is computationally expensive. Although not prohibi-

tive on the smaller data sets used in most studies, the compu-

tation time rendered the method more difficult to evaluate on

our full complement of 1500 in silico subjects. (Indeed, for

the results shown in Fig. 11 we used only half that many.)

Finally, the method introduces a small negative bias when

applied to data without multiple reflections. To address these

shortcomings, we developed an alternative procedure that

yields better results in a much shorter time. The method is a

novel variant of cepstral analysis. Originally introduced for a

purpose similar to ours—to separate signals containing ech-

oes (Bogert et al., 1963)—cepstral analysis involves taking

the logarithm of the frequency response in order to decom-

pose a product of spectra into a sum. Unlike the more famil-

iar case of time-domain filtering, the oscillatory function to

be removed occurs in the frequency response. As a result,

cepstral smoothing involves a reversal of the roles usually

played by time and frequency.

To explain the method, we begin by noting that Eq. (7)

implies that the logarithm of P̂SFOAE has the form

log P̂SFOAE ¼ log P̂0
SFOAE � log 1� RRstapes

� �
; (16)

representing the sum (superposition) of two components, the

first arising from the direct emission and the second, which

vanishes when Rstapes¼ 0, from multiple internal reflection

FIG. 11. Mean percent estimation errors for the model trend �N SFOAE versus

frequency computed both before (squares) and after (other symbols) mitigat-

ing the influence of standing waves using either CWT prefiltering (dia-

monds) or /FFT smoothing (circles). Black lines marked with closed

symbols show results computed using |Rstapes|¼ 0.8 and max |R|¼ 1; gray

lines with open symbols show results computed in the same in silico sub-

jects using Rstapes¼ 0. Although estimates of NSFOAE trends are biased

upward by the presence of significant intracochlear standing waves

(squares), their effects can largely be removed from the data. All group

delay trends were estimated using the peak-picking algorithm. Due to the

time required to compute and invert the CWTs, the results here are based on

a smaller number of in silico subjects (750 in 50 groups of 15). The mean

SNR in the simulations was 25 dB.
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within the cochlea. Here we exploit the fact that the spectral

signatures of the two additive components are typically quite

different. As illustrated in Fig. 9, for example, a nonzero

value of Rstapes can introduce additional “spectral ripples” in

the log magnitude (and phase) of PSFOAE. But unlike the

notches and other macrostructure evident in R itself, the rip-

ples due to multiple internal reflection have a quasiperiodic

oscillatory form whose period is determined largely by the

phase gradient of R (e.g., the ripple period corresponds to

one cycle of phase rotation of RRstapes). Because of their dif-

ferent frequency dependencies, the two terms in Eq. (16) can

be separated by filtering in the corresponding Fourier do-

main (e.g., by windowing in the time domain) using the vari-

ant of cepstral analysis described below.

The application of cepstral or any sort of inverse fast

Fourier transform (IFFT) analysis to SFOAEs is complicated

by cochlear dispersion. Because of dispersion, the overall

slope of the phase of R varies with frequency (i.e., the phase

versus frequency function is curved); consequently, emis-

sions at different frequencies are delayed by different

amounts, and the period of the spectral interference ripples

created by multiple reflection varies with frequency. By

smearing things out across time and frequency, cochlear dis-

persion makes it more difficult to separate the direct emis-

sion component from the succeeding echoes. As explored in

Sec. V A, time-frequency analysis using wavelets provides

one way of addressing this problem. Alternatively, one can

work with a transformed frequency coordinate. Ideally, the

transformation would compensate for the dispersion by

ensuring that the “transformed group delay” (i.e., the slope

of the emission phase computed with respect to the new fre-

quency variable) remains constant. Previous studies using

IFFT methods or spectral smoothing to separate OAE com-

ponents have used logarithmic or power-law transformations

to approximate this ideal (Knight and Kemp, 2001; Kalluri

and Shera, 2001). One limitation of these previous transfor-

mations is that the assumed frequency dependence of the

phase is not generally valid throughout the cochlea.

Here we circumvent this limitation and tailor the

method to each subject individually by using a transforma-

tion derived directly from the emission phase itself. Specifi-

cally, we compute Fourier transforms with respect to the

variable

/ � �fargPSFOAE fð Þ=2p; (17)

where arg extracts the unwrapped phase and the diacritical

tilde denotes subsequent smoothing. The smoothed phase /
is an estimate of the secular variation of the unwrapped phase

from which much of the phase rippling pattern has been

ironed out. Smoothing the unwrapped phase is necessary

here to render the transformation monotonic; the minus sign

then guarantees that / increases with f. Later in the analysis,

the smoothed phase / is removed from arg PSFOAE [cf. Eq.

(18)] to obtain the phase ripples themselves. How the

smoothing is performed is not critical; we used Savitzky–-

Golay filters, but smoothing splines or other methods would

work just as well. We call the FFT computed with respect to

this unconventional frequency variable the /FFT.13

We denote the value of PSFOAE(f) with internal reflec-

tions removed by P0
SFOAEðf Þ, where the “0” represents the

effective value of Rstapes. We estimate P0
SFOAEðf Þ by cepstral

smoothing using the following formula:

logP0
SFOAE ffi F�1fWFflogPSFOAE þ 2pi/gg � 2pi/;

(18)

where F{�} represents the operation of Fourier transforma-

tion with respect to /,14 F�1{�} is the inverse transform with

respect to g (our name for the variable conjugate to /), and

W(g; gc) represents the application of a window with cutoff

at gc. In the language of cepstral analysis, g is the quefrency

or “time” variable; application of the window W thus

smooths the response by eliminating long “latency” compo-

nents in the complex cepstrum.

To perform the /FFT smoothing numerically, we

resampled values of log PSFOAE(f) at frequencies corre-

sponding to equal intervals of /(f) using cubic spline inter-

polation.15 Because measurements are only available over a

finite frequency range, the cepstral smoothing operation is

complicated by end effects and the assumption of periodic

boundary conditions employed in the Fourier analysis. To

mitigate these effects by removing the secular variation of

the phase, we added 2pi/ to log PSFOAE, a function later

subtracted back in as indicated in Eq. (18). In addition, the

analyzed frequency range was chosen to include an integer

number of cycles of / (and thus an approximately integral

number of spectral ripples), and linear ramps were subtracted

(and restored after smoothing) to render the arguments to the

Fourier transforms periodic. So that the window would

remove quefrencies associated with standing-wave ripples,

we chose the value of the window cutoff based on the total

number of cycles traversed by the phase /. Denoting this

number of cycles by N/, we used gc¼ 0.9 N/. The window

was implemented using recursive exponential filters (Shera

and Zweig, 1993; Kalluri and Shera, 2001). Finally, esti-

mates of P0
SFOAE were discarded at each end over frequency

intervals equal to the approximate bandwidth of the smooth-

ing function (to allow for this, the frequency range of the

simulations was extended by an octave in both directions).

To illustrate the procedure, Fig. 12 shows mean /FFT

cepstra computed from logjPSFOAEj for subjects with and

without significant standing-wave components in their emis-

sion spectra. Cepstra for the two groups differ principally at

quefrencies g � N/ (i.e., at values greater than unity along

the abscissa). Components at these high quefrencies (long

latencies) are significantly enhanced by multiple internal

reflection. Although the period of the standing-wave peaks

and valleys varies with frequency, computing the transform

with respect to /, rather than with respect to f, compensates

for cochlear dispersion and produces the sharp peak in the

transform near g%N/. By removing components at que-

frencies greater than N/ using the window W(g, gc), /FFT

smoothing largely eliminates standing-wave components

from the response. The black dashed line in Fig. 9 shows

that the estimate of P0
SFOAEðf Þ obtained by /FFT smoothing

provides an excellent approximation to the emission magni-

tude computed with Rstapes¼ 0.

J. Acoust. Soc. Am., Vol. 132, No. 2, August 2012 C. A. Shera and C. Bergevin: Estimating otoacoustic delay trends 937

Downloaded 08 Aug 2012 to 130.63.110.251. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Estimation errors obtained after using /FFT smoothing

to remove standing-wave components from the data are

shown in Fig. 11 (lines with solid circles) for the same sub-

jects used to evaluate CWT prefiltering. Although the

expected estimation errors are slightly larger than those

obtained using CWT prefiltering at high frequencies, where

they average �3%, the error is more uniform across fre-

quency. In addition, smoothing with the /FFT has a rather

benign effect on data sets in which higher-order reflections

are small or absent (open circles). To understand this, note

that the high quefrencies removed by the windowing opera-

tion come from the parts of the SFOAE spectrum that change

rapidly with frequency. In data sets without strong standing-

wave components, these tend to be the regions around

notches, which are precisely the regions that are discounted

by analysis methods such as peak-picking. Thus, /FFT

smoothing applied to data free of significant standing-wave

ripples has only a minor effect on phase-gradient delay

trends.

VI. DISCUSSION

We performed in silico experiments to evaluate both

previously and newly proposed strategies for extracting

phase-gradient delay trends from reflection-source OAE

data. Our results show that despite measurement noise and

the intrinsic irregularity of the emission spectra, robust and

minimally biased estimates of OAE phase-gradient delay

trends can be reliably extracted using most of the analysis

methods described here. Four of the six methods we eval-

uated (namely, peak-picking, energy-weighting, SNR-based

data exclusion, and nothing special) reliably extracted the

underlying model trend (i.e., with a bias less than a few per-

cent) when employed at sufficiently large SNRs (i.e., SNR

� 10 dB). Peak-picking and energy-weighting produced

estimates with the smallest uncertainties and were the

top overall performers. The remaining two methods (all-

pass factorization and phase smoothing) both yield sig-

nificantly biased estimates of the delay trend and are not

recommended.

A. Role of the model

To test and validate the various analysis methods, we

simulated reflection-source OAEs using a phenomenological

model of the emission process. Although the model inherits

its ability to generate realistic SFOAEs from coherent-

reflection theory, the same modeling framework need not be

used to interpret delay trends extracted from measurements

in actual ears. For example, although coherent-reflection

theory provides a ready physical interpretation of the phase-

gradient delay in terms of the wavelength of the traveling

wave in the region of OAE generation, the validity of our

conclusions about methods of data analysis do not depend on

this interpretation. For our purposes here, the only aspects of

the model that really matter are that the model provides a

known, benchmark form of �NSFOAEðf Þ for computing the

estimation error and that the simulations produce realistic

SFOAE data as fodder for subsequent signal processing.

The parameters of the phenomenological model were

chosen to simulate the measured properties of human

SFOAEs, in particular, the segmented, approximate power-

law form of NSFOAE(f) derived from the frequency depend-

ence of the SFOAE phase (Shera and Guinan, 2003).

Although the variation of NSFOAE(f) with frequency in

humans remains the subject of some debate (e.g., Schairer

et al., 2006; Shera et al., 2010; Bentsen et al., 2011)—

indeed, the hope of informing this debate provided a princi-

pal motivation for the current study—our conclusions about

the reliability of the various analysis methods are not espe-

cially sensitive to the assumed frequency dependence. In

numerous control simulations not detailed here, we found

qualitatively similar results using other forms for �NSFOAEðf Þ,
such as the pure “scaling” model in which �NSFOAE is

assumed constant and �sSFOAEðf Þ varies as 1/f. As discussed

in the following, we also sought to identify the principles

underlying the relative success or failure of the different

methods, and found that, with one exception, none of them

hinges on the assumed form of �NSFOAEðf Þ. The exception is

the phase-smoothing method, which introduces a bias whose

variation across frequency depends on the global curvature

of the emission phase, and thus on �NSFOAEðf Þ.
Although our simulations were implemented in the fre-

quency domain as an explicit model of human SFOAEs, we

expect our results also apply to phase-gradient delays

obtained from reflection-source OAEs measured with other

paradigms (e.g., by measuring click-evoked emissions or by

unmixing distortion-product OAEs to extract the “reflection”

component) and in other species (e.g., chinchillas, lizards).

Although the optimal analysis parameters will no doubt

require adjustment on a case-by-case basis, the methods

described here are potentially of wide utility.

FIG. 12. Mean /FFT cepstra in subjects with and without intracochlear

standing waves. The solid line shows jFfReflog PSFOAEggj versus normal-

ized quefrency averaged over 50 in silico subjects with |Rstapes|¼ 0.8 (and

max|R|¼ 1). Since the number of potential standing-wave maxima in

|PSFOAE(f)| varies from subject to subject, the quefrency g was normalized

by N/ before averaging. The sharp peak near unity along the abscissa (verti-

cal gray dashed line) arises from spectral components in PSFOAE(f) that orig-

inate via multiple internal reflection. /FFT smoothing removes the peak and

other high quefrency components by windowing the cepstrum. The dotted

line shows the corresponding mean cepstrum computed in the same subjects

with Rstapes¼ 0. /FFT cepstral magnitudes were averaged across subjects to

reduce the variance and render the systematic differences between those

with and without significant standing wave components more salient. The

mean SNR was 25 dB.
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B. Simplifications in the model

Our focus here has been on devising and evaluating

strategies for mitigating the influence on estimated phase-

gradient delay trends of the large and irregular variations

across frequency arising from reflection-source OAE spec-

tral macrostructure. Although the model captures the inher-

ent irregularity of the delay, as well as contributions from

Gaussian measurement noise,16 OAEs recorded from real

ears contain other sources of variability not included in the

model. For example, different ears, in addition to having dif-

ferent micromechanical irregularity patterns, no doubt pres-

ent with a range of underlying cochlear tuning and delay

characteristics. Restated in terms of model parameters, the

real-life analogs of the functions �NSFOAEðf Þ and QERB(CF)

presumably vary somewhat from subject to subject, even

among those with “normal” hearing. Although the model

could readily be extended to incorporate this added realism,

doing so seems unlikely to alter our conclusions about the

relative merits of the proposed analysis strategies. [It would,

of course, affect such things as the standard deviation of the

prediction error (Fig. 6), which would be increased by the

additional variability in the population.]

By setting GME¼ 1, we elected, in effect, to ignore

emission features arising from roundtrip middle-ear trans-

mission. Although the middle ear plays a central role in

determining overall emission levels, the forward- and

reverse-transfer functions generally vary only slowly with

frequency compared to SFOAE phase or spectral macro-

structure (e.g., Puria, 2003) and are thus unlikely to be major

determinants of emission delay or its variability.17 We there-

fore expect that extending the model to include a more real-

istic form of GME(f) and its possible variation from subject

to subject will leave our basic conclusions unchanged. In

cases where middle-ear mechanics do contribute substan-

tially to SFOAE delays—the bulla resonance in the tiger

may be an example (Bergevin et al., 2012b)—we expect an

impact not so much on the choice of signal processing strat-

egy used to extract the delays as on the subsequent interpre-

tation of those delays in terms of cochlear and middle-ear

mechanics.

C. Effects of multiple internal reflection

In addition to evaluating strategies for extracting delay

trends, we used our simulations to demonstrate that standing

waves caused by multiple internal reflection can complicate

the interpretation and application of OAE delays. For exam-

ple, by increasing emission delays through mechanisms not

directly related to mechanical tuning, standing waves can

bias estimates of tuning sharpness and its variation with

stimulus intensity obtained from OAE phase-gradient delays.

Multiple internal reflection is strongest when the product of

the cochlear and stapes reflectances, RRstapes, is close to one,

a condition most likely to occur at stimulus levels near

threshold in strongly emitting ears. Our simulations demon-

strate both that the bias in individual ears can be large near

standing-wave frequencies (cf. Fig. 10) and that averaging

across subjects appears to reduce the bias in the delay trend

substantially. Consistent with this latter result, the one study

that compared phase-gradient delays in ears with and with-

out SOAEs found no significant differences in the pooled

trends (Bergevin et al., 2012a). Although those who wish to

measure emission latencies at low levels or in special popu-

lations should be aware of the potential complications, we

suspect that bias introduced by multiple reflection is likely

insignificant in most published measurements of reflection-

source OAE latency trends—most of which either pooled

data across individuals with a range of emission strengths,

excluded data near spontaneous emissions, and/or made

measurements at stimulus levels where the appearance and

spacing of the OAE magnitude maxima suggests that

jRRstapesj was much less than one. We therefore expect that

the methods proposed here will be most useful in addressing

standing-wave effects in individual ears.

To separate out the effects of multiple reflection, we

developed and evaluated two signal-processing procedures—

prefiltering with continuous wavelet transforms and /FFT

smoothing—to isolate the direct emission from its later reflec-

tions and thereby eliminate any standing-wave components

that may be present in the measurements. (Although we here

emphasize the application of CWT prefiltering and /FFT

smoothing for eliminating standing-wave components in

order to obtain the direct emission, the same methods can of

course be used to extract and study the standing-wave compo-

nent itself.) Although both methods substantially reduce the

estimation bias for the trend, /FFT smoothing provides more

uniform results across frequency and has a more benign effect

on data free of standing-wave ripples. In addition, /FFT

smoothing is both easier to implement and more computation-

ally efficient. (Unlike CWT prefiltering, however, the /FFT

method lacks the intuitive appeal provided by colorful images

that make visible the multiple reflections as they echo across

time and frequency.) Because the CWT method relies on

analysis and resynthesis using a bank of constant-Q filters

whose properties are not optimally matched to those of the

emissions being analyzed—which originate from a system in

which tuning and delay violate the scaling assumption of con-

stant-Q—the method introduces a frequency-dependent bias

whose effects are especially apparent below 1 kHz, where

violations of scaling are most pronounced.

D. Peak-picking and related methods

The two top performing methods (peak-picking and

energy-weighting) yield close to statistically unbiased esti-

mates of the underlying model trend (Fig. 2), have the small-

est standard deviations (Fig. 3), and produce trends with the

least uncertainty. Both methods emphasize data near peaks

in SFOAE magnitude, where the phase gradient is generally

closest to the model trend (Fig. 6). Of these two methods,

energy-weighting is the easiest to implement, requiring noth-

ing more than routines for performing weighted loess

smoothing. The method of excluding data with poor SNR

performs nearly as well, at least when the criterion is chosen

to mimic the top two strategies by excluding data at frequen-

cies away from magnitude peaks.

Although manipulations such as energy-weighting and

SNR-based data exclusion are usually justified by the
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perceived need to discount noisy data, the secret to their suc-

cess lies primarily in their ability to mimic the peak-picking

procedure by emphasizing data near peaks, where delays are

closest to the trend. For example, the SNR-based exclusion

method only matches the performance of peak-peaking

when the criterion is chosen to pass the peaks and exclude

the rest. Failing to exclude data near magnitude dips, even if

the SNR is everywhere exceptional, reduces the ability to

recover the underlying trend.

An important virtue of peak-picking and related strategies

is that they render estimates of phase-gradient delay trends

insensitive to the most common form of phase-unwrapping

error. At least in data without significant standing-wave com-

ponents, these errors occur mostly near magnitude dips, where

the SNR is usually poor and the phase tends to change most

rapidly, making it difficult to correctly resolve unwrapping

ambiguities. As a consequence of their concentration near

magnitude dips, unwrapping errors remain largely invisible to

strategies that focus on phase gradients near peaks.

The easiest-to-implement method of doing “nothing

special” (i.e., simply fitting unweighted robust loess curves

to all the available data) worked surprisingly well. We attrib-

ute this to the power of locally linear regression, especially

robust loess smoothing, to extract trends from “noisy” data.

In separate experiments, we found that robust fitting, in

which an initial trend is iteratively improved after deempha-

sizing data with large residuals (Cleveland, 1993, Sec. 3.4),

noticeably improved the performance of all methods.

Our focus in this paper has been on pooling data across

subjects to estimate group or species trends. However, by

reducing the scatter inherent in reflection-source OAE delay

data, peak-picking and related methods also hold promise

for obtaining more reliable estimates of phase-gradient

delays, and thus perhaps estimates of cochlear tuning, in

individuals. (Some evidence for the reliability of the proce-

dures applied to individual subjects appears in Fig. 5 at n¼ 1

along the abscissa.) Removing the effects of multiple inter-

nal reflection is likely to prove critical to the meaningful

estimation of OAE delays in individual ears.

Finally, it goes (almost) without saying that although

the methods reviewed here can improve the reliability of

delay trends extracted from OAE measurements, there can

be little substitute for densely sampled data with good sig-

nal-to-noise ratios. Even the most effective algorithms, we

found, require that the peaks be readily distinguishable from

the noise and that phases near those peaks be correctly

unwrapped. Peak-picking and related strategies are no

exceptions to the rule of “garbage in, garbage out.”

E. Why peak-picking works

The success of the peak-picking method, when applied to

data without significant standing-wave components, can be

understood heuristically by considering the complementary

question of why one should avoid spectral notches and dips.

Notches in emission magnitude and their associated phase rip-

ples arise when two or more emission “components” combine

by vector addition and nearly cancel one another. The multi-

ple combining components need not arise from spatially dis-

tinct regions of the cochlea (e.g., from the tip and tail regions

of the traveling wave). For example, notches in SFOAE mag-

nitude can occur when the wavelets scattered by irregularities

located in the apical and basal halves of the traveling-wave

peak region happen to have similar amplitudes, but nearly op-

posite phases. In this case, the emission components arise

from the same general region, albeit from different locations

within the peak. At frequencies near notches, emission magni-

tudes and phases—and hence emission phase-gradient

delays—are precariously sensitive to changes in the individual

components. As a result, small changes (e.g., in the irregular-

ities contributing to the emission because of shifts in stimulus

frequency or level) can produce significant but largely unin-

formative effects. For this reason, phase gradients near

notches are often dominated by local, idiosyncratic mecha-

nisms and can be unreliable guides to the overall emission

delay. Conversely, emission phase and delay near spectral

maxima, which occur when components with similar phases

combine constructively, are not nearly so sensitive to small

changes in the individual components. For the same reason, it

is also near emission maxima that the spectral magnitude

tends to vary most slowly with frequency, a necessary condi-

tion for interpreting phase gradients as actual physical time

delays (Papoulis, 1962, Sec. 7–5).

1. A two-component model for peaks and dips

These heuristic statements about why peak-picking

works can be made more precise with the help of a simple

two-component model for SFOAE peaks and dips. For this

purpose, we represent local SFOAE magnitude and phase by

a function of the following form:

Fðf Þ � ½1 þ Aeih� e�2pif s1 ; (19)

consisting of a general sum of two components, with relative

amplitude A > 0 and phase h, multiplied by a phasor that

captures the overall emission delay (s1 > 0). We imagine

that the relative phase of the two components, h(f), varies

slowly with frequency (i.e., js2j=s1 
 1 where 2ps2

� �dh=df ). The interaction of the two components produces

a peak in logjFj (i.e., in the SFOAE level) when the compo-

nents are in phase (h¼ 0) and a dip when they are out of

phase (h¼6p). The depth of the dip depends on A; when A
is close to 1 the two components nearly cancel and the dip

becomes a deep notch. Fixing the relative amplitude of the

components and computing the phase-gradient delay yields

s ¼ s1 þ s2

A2 þ Acosh
1 þ A2 þ 2Acosh

; (20)

where the first term (s1) is the overall delay of interest and

the second term represents the contribution to the phase gra-

dient arising from interference between the components. The

interference term is largest near a dip, where the phase-

gradient delay becomes

sdip ¼ s1 � s2

A

1 � A
: (21)

940 J. Acoust. Soc. Am., Vol. 132, No. 2, August 2012 C. A. Shera and C. Bergevin: Estimating otoacoustic delay trends

Downloaded 08 Aug 2012 to 130.63.110.251. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Because of the possible zero in the denominator, the phase-

gradient delay can vary wildly near a dip, even when js2j

 s1. Letting A¼ 1 � � yields sdip% s1 � s2/� near a notch

(j�j 
 1). Thus, depending on the relative amplitude of the

components, sdip can easily be much larger or much smaller

than s1. Indeed, sdip can even become negative. Conversely,

the interference contribution to the phase-gradient delay is

smallest near a peak, where

speak ¼ s1 þ s2

A

1 þ A
: (22)

In this case, the phase-gradient delay can be either longer or

shorter than s1, depending on the sign of s2, but the total

deviation from s1 is limited. When the two components have

similar amplitudes, speak ffi s1 þ 1
2
s2, which is close to s1

when js2j 
 s1. Our analysis thus supports the computa-

tional results illustrated in Fig. 6. In particular, the phase-

gradient delay generally appears most representative of the

underlying trend at frequencies corresponding to emission

maxima.

F. Why all-pass factorization fails

The all-pass factorization method relies on the presump-

tion that the “notchy” behavior seen in SFOAE spectra is

minimum-phase—or at least sufficiently close to being

minimum-phase to be useful—and can therefore be divided

out to obtain an all-pass component consisting of a more

smoothly varying delay. As illustrated in Fig. 8, however,

the delay of the all-pass component is not uniformly

smoother than that of the total SFOAE, even at high SNR—

sometimes it is, sometimes it is not. The issue is not princi-

pally one of measurement noise; similar results are obtained

even when the noise is zero. Instead, the failure of the

method implies that SFOAE macrostructure is not, in fact,

approximately minimum-phase. Equivalently, the all-pass or

delay component of reflection-source OAEs [i.e., the delay

denoted sAP in the text following Eq. (6)] is inherently irreg-

ular (cf. Kalluri and Shera, 2012).

The absence of minimum-phase behavior in SFOAE mac-

rostructure can readily be understood using the two-component

model for SFOAE peaks and dips (see Sec. VI E 1). In that

context, the presumption underlying the all-pass factoriza-

tion is that the sum of the two components [i.e., 1 þ Aeih in

Eq. (19)] can be identified with PMP(f) in Eq. (6). The com-

plex phasor representing the overall delay [i.e., e�2pif s1 in

Eq. (19)] is then the all-pass component. Whether a function

is minimum-phase or not depends on the locations of its

poles and zeros in the complex frequency plane (Papoulis,

1962, Sec. 10–3). In general, there is no guarantee that a

sum remains minimum-phase, even if both components qual-

ify individually. In this case, the locations of the zeros of the

sum 1 þ Aeih depend sensitively on the complex ratio of the

two components (i.e., on their relative amplitude and phase),

which evidently varies in an irregular way from notch to

notch; consequently the sum is not generally minimum-

phase. Indeed, explicit computation of the zeros of 1 þ Aeih

for a simple form of h(f) shows that they often violate the

criteria for minimum-phase behavior. When the phase is a

pure delay of the form h(f)¼�2pfs2, the zeroes occur when

Ae�2pif s2 ¼ �1; that is, at those (complex) frequencies fz
satisfying

2pfzs2 ¼ n þ 1

2

� 	
� i log A ðn ¼ 0; 61;…Þ:

(23)

Whenever s2 and log A have the same sign (i.e., if s2 > 0

and A > 1, or s2 < 0 and A < 1), then Im fz < 0, the zeroes

lie in the lower half of the complex f-plane, and the function

is not minimum-phase. Although minimum-phase behavior

is a global property that depends on the locations of all the

poles and zeros, we conjecture that the all-pass factorization

method generally smooths well at frequencies near zeroes in

the upper half-plane (Im fz > 0), while having the opposite

effect (i.e., increasing the local curvature, or anti-smoothing)

near zeroes in the lower half-plane, thereby accounting for

the variability in performance evidence in Fig. 8. Although

the all-pass factorization method seems a lovely idea a pri-
ori, SFOAE macrostructure—both in silico and, we suspect,

in vivo—is evidently not minimum-phase (or close to it), and

the method therefore fails to produce overall useful

smoothing.

G. Why phase smoothing introduces bias

By overestimating the delay �NSFOAE at low frequencies

and underestimating it at high frequencies (Fig. 2), smooth-

ing the phase produces a frequency-dependent bias. This pat-

tern of bias results from the generally downward curvature

of the SFOAE phase (see Fig. 1) when plotted versus log f,
the abscissa used to calculate the smoothing splines.18 In the

limiting case of maximal smoothing (s¼ 1), SFOAE phase

curves similar to those shown in Fig. 1 are transformed into

straight lines with the same rise and run. However, because

of the overall downward curvature of the phase, the slope of

these best-fitting lines is much greater than the actual phase

slope at low frequencies and much smaller than the actual

phase slope at high frequencies. Although the deviations are

less extreme when smoothing with smaller values of s, the

same overall pattern of bias remains.

Another problem with phase smoothing, at least when

implemented with conventional smoothing splines, is that

the minimization involves the total integrated phase curva-

ture. Because of the global optimization, delay estimates at

widely different frequencies become linked. Consequently,

the SNR or overall phase curvature at high-frequencies influ-

ences the amount of smoothing performed at low frequen-

cies, and vice versa, even though the emissions themselves

are physically independent. Although we did not attempt to

salvage the method by exploring the possibility, allowing the

smoothing parameter s to vary with frequency might help to

alleviate these problems.

Although smoothing the phase introduces bias and

appears undesirable when estimating phase-gradient delays,

smoothing the delay itself (e.g., using loess smoothing)

proves extremely effective at ironing out subject-dependent
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bumps and wiggles to extract reliable and meaningful delay

trends. The difference in outcomes can be traced largely to

when the smoothing is applied: By smoothing the delay

rather than the phase, we postpone the smoothing operation,

and its potential for distorting the data to produce damaging

downstream consequences, until the very end of the

process.

Our results corroborate previous reports that smoothing

the phase prior to estimating the derivative yields delay

trends that differ systematically from those obtained without

smoothing (Schairer et al., 2006; Bentsen et al., 2011). The

results help resolve differences in the literature about the

value and frequency dependence of SFOAE delay and their

consequences for noninvasive estimates of human cochlear

tuning. In particular, the bias introduced by phase smoothing

suggests that trends obtained without smoothing are almost

certainly more characteristic of the underlying mechanics

and tuning of the cochlea.
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1Although the subject is beyond the scope of this paper, the coherent-

reflection model indicates that information about cochlear mechanisms

can be extracted not only from overall trends but also from details of the

frequency fluctuations themselves (e.g., from the pattern of the spacings

between amplitude notches).
2Here and throughout, we use the term “reliable” both in its dictionary

sense (“consistently good in quality or performance; able to be trusted”)

and as a shorthand for the more technical “without appreciable bias or

uncertainty.”
3The phase-gradient delay, s(f), corresponding to the phase h(f) is defined

as 2ps¼�dh/df.
4The factor of 2 multiplying NW(CF) in Eq. (5) comes from the square in

Eq. (3) for R(f). Physically, the factor of 2 arises because in conventional

cochlear models the roundtrip (emission) delay is approximately twice

the forward delay of the traveling pressure-difference wave (Shera et al.,
2008).

5The “bend” in the NSFOAE(f) curve appears to be associated with the

emergence of an additional, short-latency SFOAE component in the api-

cal region of the cochlea (Shera and Guinan, 2003; Siegel et al., 2005;

Shera et al., 2008). Although the origin of the short-latency component

remains unclear (Shera et al., 2008), we have incorporated the bend into

our phenomenological model to produce more realistic emission delays.
6Although we had no need to employ it here, our implementation of the

loess smoothing algorithm allows the value of aloess to vary with fre-

quency (i.e., with the value of the independent variable). In the current

application, this feature allows one to specify that the fitting window span

a constant number of octaves, regardless of the local sampling density.

Imagine, for example, that we had chosen to sample the data using linear

frequency spacing rather than logarithmic. If the fits were performed after

log-transforming the frequency, the constant value of aloess used in stand-

ard loess would then produce a fitting window that spanned a larger (pos-

sibly much larger) number of octaves at low frequencies than at high. Our

implementation allows one to guarantee that the fit be equally “local”—

however one chooses to define that—at all frequencies, independent of

the choice of sampling. MATLAB software for computing loess curves and

their confidence intervals is available from the authors.
7In our simulations, the noise floor and the mean SNR were approximately

constant across frequency (Fig. 1). Consequently, we applied the same

SNR-based exclusion criteria (e.g., 15 dB) at all frequencies. When ana-

lyzing real measurements, however, it may be desirable, especially when

mimicking the peak-picking strategy, to vary the criterion with frequency

to compensate for frequency dependence of the noise floor.
8

MATLAB’s csaps function uses a parameter, p, defined as p � 1 � s.
9We computed the minimum-phase component using the Hilbert trans-

form, as implemented in MATLAB’s rceps function. rceps requires an esti-

mate of the system’s impulse response, a time waveform equivalent in

this case to the model’s click-evoked emission. We obtained the neces-

sary time waveform from the SFOAE using the inverse Fourier transform.

Technically, this required interpolating our SFOAE measurements to lin-

ear frequency spacing; however, skipping this step and simply inverse

transforming the log-spaced measurements had no particular effect, either

beneficial or adverse, on the results.
10Note that with the substitution

ffiffiffi
f
p

wðftÞ ! e2pift in Eq. (8), wp(0, f)
becomes the Fourier transform of p(t).

11We used a convergence criterion of 1%, but found that the precise value

makes little difference. In all but a handful of recalcitrant cases, conver-

gence was achieved in fewer than five to ten iterations.
12When computing estimates of s0

SFOAEðf Þ, we used a constant value of a
for simplicity. A better, albeit more computationally intensive procedure

would be to determine the optimal value of a adaptively. For example, at

each analysis frequency in every subject one could compute the latency

s0
SFOAEðf ; aÞ as a function of a over some reasonable range (e.g., 1.3 < a
< 2.3) and identify the value of a where the dependence on a is weakest.

In other words, one could define the optimal value of a, for that fre-

quency in that subject, as the value which minimizes the derivative

@s0
SFOAEðf ; aÞ=@a.

13The /FFT is distinguished by both spelling and pronunciation from the

slang term “phifft,” which the Urban Dictionary defines as “a word that

brain dead matter comes up with when it is unable to produce a more

intelligent sound.”
14The operation of Fourier transformation with respect to / is defined as

FfXð/Þg ðgÞ ¼
Ð

Xð/Þ e�2pi/g d/. When applied to a function of fre-

quency, G(f), the function X(/) is taken to be Xð/Þ ¼ X½/ðf Þ� � Gðf Þ.
When X(/) is complex, as in Eq. (18), we have found that computing the

transforms of its real and imaginary parts separately often proves con-

venient. Potential problems with branch cuts in computing log PSFOAE(f)
in Eq. (18) can be circumvented by defining the complex logarithm as

log zðf Þ ¼ log jzðf Þj þ ihðf Þ, where h(f) is the unwrapped phase of z(f).
15Interpolation was necessary when resampling the data at equal intervals

of /(f) because we assumed, for consistency with previous measure-

ments, that SFOAE values were only available at a predetermined set of

discrete measurement frequencies (see Sec. II). However, we recom-

mend measuring reflection-source OAEs using swept tones (e.g., Choi

et al., 2008; Long et al., 2008; Bennett and Özdamar, 2010; Kalluri and

Shera, 2012), in which case no interpolation is necessary; the swept

responses can simply be reanalyzed to extract SFOAE values at the

desired frequencies.
16By modeling the measurement noise as Gaussian, we are assuming, in

effect, that any non-Gaussian noise contributions to measured SFOAEs

(e.g., that horrible coughing fit in the middle of the measurement ses-

sion) have been successfully removed by artifact-rejection algorithms.
17In chinchilla, for example, middle-ear delay appears negligible com-

pared to traveling-wave or otoacoustic delay (e.g., Ruggero et al., 1990;

Songer and Rosowski, 2007).
18If the smoothing is performed on a linear frequency axis, the phase cur-

vature changes from convex down to convex up, and the pattern of bias

across frequency is reversed.

Bennett, C. L. and Özdamar, Ö. (2010). “Swept-tone transient-evoked otoa-

coustic emissions,” J. Acoust. Soc. Am. 128, 1833–1844.

Bentsen, T., Harte, J. M., and Dau, T. (2011). “Human cochlear tuning esti-

mates from stimulus-frequency otoacoustic emissions,” J. Acoust. Soc.

Am. 129, 3797–3807.

Bergevin, C. (2011). “Comparison of otoacoustic emissions within gecko

subfamilies: Morphological implications for auditory function in lizards,”

J. Assoc. Res. Otolaryngol. 12, 203–217.

Bergevin, C., Freeman, D. M., Saunders, J. C., and Shera, C. A. (2008).

“Otoacoustic emissions in humans, birds, lizards, and frogs: Evidence for

multiple generation mechanisms,” J. Comp. Physiol. A 194, 665–683.

Bergevin, C., Fulcher, A., Richmond, S., Velenovsky, D., and Lee, J.

(2012a). “Interrelationships between spontaneous and low-level stimulus-

frequency otoacoustic emissions in humans,” Hear. Res. 285, 20–28.

942 J. Acoust. Soc. Am., Vol. 132, No. 2, August 2012 C. A. Shera and C. Bergevin: Estimating otoacoustic delay trends

Downloaded 08 Aug 2012 to 130.63.110.251. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Bergevin, C., and Shera, C. A. (2010). “Coherent reflection without travel-

ing waves: On the origin of long-latency otoacoustic emissions in lizards,”

J. Acoust. Soc. Am. 127, 2398–2409.

Bergevin, C., Velenovsky, D. S., and Bonine, K. E. (2010). “Tectorial mem-

brane morphological variation: Effects upon stimulus frequency otoacous-

tic emissions,” Biophys. J. 99, 1064–1072.

Bergevin, C., Walsh, E. J., McGee, J., and Shera, C. A. (2012b). “Probing

cochlear tuning and tonotopy in the tiger using otoacoustic emissions,” J.

Comp. Physiol. A (in press).

Bogert, B. P., Healy, M. J. R., and Tukey, J. W. (1963). “The quefrency

alanysis of time series for echoes: Cepstrum, pseudo-autocovariance,

cross-cepstrum and saphe cracking,” in Proceedings of the Symposium
on Time Series Analysis, edited by M. Rosenblatt (Wiley, New York),

pp. 209–243.

Choi, Y.-S., Lee, S.-Y., Parham, K., Neely, S. T., and Kim, D. O. (2008).

“Stimulus-frequency otoacoustic emission: Measurements in humans and

simulations with an active cochlear model,” J. Acoust. Soc. Am. 123,

2651–2669.

Cleveland, W. S. (1993). Visualizing Data (Hobart, Summit, NJ).

Dhar, S., Talmadge, C. L., Long, G. R., and Tubis, A. (2002). “Multiple in-

ternal reflections in the cochlea and their effect on DPOAE fine structure,”

J. Acoust. Soc. Am. 112, 2882–2897.

Francis, N. A., and Guinan, J. J. (2010). “Acoustic stimulation of human

medial olivocochlear efferents reduces stimulus-frequency and click-

evoked otoacoustic emission delays: Implications for cochlear filter

bandwidths,” Hear. Res. 267, 36–45.

Greenwood, D. D. (1990). “A cochlear frequency-position function for sev-

eral species—29 years later,” J. Acoust. Soc. Am. 87, 2592–2605.

Harte, J. M., Pigasse, G., and Dau, T. (2009). “Comparison of cochlear delay

estimates using otoacoustic emissions and auditory brainstem responses,”

J. Acoust. Soc. Am. 126, 1291–1301.

Joris, P. X., Bergevin, C., Kalluri, R., Mc Laughlin, M., Michelet, P., van

der Heijden, M., and Shera, C. A. (2011). “Frequency selectivity in Old-

World monkeys corroborates sharp cochlear tuning in humans,” Proc.

Natl. Acad. Sci. U.S.A. 108, 17516–17520.

Kalluri, R., and Shera, C. A. (2001). “Distortion-product source unmixing:

A test of the two-mechanism model for DPOAE generation,” J. Acoust.

Soc. Am. 109, 622–637.

Kalluri, R., and Shera, C. A. (2012). “Equivalence of swept- and discrete-

tone stimulus-frequency otoacoustic emissions,” Assoc. Res. Otolaryngol.

Abs. 35, 399.

Kemp, D. T. (1978). “Stimulated acoustic emissions from within the human

auditory system,” J. Acoust. Soc. Am. 64, 1386–1391.

Knight, R. D., and Kemp, D. T. (2001). “Wave and place fixed DPOAE

maps of the human ear,” J. Acoust. Soc. Am. 109, 1513–1525.

Konrad-Martin, D., and Keefe, D. H. (2003). “Time-frequency analyses of

transient-evoked, stimulus-frequency, and distortion-product otoacoustic

emissions: Testing cochlear model predictions,” J. Acoust. Soc. Am. 114,

2021–2043.

Lineton, B., and Wildgoose, C. M. (2009). “Comparing two proposed meas-

ures of cochlear mechanical filter bandwidth based on stimulus frequency

otoacoustic emissions,” J. Acoust. Soc. Am. 125, 1558–1566.

Long, G. R., Talmadge, C. L., and Lee, J. (2008). “Measuring distortion-

product otoacoustic emissions using continuously sweeping primaries,” J.

Acoust. Soc. Am. 124, 1613–1626.

Meenderink, S. W., and van der Heijden, M. (2010). “Reverse cochlear

propagation in the intact cochlea of the gerbil: Evidence for slow traveling

waves,” J. Neurophysiol. 103, 1448–1455.

Moleti, A., and Sisto, R. (2008). “Comparison between otoacoustic and au-

ditory brainstem response latencies supports slow backward propagation

of otoacoustic emissions,” J. Acoust. Soc. Am. 123, 1495–1503.

Moleti, A., Sisto, R., Paglialonga, A., Sibella, F., Anteunis, L., Parazzini,

M., and Tognola, G. (2008). “Transient evoked otoacoustic emission la-

tency and estimates of cochlear tuning in preterm neonates,” J. Acoust.

Soc. Am. 124, 2984–2994.

Morlet, J., Arens, G., Forgeau, I., and Giard, D. (1982). “Wave propagation

and sampling theory,” Geophysics 47, 203–236.

Neely, S. T., Norton, S. J., Gorga, M. P., and Jesteadt, W. (1988). “Latency

of auditory brain-stem responses and otoacoustic emissions using tone-

burst stimuli,” J. Acoust. Soc. Am. 83, 652–656.

Papoulis, A. (1962). The Fourier Integral and Its Applications (McGraw–

Hill, New York).

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.

(2007). Numerical Recipes in C: The Art of Scientific Computing, 3rd ed.

(Cambridge University Press, Cambridge).

Puria, S. (2003). “Measurements of human middle ear forward and reverse

acoustics: Implications for otoacoustic emissions,” J. Acoust. Soc. Am.

113, 2773–2789.

Ruggero, M. A., Rich, N. C., Robles, L., and Shivapuja, B. G. (1990).

“Middle-ear response in the chinchilla and its relationship to mechanics at

the base of the cochlea,” J. Acoust. Soc. Am. 87, 1612–1629.

Schairer, K. S., Ellison, J. C., Fitzpatrick, D., and Keefe, D. H. (2006). “Use

of stimulus-frequency otoacoustic emission latency and level to investi-

gate cochlear mechanics,” J. Acoust. Soc. Am. 120, 901–914.

Shera, C. A. (2003). “Mammalian spontaneous otoacoustic emissions are

amplitude-stabilized cochlear standing waves,” J. Acoust. Soc. Am. 114,

244–262.

Shera, C. A., and Guinan, J. J. (1999). “Evoked otoacoustic emissions arise

by two fundamentally different mechanisms: A taxonomy for mammalian

OAEs,” J. Acoust. Soc. Am. 105, 782–798.

Shera, C. A., and Guinan, J. J. (2003). “Stimulus-frequency-emission group

delay: A test of coherent reflection filtering and a window on cochlear

tuning,” J. Acoust. Soc. Am. 113, 2762–2772.

Shera, C. A., Guinan, J. J., and Oxenham, A. J. (2002). “Revised estimates

of human cochlear tuning from otoacoustic and behavioral meas-

urements,” Proc. Natl. Acad. Sci. U.S.A. 99, 3318–3323.

Shera, C. A., Guinan, J. J., and Oxenham, A. J. (2010). “Otoacoustic estima-

tion of cochlear tuning: Validation in the chinchilla,” J. Assoc. Res. Oto-

laryngol. 11, 343–365.

Shera, C. A., Tubis, A., and Talmadge, C. L. (2005). “Coherent reflection in

a two-dimensional cochlea: Short-wave versus long-wave scattering in the

generation of reflection-source otoacoustic emissions,” J. Acoust. Soc.

Am. 118, 287–313.

Shera, C. A., Tubis, A., and Talmadge, C. L. (2008). “Testing coherent

reflection in chinchilla: Auditory-nerve responses predict stimulus-

frequency emissions,” J. Acoust. Soc. Am. 124, 381–395.

Shera, C. A., and Zweig, G. (1991). “Reflection of retrograde waves within

the cochlea and at the stapes,” J. Acoust. Soc. Am. 89, 1290–1305.

Shera, C. A., and Zweig, G. (1993). “Noninvasive measurement of the coch-

lear traveling-wave ratio,” J. Acoust. Soc. Am. 93, 3333–3352.

Siegel, J. H., Cerka, A. J., Recio-Spinoso, A., Temchin, A. N., van Dijk, P.,

and Ruggero, M. A. (2005). “Delays of stimulus-frequency otoacoustic

emissions and cochlear vibrations contradict the theory of coherent reflec-

tion filtering,” J. Acoust. Soc. Am. 118, 2434–2443.

Sisto, R., and Moleti, A. (2007). “Transient evoked otoacoustic emission la-

tency and cochlear tuning at different stimulus levels,” J. Acoust. Soc.

Am. 122, 2183–2190.

Sisto, R., Moleti, A., and Shera, C. A. (2007). “Cochlear reflectivity in

transmission-line models and otoacoustic emission characteristic time

delays,” J. Acoust. Soc. Am. 122, 3554–3561.

Songer, J. E., and Rosowski, J. J. (2007). “Transmission matrix analysis of

the chinchilla middle ear,” J. Acoust. Soc. Am. 122, 932–942.

Talmadge, C. L., Tubis, A., Long, G. R., and Tong, C. (2000). “Modeling

the combined effects of basilar membrane nonlinearity and roughness on

stimulus frequency otoacoustic emission fine structure,” J. Acoust. Soc.

Am. 108, 2911–2932.

Tognola, G., Grandori, F., and Ravazzani, P. (1997). “Time-frequency distri-

butions of click-evoked otoacoustic emissions,” Hear. Res. 106, 112–122.

Wit, H. P., van Dijk, P., and Avan, P. (1994). “Wavelet analysis of real ear

and synthesized click evoked otoacoustic emissions,” Hear. Res. 73,

141–147.

Zweig, G., and Shera, C. A. (1995). “The origin of periodicity in the spec-

trum of evoked otoacoustic emissions,” J. Acoust. Soc. Am. 98,

2018–2047.

J. Acoust. Soc. Am., Vol. 132, No. 2, August 2012 C. A. Shera and C. Bergevin: Estimating otoacoustic delay trends 943

Downloaded 08 Aug 2012 to 130.63.110.251. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp


	s1
	n1
	s2
	s2A
	d1
	d2
	d3
	d4
	d5
	s2B
	s3
	f1
	s4
	f2
	f3
	s4A
	f4
	f5
	f6A
	f6B
	f6C
	f6
	s4B
	s4C
	f7
	s4D
	d6
	s5
	d7
	f8
	s5A
	d8
	d9
	d10
	d11
	f9
	d12
	d13
	f10
	d14
	d15
	s5B
	d16
	f11
	d17
	d18
	s6
	s6A
	f12
	s6B
	s6C
	s6D
	s6E
	s6E1
	d19
	d20
	d21
	d22
	s6F
	d23
	s6G
	fn1
	fn2
	fn3
	fn4
	fn5
	fn6
	fn7
	fn8
	fn9
	fn10
	fn11
	fn12
	fn13
	fn14
	fn15
	fn16
	fn17
	fn18
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50

