Universal functions, strong colouring and PID

Juris Steprans (mostly joint work with Saharon Shelah)

York University

January 13, 2021

JURIS STEPRĀNS (MOSTLY JOINT WORK WITH SAHARON SHELAH UNIVERSAL FUNCTIONS

Model theoretic saturation is defined in a very general context but we will look at a very restricted class of objects.

DEFINITION

A symmetric function $F : \omega_1^2 \to \kappa$ is (countably) saturated if for every $X \in [\omega_1]^{\aleph_0}$ and $f : X \to \kappa$ there is $\xi \in \omega_1$ such that $F(\eta, \xi) = f(\eta)$ for all $\eta \in X$.

DEFINITION

A symmetric function $U : \omega_1^2 \to \kappa$ is universal if for every $F : \omega_1^2 \to \kappa$ there is a one-to-one function $e : \omega_1 \to \omega_1$ such that $F(\xi, \eta) = U(e(\xi), e(\eta))$ for all $(\xi, \eta) \in \omega_1^2$.

Y()K

(4 冊 ト 4 三 ト 4 三 ト

THEOREM

If $F: \omega_1^2 \to \kappa$ is saturated then it is universal.

However, there is a saturated $F : \omega_1^2 \to \kappa$ if and only if $2^{\aleph_0} = \aleph_1$. But universality seems weaker and the following theorem of Shelah shows that this is so.

THEOREM (SHELAH)

It is consistent with set theory that $2^{\aleph_0} = \aleph_2$ and there is a universal $U : \omega_1^2 \to 2$.

The range of U in this theorem can be replaced by ω . The original methods establish this, but it also follows from more general results of Mekler.

(4 冊 ト 4 三 ト 4 三 ト

QUESTION

Does the existence of a universal $U: \omega_1^2 \to 2$ imply the existence a universal $U: \omega_1^2 \to \omega$?

Since Shelah's original model for the consistency of $2^{\aleph_0} = \aleph_2$ and a universal $U: \omega_1^2 \to 2$ is a finite support iteration of ccc partial orders, the following question arises:

QUESTION

Do cardinal invariants imply the existence or non-existence of a universal $U: \omega_1^2 \rightarrow 2?$

QUESTION

Are there interesting weaker versions of a universality?

- By a tree T will be meant a subset T ⊆ ^ω_{ν∈ω} ωⁿ that is closed under initial segments.
- If T is a tree and t ∈ T then T[t] will denote the tree defined by

$$T[t] = \{s \in T \mid s \subseteq t \text{ or } t \subseteq s\}$$

and $\operatorname{succ}_{\mathcal{T}}(t)$ will denote the set $\{s \in \mathcal{T} \mid s \supseteq t \text{ and } |s| = |t| + 1\}.$

- A tree T will be called *infinite splitting* if $|\operatorname{succ}_{T}(t)| \in \{1, \aleph_0\}$ for each $t \in T$.
- Define $\operatorname{split}(T) = \{t \in T \mid |\operatorname{succ}_T(t)| = \aleph_0\}$ and define

 $\operatorname{split}_n(T) = \{t \in \operatorname{split}(T) \mid | \{k \in |t| \mid t \upharpoonright k \in \operatorname{split}(T)\} | = n\}.$

(지원) 지금이 지금이 문

DEFINITION

Miller forcing, is denoted by **PT** and consists of all infinite splitting trees ordered by inclusion.

DEFINITION

Laver forcing, on the other hand, is denoted by LT consists of all infinite splitting trees such that $T \setminus \text{split}(T)$ is finite, also ordered by inclusion.

< /₽ > < E > <

The ideal $\mathcal{S}(G)$

DEFINITION

A function $\psi : \overset{\omega}{\longrightarrow} \omega \to [\omega_1]^{<\aleph_0}$ satisfying that $\psi(s) \cap \psi(t) = \emptyset$ unless s = t will be said to have disjoint range. If G is a filter of subtrees of $\overset{\omega}{\longrightarrow} \omega$ and ψ has disjoint range define

$$S(G,\psi) = \bigcup_{t\in\bigcap G} \psi(t).$$

If G is a generic filter of trees over a model V define

 $\mathcal{S}(\mathcal{G}) = \{ \mathcal{S}(\mathcal{G}, \psi) \mid \psi \in V \text{ and } \psi \text{ has disjoint range} \}.$

It will be shown that in various generic extensions $\mathcal{S}(G)$ is a P-ideal.

- If *T* is infinite splitting then let Ψ_T : ^ωω → split(*T*) be the unique bijection from ^ωω to split(*T*) preserving the lexicographic ordering.
- For t ∈ ^ωω let T⟨t⟩ = T[Ψ_T(t)] Hence stem(T) can be defined to be Ψ_T(Ø) for infinite splitting trees T.
- Let $\{u_i\}_{i \in \omega}$ enumerate $\overset{\omega}{\smile} \omega$ in such a way that if $k < |u_i|$ then there is $j \in i$ such that $u_i \upharpoonright k = u_j$.

イロト イポト イヨト イヨト

- Then for infinite splitting trees T and S the ordering \leq_n is defined by $T \leq_n S$ if $T \subseteq S$ and $\Psi_S(u_j) = \Psi_T(u_j)$ for all $j \leq n$.
- Define $T_{\setminus \text{stem}}$ denote $\{t \in T \mid \text{stem}(T) \subsetneq t\}$.

LEMMA

If $T \Vdash_{\mathbf{PT}} "\dot{S} \in S(\dot{G})$ and $\dot{f} : \dot{S} \to 2"$ then there is $T^* \subseteq T$ and $f^* : \omega_1 \to 2$ such that

$$T^* \Vdash_{\mathbf{PT}} "f^* \upharpoonright \dot{S} = \dot{f}".$$

Given $T \in \mathbf{PT}$ find $\overline{T} \subseteq T$ and ψ with disjoint range such that $\overline{T} \Vdash_{\mathbf{PT}} "\dot{S} = S(\dot{G}, \psi)"$. Now construct T_n and f_n^* such that: • $T_0 = \overline{T}$

- $T_{n+1} \leq_n T_n$
- **3** the domain of f_n^* is $\bigcup_{j \in n} \bigcup_{k \leq |\Psi_{T_n}(u_j)|} \psi(\Psi_{T_n}(u_j) \upharpoonright k)$
- if $j \in n$ then $T_n \langle u_j \rangle \Vdash_{\mathbf{PT}} "f_n^* \upharpoonright \bigcup_{k \leq |\Psi_{T_n}(u_j)|} \psi(\Psi_{T_n}(u_j) \upharpoonright k) \subseteq \dot{f}".$

< 回 ト < 三 ト < 三 ト

Then if $T^* = \bigcap_{n \in \omega} T_n$ it is clear that if $f^* \supseteq \bigcup_{n \in \omega} f_n^*$ then ψ and f^* witness that T^* satisfies the lemma.

To complete the induction it suffices to note that

$$T_n \langle u_n \rangle \Vdash_{\mathbf{P}} "\psi(\Psi_{T_n}(u_n)) \subseteq \dot{S}"$$

and hence there are $T^* \subseteq T_n \langle u_n \rangle$ and f^* such that $T^* \Vdash_{\mathbf{P}} "\dot{f} \upharpoonright \psi(\Psi_{T_n}(u_n)) = f^*"$. Let $f^*_{n+1} = f^*_n \cup f^*$ and note that letting

$$T_{n+1} = (T_n \setminus (T_n \langle u_n \rangle)_{\setminus \text{stem}}) \cup T^*$$

satisfies (2).

・ 同 ト ・ ヨ ト ・ ヨ ト ・

COROLLARY (1)

 $\mathbb{T}_{\omega} \Vdash_{\mathbf{PT}} \mathscr{C}(\dot{G})$ is closed under subsets".

LEMMA

 $\mathbb{T}_{\omega} \Vdash_{\mathbf{PT}} "S(\dot{G})$ is closed under finite unions."

Given Corollary 1 it suffices to show that if

$$\mathcal{T} \Vdash_{\mathsf{PT}} ``\{\dot{X}, \dot{Y}\} \subseteq \mathcal{S}(\dot{G}) ext{ and } \dot{X} \cap \dot{Y} = arnothing "$$
(1)

then there is ψ^* with disjoint range and $T^* \subseteq T$ such that $T^* \Vdash_{\mathbf{PT}} "\dot{X} \cup \dot{Y} = S(\dot{G}, \psi^*)$ ".

・ 同 ト ・ ヨ ト ・ ヨ ト

Begin by finding $\tilde{T} \subseteq T$ and ψ_X and ψ_Y such that $\tilde{T} \Vdash_{\mathbf{PT}} "\dot{X} = S(\dot{G}, \psi_X)$ and $\dot{Y} = S(\dot{G}, \psi_Y)"$.

Now let $\psi(t) = \psi_X(t) \cup \psi_Y(s)$ and construct $\{T_n\}_{n \in \omega}$ such that • $T_0 = \tilde{T}$

$$\ 2 \ \ T_{n+1} \leq_n T_n$$

◎ $\psi(s) \cap \psi(t) = \emptyset$ if $t \in T_n$ and $s \subseteq \Psi_{T_n}(u_j)$ for some $j \le n$ and $t \ne s$.

If this can be done then let $T^* = \bigcap_n T_n$ and $\psi^* = \psi \upharpoonright T^*$ and observe that $T^* \Vdash_{\mathbf{PT}} "\dot{X} \cup \dot{Y} = S(\dot{G}, \psi^*)"$.

To complete the induction note that Hypothesis 1 implies that if $t \subsetneq s \in \tilde{T}$ then $\psi_X(t) \cap \psi_Y(s) = \emptyset$ and hence (3) holds for n = 0. Given T_n let

$$B = \bigcup_{j \le n} \bigcup_{s \subseteq \Psi_{T_n}(u_j)} \psi(s)$$

and keep in mind that $B^* = \{t \in T_n \mid \psi(t) \cap B \neq \emptyset\}$ is finite and $B^* \subseteq \bigcup_{j \le n} T_n \langle u_j \rangle_{\backslash \text{stem}}$.

It is therefore possible to find $T_{n+1} \leq_n T_n$ such that $B^* \cap T_{n+1} = \emptyset$ as required.

COROLLARY

 $\mathbb{T}_{\omega} \Vdash_{\mathsf{PT}} "\mathcal{S}(\dot{G}) \text{ is an ideal."}$

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

LEMMA (3)

If $\psi_i : \overset{\omega}{\longrightarrow} \omega \to [\omega_1]^{<\aleph_0}$ have disjoint range and $T_i \in \mathbf{PT}$ for $i \in \omega$ then there are $\overline{T}_i \leq_0 T_i$ such that

$$(\forall i < j < \omega)(\forall t \in (\bar{T}_i)_{\backslash \text{stem}})(\forall s \in (\bar{T}_j)_{\backslash \text{stem}}) \ \psi_j(s) \cap \psi_i(t) = \emptyset$$
(2)

LEMMA (4)

If \dot{S} is a **PT**-name such that $T \Vdash_{\mathbf{PT}} "\dot{S} \in \mathcal{S}(\dot{G})"$ and $k \in \omega$ then there is $\overline{T} \leq_k T$ and $\psi : \overline{T} \rightarrow [\omega_1]^{<\aleph_0}$ with disjoint range such that $\overline{T} \Vdash_{\mathbf{PT}} "\dot{S} \equiv^* S(\dot{G}, \psi)"$.

Lemma 3 applied to the finite family $\{T\langle u_i\rangle\}_{i\in k}$ implies that the general case will follow easily from the case k = 0.

For each $t \in \mathbf{split}_1(T)$ find $T_t \subseteq T[t]$ and ψ_t with disjoint range such that $T_t \Vdash_{\mathbf{PT}} "\dot{S} = S(\dot{G}, \psi_t)"$. Now apply Lemma 3 to the infinite family $\{\psi_t\}_{t \in \mathbf{split}_1(T)}$ to find $\tilde{T}_t \subseteq T_t$ such that ψ defined by

$$\psi = igcup_{t\in {\sf split}_1({\mathcal T})} \psi_t \upharpoonright ({\tilde{\mathcal T}}_t)_{ackslash {
m stem}}$$

has disjoint range. Let $\overline{T} = \bigcup_{t \in \mathbf{split}_1(T)} \widetilde{T}_t$. It is immediate that ψ and \overline{T} satisfy the lemma.

(4 戸) (4 日) (4 日)

LEMMA (5)

If $T \Vdash_{\mathbf{PT}} "\{\dot{S}_n\}_{n \in \omega} \subseteq S(\dot{G})$ and $(\forall n \neq m) \dot{S}_n \cap \dot{S}_m = \varnothing$ " then there are ψ_n with disjoint range and $T^* \subseteq T$ such that $T^* \Vdash_{\mathbf{PT}} "(\forall n) \dot{S}_n \equiv S(\dot{G}, \psi_n)$ " and $\psi_n(t) \cap \psi_m(s) = \varnothing$ for all nand m and $s \neq t$.

< 回 > < 三 > < 三 >

Construct by induction T_n and ψ_n such that:

 $\bullet T_0 \leq_0 T$

$$T_{n+1} \leq_{n+1} T_n$$

- if *i*, *j*, *k* and ℓ are no greater than *n* and $s \neq t$ and stem $(T) \subsetneq s \subseteq \Psi_{T_n}(u_i)$ and stem $(T) \subsetneq t \subseteq \Psi_{T_n}(u_j)$ then $\psi_k(t) \cap \psi_\ell(s) = \varnothing$
- if $B_n = \bigcup_{i \leq n} \bigcup_{k \leq n} \bigcup_{s \subseteq \Psi_{T_n}(u_i)} \psi_k(t)$ and $t \in \bigcup_{i \in n} (T_n \langle u_i \rangle)_{\backslash \text{stem}}$ and $k \in n$ then $\psi_k(t) \cap B_n = \emptyset$.

If this can be done then simply let $T^* = \bigcap_n T_n$.

(4 個) トイヨト (4 ヨト) ヨ

Suppose that T_n and $\{\psi_i\}_{i \leq n}$ have been constructed. Use Lemma 4 to find $T_{n+1} \leq_{n+1} T_n$ and $\bar{\psi}_{n+1}$ with disjoint range such that $T_{n+1} \Vdash_{\mathbf{PT}}$ " $\dot{S} \equiv^* S(\dot{G}, \bar{\psi}_{n+1})$ ".

To get (5) to hold at n + 1 simply define ψ_{n+1} by

$$\psi_{n+1}(t) = \begin{cases} \varnothing & \text{if there is } j \leq n+1 \text{ such that } t \subseteq \Psi_{\mathcal{T}_{n+1}}(u_j) \\ \overline{\psi}_{n+1}(t) & \text{otherwise.} \end{cases}$$

< 同 > < 三 > < 三 > <

To see that (4) holds for n + 1 suppose that i, j, k and ℓ are no greater than n + 1 and $s \neq t$ and $stem(T) \subsetneq s \subseteq \Psi_{T_{n+1}}(u_i)$ and $stem(T) \subsetneq t \subseteq \Psi_{T_{n+1}}(u_j)$. By the definition of ψ_{n+1} it may as well be assumed that k and ℓ are less than n + 1. Since $T_{n+1} \leq_{n+1} T_n$ it may as well be assumed that i < j = n and that $t \not\subseteq \Psi_{T_{n+1}}(u_m)$ for any $m \in n$. In other words,

$$t \notin \bigcup_{i \in n} (T_n \langle u_i \rangle)_{\backslash \text{ stem}}$$

and hence induction hypothesis (5) implies that $\psi_k(t) \cap \psi_\ell(s) = \emptyset$ as required.

(비) (문) (문) (문)

LEMMA

 $\mathbb{T}_{\omega} \Vdash_{\mathbf{PT}} ``\mathcal{S}(\dot{G}) is a P-ideal''.$

It suffices to show that if

$$T \Vdash_{\mathsf{PT}} ``\{\dot{S}_n\}_{n \in \omega} \subseteq \mathcal{S}(\dot{G}) \text{ and } (\forall n \neq m) \ \dot{S}_n \cap \dot{S}_m = \varnothing'$$

then there is $T^* \subseteq T$ and ψ with disjoint range such that $T^* \Vdash_{\mathbf{PT}} "\bigcup_{n \in \omega} \dot{S} \subseteq S(\dot{G}, \psi)$ ".

Using Lemma 5 there are ψ_n with disjoint range and $T^* \subseteq T$ such that $T^* \Vdash_{\mathbf{PT}} "(\forall n) \dot{S}_n \equiv^* S(\dot{G}, \psi_n)"$ and $\psi_n(t) \cap \psi_m(s) = \emptyset$ for all n and m and $s \neq t$. Then define $\psi(t) = \bigcup_{j \leq |t|} \psi_k(t)$ and note that $T^* \Vdash_{\mathbf{PT}} "(\forall n) \dot{S}_n \equiv^* S(\dot{G}, \psi_n) \subseteq^* S(\dot{G}, \psi)"$.

< 同 > < 三 > < 三 > <

Lemma

If G is **PT** generic over V and $S \in S(G)$, $S \subseteq \xi \in \omega_1$, $f : S \to 2$ are in V[G] and $Z \subseteq 2^{\xi}$ is nowhere meagre in V, then there is $z \in Z$ such that $f \subseteq z$.

Let \dot{S} and \dot{f} be **PT**-names for S and f so that $T \Vdash_{\mathbf{PT}} "\dot{S} \in \mathcal{S}(\dot{G})$ and $\dot{f} : \dot{S} \to 2"$. Then find $T^* \subseteq T$, ψ and $f^* : \omega_1 \to 2$ such that $T^* \Vdash_{\mathbf{PT}} "f^* \upharpoonright \dot{S} = \dot{f}$ and $\dot{S} = S(\dot{G}, \psi)"$. Note that it follows that if $t \in T^*$ then $T^*[t] \Vdash_{\mathbf{PT}} "\dot{f} \upharpoonright \psi(t) = f^* \upharpoonright \psi(t)"$.

伺い イヨト イヨト

Let $\overline{f} = \bigcup_{j \leq |\operatorname{stem}(T^*)|} f^* \upharpoonright \psi(\operatorname{stem}(T^*) \upharpoonright j)$ and let \mathcal{O} be the open set $\{h \in 2^{\xi} \mid h \supseteq \overline{f}\}$. Then $Z \cap \mathcal{O}$ is not meagre in \mathcal{O} . For $s \in T^*$ let s^* be the least element of $\operatorname{split}(T^*)$ such that $s \subseteq s^*$ and define

$$\mathcal{O}_{s} = \left\{ x \in \mathcal{O} \ \left| \ x \supseteq \bigcup_{s \subseteq u \subseteq s^{*}} f^{*} \upharpoonright \psi(u) \right. \right\}$$

If $t \in \operatorname{split}(T^*)$ then define

$$\mathcal{O}_t^+ = \bigcap_{F \in [\operatorname{\mathsf{succ}}_{T^*}(t)]^{\leq \aleph_0}} \bigcup_{s \in \operatorname{\mathsf{succ}}_{T^*}(t) \setminus F} \mathcal{O}_s$$

and note that \mathcal{O}_t^+ is a dense G_δ in \mathcal{O} for each $t \in \operatorname{split}(T^*)$.

Hence there is some $z \in Z \cap \bigcap_{t \in \operatorname{split}(T^*)} \mathcal{O}_t^+$ such that $\overline{f} \subseteq z$ and $(\forall k \in \omega)(\forall t \in \operatorname{split}_k(T^*))(\exists^{\infty} s \in \operatorname{succ}_{T^*}(t)) \bigcup_{s \subseteq u \subseteq s^*} f^* \upharpoonright \psi(u) \subseteq z.$

It follows that there is $T^{**} \subseteq T^*$ such that $T^{**} \in \mathbf{PT}$ and such that if $t \in T^{**}$ then $f^* \upharpoonright \psi(t) \subseteq z$ and hence $T^{**} \Vdash_{\mathbf{PT}} "\dot{f} \subseteq z"$.

THEOREM (ABRAHAM & TODORCEVIC)

Let \mathcal{I} be a *P*-ideal on ω_1 that is generated by a family of \aleph_1 countable sets — in particular, this will hold if $2^{\aleph_0} = \aleph_1$ and $\mathcal{I} \subseteq [\omega_1]^{\leq \aleph_0}$. Then there is a proper partial order $\mathbb{P}_{\mathcal{I}}$, that adds no reals, even when iterated with countable support, such that there is a $\mathbb{P}_{\mathcal{I}}$ -name \dot{Z} for a subset of ω_1 such that for any $Y \subseteq \omega_1$ which is not the union of countably many sets orthogonal to \mathcal{I}

$$1 \Vdash_{\mathbb{P}_{\mathcal{I}}} "Z \cap Y \neq \varnothing" \tag{3}$$

$$1 \Vdash_{\mathbb{P}_{\mathcal{I}}} "(\forall \eta \in \omega_1) \ \dot{Z} \cap \eta \in \mathcal{I}".$$
(4)

Lemma

If G is **PT** generic over V then no uncountable subset of ω_1 in V is orthogonal to S(G) in V[G].

Suppose that \dot{Z} is a **PT**-name such that $T \Vdash_{\mathbf{PT}} ``\dot{Z} \in [\omega_1]^{\aleph_1}$. It suffices to construct a sequence of conditions $T_n \in \mathbf{PT}$ and ordinals ζ_n such that:

•
$$T_0 = T_s$$

•
$$T_{n+1} \leq_n T_n$$
 for each n

•
$$\zeta_n < \zeta_{n+1}$$

•
$$T_n \langle u_j \rangle \Vdash_{\mathbf{PT}} ``\zeta_j \in \dot{Z}$$
'' for each $j \in n$

because then it is possible to define $T_\omega = \bigcap_{n \in \omega} T_n$ and to define $\psi : \overset{\omega}{\to} \omega \to \omega_1$ by

$$\psi(t) = \begin{cases} \{\zeta_j\} & \text{if } t = \Psi_{\mathcal{T}_{\omega}}(u_j) \\ \emptyset & \text{otherwise.} \end{cases} \qquad \underbrace{\text{VORK}_{U \text{ IV V ERSITY}}}_{U \text{ IV V ERSITY}}$$

It is then immediate that $T_{\omega} \Vdash_{\mathbf{PT}} "|S(G, \psi) \cap Z| = \aleph_0"_{\mathbb{F}}$

To carry out the construction let T_n be given and let $\eta = \max_{j \in n} \zeta_{u_j}$. Using that $T \Vdash_{\mathbf{PT}} "\dot{Z} \setminus \eta \neq \emptyset"$ it is possible to find $T^* \subseteq T_n \langle u_n \rangle$ and $\zeta_n > \eta$ such that $T^* \Vdash_{\mathbf{PT}} "\zeta_n \in \dot{Z}"$. Let $T_{n+1} = (T_n \setminus T_n \langle u_n \rangle) \cup T^*$.

THEOREM

Let V be a model of the Continuum Hypothesis and suppose that $U: \omega_1^2 \to 2$ is a symmetric, category saturated function in V and that $G \subseteq \mathbf{PT}$ is generic over V. In V[G] let $H \subseteq \mathbb{P}_{S(\dot{G})}$ be generic over V[G]. Then in V[G][H] the function U is universal.

In V[G] there is $R \subseteq \omega_1$ such that $[R]^{\aleph_0} \subseteq S(\dot{G})$ and $R \cap Y \neq \emptyset$ for each $Y \in V[G]$ that is an uncountable subset of ω_1 . Given $W : \omega_1^2 \to 2$ in V[G][H] that is symmetric, construct by induction one-to-one embeddings $e_\eta : \eta \to R$ of $W \upharpoonright \eta^2$ into U such that $e_\eta \subseteq e_\zeta$ if $\eta \leq \zeta$.

- Limit stages of the induction are trivial.
- So, given e_{η} let $S \subseteq \xi$ be the range of e_{η} .
- Then $S \in [R]^{\aleph_0} \subseteq \mathcal{S}(\dot{G})$.
- Let f : S → 2 be defined by f(σ) = W(e_η⁻¹(σ), η) and note that f ∈ V[G] since V[G] and V[G][H] have the same reals.
- PT preserves non-meagre sets.
- Therefore $\{\gamma \in \omega_1 \mid f \subseteq U(*,\gamma)\}$ is an uncountable set in V[G].

- 4 同 6 4 日 6 4 日 6

- There is $\gamma \in R \setminus \xi$ such that $f \subseteq U(*, \gamma)$ and, hence, $W(e_{\eta}^{-1}(\sigma), \eta) = f(\sigma) = U(\sigma, \gamma)$ for all $\sigma \in S$.
- Let $e_{\eta+1} = e_{\eta} \cup \{(\eta, \gamma)\}.$

COROLLARY

Given any regular $\kappa > \aleph_1$ it is consistent with set theory that

- $\mathfrak{b} = \aleph_1$ (indeed, $\mathfrak{a} = \aleph_1$)
- $\mathfrak{d} = \aleph_2$

•
$$2^{\aleph_1} = \kappa$$

• there is a universal graph on ω_1 .

< 回 > < 三 > < 三 >

- The required model is the one obtained by starting with a model of the Continuum Hypothesis in which 2^{ℵ1} = κ and iterating, with countable support, ω₂ Miller reals at even coordinates and forcing with P_{S(G)} at odd coordinates.
- Any category saturated graph in the initial model will be universal in the final extension. To see this, begin by observing that PT preserves ⊑^{Cohen}.
- Since P_{S(G)} is proper and adds no new reals it is immediate that it also preserves □^{Cohen}. It follows that the entire countable support iteration preserves non-meagre sets and, hence, any category saturated graph in the initial model remains category saturated.

< 回 > < 三 > < 三 >

- To see that all of these graphs are universal use the ℵ₂-pic to conclude that the iteration has the ℵ₂ chain condition and, hence, that any graph on ω₁ appears at some stage.
- Note that bookkeeping using $2^{\aleph_1} = \aleph_2$ is not needed.
- That $\mathfrak{d} = \aleph_2$ is a standard argument using that Miller forcing adds an unbounded real.
- The fact that $\mathfrak{b} = \aleph_1$ follows from the fact that $\mathfrak{b} \leq \operatorname{non}(\mathcal{M})$.
- To see that, in fact, the stronger result $\mathfrak{a} = \aleph_1$ holds, it is not possible to use the argument of Spinas or Eisworth because $\mathbb{P}_{\mathcal{S}(\dot{G})}$ is not a Souslin forcing, indeed, it does not even have cardinality 2^{\aleph_0} . But, an earlier argument similar to the proof that the iteration of proper partial orders is proper works.

(4 冊 ト 4 三 ト 4 三 ト

QUESTION

Recall Todorcevic's theorem — improving earlier work of Sierpiński's, Galvin, Shelah — that there is a colouring $c : [\omega_1]^2 \to \omega_1$ with the property that the image of c on $[A]^2$ is all of ω_1 for all uncountable $A \subseteq \omega_1$. The existence of such a colouring is denoted by $\aleph_1 \to [\aleph_1]^2_{\aleph_1}$. How can this be strengthened?

One answer is provided by Moore who constructed a colouring $c : [\omega_1]^2 \to \omega_1$ with the property that the image of c on $A \circledast B = \omega_1$ for all uncountable A and B where $A \circledast B$ stands for the *rectangle* $\{(\alpha, \beta) \in A \times B \mid \alpha < \beta\}.$

YORK UNIVERSITY

伺い イヨト イヨト

STRONG COLOURINGS OVER PARTITIONS

A related, but somewhat different question is the following:

QUESTION (ERDÖS-GALVIN-HAJNAL)

Given $G \subseteq [\omega_1]^2$ with uncountable chromatic number, is there $c: G \to \omega_1$ such that for all $w: \omega_1 \to \omega$ there is $n \in \omega$ such that the image of c on $G \cap [w^{-1}\{n\}]^2$ is all of ω_1 ?

Note that the partition w is of singletons. The following definition is more in keeping with the spirit of Moore's result.

DEFINITION

Let $p : [\omega_1]^2 \to \omega$. Define $\aleph_1 \not\to_p [\aleph_1]^2_{\kappa}$ to mean that there is some $c : [\omega_1]^2 \to \kappa$ such that for each uncountable $X \subseteq \omega_1$ there is $n \in \omega$ such that the image of c on $p^{-1}\{n\} \cap [X]^2$ is all of κ . I will focus on $\kappa = \aleph_0$.

(人間) トイヨト イヨト

- It is shown in Chen, Kojman, S. and later in Kojman, Rinot, S. that it is consistent with various versions of set theory that ℵ₁ →_p [ℵ₁]²_κ holds.
- The positive relation $\aleph_1 \to_p [\aleph_1]^2_{\kappa}$ is also interesting and consistent.
- One might also ask for less than ℵ₁ →_p [ℵ₁]²_{ℵ0}. For example only that there is some c : [ω₁]² → ω such that for each uncountable X ⊆ ω₁ there is n ∈ ω such that the image of c on p⁻¹{n} ∩ [X]² is infinite, rather than all of ω.
- Even this weaker version can fail.

・ 同下 ・ ヨト ・ ヨト

Lemma

If $p : [\omega_1]^2 \to \omega$ is category saturated and $c : [\omega_1]^2 \to \omega$ and $G \subseteq \mathbf{PT}$ is generic over V and $M_G = \bigcap G$ and $H \subseteq \mathbb{P}_{S(\dot{G})}$ is generic over V[G] and there is an uncountable $X \subseteq \omega_1$ in V[G][H]such that $M_G(p(\alpha, \beta)) > c(\alpha, \beta)$ for all $\{\alpha, \beta\} \in [X]^2$.

There is in V[G][H] an uncountable R such that $[R]^{\aleph_0} \subseteq S(G)$ and such that $R \cap Y \neq \emptyset$ for any uncountable $Y \in V[G]$. Construct by induction distinct $\rho_{\xi} \in R$ such that if $\xi \in \eta$ then

$$M_G(p(\rho_{\xi}, \rho_{\eta})) > c(\rho_{\xi}, \rho_{\eta}).$$

To carry out the induction assume that $R_{\eta} = \{\rho_{\xi}\}_{\xi \in \eta}$ have been chosen.

・ロト ・伺下 ・ヨト ・ヨト

Since $\mathbb{P}_{\mathcal{S}(\dot{G})}$ adds not new reals it follows that $R_{\eta} \in V[G]$ and so there is $T \in G$ and $\psi \in V$ with disjoint range such that $T \Vdash_{\mathbf{PT}} "R_{\eta} = S(\dot{G}, \psi)"$. Let μ be so large that $T \Vdash_{\mathbf{PT}} "R_{\eta} \subseteq \mu"$.

For each $t \in \operatorname{split}(T)$ let

$$\mathcal{W}_{s} = \left\{ x \in \omega^{\mu} \ \left| \ x \upharpoonright \left(\bigcup_{s \subseteq u \subseteq s^{*}} \psi(u) \right) \right. \text{ has constant value } |s^{*}| \right. \right\}$$

and define

$$\mathcal{W}_t^+ = \{ x \in \omega^\mu \mid (\exists^\infty s \in \mathsf{succ}_T(t)) \; x \in \mathcal{W}_s \}$$

and note that \mathcal{W}_t^+ is a dense G_δ in ω^μ for each $t \in \operatorname{split}(\mathcal{T})$.

Since p is category saturated,

$$\left\{ \beta \in \omega_1 \ \left| \ p^{\beta} \in \bigcap_{t \in \mathsf{split}(\mathcal{T})} \mathcal{W}_t^+ \right. \right\}$$

is uncountable.

Therefore there is some $\beta \in R \setminus R_{\eta}$ such that for all $t \in \operatorname{split}(T)$ there are infinitely many $s \in \operatorname{succ}_{T}(t)$ such that $p(\alpha, \beta) = |s^*|$ for all $\alpha \in \bigcup_{s \subseteq u \subseteq s^*} \psi(u)$.

< 回 > < 三 > < 三 >

Using this it is possible to find a tree $T^* \subseteq T$ such that

$$(\forall k) \operatorname{split}_k(\mathcal{T}^*) \subseteq \operatorname{split}(\mathcal{T})$$
 (5)

and such that for all $t \in \operatorname{split}(T^*)$ and all $s \in \operatorname{succ}_{T^*}(t)$

$$\left(\forall \alpha \in \bigcup_{s \subseteq u \subseteq s^*} \psi(u)\right) \ p(\alpha, \beta) = |s^*|$$

noting that s^* calculated in T is the same as in T^* because of (5).

A (10) A (10)

By removing only finitely many elements of $succ_{T^*}(t)$ for each $t \in split(T^*)$ it is possible to find $T^{**} \subseteq T^*$ such that

$$(\forall k) \operatorname{split}_k(T^*) \subseteq \operatorname{split}(T)$$
 (6)

< 同 > < 三 > < 三 > <

and such that

$$(\forall t \in \mathsf{split}(\mathcal{T}^{**}))(\forall s \in \mathsf{succ}_{\mathcal{T}^{**}}(t))(\forall \bar{s} \in \mathsf{succ}_{\mathcal{T}^{**}}(s^{*}))$$
$$\left(\forall \{\alpha, \beta\} \in \left[\bigcup_{s \subseteq u \subseteq s^{*}} \psi(u)\right]^{2}\right) \ \bar{s}(|s^{*}|) = \bar{s}(p(\alpha, \beta)) > c(\alpha, \beta)$$
(7)

noting again that s^* calculated in T^* is the same as in T^{**} because of (6). This implies that

$$M_G(p(\alpha,\beta)) > c(\alpha,\beta)$$

for all $\alpha \in R_{\eta}$.

- The arguments using Miller reals can be applied to the case of Laver reals, but some changes are needed.
- The notion of disjoint range has to be replaced by: A function $\psi : \overset{\omega}{\longrightarrow} \omega \to [\omega_1]^{<\aleph_0}$ will be said to have *bounded*, *disjoint* range provided that:
 - $\psi(s) \cap \psi(t) = \emptyset$ unless s = t
 - for all $t\in \overset{\omega}{\smile}\omega$ there is B such that $|\psi(t^{\frown}j)| < B$ for all j

The definitions of $S(G, \psi)$ and S(G) do not change.

- Instead of of starting with a category saturated graph, start with a measure saturated graph.
- Use that Laver forcing preserves outer measure.

(4 冊 ト 4 三 ト 4 三 ト

- In the model obtained by iterating Laver and PID forcing there is a (measure) universal graph of cardinality ℵ₁.
- Unlike Shelah's original model for a universal graph of cardinality ℵ₁, the value of 𝔅 is ℵ₁.
- $\bullet \ \ \text{One also has} \ \mathfrak{h} = \mathfrak{t} = \mathfrak{s} = \aleph_1$
- Of course $non(\mathcal{L}) = \aleph_1 \dots$
- ... and the Borel Conjecture holds.

Two questions have not been answered so far:

- Does the existence of a universal graph of cardinality ℵ₁ imply that 0 > ℵ₁?
- What about a universal function from $[\omega_1]^2 \rightarrow \omega$?

(人間) システン イラン

To show that the existence of a universal graph does not imply the existence of a universal function with range ω the following lemma is key.

LEMMA (SHELAH)

If $\mathfrak{b} = \aleph_1$ and there is a sequence of pairs of natural numbers $\{(m_i, n_i)\}_{i \in \omega}$ such that $m_i < n_i < m_{i+1}$ for each $i \in \omega$ and

$$\left(\forall \mathcal{F} \subseteq \left[\prod_{i \in \omega} [n_i]^{m_i}\right]^{\aleph_1}\right) \left(\exists g \in \prod_{i \in \omega} n_i\right) (\forall f \in \mathcal{F}) (\forall^\infty k) g(k) \notin f(k)$$

then there is no universal function $c : [\omega_1]^2 \to \omega$.

(ŏ)

To prove this, let $B_{\eta}: \eta \to \omega$ be a bijection for each $\eta \in \omega_1$. Suppose that $c: \omega_1^2 \to \omega$ is a universal universal function. If $\eta \in \xi \in \omega_1$ and $j \in \omega$ let

$$f_{\eta,\xi}(j) = \left\{ c(B_{\eta}^{-1}(k),\xi) \in n_{j} \mid k \in m_{j} \right\}$$

and use the hypothesis of the lemma to find a function $g_{\eta} \in \prod_{i \in \omega} n_i$ such that $g_{\eta}(j) \notin f_{\eta,\xi}(j)$ for every $\xi \in \omega_1$ and for all but finitely many $j \in \omega$.

Let \mathcal{U} be a family of increasing functions from ω to ω that is \leq^* unbounded and such that $|\mathcal{U}| = \aleph_1$. Let $\psi : \mathcal{U} \times \omega_1 \to \omega_1$ be a bijection and define

$$b: \omega \times \omega_1 \to \omega$$

(4月) (4日) (4日)

by $b(j, \psi(u, \eta)) = g_{\eta}(u(j))$.

Now suppose that $e: \omega_1 \to \omega_1$ is an embedding of the partial function b into c. Let η be such that $e(j) \in \eta$ for all $j \in \omega$ and let $u \in \mathcal{U}$ be such that there are infinitely many k such that $B_{\eta}(e(k)) \in m_{u(k)}$.

Then choose j so large that $g_{\eta}(u(j)) \notin f_{\eta,e(\psi(u,\eta))}(u(j))$ and such that $B_{\eta}(e(j)) \in m_{u(j)}$. Then

$$b(j, \psi(u, \eta)) = g_{\eta}(u(j)) \neq c(B_{\eta}^{-1}(B_{\eta}(e(j))), e(\psi(u, \eta)))$$

= $c(e(j), e(\psi(u, \eta)))$ (9)

contradicting that e is an embedding.

< 同 > < 三 > < 三 > <

To use this lemma it suffices to find a model where $\vartheta = \aleph_1$ (thus also answering the first question) and there is a sequence $\{(m_i, n_i)\}_{i \in \omega}$ such that $m_i < n_i < m_{i+1}$ and

$$\left(\forall \mathcal{F} \subseteq \left[\prod_{i \in \omega} [n_i]^{m_i}\right]^{\aleph_1}\right) \left(\exists h \in \prod_{i \in \omega} n_i\right) (\forall f \in \mathcal{F}) (\forall^\infty k) h(k) \notin f(k)$$
(10)

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that $\mathbf{PT}_{f,g}$ consists of trees $T \subseteq \bigcup_{n \in \omega} \prod_{i \in n} f(i)$ such that there is a function $r : \omega \to \omega$ satisfying that

•
$$\lim_{n\to\infty} r(n) = \infty$$

• $|\operatorname{succ}_T(t)| > g(|t|, r(|t|))$ for all $t \in T$.

For any $T \in \mathbf{PT}_{f,g}$ fix $r_T : \omega \to \omega$ witnessing that $T \in \mathbf{PT}_{f,g}$. The ordering on $\mathbf{PT}_{f,g}$ is inclusion.

Note that letting $n_i = f(i)$ and $m_i = g(i, 1)$ it is clear that forcing with $\mathbf{PT}_{f,g}$ adds a function $h \in \prod_{i \in \omega} n_i$ such that for all $f \in \prod_{i \in \omega} [n_i]^{m_i}$ there is some k such that $h(j) \notin f(j)$ for all j > k.

< 回 > < 三 > < 三 >

The partial order $\mathbf{PT}_{f,g}$ will be used with the functions f and g defined as follows. First let $a_n > 0$ be such that $\sum_{n=0}^{\infty} a_n < 1$. Let g(0,0) = 1. If g(n,n) has been defined let $f(n) = \max(g(n,n), 2^n)$. Then let g(n+1,0) = 1 and then choose g(n+1, k+1) be so large that if

- [X_{i,j}]_{i∈g(n+1,k+1),j∈n+1} is a matrix of independent 2-valued random variables
- the probability that $X_{i,j} = 1$ is 1/2
- $\varphi: g(n+1, k+1) \times (n+1) \rightarrow 2$

then the probability that

 $|\{i \in g(n+1, k+1) \mid (\forall j \in n+1) \; X_{i,j} = \varphi(j)\}| \ge g(n+1, k)$ (11)

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

is greater than $1 - a_n / \prod_{m=0}^n f(m)$. It will also be required that some other inequalities hold ... **VOR**

Define $\psi: \overset{\omega}{\longrightarrow} \omega \to [\omega_1]^{<\aleph_0}$ to be asymptotically small with disjoint range if

• if $s \neq t$ then $\psi(s) \cap \psi(t) = \emptyset$

2
$$\lim_{t \in T} |\psi(t)|/|t| = 0$$

If $G \subseteq \mathbf{PT}_{f,g}$ is generic over V and ψ is asymptotically small with disjoint range then the definitions of $S(G, \psi)$ and S(G) do not need to be changed.

< 回 > < 三 > < 三 >

- All the lemmas that held for Miller and Laver forcing now need to be reproved.
- Once this has been done, in the model obtained by iterating PT_{f,g} and PID forcing there is a (measure) universal graph of cardinality ℵ₁.
- In this model $\mathfrak{d} = \aleph_1 = \mathbf{non}(\mathcal{L}).$
- One also has the hypothesis of the key lemma. Hence there is no universal function from [ω₁]² to ω even though there is a universal gfraph of cardinality ℵ₁.

Now only one question has not been answered:

To answer this the PID idea does not seem to work and we need Shelah's idea.

DEFINITION

Suppose that $G_0 : [\omega_1]^2 \to \omega$ and $G_1 : [\omega_1]^2 \to \omega$. Define $\mathcal{E}(G_0, G_1)$ denote the set of all finite, one-to-one functions e that are isomorphisms between $G_1 \upharpoonright \text{domain}(e)^2$ and $G_0 \upharpoonright \text{range}(e)^2$; in other words, $G_1(\eta, \zeta) = G_0(e(\eta), e(\zeta))$ for all distinct η and ζ in the domain of e.

DEFINITION

If $G_0 : [\omega_1]^2 \to \omega$ and $G_1 : [\omega_1]^2 \to \omega$ and $T \subseteq \overset{\omega}{\smile} \omega$ is a tree then a function $E : T \to \mathcal{E}(G_0, G_1)$ will be called good if:

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

• if s and t belong to T and $s \subseteq t$ then $E(s) \subseteq E(t)$

2 if s and t belong to T then
$$range(E(t)) \cap range(E(s)) = range(E(s \land t)).$$

Let \mathbb{P} be a tree partial order. If $G_0 : [\omega_1]^2 \to \omega$ and $G_1 : [\omega_1]^2 \to \omega$ define \mathbb{P}_{G_0,G_1} to consist of triples (T, E, η) such that

- $\bullet \ T \in \mathbb{P}$
- **2** $E: T \rightarrow \mathcal{E}(G_0, G_1)$ is good
- $0 \eta \in \omega_1.$

If $p = (T, E, \eta) \in \mathbb{P}_{G_0, G_1}$ the notation (T^p, E^p, η^p) will be used to denote (T, E, η) . Define $p \leq q$ if and only if

- $T^p \subseteq T^q$
- **2** $E^{p}(t) = E^{q}(t)$ for each $t \in T^{p}$ such that $t \subsetneq \operatorname{stem}(T^{p})$
- **3** $E^{p}(t) \supseteq E^{q}(t)$ for each $t \in T^{p}$ such that $t \supseteq \operatorname{stem}(T^{p})$
- **(range** $(E^{p}(t)) \setminus \operatorname{range}(E^{q}(t))) \cap \eta^{q} = \emptyset$ for all $t \in T^{p}$

イロト イポト イヨト イヨト

3

 $0 \eta^{p} \geq \eta^{q}.$

If $G \subseteq \mathbb{P}_{G_0,G_1}$ is generic define $E_G : \omega_1 \to \omega_1$ by $E_G = \bigcup_{p \in G} E(\mathbf{stem}(T^p)).$

- It is immediate that E_G is a partial embedding of G_1 into G_0 .
- However, some extra requirements will be needed to guarantee that *E*_G is a total embedding.
- Things work out nicely for \mathbb{P} being Miller forcing.
- Note that we now need to deal with bookkeeping and so $2^{\aleph_1} = \aleph_2$ in the final model.
- Why can we deal with functions, rather than graphs? E_G tells us the position of an element of S(G).

- 4 同 6 4 日 6 4 日 6

QUESTION

What does MA or even PFA say about the existence of a universal graph of cardinality \aleph_1 ?

QUESTION

Does $\mathfrak{d} > \aleph_1$ and the existence of a universal graph of cardinality \aleph_1 imply the existence of a universal function of cardinality \aleph_1 ?

QUESTION

Sacks forcing does not lend itself to the approach discussed here. So, if all cardinal invariants other than \mathfrak{c} are \aleph_1 (to be precise, the values of cardinal invariants are those of the Sacks model) is there not universal graph of cardinality \aleph_1 ?

(a) < (a)

E

イロト イヨト イヨト イヨト

Juris Steprans (mostly joint work with Saharon Shelah Universal functions