MILLIKEN-TAYLOR ULTRAFILTERS WITHOUT SELECTIVES

Dilip Raghavan & Juris Steprāns

May 2022

• • = • • = •

- What is now known as *Hindman's Theorem* was proved to establish the truth of a conjecture of Graham and Rothschild.
- It says that if the positive integers are partitioned into finitely many cells, then there is an infinite set of integers all of whose non-empty finite subsets have their sum in the same cell.
- van Douwen is credited with realizing that, assuming the Continuum Hypothesis, it is possible to construct an ultrafilter \mathcal{U} such that if the positive integers are partitioned into finitely many cells, then there is $X \in \mathcal{U}$ such that that all of the non-empty finite subsets of X have a sum belonging to the same cell.
- It was noticed by van Douwen that certain ultrafilters had an even stronger property, in that they had a base consisting of all of the finite sums of some set of positive integers.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Such ultrafilters are now known as *strongly summable ultrafilters*.
- The strongly summable ultrafilters are idempotents in $(\beta \mathbb{N}, +)$ and much more.
- The question of whether the Continuum Hypothesis is needed to construct them is also attributed to van Douwen.
- By considering the places of the non-zero digits of the binary representations of the integers, one can establish a connection between some, but not all, of the theory of $(\beta \mathbb{N}, +)$ and $(\beta \mathbb{N}]^{<\aleph_0}, \cup)$.

- 4 回 ト - 4 回 ト

The non-empty finite subsets of ω will be denoted by \mathbb{F} . If $A \subseteq \mathbb{F}$ consists of pairwise disjoint sets then FU(A) will denote the set of all unions of non-empty finite subsets of A; in other words,

$$\mathsf{FU}(A) = \left\{ igcup a \ \Big| \ a \in [A]^{< \aleph_0} \ \& \ a
eq arnothing
ight\}.$$

DEFINITION

An ultrafilter on \mathbb{F} will be called a *union ultrafilter* if it has a base consisting of sets of the form FU(A).

Define a partial order < on \mathbb{F} by a < b if $\max(a) < \min(b)$. For $A \subseteq \mathbb{F}$ and $\kappa \leq \omega$ let $[A]^{\kappa}_{<}$ denote all sets of the form $\{a_n\}_{n \in \kappa} \subseteq A$ such that $a_n < a_{n+1}$ for all $n \in \kappa$.

DEFINITION

An ultrafilter on \mathbb{F} will be called an *ordered-union ultrafilter* if it has a base consisting of sets of the form FU(A) where $A \in [\mathbb{F}]_{<}^{\omega}$.

THEOREM (BLASS AND HINDMAN)

Assuming the Continuum Hypothesis there are union ultrafilters that are not ordered, union ultrafilters.

伺下 イヨト イヨト

DEFINITION

An ordered-union ultrafilter \mathcal{U} on \mathbb{F} will be called an *stable* if it satisfies the following property: Given a sequence of sets $\{A_n\}_{n\in\omega}\subseteq \mathcal{U}$ there is a sequence $\{b_n\}_{n\in\omega}\in [\mathbb{F}]^{\omega}_{<}$ such that for each k there is soime k^* such that $FU(\{b_n\}_{n\geq k^*})\subseteq A_k$ for each $k\in\omega$.

THEOREM (BLASS)

For an ordered-union ultrafilter $\mathcal H$ the following are equivalent:

- *H* is stable;
- if $[\mathbb{F}]^2_{\leq} = \mathcal{A}_0 \cup \mathcal{A}_1$ then there is $i \in 2$ and $H \in \mathcal{H}$ such that $[H]^2_{\leq} \subseteq \mathcal{A}_i$;
- if F : 𝔽 → ω then there is H ∈ ℋ such that one of the following holds for all a and b in H:
 - F(a) = F(b)
 - F(a) = F(b) if and only if min(a) = min(b)
 - F(a) = F(b) if and only if max(a) = max(b)
 - F(a) = F(b) if and only if min(a) = min(b) and max(a) = max(b)
 - F(a) = F(b) if and only if a = b.

and hence, because of (2), stable ordered-union ultrafilters are sometimes known as Milliken-Taylor ultrafilters.

(a)

э

Given any $A \subseteq \mathbb{F}$ define $\max(A) = \{\max(a) \mid a \in A\}$ and $\min(A) = \{\min(a) \mid a \in A\}$. For any union ultrafilter \mathcal{U} on \mathbb{F} define $\max(\mathcal{U}) = \{\max(A) \mid A \in \mathcal{U}\}$ and $\min(\mathcal{U}) = \{\min(A) \mid A \in \mathcal{U}\}.$

THEOREM (BLASS AND HINDMAN)

If \mathcal{U} is a union ultrafilter on \mathbb{F} then $\max(\mathcal{U})$ and $\min(\mathcal{U})$ are both *P*-points.

THEOREM (BLASS)

If \mathcal{U} is an ordered-union ultrafilter on \mathbb{F} then $\max(\mathcal{U})$ and $\min(\mathcal{U})$ are RK-inequivalent selective ultrafilters.

үсэк к

・ 何 ト ・ ヨ ト ・ ヨ ト

THEOREM (BLASS)

Assuming $2^{\aleph_0} = \aleph_1$, for any two RK-inequivalent selective ultrafilters \mathcal{U} and \mathcal{V} there is a stable, ordered-union ultrafilter \mathcal{W} on \mathbb{F} such that $\max(\mathcal{W}) = \mathcal{U}$ and $\min(\mathcal{W}) = \mathcal{V}$.

QUESTION (BLASS)

Can the existence of stable, ordered-union ultrafilters be deduced from the existence of two non-isomorphic selective ultrafilters? Blass conjectured that it cannot.

Theorem

Blass' conjecture is true.

If $a \in \mathbb{F}$ define $a^- = a \setminus \{\max a\}$. If $H \subseteq \mathbb{F}$ and $m \leq k$ define

$$H[m,k] = \{h^- \mid h \in H \& \max(h) = k \& \min(h) \ge m\}.$$

and define $H[m,\infty] = \{h \in H \mid \min(h) \ge m\}$.

NOTATION

Let
$$\mathbb{T}_n = \prod_{k \in n} 2^{\mathcal{P}(k)}$$
 and $\mathbb{T} = \bigcup_{n \in \omega} \mathbb{T}_n$. For $t \in T[n]$ note that

$$\operatorname{succ}_T(t) = \{f : \mathcal{P}(n) \to 2 \mid t^{\frown} f \in T\}.$$

- 4 回 ト - 4 回 ト

Let \mathcal{H} be a stable, ordered-union ultrafilter. Define the partial order $\mathbb{P}(\mathcal{H})$ to consist of trees $T \subseteq \mathbb{T}$ such that there is $H \in \mathcal{H}$ such that for each $\ell \in \omega$ and for all but finitely many $k \in \max(\mathcal{H})$

$$\begin{aligned} (\forall t \in \mathcal{T}[k])(\forall g : H[\ell, k] \to 2^{\mathcal{P}(\ell)})(\exists f \in \mathsf{succ}_{\mathcal{T}}(t)) \\ (\forall x \subseteq \ell)(\forall h \in H[\ell, k]) \ f(x \cup h) = g(h)(x). \end{aligned}$$

Observe that if $f : \mathcal{P}(n) \to 2$ and $f * \ell : \mathcal{P}([\ell, n]) \to 2^{\mathcal{P}(\ell)}$ is defined by $f * \ell(h)(x) = f(x \cup h)$ then (1) is equivalent to

$$(\forall t \in T[k])(\forall g : H[\ell, k] \rightarrow 2^{\mathcal{P}(\ell)})(\exists f \in \operatorname{succ}_T(t)) g \subseteq f * \ell.$$

The ordering on $\mathbb{P}(\mathcal{H})$ is inclusion. If $G \subseteq \mathbb{P}(\mathcal{H})$ is generic then let B_G be the generic branch of T and define $\mathbb{C}_G : \mathbb{F} \to 2$ by $\mathbb{C}_G(a) = \bigcup_{t \in B_G} t(\max(a))(a^-)$.

DEFINITION

Let \mathcal{H} be a stable ordered-union ultrafilter. Define the game $\mathbb{G}(\mathcal{H})$ as follows. At stage k of the game Player 1 plays $S_k \in \mathcal{H}$. Then Player 2 plays $a_k \in S_k$. The play of the game is won by Player 2 if $A \in [\mathbb{F}]_{<}^{\omega}$ and $FU(A) \in \mathcal{H}$.

It is important to note that the game $\mathbb{G}(\mathcal{H})$ is not played by having Player 1 play $\{b_k\}_{k\in\omega}$ such that $FU(\{b_k\}_{k\in\omega})\in\mathcal{H}$ and then having Player 2 play some b_k . (This is a stronger property called *sparesness*.)

(4) (日本)

Lemma

If \mathcal{H} is a stable, ordered-union ultrafilter then Player 1 has no winning strategy in the game $\mathbb{G}(\mathcal{H})$.

Suppose that Σ is a strategy for Player 1; in other words, $\Sigma(\sigma) \in \mathcal{H}$ for each sequence $\sigma \in [\mathbb{F}]^{\leq \omega}$. For $k \in \omega$ let

$$\Sigma^*(k) = \bigcap \left\{ \Sigma(\sigma) \mid \sigma \in [\mathcal{P}(k)]^{\leq k}_{<}
ight\}$$

and define a partition $[\mathbb{F}]^2_{\leq} = \mathcal{A}_0 \cup \mathcal{A}_1$ by letting $\{a, b\} \in \mathcal{A}_0$ if and only if $b \in \Sigma^*(\max(a))$. Using the equivalent condition of Blass' theorem it is possible to find $H \in \mathcal{H}$ which is homogeneous for this partition and note that it can only be the case that $[H]^2_{\leq} \subseteq \mathcal{A}_0$. Let $A = \{a_i\}_{i \in \omega} \in [H]^{\omega}_{\leq}$ be such that $FU(A) \in \mathcal{H}$. Then this is a winning play of the game. **VOR K**

(4) (日本)

Lemma

Let \mathcal{H} be a stable, ordered-union ultrafilter and suppose that $T \in \mathbb{P}(\mathcal{H})$ and $D_n \subseteq \mathbb{P}(\mathcal{H})$ is dense for each $n \in \omega$. Then there is $T^* \in \mathbb{P}(\mathcal{H})$ such that

- $\bullet T^* \subseteq T$
- there are infinitely many k such that T^{*}⟨t⟩ ∈ D_k for each t ∈ T[k].

COROLLARY

If \mathcal{H} is a stable, ordered-union ultrafilter then $\mathbb{P}(\mathcal{H})$ satisfies an appropriate continuous reading of names.

COROLLARY

If \mathcal{H} is a stable, ordered-union ultrafilter then $\mathbb{P}(\mathcal{H})$ is

- proper
- ω^{ω} -bounding.

LEMMA

If \mathcal{H} is a stable, ordered-union ultrafilter and \mathbb{Q} is ω^{ω} -bounding and proper and $j \in 2$ and

 $T * q \Vdash_{\mathbb{P}(\mathcal{H}) * \mathbb{Q}} \quad "\dot{W} \subseteq \mathbb{C}_{\dot{G}}^{-1}\{j\} \& \dot{W} \text{ is closed under unions"}$

then there is $T^* * q^* \leq T * q$ and $Z \in \mathcal{H}$ such that $T^* * q^* \Vdash_{\mathbb{P}(\mathcal{H})*\mathbb{Q}}$ " $Z \cap \dot{W} = \emptyset$ ".

If T * q ⊭_{P(H)*Q} "(∀k ∈ ω)(∃w ∈ W) min(w) > k" then the result is immediate, so let ψ be such that

 $T * q \Vdash_{\mathbb{P}(\mathcal{H}) * \mathbb{Q}}$ " $(\forall k \in \omega) \ \dot{\psi}(k) \in \dot{W} \& \min(\dot{\psi}(k)) > k$ ".

• $\mathbb{P}(\mathcal{H}) * \mathbb{Q}$ is ω^{ω} -bounding, so it is possible to find a $\Psi : \omega \to \omega$ such that, without loss of generality,

$${\mathcal T}*q\Vdash_{{\mathbb P}({\mathcal H})*{\mathbb Q}} ``(orall k\in\omega) \ \dot{\psi}(k)\subseteq [k+1,\Psi(k)]".$$

• Let $B = \{b_i\}_{i \in \omega} \in [\mathbb{F}]_{<}^{\omega}$ be such that H = FU(B) witnesses that $T \in \mathbb{P}(\mathcal{H})$ and such that $\Psi(\max(b_n)) < \min(b_{n+1})$ for all n and, if $\ell_n^* = \Psi(\max(b_n))$, then for all $k \in \max(FU(\{b_i\}_{i \ge n+1}))$ and $t \in T[k]$ and $g : H[\ell_n^*, k] \to 2^{\mathcal{P}(\ell_n^*)}$ there is $f \in \operatorname{succ}_T(t)$ such that $g \subseteq f * \ell_n^*$.

イロト イポト イヨト イヨト

• For $t \in T[\max(b_{i+1})]$ let

 $\mathcal{S}(t) = \{f \in \mathsf{succ}_{\mathcal{T}}(t) \mid (\forall x \subseteq \ell_i^*))(\forall h \in H[\ell_i^*, \max(b_{i+1})]) \text{ if } \max(s_i)\}$

- Letting $\ell_n = \max(b_n)$ it follows that if $t \in T[\max(b_{n+1})]$ and $g: H[\ell_n, \max(b_{n+1})] \to 2^{\mathcal{P}(\ell_n)}$ there is $f \in \mathcal{S}(t)$ such that $g \subseteq f * \ell_n$.
- Therefore if *T*^{*} is defined by

$$T^* = \bigcap_{i \in \omega} \left(\bigcup_{t \in T[\max(b_i)]} \bigcup_{f \in \mathcal{S}(t)} T \langle t^{\frown} f \rangle \right)$$

then succ_{T*}(t) = S(t) for each $i \in \omega$ and $t \in T^*[\max(b_i)]$.

(人間) とうきょうきょう

If \mathcal{H} is a stable, ordered-union ultrafilter let \mathcal{H}_{min} and \mathcal{H}_{min} denote the image of \mathcal{H} under min and max respectively.

Lemma

If \mathcal{H} is a stable, ordered-union ultrafilter and $T \Vdash_{\mathbb{P}(\mathcal{H})} "\dot{Z} \subseteq \omega"$ then there is $T^* \subseteq T$ and $X \in \mathcal{H}_{\min}$ such that either $T^* \Vdash_{\mathbb{P}(\mathcal{H})} "X \subseteq \dot{Z}"$ or $T^* \Vdash_{\mathbb{P}(\mathcal{H})} "X \cap \dot{Z} = \varnothing"$.

Lemma

If \mathcal{H} is a stable, ordered-union ultrafilter and $T \Vdash_{\mathbb{P}(\mathcal{H})}$ " $\dot{Z} \subseteq \omega$ " then there is $T^* \subseteq T$ and $X \in \mathcal{H}_{max}$ such that either $T^* \Vdash_{\mathbb{P}(\mathcal{H})}$ " $X \subseteq \dot{Z}$ " or $T^* \Vdash_{\mathbb{P}(\mathcal{H})}$ " $X \cap \dot{Z} = \emptyset$ ".

イロト イポト イヨト イヨト

Lemma

If \mathcal{H} is a stable, ordered-union ultrafilter and $T \Vdash_{\mathbb{P}(\mathcal{H})}$ " $\dot{Z} \subseteq \omega$ " then there is $T^* \subseteq T$ and $X \in \mathcal{H}_{\min}$ such that either $T^* \Vdash_{\mathbb{P}(\mathcal{H})}$ " $X \subseteq \dot{Z}$ " or $T^* \Vdash_{\mathbb{P}(\mathcal{H})}$ " $X \cap \dot{Z} = \emptyset$ ".

Find $S \subseteq T$ and H witnessing that $S \in \mathbb{P}(\mathcal{H})$ such that for each $k \in \max(H)$ and $t \in S[k+1]$ there is $z_t \subseteq k+1$ such that $S\langle t \rangle \Vdash_{\mathbb{P}(\mathcal{H})}$ " $\dot{Z} \cap (k+1) = z_t$ ". The first case to consider is that there is some $S^* \subseteq S$ and $B = \{b_i\}_{i \in \omega} \in [\mathbb{F}]_{<}^{\omega}$ such that $H = FU(\{b_i\}_{i \in \omega})$ witnesses that $S^* \in \mathbb{P}(\mathcal{H})$ such that there is $A \subseteq \omega$ such that

- {min(b_i) | $i \in A$ } $\in \mathcal{H}_{min}$
- for each $i \in A$ and $t \in S^*[\min(b_i)]$ there is $\tau(t) \supseteq t$ in $S^*[\max(b_i) + 1]$ such that $t \subseteq \tau(t)$ and such that $\min(b_i) \in z_{\tau(t)}$.

Since $\mathcal{H}_{\max} \not\equiv_{\mathsf{RK}} \mathcal{H}_{\min}$ the mapping on $\{\min(b_i) \mid i \in A\}$ that sends $\min(b_i)$ to $\max(b_i)$ is not an RK equivalence and so there is $A^* \subseteq A$ such that

•
$$X = {\min(b_i) \mid i \in A^* } \in \mathcal{H}_{\min}$$

•
$$Y = \{\max(b_i) \mid i \in A^*\} \notin \mathcal{H}_{\max}.$$

Let T^* be defined by

$$T^* = \bigcap_{i \in A^*} \bigcup_{t \in S^*[\min(b_i)]} S^* \langle \tau(t) \rangle.$$

To see that $T^* \in \mathbb{P}(\mathcal{H})$ it suffices to verify that $\{h \in H \mid \max(h) \notin Y\}$ witnesses this. Note that if $i \in A^*$ then

$$\left(igcup_{t\in S^*[\min(b_i)]}S^*\langle au(t)
ight)
ight) \Vdash_{\mathbb{P}(\mathcal{H})} imes \min(b_i)\in \dot{Z}''$$

and so $T^* \Vdash_{\mathbb{P}(\mathcal{H})} ``X \subseteq \dot{Z}"$.

Hence it can be assumed that for every $S^* \subseteq S$ and $B = \{b_i\}_{i \in \omega} \in [\mathbb{F}]^{\omega}_{\leq}$ such that $H = FU(\{b_i\}_{i \in \omega})$ witnesses that $S^* \in \mathbb{P}(\mathcal{H})$ there is $A \subseteq \omega$ such that $\{\min(b_i) \mid i \in A\} \in \mathcal{H}_{\min}$ and $(\forall i \in A)(\exists t \in S^*[\min(b_i)])(\forall \tau \in S^*\langle t \rangle [\max(b_i)+1]) \min(b_i) \notin z_{\tau}.$ Now devise a strategy for Player 1 in the game $\mathbb{G}(\mathcal{H})$. If Player 2 has played $\{b_i\}_{i \in N}$ at Inning N, then Player 1 first chooses $Y_t \in \mathcal{H}_{\min}$ for each $t \in S_N[\max(b_{N-1}) + 1]$ such that for each $y \in Y_t$ there is $\tau_{t,y} \in S_N \langle t \rangle [y]$ such that $S_N \langle \tau_{t,y} \rangle \Vdash_{\mathbb{P}(\mathcal{H})}$ " $y \notin Z$ ". Let H_N witness that $S_N \in \mathbb{P}(\mathcal{H})$ and to also satisfy that if $\ell = \max(b_{N-1})$ then for all $k \in \max(H_N)$ and $t \in S_N[k]$ and $g: H_{\mathcal{N}}[\ell, k] \to 2^{\mathcal{P}(\ell)}$ there is $f \in \operatorname{succ}_{S_{\mathcal{N}}}(t)$ such that $g \subseteq f * \ell$. Plaver 1 then plays

$$\{h \in H_N \mid (\forall t \in S_N[\max(b_{N-1})+1])\min(h) \in Y_t\}$$

noting that this is a legal play of the game. If Player 2 plays b_N then Player 1 defines **VOP** K

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト