MILLIKEN-TAYLOR ULTRAFILTERS WITHOUT **SELECTIVES**

Dilip Raghavan & Juris Steprans

May 2022

 $2Q$

何 ▶ ヨ ヨ ▶ ヨ ヨ ▶

DILIP RAGHAVAN & JURIS STEPRANS **MT ULTRAFILTERS WITHOUT SELECTIVES**

- What is now known as Hindman's Theorem was proved to establish the truth of a conjecture of Graham and Rothschild.
- It says that if the positive integers are partitioned into finitely many cells, then there is an infinite set of integers all of whose non-empty finite subsets have their sum in the same cell.
- van Douwen is credited with realizing that, assuming the Continuum Hypothesis, it is possible to construct an ultrafilter U such that if the positive integers are partitioned into finitely many cells, then there is $X \in \mathcal{U}$ such that that all of the non-empty finite subsets of X have a sum belonging to the same cell.
- It was noticed by van Douwen that certain ultrafilters had an even stronger property, in that they had a base consisting of all of the finite sums of some set of positive integers.

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and \mathcal{B}

 Ω

- Such ultrafilters are now known as strongly summable ultrafilters.
- The strongly summable ultrafilters are idempotents in $(\beta\mathbb{N}, +)$ and much more.
- The question of whether the Continuum Hypothesis is needed to construct them is also attributed to van Douwen.
- By considering the places of the non-zero digits of the binary representations of the integers, one can establish a connection between some, but not all, of the theory of $(\beta N, +)$ and $(\beta[\mathbb{N}]^{<\aleph_0}, \cup).$

 QQ

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

The non-empty finite subsets of ω will be denoted by \mathbb{F} . If $A \subseteq \mathbb{F}$ consists of pairwise disjoint sets then FU(A) will denote the set of all unions of non-empty finite subsets of A; in other words,

$$
\mathsf{FU}(A) = \left\{ \bigcup a \mid a \in [A]^{<\aleph_0} \& a \neq \varnothing \right\}.
$$

DEFINITION

An ultrafilter on $\mathbb F$ will be called a *union ultrafilter* if it has a base consisting of sets of the form $FU(A)$.

つひい

Define a partial order \lt on $\mathbb F$ by $a \lt b$ if max(a) \lt min(b). For $A\subseteq\mathbb{F}$ and $\kappa\leq\omega$ let $[A]_<^{\kappa}$ denote all sets of the form $\{a_n\}_{n\in\kappa}\subseteq A$ such that $a_n < a_{n+1}$ for all $n \in \kappa$.

DEFINITION

An ultrafilter on $\mathbb F$ will be called an *ordered-union ultrafilter* if it has a base consisting of sets of the form $\mathsf{FU}(A)$ where $A\in [\mathbb{F}]_\leq^\omega.$

Theorem (Blass and Hindman)

Assuming the Continuum Hypothesis there are union ultrafilters that are not ordered, union ultrafilters.

つひい

DEFINITION

An ordered-union ultrafilter U on $\mathbb F$ will be called an stable if it satisfies the following property: Given a sequence of sets ${A_n}_{n\in\omega}\subseteq\mathcal{U}$ there is a sequence ${b_n}_{n\in\omega}\in [\mathbb{F}]_\leq^\omega$ such that for each k there is soime k^* such that $\mathsf{FU}(\{b_n\}_{n\geq k^*})\subseteq A_k$ for each $k \in \omega$.

 Ω

Theorem (Blass)

For an ordered-union ultrafilter H the following are equivalent:

- \bullet H is stable:
- $\mathbf{2}$ if $[\mathbb{F}]^2_< = \mathcal{A}_0 \cup \mathcal{A}_1$ then there is $i \in 2$ and $H \in \mathcal{H}$ such that $[H]_<^2 \subseteq A_i;$
- **3** if $F : \mathbb{F} \to \omega$ then there is $H \in \mathcal{H}$ such that one of the following holds for all a and b in H:
	- \bullet $F(a) = F(b)$
	- \bullet $F(a) = F(b)$ if and only if min(a) = min(b)
	- \bullet $F(a) = F(b)$ if and only if max(a) = max(b)
	- \bullet $F(a) = F(b)$ if and only if min(a) = min(b) and $max(a) = max(b)$
	- \bullet $F(a) = F(b)$ if and only if $a = b$.

and hence, because of [\(2\)](#page-6-0), stable ordered-union ultrafilters are sometimes known as Milliken-Taylor ultrafilters.

э

 290

Given any $A \subseteq \mathbb{F}$ define max(A) = {max(a) | $a \in A$ } and $min(A) = \{min(a) \mid a \in A\}$. For any union ultrafilter U on $\mathbb F$ define max $(\mathcal{U}) = \{ \max(A) \mid A \in \mathcal{U} \}$ and $min(\mathcal{U}) = \{min(A) \mid A \in \mathcal{U}\}.$

Theorem (Blass and Hindman)

If U is a union ultrafilter on $\mathbb F$ then max(U) and min(U) are both P-points.

Theorem (Blass)

If U is an ordered-union ultrafilter on $\mathbb F$ then max(U) and min(U) are RK-inequivalent selective ultrafilters.

YOKK

つひひ

Theorem (Blass)

Assuming $2^{\aleph_0} = \aleph_1$, for any two RK-inequivalent selective ultrafilters U and V there is a stable, ordered-union ultrafilter W on $\mathbb F$ such that max($\mathcal W$) = U and min($\mathcal W$) = V.

Question (Blass)

Can the existence of stable, ordered-union ultrafilters be deduced from the existence of two non-isomorphic selective ultrafilters? Blass conjectured that it cannot.

THEOREM

Blass' conjecture is true.

つひい

If $a \in \mathbb{F}$ define $a^+ = a \setminus \{\max a\}$. If $H \subseteq \mathbb{F}$ and $m \leq k$ define

$$
H[m, k] = \{ h^- \mid h \in H \& \max(h) = k \& \min(h) \ge m \}.
$$

and define $H[m,\infty] = \{h \in H \mid \min(h) \ge m\}.$

NOTATION

Let
$$
\mathbb{T}_n = \prod_{k \in n} 2^{\mathcal{P}(k)}
$$
 and $\mathbb{T} = \bigcup_{n \in \omega} \mathbb{T}_n$. For $t \in \mathcal{T}[n]$ note that

$$
\text{succ}_{\mathcal{T}}(t) = \{f : \mathcal{P}(n) \to 2 \mid t \cap f \in \mathcal{T}\}.
$$

 290

母 > x ミ > x ミ >

Let H be a stable, ordered-union ultrafilter. Define the partial order $\mathbb{P}(\mathcal{H})$ to consist of trees $\mathcal{T} \subseteq \mathbb{T}$ such that there is $H \in \mathcal{H}$ such that for each $\ell \in \omega$ and for all but finitely many $k \in \max(H)$

$$
(\forall t \in \mathcal{T}[k])(\forall g: H[\ell, k] \rightarrow 2^{\mathcal{P}(\ell)})(\exists f \in \text{succ}_{\mathcal{T}}(t))
$$

$$
(\forall x \subseteq \ell)(\forall h \in H[\ell, k]) \ f(x \cup h) = g(h)(x). \quad (1)
$$

Observe that if $f : \mathcal{P}(n) \to 2$ and $f * \ell : \mathcal{P}\left([\ell,n)\right) \to 2^{\mathcal{P}(\ell)}$ is defined by $f * l(h)(x) = f(x \cup h)$ then (1) is equivalent to

$$
(\forall t \in \mathcal{T}[k])(\forall g: H[\ell,k] \rightarrow 2^{\mathcal{P}(\ell)})(\exists f \in \mathsf{succ}_{\mathcal{T}}(t)) \ g \subseteq f * \ell.
$$

The ordering on $\mathbb{P}(\mathcal{H})$ is inclusion. If $G \subset \mathbb{P}(\mathcal{H})$ is generic then let B_G be the generic branch of T and define $\mathbb{C}_G : \mathbb{F} \to 2$ by $\mathbb{C}_G(a) = \bigcup_{t \in B_G} t(\max(a))(a^-).$

- ④ ラ ス ミ ト ス ミ ト

 QQ

DEFINITION

Let H be a stable ordered-union ultrafilter. Define the game $\mathbb{G}(\mathcal{H})$ as follows. At stage k of the game Player 1 plays $S_k \in \mathcal{H}$. Then Player 2 plays $a_k \in S_k$. The play of the game is won by Player 2 if $A \in [\mathbb{F}]^{\omega}_{<}$ and $\mathsf{FU}(A) \in \mathcal{H}$.

It is important to note that the game $\mathbb{G}(\mathcal{H})$ is not played by having Player 1 play ${b_k}_{k\in\omega}$ such that $FU({b_k}_{k\in\omega}) \in \mathcal{H}$ and then having Player 2 play some b_k . (This is a stronger property called sparesness.)

つひい

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

If H is a stable, ordered-union ultrafilter then Player 1 has no winning strategy in the game $\mathbb{G}(\mathcal{H})$.

Suppose that Σ is a strategy for Player 1; in other words, $\Sigma(\sigma)\in\mathcal{H}$ for each sequence $\sigma\in [\mathbb{F}]^{<\omega}_<$. For $k\in\omega$ let

$$
\Sigma^*(k) = \bigcap \left\{ \Sigma(\sigma) \ \middle| \ \sigma \in [\mathcal{P}(k)]^{\leq k}_{\leq} \right\}
$$

and define a partition $[\mathbb{F}]^2_{<} = \mathcal{A}_0 \cup \mathcal{A}_1$ by letting $\{a,b\} \in \mathcal{A}_0$ if and only if $b \in \Sigma^*(\mathsf{max}(a))$. Using the equivalent condition of Blass' theorem it is possible to find $H \in \mathcal{H}$ which is homogeneous for this partition and note that it can only be the case that $[H]_<^2 \subseteq \mathcal{A}_0$. Let $A = \{a_i\}_{i \in \omega} \in [H]_<^{\omega}$ be such that $\mathsf{FU}(A) \in \mathcal{H}$. Then this is a winning play of the game.

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

つひい

Let H be a stable, ordered-union ultrafilter and suppose that $T \in \mathbb{P}(\mathcal{H})$ and $D_n \subseteq \mathbb{P}(\mathcal{H})$ is dense for each $n \in \omega$. Then there is $T^* \in \mathbb{P}(\mathcal{H})$ such that

- \bullet $\top^* \subseteq \top$
- \bullet there are infinitely many k such that $T^*\langle t\rangle\in D_k$ for each $t \in \mathcal{T}[k]$.

COROLLARY

If H is a stable, ordered-union ultrafilter then $\mathbb{P}(\mathcal{H})$ satisfies an appropriate continuous reading of names.

COROLLARY

If H is a stable, ordered-union ultrafilter then $\mathbb{P}(\mathcal{H})$ is

- proper
- ω^{ω} -bounding.

If H is a stable, ordered-union ultrafilter and $\mathbb Q$ is ω^ω -bounding and proper and $i \in 2$ and

 $T * q \Vdash_{\mathbb{P}(\mathcal{H}) * \mathbb{Q}}$ " $W \subseteq \mathbb{C}_{\hat{G}}^{-1}$ $\frac{-1}{6}$ {j} & \dot{W} is closed under unions"

then there is $T^* * q^* \leq T * q$ and $Z \in \mathcal{H}$ such that $T^* * q^* \Vdash_{\mathbb{P}(\mathcal{H}) * \mathbb{Q}}$ " $Z \cap W = \varnothing$ ".

 QQ

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

• If $T * q \Vdash_{\mathbb{P}(\mathcal{H})*\mathbb{O}} (\forall k \in \omega)(\exists w \in W)$ min $(w) > k$ " then the result is immediate, so let ψ be such that

 $T * q \Vdash_{\mathbb{P}(\mathcal{H})*0}$ " $(\forall k \in \omega) \psi(k) \in W$ & min $(\psi(k)) > k$ ".

 $\mathbb{P}(\mathcal{H}) * \mathbb{Q}$ is ω^ω -bounding, so it is possible to find a $\Psi : \omega \to \omega$ such that, without loss of generality,

$$
\mathcal{T} * q \Vdash_{\mathbb{P}(\mathcal{H}) * \mathbb{Q}} \text{``}(\forall k \in \omega) \psi(k) \subseteq [k+1, \Psi(k)]".
$$

Let $B = \{b_i\}_{i \in \omega} \in [\mathbb{F}]^{\omega}_{\leq}$ be such that $H = \mathsf{FU(B)}$ witnesses that $T \in \mathbb{P}(\mathcal{H})$ and such that $\Psi(\max(b_n)) < \min(b_{n+1})$ for all *n* and, if $\ell_n^* = \Psi(\max(b_n))$, then for all $k \in \max(F\cup (\{b_i\}_{i\geq n+1}))$ and $t \in \mathcal{T}[k]$ and $g : H[\ell_n^*,k] \to 2^{\tilde{\mathcal{P}}(\overline{\ell}_n^*)}$ there is $f \in \text{succ}_\mathcal{T}(t)$ such that $g \subseteq f * \ell_n^*$.

- ④ ラ ス ミ ト ス ミ ト

 QQ

• For $t \in \mathcal{T}$ [max (b_{i+1})] let

 $\mathcal{S}(t)=\{f\in\mathsf{succ}_{\mathcal{T}}(t) \,\mid (\forall x\subseteq \ell^*_i))(\forall h\in H[\ell^*_i,\mathsf{max}(b_{i+1})])\text{ if } \mathsf{max}(x)$

- Letting $\ell_n = \max(b_n)$ it follows that if $t \in \mathcal{T}[\max(b_{n+1})]$ and $g : H[\ell_n, \max(b_{n+1})] \rightarrow 2^{\mathcal{P}(\ell_n)}$ there is $f \in \mathcal{S}(t)$ such that $g \subset f * \ell_n$.
- Therefore if T^* is defined by

$$
\mathcal{T}^* = \bigcap_{i \in \omega} \left(\bigcup_{t \in \mathcal{T}[\max(b_i)]} \bigcup_{f \in \mathcal{S}(t)} \mathcal{T} \langle t \cap f \rangle \right)
$$

then succ $\tau^*(t) = \mathcal{S}(t)$ for each $i \in \omega$ and $t \in \mathcal{T}^*$ [max (b_i)].

つへへ

If H is a stable, ordered-union ultrafilter let \mathcal{H}_{min} and \mathcal{H}_{min} denote the image of H under min and max respectively.

LEMMA

If H is a stable, ordered-union ultrafilter and $T \Vdash_{\mathbb{P}(H)} "Z \subseteq \omega"$ then there is $T^* \subseteq T$ and $X \in \mathcal{H}_{\text{min}}$ such that either $T^* \Vdash_{\mathbb{P}(\mathcal{H})}$ " $X \subseteq Z$ " or $T^* \Vdash_{\mathbb{P}(\mathcal{H})}$ " $X \cap Z = \varnothing$ ".

LEMMA

If H is a stable, ordered-union ultrafilter and $T \Vdash_{\mathbb{P}(\mathcal{H})}$ " $Z \subseteq \omega$ " then there is $T^* \subseteq T$ and $X \in \mathcal{H}_{\text{max}}$ such that either $T^* \Vdash_{\mathbb{P}(\mathcal{H})}$ " $X \subseteq Z$ " or $T^* \Vdash_{\mathbb{P}(\mathcal{H})}$ " $X \cap Z = \varnothing$ ".

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Þ

つひい

If H is a stable, ordered-union ultrafilter and $T \Vdash_{\mathbb{P}(\mathcal{H})}$ " $Z \subseteq \omega$ " then there is $T^* \subseteq T$ and $X \in \mathcal{H}_{\text{min}}$ such that either $T^* \Vdash_{\mathbb{P}(\mathcal{H})}$ " $X \subseteq Z$ " or $T^* \Vdash_{\mathbb{P}(\mathcal{H})}$ " $X \cap Z = \varnothing$ ".

Find $S \subseteq T$ and H witnessing that $S \in \mathbb{P}(\mathcal{H})$ such that for each $k \in \max(H)$ and $t \in S[k+1]$ there is $z_t \subseteq k+1$ such that $S\langle t\rangle \Vdash_{\mathbb{P}(\mathcal{H})}$ " $Z \cap (k+1) = z_t$ ". The first case to consider is that there is some $S^* \subseteq S$ and $B = \{b_i\}_{i\in\omega}\in [\mathbb{F}]^{\omega}_{<}$ such that $H = \mathsf{FU}(\{b_i\}_{i\in\omega})$ witnesses that $\mathcal{S}^* \in \mathbb{P}(\mathcal{H})$ such that there is $A \subseteq \omega$ such that

- \bullet {min(b_i) | $i \in A$ } \in H_{min}
- for each $i \in A$ and $t \in \mathcal{S}^*[\mathsf{min}(b_i)]$ there is $\tau(t) \supseteq t$ in S^* [max $(b_i) + 1$] such that $t \subseteq \tau(t)$ and such that $\min(b_i) \in z_{\tau(t)}$. (ロ) (*同*) (ミ) (ヨ) つひい

Since $\mathcal{H}_{\text{max}} \not\equiv_{\text{RK}} \mathcal{H}_{\text{min}}$ the mapping on $\{\text{min}(b_i) \mid i \in A\}$ that sends min(b_i) to max(b_i) is not an RK equivalence and so there is $A^*\subseteq A$ such that

$$
\bullet\ X = \{\mathsf{min}(b_i)\ \mid i\in A^*\} \in \mathcal{H}_{\mathsf{min}}
$$

•
$$
Y = \{ \max(b_i) \mid i \in A^* \} \notin \mathcal{H}_{\max}.
$$

Let T^* be defined by

$$
T^* = \bigcap_{i \in A^*} \bigcup_{t \in S^*[\min(b_i)]} S^*\langle \tau(t) \rangle.
$$

To see that $\mathcal{T}^* \in \mathbb{P}(\mathcal{H})$ it suffices to verify that ${h \in H \mid max(h) \notin Y}$ witnesses this. Note that if $i \in A^*$ then

$$
\left(\bigcup_{t\in S^*[\mathsf{min}(b_i)]}S^*\langle \tau(t)\rangle\right)\Vdash_{\mathbb{P}(\mathcal{H})}``\mathsf{min}(b_i)\in\dot{Z}''
$$

and so $\mathcal{T}^* \Vdash_{\mathbb{P}(\mathcal{H})} \text{``} \mathsf{X} \subseteq \mathsf{Z}$ ".

 QQ

Hence it can be assumed that for every $\mathcal{S}^* \subseteq \mathcal{S}$ and $B=\{b_i\}_{i\in\omega}\in [\mathbb{F}]^{\omega}_<$ such that $H=\mathsf{FU}(\{b_i\}_{i\in\omega})$ witnesses that $\mathcal{S}^* \in \mathbb{P}(\mathcal{H})$ there is $A \subseteq \omega$ such that $\{\mathsf{min}(b_i) \, \mid i \in A\} \in \mathcal{H}_{\mathsf{min}}$ and $(\forall i \in A)(\exists t \in S^*[\min(b_i)])(\forall \tau \in S^* \langle t \rangle[\max(b_i)+1]) \min(b_i) \notin z_{\tau}.$ Now devise a strategy for Player 1 in the game $\mathbb{G}(\mathcal{H})$. If Player 2 has played $\{b_i\}_{i\in\mathbb{N}}$ at Inning N, then Player 1 first chooses $Y_t \in \mathcal{H}_{\text{min}}$ for each $t \in S_N[\max(b_{N-1}) + 1]$ such that for each $y \in Y_t$ there is $\tau_{t,y} \in S_N\langle t \rangle[y]$ such that $S_N\langle \tau_{t,y} \rangle \Vdash_{\mathbb{P}(\mathcal{H})} "y \notin \mathbb{Z}".$ Let H_N witness that $S_N \in \mathbb{P}(\mathcal{H})$ and to also satisfy that if $\ell = \max(b_{N-1})$ then for all $k \in \max(H_N)$ and $t \in S_N[k]$ and $g : H_N[\ell, k] \rightarrow 2^{\mathcal{P}(\ell)}$ there is $f \in \mathsf{succ}_{S_N}(t)$ such that $g \subseteq f * \ell.$ Player 1 then plays

$$
\{h \in H_N \mid (\forall t \in S_N[\max(b_{N-1})+1]) \min(h) \in Y_t \}
$$

noting that this is a legal play of the game. If Player 2 plays b_N then Player 1 defines $V \cap D V$

$$
S_{N+1} = \bigcup_{t \in S_N[\max(b_{N-1})+1]} S_N \langle \tau_{t,\min(b_N)} \rangle. \qquad \substack{\mathbf{I} \cup \mathbf{I} \subseteq \mathbf{R} \text{ s if } t \\ \frac{\mathbf{I} \cup \mathbf{I} \subseteq \mathbf{R} \text{ s if } t}{\mathbf{I} \cup \mathbf{I} \subseteq \mathbf{R} \text{ s if } t}}{1 - \mathbf{I} \cup \mathbf{I} \subseteq \mathbf{R} \text{ s if } t \in \mathbf{R} \text{ s if } t}} \bigg\}
$$
\nOther Rachavan & JURAS STEPRANS

\nMT UITRAFILTERS WITHOUT SELETIVES

 $2Q$

メロトメ 伊 トメ ミトメ ミト

 $2Q$

メロトメ 伊 トメ ミトメ ミト

 $2Q$

メロトメ 伊 トメ ミトメ ミト

 $2Q$

メロトメ 伊 トメ ミトメ ミト