Universal functions, strong colouring and PID

Juris Steprāns (joint work with Menachem Kojman and Assaf Rinot)

York University

January 21, 2021

STRONG COLOURINGS

THEOREM (TODORCEVIC)

There is a colouring $c: [\omega_1]^2 \to \omega_1$ with the property that the image of c on $[A]^2$ is all of ω_1 for all uncountable $A \subseteq \omega_1$. The existence of such a colouring is denoted by $\aleph_1 \nrightarrow [\aleph_1]^2_{\aleph_1}$.

This improved earlier results of Sierpiński, that $\aleph_1 \nrightarrow (\aleph_1)_2^2$ and Galvin and Shelah, that $\aleph_1 \nrightarrow [\aleph_1]_4^2$. If the range is understood, then such colourings are called *strong*.

QUESTION

How can $\aleph_1 \rightarrow [\aleph_1]_{\aleph_1}^2$ be strengthened?

One answer is provided replacing the uncountable A by another structure

Theorem (Moore)

There is a colouring $c : [\omega_1]^2 \to \omega_1$ with the property that the image of c on $A \circledast B = \omega_1$ for all uncountable A and B where $A \circledast B$ stands for the rectangle $\{(\alpha, \beta) \in A \times B \mid \alpha < \beta\}$.

A related, but somewhat different question is the following:

QUESTION (ERDÖS-GALVIN-HAJNAL)

Given $G \subseteq [\omega_1]^2$ with uncountable chromatic number, is there $c: G \to \omega_1$ such that for all $w: \omega_1 \to \omega$ there is $n \in \omega$ such that the image of c on $G \cap [w^{-1}\{n\}]^2$ is all of ω_1 ?

STRONG COLOURINGS OVER PARTITIONS

DEFINITION

Let $p: [\omega_1]^2 \to \omega$. Define $\aleph_1 \not\rightarrow_p [\aleph_1]^2_{\kappa}$ to mean that there is some $c: [\omega_1]^2 \to \kappa$ such that for each uncountable $X \subseteq \omega_1$ there is $n \in \omega$ such that the image of c on $p^{-1}\{n\} \cap [X]^2$ is all of κ .

- If p is constant then Todorcevic's colouring shows that $\aleph_1 \nrightarrow_p [\aleph_1]^2_{\kappa}$.
- In in **Chen, Kojman, S.** partitions with smaller range are considered, but this talk will not look at that case.

- It is shown in **Chen, Kojman, S.** and later in **Kojman, Rinot, S.** that it is consistent with various versions of set theory that $\aleph_1 \nrightarrow_p [\aleph_1]_\kappa^2$ holds. For example, CH implies that $\aleph_1 \nrightarrow_p [\aleph_1]_{\aleph_1}^2$ for any partition $p: [\omega_1]^2 \to \omega$.
- After adding \aleph_2 Cohen reals it is shown in [CKS] even stronger versions hold for partitions. For every partition $p:[\omega_1]^2\to\omega$ there is a colouring $c:[\omega_1]^2\to\omega_1$ such that for any infinite $A\subseteq\omega_1$ and uncountable $B\subseteq\omega_1$ there is $\alpha\in A$ and $n\in\omega$ such that for all $\gamma\in\omega_1$ there is $\beta\in B$ such that $c(\alpha,\beta)=\omega_1$ and $p(\alpha,\beta)=n$.
- The instance of this without a partition was shown by Todorcevic to be equivalent to a result of Sierpiński, who showed that, assuming CH, there are countably many functions $f_n: \omega_1 \to \omega_1$ such that for every uncountable $B \subseteq \omega_1$ there is some n such that $f_n(B) = \omega_1$.

Some statements under CH

- There is a Luzin set.
- **②** There is an non-meagre set of size \aleph_1 .
- There is a sequence $\langle f_n \mid n < \omega \rangle$ of functions from ω_1 to ω_1 such that, for every uncountable $I \subseteq \omega_1$, for all but finitely many $n < \omega$, $f_n[I] = \omega_1$.
- There is a colouring $c: [\omega_1]^2 \to \omega_1$ such that, for all infinite $A \subseteq \omega_1$ and uncountable $B \subseteq \omega_1$, there exists $\alpha \in A$ such that $c[\{\alpha\} \times B] = \omega_1$;
- There is a colouring $d: [\omega_1]^2 \to \omega_1$ such that, for all infinite pairwise disjoint family $\mathcal{A} \subseteq [\omega_1]^{<\aleph_0}$ and uncountable pairwise disjoint family $\mathcal{B} \subseteq [\omega_1]^{<\aleph_0}$, there exists $a \in \mathcal{A}$ such that, for every $\delta < \omega_1$, for some $b \in \mathcal{B}$, $d[a \times b] = \{\delta\}$.

- That CH implies (1) was shown by Mahlo and independently by Luzin.
- That CH implies (3) was shown by Sierpiński.
- That CH implies (4) was shown by Erdős, Hajnal and Milner.
- That CH implies (5) is due to Galvin.
- (1) implies (2) is clear, but the reverse is false.
- (5) implies (4) implies (3) are easy.
- Todorcevic showed that (1) implies (3) implies (4).
- Recently Miller showed that (2) implies (3).
- Even more recently, Guzman showed (3) implies (2).

To these equivalences Kojman and Rinot added some others, including the following:

- For every ℓ_{∞} -coherent partition $p: [\omega_1]^2 \to \omega$, there exists $d: [\omega_1]^2 \to \omega_1$ satisfying that given
 - an infinite pairwise disjoint subfamily $\mathcal{A} \subseteq [\omega_1]^k$ with $k < \omega$,
 - an uncountable subfamily $\mathcal{B} \subseteq [\omega_1]^I$ with $I < \omega$, such that

there exists $a \in \mathcal{A}$ such that for every matrix $\langle \tau_{n,m} \mid n < k, m < I \rangle$ of functions from ω to ω_1 , there exists $b \in \mathcal{B}$ such that for all n < k and m < I

$$d(a(n),b(m)) = \tau_{n,m}(p(a(n),b(m)))$$

For a partition $p:[\omega_1]^2 \to \omega$:

- p has injective fibres if $p(\alpha, \beta) \neq p(\alpha', \beta)$ for all $\alpha < \alpha' < \beta$
- p has finite-to-one fibres if $\{\alpha<\beta\mid p(\alpha,\beta)=\delta\}$ is finite for all $\beta<\kappa$ and $\delta<\mu$
- p has almost-disjoint fibres if

$$\{p(\alpha,\beta) \mid \alpha < \beta\} \cap \{p(\alpha,\beta') \mid \alpha < \beta\}$$

is finite for all $\beta < \beta' < \kappa$

- p has coherent fibres if $\{\alpha < \beta \mid p(\alpha, \beta) \neq p(\alpha, \beta')\}$ is finite for all $\beta < \beta' < \kappa$:
- p is ℓ_{∞} -coherent if for every $(\beta, \beta') \in [\omega_1]^2$, the set of integers $\{p(\alpha, \beta) p(\alpha, \beta') \mid \alpha < \beta\}$ is finite.

The $\rho_2: [\omega_1]^2 \to \omega$ is an example of an ℓ_∞ -coherent partition. Which does not have coherent fibres.

LEMMA

There exists a partition $p: [\omega_1]^2 \to \omega$ with injective and almost-disjoint fibres.

Proposition

For every partition $p: [\omega_1]^2 \to \omega$ there exists a corresponding partition $\bar{p}: [\omega_1]^2 \to \omega$ with injective fibres such that, if one of the relations . . . holds for \bar{p} , then it also holds for p.

QUESTION

Can the hypothesis that p is an ℓ_{∞} -coherent partition be removed from the equivalence?

THEOREM

It is consistent with the existence of a Luzin set that there is a partition $p: [\aleph_1]^2 \to \aleph_0$ such that, for every colouring $c: [\aleph_1]^2 \to \aleph_0$, there is a decomposition $\aleph_1 = \biguplus_{i < \omega} X_i$ such that, for all $i, j < \omega$,

$$c \upharpoonright \{(\alpha, \beta) \in [X_i]^2 \mid p(\alpha, \beta) = j\}$$
 is constant.

- This answers the question is a strong way.
- One might ask if the positive relation $\aleph_1 \to_p [\aleph_1]^2_{\aleph_0}$ can be weakened to ask for a colouring $c : [\omega_1]^2 \to \omega$ such that for each uncountable $X \subseteq \omega_1$ there is $n \in \omega$ such that the image of c on $p^{-1}\{n\} \cap [X]^2$ is infinite, rather than all of ω .
- Even this weaker version fails. The following lemma describes the p for which it fails.

 YORK

LEMMA

The following are equivalent:

- \bullet $\mathfrak{d}=\aleph_1$
- There exists a partition $p: [\omega_1]^2 \to \omega$ with injective and almost-disjoint fibres such that for every function $h: \epsilon \to \omega$ with $\epsilon < \omega_1$, there exists $\gamma < \omega_1$, such that for every $b \in [\omega_1 \setminus \gamma]^{<\aleph_0}$, there exists $\Delta \in [\epsilon]^{<\aleph_0}$ such that:
 - for all $\alpha \in \epsilon \setminus \Delta$ and $\beta \in b$, $h(\alpha) < p(\alpha, \beta)$;
 - $p \upharpoonright ((\epsilon \setminus \Delta) \times b)$ is injective.

DEFINITION

Given a partition $p: [\omega_1]^2 \to \omega$ a colouring $c: [\omega_1]^2 \to \omega$ will be called p-special if there is a partition $W: \omega_1 \to \omega$ and a function $w: \omega \times \omega \to \omega$ such that $c(\alpha, \beta) = w(W(\alpha), p(\alpha, \beta))$ if $W(\alpha) = W(\beta)$.

PROPERTY K THEOREMS

THEOREM

Assuming $MA_{\aleph_1}(K)$, there exists a partition $p : [\omega_1]^2 \to \omega$ such that all colourings $c : [\omega_1]^2 \to \omega$ are p-special.

THEOREM

It is consistent that all of the following hold simultaneously:

- There exists Luzin set;
- There exists a coherent Souslin tree;
- There exists a partition $p: [\omega_1]^2 \to \omega$ as in the previous slide such that all colourings $c: [\omega_1]^2 \to \omega$ are p-special.

 $\mathbb{Q}(p,c)$ consists of all triples $q=(a_q,f_q,w_q)$ satisfying all of the following:

- **2** $f_q: a_q \to \omega$ is a function;
- **3** w_q is a function from a finite subset of $\omega \times \omega$ to ω ;
- for all $(\alpha, \beta) \in [a_q]^2$, if $f_q(\alpha) = f_q(\beta)$, then $(f_q(\alpha), p(\alpha, \beta)) \in \operatorname{domain}(w_q)$ and $c(\alpha, \beta) = w_q(f_q(\alpha), p(\alpha, \beta))$.

For $G \subseteq \mathbb{Q}(p,c)$ let $X_{i,G} = \{\alpha < \omega_1 \mid \exists q \in G \ (f_q(\alpha) = i)\}$ and for all $i,j < \omega$ note that

$$1 \Vdash_{\mathbb{Q}(p,c)} "|\{c(\alpha,\beta) \mid (\alpha,\beta) \in [X_{i,\dot{G}}]^2 \text{ and } p(\alpha,\beta) = j\}| \leq 1".$$

LEMMA

For every partition $p:[\omega_1]^2\to\omega$ with injective and almost-disjoint fibers, $\mathbb{Q}(p,c)$ has Property K

To prove this let $\{(a_{\xi}, f_{\xi}, w_{\xi})\}_{\xi \in \omega_1}$ are given and assume that

- $w_{\xi} = w$ for all ξ
- $\{a_{\xi}\}_{\xi\in\omega_1}$ form a Δ -system (with empty root for simplicity)
- $a_{\xi} = \{a_{\xi}(j)\}_{j \in k}$ for all ξ
- there is $f: k \to \omega$ such that $f_{\xi}(a_{\xi}(j)) = f(j)$ for all ξ and j
- there is $p^*: k \times k \to \omega$ such that $p(a_{\xi}(j), a_{\xi}(i)) = p^*(j, i)$ for all ξ , i and j
- there is $w: k \times k \to \omega$ such that $w_{\xi}(f_{\xi}(a_{\xi}(j)), p(a_{\xi}(j), a_{\xi}(i))) = w(f(j), p^{*}(j, i))$ for all ξ , i and j. YORK

Let \mathfrak{M}_{ξ} be a continuous, increasing chain of countable elementary submodels of $H(\aleph_2, p, \in)$ and let $\tau_{\xi} = \omega_1 \cap \mathfrak{M}_{\xi}$. For each ξ find $\rho(\xi) \in \tau_{\xi}$ such that:

- if i < j < k and $\rho(\xi) < \alpha, \beta < \tau_{\xi}$ then $p(a_{\xi}(j), \alpha) \neq p(a_{\xi}(i), \beta)$
- if j < k and $\rho(\xi) < \alpha < \tau_{\xi}$ then $p(a_{\xi}(j), \alpha) \notin \mathbf{range}(f)$.

Let $\rho(\xi) = \rho$ for $\xi \in S$ with S stationary. It follows that $\{(a_{\tau_{\xi}}, f_{\tau_{\xi}}, w_{\tau_{\xi}})\}_{\xi \in S \setminus \rho}$ is linked.

Why? Because given $\rho < \xi < \eta$ in S the integers $p(a_{\tau_{\xi}}, a_{\tau_{\eta}})$ are all distinct and not in the range of f. Hence it is easy to extend f as needed.

EXTENDING CONDITIONS

The main goal now is to show that non-meagre sets are preserved by a finite support iteration. The following definition is needed for this.

DEFINITION

For all $q \in \mathbb{Q}(p,c)$, $k < \omega$ and $z \in [\omega_1]^{<\aleph_0}$, define $q^{\wedge}(k,z)$ to be the triple (a, f, w) satisfying:

- $a := a_q \cup z$;
- $f: a \to \omega$ is a function extending f_q and satisfying $f(\alpha) = k + |z \cap \alpha|$ for all $\alpha \in a \setminus a_q$;
- \bullet $w_q := w$.

Note that $q^{\wedge}(k,z)$ may not be in $\mathbb{Q}(p,c)$, but it will be, provided that $k\supseteq \mathbf{range}(f_q)$.

COROLLARY

For every $\beta < \omega_1$, $D_{\beta} := \{q \in \mathbb{Q}(p,c) \mid \beta \in a_q\}$ is dense, so that

$$1\Vdash_{\mathbb{Q}(\rho,c)} "\biguplus_{i<\omega} X_{i,\dot{G}}=\omega_1".$$

DEFINITION

Let $p: [\omega_1]^2 \to \omega$ be a partition. For any ordinal η , a finite-support iteration $\{\mathbb{Q}_\xi\}_{\xi \in \eta}$ will be called a p-iteration if \mathbb{Q}_0 is the trivial forcing, and, for each ordinal ξ with $\xi + 1 < \eta$ there is a \mathbb{Q}_ξ -name $\overset{\circ}{c_\xi}$ such that

Define $q \in \mathbb{Q}_{\xi}$ to be determined by recursion in the usual way so that a condition $q \in \mathbb{Q}_{\xi+1}$ is determined if $q \upharpoonright \xi \Vdash_{\mathbb{Q}_{\xi}} "q(\xi) = (a_{q,\xi}, f_{q,\xi}, w_{q,\xi})"$ for an actual triple of finite sets.

DEFINITION

For a determined condition q in the p-iteration, we say that k is sufficiently large for q iff $k \supseteq \mathbf{range}(f_{q,\xi})$ for all ξ in the support of q.

For a condition q in the p-iteration, $k < \omega$ and $z \in [\omega_1]^{<\aleph_0}$, define $q^{\wedge}(k,z)$ by letting $q^{\wedge}(k,z)(\xi) := q(\xi)^{\wedge}(k,z)$ for each ξ in the support of q.

DEFINITION

A structure $\mathfrak M$ is said to be good for the p-iteration $\{\mathbb Q_\xi\}_{\xi\in\eta}$ if there is a large enough regular cardinal $\kappa>\eta$ such that all of the following hold:

- \mathfrak{M} is a countable elementary submodel of $(\mathcal{H}_{\kappa}, \in, \lhd_{\kappa})$, where \lhd_{κ} is a well-ordering of \mathcal{H}_{κ} ;
- p, $\{\mathbb{Q}_{\xi}\}_{\xi \in \eta}$ and $\{\stackrel{\circ}{c_{\xi}}|\xi+1<\eta\}$ are in \mathfrak{M} .

For any structure \mathfrak{M} good for the p-iteration $\{\mathbb{Q}_{\xi}\}_{\xi\in\eta}$, for all $\xi\in\eta$ and a determined condition $q\in\mathbb{Q}_{\xi}$, we define $q^{\mathfrak{M}}$, as follows. The definition is by recursion on $\xi\in\eta$:

- For $\xi = 0$ there is nothing to do.
- For any ξ such that $q^{\mathfrak{M}}$ has been defined for all determined q in \mathbb{Q}_{ξ} , given a determined condition $q \in \mathbb{Q}_{\xi+1}$, we consider two cases:
 - If $\xi \in \mathfrak{M}$, then let $q^{\mathfrak{M}} := (q \upharpoonright \xi)^{\mathfrak{M}} * (a_{q,\xi} \cap \mathfrak{M}, f_{q,\xi} \cap \mathfrak{M}, w_{q,\xi})$
 - Otherwise, just let $q^{\mathfrak{M}} := (q \upharpoonright \xi)^{\mathfrak{M}} * (\emptyset, \emptyset, \emptyset)$.
- For any limit $\xi \in \eta$, since this is a finite-support iteration, there is nothing new to define.

- If q is determined, then, for every coordinate ξ in the support of q, $q^{\mathfrak{M}}(\xi)$ is a triple consisting of finite sets lying in \mathfrak{M} .
- It is important to note that $q^{\mathfrak{M}}$ may not, in general, be a condition because $q^{\mathfrak{M}} \upharpoonright \eta$ may fail to force that $q^{\mathfrak{M}}(\eta) \in \mathbb{Q}(p, \dot{c}_{\eta})$.
- Nevertheless, $(q^{\mathfrak{M}})^{\wedge}(k,z)$ is a well-defined object, since its definition does not depend on the \dot{c}_{ξ} 's.

Recall the lemma stated earlier and now required for the next technical lemma.

LEMMA

If $\mathfrak{d}=\aleph_1$ then there is $p:[\omega_1]^2\to\omega$ that is injective with almost-disjoint fibres and such that for every function $h:\epsilon\to\omega$ with $\epsilon<\omega_1$, there exists $\gamma<\omega_1$, such that for every $b\in[\omega_1\setminus\gamma]^{<\aleph_0}$, there exists $\Delta\in[\epsilon]^{<\aleph_0}$ such that:

- for all $\alpha \in \epsilon \setminus \Delta$ and $\beta \in b$, $h(\alpha) < p(\alpha, \beta)$;
- $p \upharpoonright ((\epsilon \setminus \Delta) \times b)$ is injective.

LEMMA

Suppose that p is as in the previous slide and $\mathfrak M$ is a structure good for the p-iteration $\{\mathbb Q_\xi\}_{\xi\in\eta}$.

For all $\zeta \leq \sup(\eta)$ and a determined condition $r \in \mathbb{Q}_{\zeta}$, there is a finite set $\bar{z} \subseteq \mathfrak{M} \cap \omega_1$ such that:

- **A:** For every $z \in [\mathfrak{M} \cap \omega_1]^{<\aleph_0}$ covering \overline{z} , and every integer k that is sufficiently large for r, $(r^{\mathfrak{M}})^{\wedge}(k,z)$ is in $\mathfrak{M} \cap \mathbb{Q}_{\zeta}$ and is determined;
- **B:** For every $z \in [\mathfrak{M} \cap \omega_1]^{<\aleph_0}$ covering \overline{z} , and every integer k that is sufficiently large for r, for the condition $\overline{r} := (r^{\mathfrak{M}})^{\wedge}(k,z)$ and a condition $q \in \mathfrak{M} \cap \mathbb{Q}_{\zeta}$, if the following three requirements hold:
 - $0 \mathfrak{M} \models q \leq \overline{r}$ and q is determined;
 - 2 the mapping $(\alpha, \beta) \mapsto p(\alpha, \beta)$ is injective over $(A_q \setminus A_{\bar{r}}) \times (A_r \setminus A_{\bar{r}})$;

then $q \not\perp r$.

- Proceed by induction on $\zeta \leq \sup(\eta)$ proving **A** and **B** simultaneously.
- The case $\zeta = 0$ is immediate.
- The case $\zeta=1$ is simple as well, but it may be instructive to consider it in detail since it gives some idea of the general proof.
- So c₀ is a colouring in the ground model and all conditions are determined.
- In this case if $r \in \mathbb{Q}_1$ then $r^{\mathfrak{M}}$ is a condition, as well.
- In general this is not the case and it is the reason A and B need to be carried along in the induction.
- It will be shown that $\bar{z} = \emptyset$ satisfies the conclusion.

- Let *k* be sufficiently large for *r*.
- We know that $(r^{\mathfrak{M}})^{\wedge}(k,z) \in \mathfrak{M} \cap \mathbb{Q}_1$ for any $z \in [\mathfrak{M} \cap \omega_1]^{<\aleph_0}$. Hence **A** is immediate.
- To see that **B** holds, suppose that we are given $z \in [\mathfrak{M} \cap \omega_1]^{<\aleph_0}$.
- Let $\bar{r} := (r^{\mathfrak{M}})^{\wedge}(k, z)$.
- We are also given a condition $q \in \mathfrak{M} \cap \mathbb{Q}_1$ satisfying requirements (1)–(3) above.

- To see that $q \not\perp r$, let $a := a_{q,0} \cup a_{r,0}$, $f := f_{q,0} \cup f_{r,0}$ and $w := w_{q,0} \cup w_{r,0}$.
- It is immediate to see that f and w are functions, $A_r = a_{r,0}$, $A_q = a_{q,0}$ and $A_q \cap A_r = A_{\bar{r}}$.
- We need to show that there exists a function w^* extending w for which (a, f, w^*) is a legitimate condition.
- For this, suppose that we are given $i, j < \omega$, $(\alpha, \beta), (\alpha', \beta') \in [a]^2$, with $f(\alpha) = f(\beta) = i = f(\alpha') = f(\beta')$ and $p(\alpha, \beta) = j = p(\alpha', \beta')$.
- It must be shown that $c_0(\alpha, \beta) = c_0(\alpha', \beta')$.

There are two cases to consider:

CASE I If
$$(\alpha, \beta), (\alpha', \beta') \in [A_q]^2 \cup [A_r]^2$$
, then since w extends $w_{q,0}$ and $w_{r,0}$, $c_0(\alpha, \beta) = w(i, j) = c_0(\alpha', \beta')$.

CASE II If
$$(\alpha, \beta) \in [a]^2 \setminus ([A_q]^2 \cup [A_r]^2)$$
, then since $A_q \cap A_r = A_{\bar{r}}$ and $\alpha < \beta$, we infer that $(\alpha, \beta) \in (A_q \setminus A_{\bar{r}}) \times (A_r \setminus A_{\bar{r}})$. So, by Clause (3), $(\alpha', \beta') \in [a]^2 \setminus ([A_q]^2 \cup [A_r]^2)$, as well. Then, likewise $(\alpha', \beta') \in (A_q \setminus A_{\bar{r}}) \times (A_r \setminus A_{\bar{r}})$. Altogether, by Clause (2), $(\alpha, \beta) = (\alpha', \beta')$. In particular, $c_0(\alpha, \beta) = c_0(\alpha', \beta')$.

LEMMA

Suppose:

- $p: [\omega_1]^2 \to \omega$ is as in the previous lemma;
- $L = \{I_{\gamma}\}_{{\gamma} \in \omega_1}$ is a Luzin subset of 2^{ω} ;
- $\{\mathbb{Q}_{\xi}\}_{\xi\in\eta}$ is a p-iteration with $\eta>0$ a limit ordinal.

Then $1 \Vdash_{\mathbb{Q}_{\eta}}$ "L is Luzin".

Suppose not. Then it can be assumed that there is a \mathbb{Q}_{η} -name \bar{T} such that

- 1 $\Vdash_{\mathbb{Q}_\eta}$ " $\overset{\circ}{T} \subseteq 2^{<\omega}$ is a closed nowhere dense tree", and
- $1 \Vdash_{\mathbb{Q}_{\eta}}$ " $(\exists^{\aleph_1} \gamma) I_{\gamma}$ is a branch through $\overset{\circ}{T}$ ".

- It follows that there is an uncountable subset $\Gamma \subseteq \omega_1$ such that for each $\gamma \in \Gamma$ there is a determined condition $r_\gamma \in \mathbb{Q}_\eta$ such that $r_\gamma \Vdash_{\mathbb{Q}_\eta}$ " l_γ is a branch through $\overset{\circ}{T}$ ".
- It may assumed that there is a single $k < \omega$ which is sufficiently large for r_{γ} for all $\gamma \in \Gamma$.
- It may also be assumed that $\{A_{r_{\gamma}} \mid \gamma \in \Gamma\}$ forms a Δ -system with some root ρ .
- Let $\mathfrak M$ be a structure good for the p-iteration $\{\mathbb Q_\xi\}_{\xi\in\eta}$, with $\rho,\stackrel{\circ}{T},\mathbb Q_\eta\in\mathfrak M.$

- For each $\gamma \in \Gamma$, let \bar{z}_{γ} be given by the previous lemma with respect to r_{γ} and \mathfrak{M} .
- Fix an uncountable $\Gamma' \subseteq \Gamma$ and some $\bar{z} \in [\omega_1 \cap \mathfrak{M}]^{<\omega}$ such that $\bar{z}_{\gamma} = \bar{z}$ for all $\gamma \in \Gamma'$.
- By possibly shrinking further, we may assume the existence of q such that $(r_{\gamma})^{\mathfrak{M}} = q$ for all $\gamma \in \Gamma'$.
- In particular, for every $z \in [\mathfrak{M} \cap \omega_1]^{<\aleph_0}$ covering \bar{z} , $q^{\wedge}(k,z) \in \mathfrak{M} \cap \mathbb{Q}_{\eta}$ is determined.

Let $\{\tau_n\}_{n\in\omega}$ enumerate $2^{<\omega}$. Recursively construct a sequence $\{(z_n,q_n,t_n)\}_{n\in\omega}$ such that:

- $z_0 = \bar{z} \cup \rho$;
- $q_n \leq q^{\wedge}(k, z_n)$ and q_n is a determined condition lying in \mathfrak{M} ;
- $\tau_n \subseteq t_n \in 2^{<\omega}$ with $q_n \Vdash_{\mathbb{Q}_\eta}$ " $t_n \notin \dot{T}$ ";
- $z_{n+1} \supseteq A_{q_n}$.

Let $\epsilon := \sup(\bigcup_{n \in \omega} A_{q_n}) + 1$. Define a function $h : \epsilon \to \omega$ by

$$h(\alpha) := \max\{k, p(\alpha', \beta') \mid (\alpha', \beta') \in [A_{q_{n+1}}]^2 \text{ and } \alpha \in A_{q_{n+1}} \setminus A_{q_n}\}.$$

Recalling the properties of p, fix $\gamma^* < \omega_1$ satisfying that for every $b \in [\omega_1 \setminus \gamma^*]^{<\aleph_0}$, there exists $\Delta \in [\epsilon]^{<\aleph_0}$ such that:

- $p \upharpoonright ((\epsilon \setminus \Delta) \times b)$ is injective;
- for all $\alpha \in \epsilon \setminus \Delta$ and $\beta \in b$, $h(\alpha) < p(\alpha, \beta)$.

- $\Gamma^* := \{ \gamma \in \Gamma' \mid \min(A_{r_{\gamma}} \setminus \rho) > \gamma^* \}$ is uncountable.
- For each $n < \omega$, consider the open set $U_n := \{I \in 2^\omega \mid t_n \subseteq I\}$.
- Set $W := \bigcap_{j=0}^{\infty} \bigcup_{j=n}^{\infty} U_{n+1}$.
- Then W is a dense G_{δ} set, so since $\{I_{\gamma}\}_{{\gamma}\in\Gamma^*}$ is Luzin, $I_{\gamma}\in W$ for all but countably many ${\gamma}\in\Gamma^*$.
- Set $b := A_{r_{\gamma}} \setminus \rho$, and then let $\Delta \in [\epsilon]^{<\aleph_0}$ be the corresponding set, as above.
- Fix a large enough $j < \omega$ such that $A_{q_{n+1}} \setminus A_{q_n}$ is disjoint from Δ for all $n \geq j$.

- As $I_{\gamma} \in W$, we may now fix some $n \geq j$ such that $I_{\gamma} \in U_{n+1}$.
- Denote $\bar{r}:=(q^{\mathfrak{M}})^{\wedge}(k,z_{n+1}).$
- Then $(A_{q_{n+1}} \setminus A_{\bar{r}}) \subseteq (A_{q_{n+1}} \setminus A_{q_n}) \subseteq (\epsilon \setminus \Delta)$ and $(A_{r_{\gamma}} \setminus A_{\bar{r}}) \subseteq b$, and all of the following hold:

 - ② the mapping $(\alpha, \beta) \mapsto p(\alpha, \beta)$ is injective over $(A_{q_{n+1}} \setminus A_{\bar{r}}) \times (A_{r_{\gamma}} \setminus A_{\bar{r}});$
- Since $z_{n+1} \supseteq \bar{z}$ and \bar{z} was given by the lemma, apply **B** and infer that $q_{n+1} \not\perp r_{\gamma}$.
- However, $q_{n+1} \Vdash_{\mathbb{Q}_{\eta}}$ " $t_{n+1} \notin \dot{T}$ " and $r_{\gamma} \Vdash_{\mathbb{Q}_{\eta}}$ " l_{γ} is a branch through \dot{T} ", contradicting the fact that $t_{n+1} \subseteq l_{\gamma}$.

QUESTIONS

QUESTION

Let $p:[\omega_1]^2 \to \omega$ be a partition. Does the following statement imply that every colouring is p-special? For every colouring c there is a partition $\biguplus_{i<\omega} X_i = \omega_1$ such that for all i and j the set

$$\left\{c(\alpha,\beta) \mid \{\alpha,\beta\} \in [X_i]^2 \cap p^{-1}\{j\}\right\}$$

is finite.

QUESTION

Let $p: [\omega_1]^2 \to \omega$ be a partition. Does the following statement imply that every colouring is p-special? For every colouring c there is an uncountable $X \subseteq \omega_1$ such that for all j the set

$$|\{c(\alpha,\beta) \mid \{\alpha,\beta\} \in [X]^2 \cap p^{-1}\{j\}\}| = 1.$$

QUESTIONS

QUESTION

Are there classifications, under some set theoretic assumptions, of the $p: [\omega_1]^2 \to \omega$ such that every colouring is p-special? What happens under PFA?

QUESTION

Are there classifications, under some set theoretic assumptions, of the $p: [\omega_1]^2 \to \omega$ such that $\aleph_1 \not\rightarrow_p [\aleph_1]^2_{\aleph_1}$?

