Universal functions, strong colouring and PID

Juris Steprans (joint work with Menachem Kojman and Assaf Rinot)

York University

January 21, 2021

AD > 4 3 > 4

 290

JURIS STEPRANS (JOINT WORK WITH MENACHEM KOJMAN AND UNIVERSAL FUNCTIONS

THEOREM (TODORCEVIC)

There is a colouring $c : [\omega_1]^2 \to \omega_1$ with the property that the image of c on $[A]^2$ is all of ω_1 for all uncountable $A \subseteq \omega_1$. The existence of such a colouring is denoted by $\aleph_1 \nrightarrow [\aleph_1]_{\aleph_1}^2$.

This improved earlier results of Sierpiński, that $\aleph_1 \nrightarrow (\aleph_1)^2_2$ and Galvin and Shelah, that $\aleph_1 \rightarrow [\aleph_1]_4^2$. If the range is understood, then such colourings are called strong.

つひつ

QUESTION

How can $\aleph_1 \nrightarrow [\aleph_1]_{\aleph_1}^2$ be strengthened?

JURIS STEPRANS (JOINT WORK WITH MENACHEM KOJMAN AND **UNIVERSAL FUNCTIONS**

One answer is provided replacing the uncountable A by another structure

Theorem (Moore)

There is a colouring $c : [\omega_1]^2 \to \omega_1$ with the property that the image of c on $A \otimes B = \omega_1$ for all uncountable A and B where $A \circledast B$ stands for the rectangle $\{(\alpha, \beta) \in A \times B \mid \alpha < \beta\}.$

A related, but somewhat different question is the following:

QUESTION (ERDÖS-GALVIN-HAJNAL)

Given $G \subseteq [\omega_1]^2$ with uncountable chromatic number, is there c : $G \to \omega_1$ such that for all $w : \omega_1 \to \omega$ there is $n \in \omega$ such that the image of c on $G \cap [w^{-1}\{n\}]^2$ is all of ω_1 ?

∢ 何 ▶ .∢ ヨ ▶ .∢ ヨ

Let $p:[\omega_1]^2\to \omega$. Define $\aleph_1 \nrightarrow_p [\aleph_1]^2_\kappa$ to mean that there is some $c:[\omega_1]^2\to\kappa$ such that for each uncountable $X\subseteq\omega_1$ there is $n\in\omega$ such that the image of c on $p^{-1}\{n\}\cap [X]^2$ is all of $\kappa.$

- \bullet If p is constant then Todorcevic's colouring shows that $\aleph_1 \nrightarrow_{\rho} [\aleph_1]_{\kappa}^2$.
- . In in Chen, Kojman, S. partitions with smaller range are considered, but this talk will not look at that case.

- **•** It is shown in Chen, Kojman, S. and later in Kojman, Rinot, S. that it is consistent with various versions of set theory that $\aleph_1 \nrightarrow_\rho [\aleph_1]^2_\kappa$ holds. For example, CH implies that $\aleph_1 \nrightarrow_\rho [\aleph_1]_{\aleph_1}^2$ for any partition $\rho : [\omega_1]^2 \rightarrow \omega$.
- After adding \aleph_2 Cohen reals it is shown in [CKS] even stronger versions hold for partitions. For every partition $\rho : [\omega_1]^2 \rightarrow \omega$ there is a colouring $c : [\omega_1]^2 \rightarrow \omega_1$ such that for any infinite $A \subseteq \omega_1$ and uncountable $B \subseteq \omega_1$ there is $\alpha \in A$ and $n \in \omega$ such that for all $\gamma \in \omega_1$ there is $\beta \in B$ such that $c(\alpha, \beta) = \omega_1$ and $p(\alpha, \beta) = n$.
- The instance of this without a partition was shown by Todorcevic to be equivalent to a result of Sierpiński, who showed that, assuming CH, there are countably many functions $f_n : \omega_1 \to \omega_1$ such that for every uncountable $B \subseteq \omega_1$ there is some *n* such that $f_n(B) = \omega_1$.

 $\left\{ \bigoplus_k \; |k| \leq k \right\} \; \text{ and } \; \exists k \in \mathbb{Z}$

- **1** There is a Luzin set.
- **2** There is an non-meagre set of size \aleph_1 .
- **3** There is a sequence $\langle f_n | n \langle \omega \rangle$ of functions from from ω_1 to $ω_1$ such that, for every uncountable $I \subseteq ω_1$, for all but finitely many $n < \omega$, $f_n[I] = \omega_1$.
- \bullet There is a colouring $c: [\omega_1]^2 \to \omega_1$ such that, for all infinite $A \subseteq \omega_1$ and uncountable $B \subseteq \omega_1$, there exists $\alpha \in A$ such that $c[\{\alpha\}\times B]=\omega_1;$
- \bullet There is a colouring $d:[\omega_1]^2\rightarrow \omega_1$ such that, for all infinite pairwise disjoint family $\mathcal{A} \subseteq [\omega_1]^{<\aleph_0}$ and uncountable pairwise disjoint family $\mathcal{B}\subseteq [\omega_1]^{<\aleph_0}$, there exists $a\in\mathcal{A}$ such that, for every $\delta < \omega_1$, for some $b \in \mathcal{B}$, $d[a \times b] = {\delta}.$

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

 Ω

- That CH implies (1) was shown by Mahlo and independently by Luzin.
- \bullet That CH implies (3) was shown by Sierpiński.
- **That CH implies (4) was shown by Erdős, Hajnal and Milner.**
- That CH implies (5) is due to Galvin.
- \bullet (1) implies (2) is clear, but the reverse is false.
- \bullet (5) implies (4) implies (3) are easy.
- Todorcevic showed that (1) implies (3) implies (4).
- Recently Miller showed that (2) implies (3).
- Even more recently, Guzman showed (3) implies (2).

 QQ

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

To these equivalences Kojman and Rinot added some others, including the following:

For every ℓ_∞ -coherent partition $\rho : [\omega_1]^2 \to \omega$, there exists $d:[\omega_1]^2\to\omega_1$ satisfying that given

an infinite pairwise disjoint subfamily $\mathcal{A}\subseteq [\omega_1]^k$ with $k<\omega,$

an uncountable subfamily $\mathcal{B}\subseteq [\omega_1]^\prime$ with $l<\omega$, such that

there exists $a \in A$ such that for every matrix

 $\langle \tau_{n,m} | n \langle k,m \langle l \rangle$ of functions from ω to ω_1 , there exists $b \in \mathcal{B}$ such that for all $n < k$ and $m < l$

$$
d(a(n), b(m)) = \tau_{n,m}(p(a(n), b(m)))
$$

Definition

For a partition $p: [\omega_1]^2 \to \omega$:

- $\mathsf p$ has injective fibres if $\mathsf p(\alpha,\beta)\neq \mathsf p(\alpha',\beta)$ for all $\alpha<\alpha'<\beta$
- **•** p has finite-to-one fibres if $\{\alpha < \beta \mid p(\alpha, \beta) = \delta\}$ is finite for all $\beta < \kappa$ and $\delta < \mu$
- p has almost-disjoint fibres if

 $\{p(\alpha, \beta) \mid \alpha < \beta\} \cap \{p(\alpha, \beta') \mid \alpha < \beta\}$

is finite for all $\beta < \beta' < \kappa$

- p has coherent fibres if $\{\alpha < \beta \mid p(\alpha,\beta) \neq p(\alpha,\beta')\}$ is finite for all $\beta < \beta' < \kappa$:
- p is ℓ_{∞} -coherent if for every $(\beta, \beta') \in [\omega_{1}]^2$, the set of integers $\{p(\alpha, \beta) - p(\alpha, \beta') \mid \alpha < \beta\}$ is finite.

The $\rho_2 : [\omega_1]^2 \to \omega$ is an example of an ℓ_{∞} -coherent partitles which does not have coherent fibres.

 \rightarrow \rightarrow \overline{AB} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow \overline{B} \rightarrow

LEMMA

There exists a partition $p : [\omega_1]^2 \to \omega$ with injective and almost-disjoint fibres.

PROPOSITION

For every partition $p : [\omega_1]^2 \to \omega$ there exists a corresponding partition $\bar\rho:[\omega_1]^2\to\omega$ with injective fibres such that, if one of the relations \dots holds for \bar{p} , then it also holds for p .

QUESTION

Can the hypothesis that p is an ℓ_{∞} -coherent partition be removed from the equivalence?

THEOREM

It is consistent with the existence of a Luzin set that there is a partition $p: [\aleph_1]^2 \to \aleph_0$ such that, for every colouring $c: [\aleph_1]^2 \to \aleph_0$, there is a decomposition $\aleph_1 = \biguplus_{i < \omega} X_i$ such that, for all $i, j < \omega$,

 $c \restriction \{(\alpha,\beta)\in [X_i]^2\mid p(\alpha,\beta)=j\}$ is constant.

- This answers the question is a strong way.
- One might ask if the positive relation $\aleph_1 \rightarrow_\rho [\aleph_1]^2_{\aleph_0}$ can be weakened to ask for a colouring $c: [\omega_1]^2 \rightarrow \omega$ such that for each uncountable $X \subseteq \omega_1$ there is $n \in \omega$ such that the image of c on $p^{-1}\{n\} \cap [X]^2$ is infinite, rather than all of $\omega.$
- **•** Even this weaker version fails. The following lemma describes the p for which it fails.

LEMMA

The following are equivalent:

- $\mathfrak{d} = \aleph_1$
- There exists a partition $p : [\omega_1]^2 \to \omega$ with injective and almost-disjoint fibres such that for every function $h : \epsilon \to \omega$ with $\epsilon < \omega_1$, there exists $\gamma < \omega_1$, such that for every $b\in [\omega_1\setminus\gamma]^{<\aleph_0}$, there exists $\Delta\in [\epsilon]^{<\aleph_0}$ such that:

• for all
$$
\alpha \in \epsilon \setminus \Delta
$$
 and $\beta \in b$, $h(\alpha) < p(\alpha, \beta)$;

•
$$
p \upharpoonright ((\epsilon \setminus \Delta) \times b)
$$
 is injective.

DEFINITION

Given a partition $p : [\omega_1]^2 \to \omega$ a colouring $c : [\omega_1]^2 \to \omega$ will be called p-special if there is a partition $W: \omega_1 \to \omega$ and a function $w: \omega \times \omega \rightarrow \omega$ such that $c(\alpha, \beta) = w(W(\alpha), p(\alpha, \beta))$ if $W(\alpha) = W(\beta)$.

UNIVERS

つひつ

- 4 何 ▶ - 4 三 ▶ - 4

THEOREM

Assuming MA $_{\aleph_1}$ (K), there exists a partition $p: [\omega_1]^2 \rightarrow \omega$ such that all colourings $c: [\omega_1]^2 \rightarrow \omega$ are p-special.

THEOREM

It is consistent that all of the following hold simultaneously:

- There exists Luzin set:
- There exists a coherent Souslin tree:
- There exists a partition $p : [\omega_1]^2 \to \omega$ as in the previous slide such that all colourings $c : [\omega_1]^2 \to \omega$ are p-special.

 $\mathbb{Q}(p, c)$ consists of all triples $q = (a_q, f_q, w_q)$ satisfying all of the following:

$$
\bullet \ \ a_q \in [\omega_1]^{<\aleph_0};
$$

2 f_a : $a_a \rightarrow \omega$ is a function;

 \bullet w_a is a function from a finite subset of $\omega \times \omega$ to ω ;

① for all
$$
(\alpha, \beta) \in [a_q]^2
$$
, if $f_q(\alpha) = f_q(\beta)$, then
\n $(f_q(\alpha), p(\alpha, \beta)) \in \text{domain}(w_q)$ and
\n $c(\alpha, \beta) = w_q(f_q(\alpha), p(\alpha, \beta))$.

For $G \subseteq \mathbb{Q}(p,c)$ let $X_{i,G} = \{\alpha < \omega_1 \mid \exists q \in G$ $(f_q(\alpha) = i)\}\$ and for all $i, j < \omega$ note that

$$
\mathbb{1} \Vdash_{\mathbb{Q}(p,c)} \text{``} |\{c(\alpha,\beta) \mid (\alpha,\beta) \in [X_{i,\dot{G}}]^2 \text{ and } p(\alpha,\beta) = j\}| \leq \text{if } \sum_{\substack{M \text{ odd}\\ \text{if } M \text{ is a set } \text{if } M \text{ is a set } \text{if } M}} \text{if } \sum_{\substack{M \text{ odd}}} \text{if } M \text{ is a set of } \mathbb{Q}.
$$

LEMMA

For every partition $p: [\omega_1]^2 \to \omega$ with injective and almost-disjoint fibers, $\mathbb{Q}(p, c)$ has Property K

To prove this let $\{(\textit{a}_\xi, \textit{f}_\xi, \textit{w}_\xi)\}_{\xi \in \omega_1}$ are given and assume that

- $w_{\xi} = w$ for all ξ
- $\{a_{\xi}\}_{\xi \in \omega_1}$ form a Δ -system (with empty root for simplicity)

•
$$
a_{\xi} = \{a_{\xi}(j)\}_{j \in k}
$$
 for all ξ

- there is $f : k \to \omega$ such that $f_{\xi}(a_{\xi}(j)) = f(j)$ for all ξ and j
- there is $p^*: k \times k \to \omega$ such that $p(a_{\xi}(j), a_{\xi}(i)) = p^*(j, i)$ for all ξ , *i* and *j*
- there is $w : k \times k \rightarrow \omega$ such that $w_{\xi} (f_{\xi} (a_{\xi}(j)), p(a_{\xi}(j), a_{\xi}(i))) = w(f(j), p^{*}(j, i))$ for all ξ , *i* and j.

つひつ

Let $\mathfrak{M}_{\varepsilon}$ be a continuous, increasing chain of countable elementary submodels of $H(\aleph_2, p, \in)$ and let $\tau_{\xi} = \omega_1 \cap \mathfrak{M}_{\xi}$. For each ξ find $\rho(\xi) \in \tau_{\xi}$ such that:

\n- if
$$
i < j < k
$$
 and $\rho(\xi) < \alpha, \beta < \tau_{\xi}$ then $p(a_{\xi}(j), \alpha) \neq p(a_{\xi}(i), \beta)$
\n

• if $j < k$ and $\rho(\xi) < \alpha < \tau_{\xi}$ then $p(a_{\xi}(j), \alpha) \notin \text{range}(f)$.

Let $\rho(\xi) = \rho$ for $\xi \in S$ with S stationary. It follows that $\lbrace (a_{\tau_{\xi}},f_{\tau_{\xi}},w_{\tau_{\xi}}) \rbrace_{\xi \in \mathcal{S}\setminus\rho}$ is linked.

Why? Because given $\rho < \xi < \eta$ in ${\mathcal S}$ the integers $p(a_{\tau_\xi}, a_{\tau_\eta})$ are all distinct and not in the range of f . Hence it is easy to extend f as needed.

つへへ

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

The main goal now is to show that non-meagre sets are preserved by a finite support iteration. The following definition is needed for this.

DEFINITION

For all $q \in \mathbb{Q}(p, c)$, $k < \omega$ and $z \in [\omega_1]^{<\aleph_0}$, define $q^\wedge(k, z)$ to be the triple (a, f, w) satisfying:

- $a := a_q \cup z$;
- f : $a \rightarrow \omega$ is a function extending f_q and satisfying $f(\alpha) = k + |z \cap \alpha|$ for all $\alpha \in a \setminus a_{\alpha}$;

 \bullet $W_q := W$.

Note that $q^\wedge(k,z)$ may not be in $\mathbb Q(p,c)$, but it will be, provided that $k \supseteq \text{range}(f_{\alpha})$.

つひい

COROLLARY

For every $\beta < \omega_1$, $D_\beta := \{q \in \mathbb{Q}(p, c) \mid \beta \in a_q\}$ is dense, so that

$$
1 \Vdash_{\mathbb{Q}(p,c)} \text{``}\biguplus_{i < \omega} X_{i,\dot{G}} = \omega_1".
$$

DEFINITION

Let $p: [\omega_1]^2 \to \omega$ be a partition. For any ordinal η , a finite-support iteration $\{Q_{\xi}\}_{\xi \in \eta}$ will be called a p-iteration if Q_0 is the trivial forcing, and, for each ordinal ξ with $\xi + 1 < \eta$ there is a \mathbb{Q}_{ξ} -name $\overset{\circ}{c}_{\xi}$ such that

つひい

1
$$
\Vdash_{\mathbb{Q}_{\xi}}
$$
 " $\overset{\circ}{c}_{\xi}$: $[\omega_1]^2 \to \omega$ is a colouring",

$$
\bullet \ \mathbb{Q}_{\xi+1}=\mathbb{Q}_{\xi}*\mathbb{Q}(p,\overset{\circ}{c}_{\xi}).
$$

Define $q \in \mathbb{Q}_{\xi}$ to be determined by recursion in the usual way so that a condition $q \in \mathbb{Q}_{\ell+1}$ is determined if $q \restriction \xi \Vdash_{\mathbb{Q}_{\xi}} \text{``} q(\xi) = (a_{q,\xi}, f_{q,\xi}, w_{q,\xi})\text{''}$ for an actual triple of finite sets.

DEFINITION

For a determined condition q in the p-iteration, we say that k is sufficiently large for q iff $k \supseteq \text{range}(f_{q,\xi})$ for all ξ in the support of q.

 QQ

For a condition q in the p-iteration, $k < \omega$ and $z \in [\omega_1]^{<\aleph_0}$, define $\mathsf{q}^\wedge(k,z)$ by letting $\mathsf{q}^\wedge(k,z)(\xi) := \mathsf{q}(\xi)^\wedge(k,z)$ for each ξ in the support of q.

DEFINITION

A structure $\mathfrak M$ is said to be good for the p-iteration $\{\mathbb Q_\varepsilon\}_{\varepsilon\in n}$ if there is a large enough regular cardinal $\kappa > \eta$ such that all of the following hold:

- \bullet M is a countable elementary submodel of $(\mathcal{H}_{\kappa}, \in, \triangleleft_{\kappa})$, where \triangleleft _κ is a well-ordering of \mathcal{H}_{κ} ;
- $p, \{\mathbb{Q}_\xi\}_{\xi \in \eta}$ and $\{\stackrel{\circ}{c}_\xi|\xi+1 < \eta\}$ are in $\mathfrak{M}.$

For any structure \mathfrak{M} good for the p-iteration $\{\mathbb Q_\xi\}_{\xi\in\eta}$, for all $\xi\in\eta$ and a determined condition $q \in \mathbb{Q}_{\xi}$, we define $q^{\mathfrak{M}}$, as follows. The definition is by recursion on $\xi \in \eta$:

- For $\xi = 0$ there is nothing to do.
- For any ξ such that $q^{\mathfrak{M}}$ has been defined for all determined q in \mathbb{Q}_{ξ} , given a determined condition $q \in \mathbb{Q}_{\xi+1}$, we consider two cases:
	- **•** If $\xi \in \mathfrak{M}$, then let $q^{\mathfrak{M}} := (q \restriction \xi)^{\mathfrak{M}} * (a_{q,\xi} \cap \mathfrak{M}, f_{q,\xi} \cap \mathfrak{M}, w_{q,\xi})$
	- Otherwise, just let $q^{\mathfrak{M}} := (q \restriction \xi)^{\mathfrak{M}} * (\emptyset, \emptyset, \emptyset)$.
- For any limit $\xi \in \eta$, since this is a finite-support iteration, there is nothing new to define.

4 何 ▶ (국) - (국

- **If q is determined, then, for every coordinate ξ in the support** of q, $q^{\mathfrak{M}}(\xi)$ is a triple consisting of finite sets lying in \mathfrak{M} .
- **It is important to note that** $q^{\mathfrak{M}}$ **may not, in general, be a** condition because $q^{\mathfrak{M}} \restriction \eta$ may fail to force that $q^{\mathfrak{M}}(\eta) \in \mathbb{Q}(p, c_n)$.
- Nevertheless, $(q^{\mathfrak{M}})^{\wedge}(k,z)$ is a well-defined object, since its definition does not depend on the \dot{c}_{ε} 's.

つひひ

母 > マミ > マミ

Recall the lemma stated earlier and now required for the next technical lemma.

LEMMA

If $\mathfrak{d} = \aleph_1$ then there is $p : [\omega_1]^2 \to \omega$ that is injective with almost-disjoint fibres and such that for every function $h : \epsilon \to \omega$ with $\epsilon < \omega_1$, there exists $\gamma < \omega_1$, such that for every $b\in [\omega_1\setminus\gamma]^{<\aleph_0}$, there exists $\Delta\in [\epsilon]^{<\aleph_0}$ such that: • for all $\alpha \in \epsilon \setminus \Delta$ and $\beta \in b$, $h(\alpha) < p(\alpha, \beta)$; • $p \restriction ((\epsilon \setminus \Delta) \times b)$ is injective.

つひい

Lemma

Suppose that p is as in the previous slide and M is a structure good for the p-iteration $\{\mathbb{Q}_{\xi}\}_{\xi \in n}$.

For all $\zeta \leq \sup(\eta)$ and a determined condition $r \in \mathbb{Q}_\zeta$, there is a finite set $\bar{z} \subseteq \mathfrak{M} \cap \omega_1$ such that:

- **A:** For every $z \in [\mathfrak{M} \cap \omega_1]^{<\aleph_0}$ covering \bar{z} , and every integer k that is sufficiently large for r, $(r^{\mathfrak{M}})^{\wedge}(k, z)$ is in $\mathfrak{M} \cap \mathbb{Q}_{\zeta}$ and is determined;
- **B**: For every $z \in [\mathfrak{M} \cap \omega_1]^{<\aleph_0}$ covering \bar{z} , and every integer k that is sufficiently large for r, for the condition $\bar{r} := (r^{\mathfrak{M}})^{\wedge}(k, z)$ and a condition $q \in \mathfrak{M} \cap \mathbb{Q}_{\zeta}$, if the following three requirements hold:
	- \bullet $\mathfrak{M} \models q \leq \overline{r}$ and q is determined;
	- **2** the mapping $(\alpha, \beta) \mapsto p(\alpha, \beta)$ is injective over $(A_{\sigma} \setminus A_{\bar{r}}) \times (A_{r} \setminus A_{\bar{r}});$
	- $\mathbf{D}^+ p(\alpha, \beta) > p(\alpha', \beta')$ for all $(\alpha, \beta) \in (A_q \setminus A_{\bar{r}}) \times (A_r \setminus A_{\bar{r}})$ and $(\alpha', \beta') \in [A_r]^2 \cup [A_q]^2$,

then $q \nperp r$.

- Proceed by induction on $\zeta \leq \sup(\eta)$ proving **A** and **B** simultaneously.
- The case $\zeta = 0$ is immediate.
- The case $\zeta = 1$ is simple as well, but it may be instructive to consider it in detail since it gives some idea of the general proof.
- \bullet So c_0 is a colouring in the ground model and all conditions are determined.
- In this case if $r \in \mathbb{Q}_1$ then $r^{\mathfrak{M}}$ is a condition, as well.
- \bullet In general this is not the case and it is the reason **A** and **B** need to be carried along in the induction.
- **•** It will be shown that $\bar{z} = \emptyset$ satisfies the conclusion.
- Let k be sufficiently large for r .
- We know that $(r^{\mathfrak M})^{\wedge}(k,z) \in \mathfrak M \cap \mathbb Q_1$ for any $z\in [{\mathfrak M}\cap\omega_1]^{<\aleph_0}.$ Hence **A** is immediate.
- To see that **B** holds, suppose that we are given $z\in [\mathfrak{M}\cap \omega_1]^{<\aleph_0}.$
- Let $\bar{r} := (r^{\mathfrak{M}})^{\wedge}(k, z)$.
- We are also given a condition $q \in \mathfrak{M} \cap \mathbb{O}_1$ satisfying requirements (1) – (3) above.

∢ A → ∢ ∃ → ∢ ∃

 290

- To see that $q \not\perp r$, let $a := a_{q,0} \cup a_{r,0}$, $f := f_{q,0} \cup f_{r,0}$ and $w := w_{q,0} \cup w_{r,0}.$
- It is immediate to see that f and w are functions, $A_r = a_{r,0}$, $A_{\alpha} = a_{\alpha,0}$ and $A_{\alpha} \cap A_{r} = A_{\overline{r}}$.
- We need to show that there exists a function w^* extending w for which (a, f, w^*) is a legitimate condition.
- For this, suppose that we are given $i, j < \omega$, $(\alpha, \beta), (\alpha', \beta') \in [a]^2$, with $f(\alpha) = f(\beta) = i = f(\alpha') = f(\beta')$ and $p(\alpha, \beta) = j = p(\alpha', \beta').$
- It must be shown that $c_0(\alpha, \beta) = c_0(\alpha', \beta').$

 QQ

→ 何 ▶ → ヨ ▶ → ヨ ▶

There are two cases to consider:

CASE I If
$$
(\alpha, \beta), (\alpha', \beta') \in [A_q]^2 \cup [A_r]^2
$$
, then since w
extends $w_{q,0}$ and $w_{r,0}$,
 $c_0(\alpha, \beta) = w(i, j) = c_0(\alpha', \beta')$.
CASE II If $(\alpha, \beta) \in [a]^2 \setminus ([A_q]^2 \cup [A_r]^2)$, then since
 $A_q \cap A_r = A_{\overline{r}}$ and $\alpha < \beta$, we infer that
 $(\alpha, \beta) \in (A_q \setminus A_{\overline{r}}) \times (A_r \setminus A_{\overline{r}})$. So, by Clause (3),
 $(\alpha', \beta') \in [a]^2 \setminus ([A_q]^2 \cup [A_r]^2)$, as well. Then,
likewise $(\alpha', \beta') \in (A_q \setminus A_{\overline{r}}) \times (A_r \setminus A_{\overline{r}})$. Altogether,
by Clause (2), $(\alpha, \beta) = (\alpha', \beta')$. In particular,
 $c_0(\alpha, \beta) = c_0(\alpha', \beta')$.

活

K ロト K 倒 ト K ヨ ト K ヨ ト

 $2QQ$

Lemma

Suppose:

- $\rho : [\omega_1]^2 \rightarrow \omega$ is as in the previous lemma;
- $L = \{l_{\gamma}\}_{\gamma \in \omega_1}$ is a Luzin subset of 2^{ω} ;
- $\bullet \{ \mathbb{Q}_{\xi} \}_{\xi \in n}$ is a p-iteration with $\eta > 0$ a limit ordinal. Then $1 \Vdash_{\mathbb{Q}_\eta}$ "L is Luzin".

Suppose not. Then it can be assumed that there is a \mathbb{Q}_η -name $\check{\mathcal{T}}$ such that

◦

つひい

- $1\Vdash_{\mathbb{Q}_\eta}$ " $\overset{\circ}{T}\subseteq 2^{<\omega}$ is a closed nowhere dense tree", and
- $1\Vdash_{\mathbb{Q}_\eta}$ " $(\exists^{\aleph_1}\gamma)\mathrel{L}_{\gamma}$ is a branch through $\stackrel{\circ}{\mathcal{T}}$ ".

- It follows that there is an uncountable subset $\Gamma \subseteq \omega_1$ such that for each $\gamma \in \Gamma$ there is a determined condition $r_{\gamma} \in \mathbb{Q}_n$ such that $r_\gamma \Vdash_{\mathbb{Q}_\eta} \text{``} l_\gamma$ is a branch through $\stackrel{\circ}{\mathcal{T}}$ " .
- **•** It may assumed that there is a single $k < \omega$ which is sufficiently large for r_γ for all $\gamma \in \Gamma$.
- It may also be assumed that $\{A_{r_{\gamma}}\;|\;\gamma\in\Gamma\}$ forms a Δ -system with some root ρ .
- Let \mathfrak{M} be a structure good for the p-iteration $\{\mathbb{Q}_{\xi}\}_{\xi\in n}$, with $\rho, \overset{\circ}{T}, \mathbb{Q}_{\eta} \in \mathfrak{M}.$

- For each $\gamma \in \Gamma$, let \bar{z}_{γ} be given by the previous lemma with respect to $r_γ$ and \mathfrak{M} .
- Fix an uncountable $\Gamma'\subseteq \Gamma$ and some $\bar{z}\in [\omega_1\cap \mathfrak{M}]^{<\omega}$ such that $\bar{z}_{\gamma} = \bar{z}$ for all $\gamma \in \Gamma'.$
- By possibly shrinking further, we may assume the existence of q such that $(r_\gamma)^\mathfrak{M}=q$ for all $\gamma\in\Gamma'.$
- In particular, for every $z\in [\mathfrak{M}\cap \omega_1]^{<\aleph_0}$ covering $\bar z,$ $q^{\wedge}(k, z) \in \mathfrak{M} \cap \mathbb{Q}_{\eta}$ is determined.

Let $\{\tau_n\}_{n\in\omega}$ enumerate 2^{ω} . Recursively construct a sequence $\{(z_n, q_n, t_n)\}_{n\in\omega}$ such that:

- \bullet z₀ = $\bar{z} \cup \varrho$;
- $q_n \leq q^\wedge(k, z_n)$ and q_n is a determined condition lying in $\mathfrak{M};$
- $\tau_n \subseteq t_n \in 2^{<\omega}$ with $q_n \Vdash_{\mathbb{Q}_\eta}$ " $t_n \notin \dot{\mathcal{T}}$ ";
- $z_{n+1} \supsetneq A_{q_n}$.

Let $\epsilon := \sup(\bigcup_{n \in \omega} A_{q_n}) + 1$. Define a function $h : \epsilon \to \omega$ by

 $h(\alpha):=\max\{k, p(\alpha',\beta')\mid (\alpha',\beta')\in [\mathcal{A}_{q_{n+1}}]^2$ and $\alpha\in\mathcal{A}_{q_{n+1}}\setminus\mathcal{A}_{q_n}\}.$

Recalling the properties of p , fix $\gamma^*<\omega_1$ satisfying that for every $b\in [\omega_1\setminus\gamma^*]^{<\aleph_0}$, there exists $\Delta\in [\epsilon]^{<\aleph_0}$ such that:

- $p \restriction ((\epsilon \setminus \Delta) \times b)$ is injective;
- for all $\alpha \in \epsilon \setminus \Delta$ and $\beta \in b$, $h(\alpha) < p(\alpha, \beta)$.

 QQ

す 白 メ モ メ イ ヨ メ

- $\Gamma^*:=\{\gamma\in\Gamma'\mid \mathsf{min}(\mathcal{A}_{r_{\gamma}}\setminus\rho)>\gamma^*\}$ is uncountable.
- For each $n < \omega$, consider the open set $U_n := \{l \in 2^{\omega} \mid t_n \subseteq l\}.$

• Set
$$
W := \bigcap_{j=0}^{\infty} \bigcup_{j=n}^{\infty} U_{n+1}
$$
.

- **•** Then W is a dense G_{δ} set, so since $\{L_{\gamma}\}_{{\gamma}\in\Gamma^*}$ is Luzin, $L_{\gamma}\in W$ for all but countably many $\gamma \in \mathsf{\Gamma}^*.$
- Set $b:=A_{r_{\gamma}}\setminus\rho$, and then let $\Delta\in[\epsilon]^{<\aleph_0}$ be the corresponding set, as above.
- Fix a large enough $j<\omega$ such that $A_{q_{n+1}}\setminus A_{q_n}$ is disjoint from Δ for all $n > j$.

 QQ

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

- As $l_{\gamma} \in W$, we may now fix some $n \geq j$ such that $l_{\gamma} \in U_{n+1}$.
- Denote $\bar{r} := (q^{\mathfrak{M}})^{\wedge}(k, z_{n+1}).$
- \mathcal{T} hen $(A_{q_{n+1}} \setminus A_{\bar{r}}) \subseteq (A_{q_{n+1}} \setminus A_{q_n}) \subseteq (\epsilon \setminus \Delta)$ and $(A_{r_{\gamma}} \setminus A_{\overline{r}}) \subseteq b$, and all of the following hold:
	- 1 $\mathfrak{M} \models q_{n+1} \leq \overline{r}$ and q_{n+1} is determined;
	- **2** the mapping $(\alpha, \beta) \mapsto p(\alpha, \beta)$ is injective over $(A_{q_{n+1}} \setminus A_{\bar{r}}) \times (A_{r_n} \setminus A_{\bar{r}});$
	- \bm{s} , $p(\alpha,\beta)>p(\alpha',\beta')$ for all $(\alpha,\beta)\in ({\cal A}_{q_{n+1}}\setminus {\cal A}_{\bar{r}})\times ({\cal A}_{r_{\gamma}}\setminus {\cal A}_{\bar{r}})$ and $(\alpha', \beta') \in [A_{r_{\gamma}}]^2 \cup [A_{q_{n+1}}]^2$.
- Since $z_{n+1}\supseteq \bar{z}$ and \bar{z} was given by the lemma, apply **B** and infer that $q_{n+1} \not\perp r_{\gamma}$.
- However, $q_{n+1}\Vdash_{\mathbb{Q}_\eta}$ " $t_{n+1}\notin\dot{\mathcal{T}}$ " and $r_{\gamma}\Vdash_{\mathbb{Q}_\eta}$ "/ $_{\gamma}$ is a branch through $\dot{\mathcal{T}}$ ", contradicting the fact that $t_{n+1} \subset I_{\gamma}$.

つへへ

→ 伊 ▶ → 君 ▶ → 君 ▶ →

QUESTIONS

QUESTION

Let $p: [\omega_1]^2 \rightarrow \omega$ be a partition. Does the following statement imply that every colouring is p-special? For every colouring c there is a partition $\biguplus_{i<\omega}X_i=\omega_1$ such that for all i and j the set

$$
\{c(\alpha,\beta) \mid \{\alpha,\beta\} \in [X_i]^2 \cap \rho^{-1}\{j\}\}
$$

is finite.

QUESTION

Let $p: [\omega_1]^2 \to \omega$ be a partition. Does the following statement imply that every colouring is p-special? For every colouring c there is an uncountable $X \subseteq \omega_1$ such that for all j the set

$$
|\left\{c(\alpha,\beta)\ \middle|\ \{\alpha,\beta\}\in[X]^2\cap p^{-1}\{j\}\right\}|=1.
$$

QUESTION

Are there classifications, under some set theoretic assumptions, of the $p: [\omega_1]^2 \rightarrow \omega$ such that every colouring is p-special? What happens under PFA?

QUESTION

Are there classifications, under some set theoretic assumptions, of the $p : [\omega_1]^2 \to \omega$ such that $\aleph_1 \nrightarrow_p [\aleph_1]_{\aleph_1}^2$?

つひい