P-points and related ultrafilters part III

Juris Steprāns

York University

Winter School — January 2024

イロト イヨト イヨト

The goal of this last lecture is to explain some techniques of Shelah [3] for destroying some P-points while preserving others. Selective ultrafilters and the games considered in the first lecture will play a key role. Of course, it is not possible to preserve a single ultrafilter, but only an equivalence class of ultrafilters. The following definition will be used soon and makes this precise.

Definition 1

If \mathcal{U} and \mathcal{V} are ultrafilters define $\mathcal{U} \equiv_{\mathsf{RK}} \mathcal{V}$ if there is a bijection ψ such that $A \in \mathcal{V}$ if and only if $\psi^{-1}(A) \in \mathcal{U}$. Define $\mathcal{U} \leq_{\mathsf{RK}} \mathcal{V}$ if there is a function ψ such that $A \in \mathcal{U}$ if and only if $\psi^{-1}(A) \in \mathcal{V}$.

It is a nice exercise to show that if $\mathcal{U}\leq_{\mathsf{RK}}\mathcal{V}$ and $\mathcal{V}\leq_{\mathsf{RK}}\mathcal{U}$ then $\mathcal{U}\equiv_{\mathsf{RK}}\mathcal{V}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

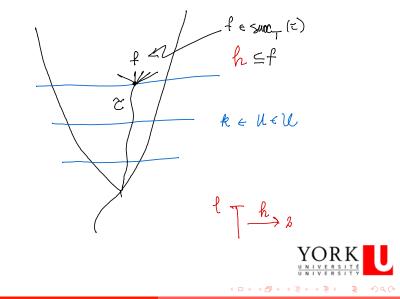
Definition 2

Given an ultrafilter \mathcal{U} define the partial order $\mathbb{P}(\mathcal{U})$ to consist of all trees \mathbb{T} such that $\operatorname{succ}_{\mathbb{T}}(\tau) \subseteq 2^{|\tau|}$ and for which there is $U \in \mathcal{U}$ such that

$$(orall \ell \in \omega) (orall^{\infty} k \in U) (orall t \in Lev_k(\mathbb{T})) (orall h : \ell o 2) \ (\exists f \in \operatorname{succ}_{\mathbb{T}}(t)) \ h \subseteq f.$$
 (1)

The ordering on $\mathbb{P}(\mathcal{U})$ is inclusion.

If $G \subseteq \mathbb{P}(\mathcal{U})$ is generic then define B_G by $B_G(k) = f$ if and only if for every $\mathbb{T} \in G$ there is $t \in \mathbb{T}$ such that t(k) = f. Define a colouring $C_G : [\omega]^2 \to 2$ by $\mathbb{C}_G(a) = B_G(\max(a))(\min(a))$.



Lemma 1

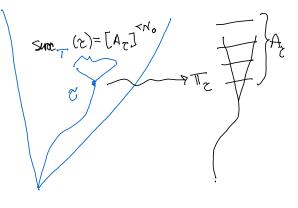
If \mathcal{U} is a P-point then $\mathbb{P}(\mathcal{U})$ is proper and ω^{ω} bounding.

Proof.

Given $\mathbb{T} \in \mathbb{P}(\mathcal{U})$ and $\{D_n\}_{n \in \omega}$ that are dense subsets of $\mathbb{P}(\mathcal{U})$ construct a \mathcal{U} -P-tree T such that for each $\tau \in T$ there is $\mathbb{T}_{\tau} \in \mathbb{P}(\mathcal{U})$ and $A_{\tau} \in \mathcal{U}$ such that:

•
$$\mathbb{T}_{\varnothing} = \mathbb{T}$$

- $(\forall k \in A_{\tau})(\forall t \in Lev_k(\mathbb{T}_{\tau}))(\forall h : |\tau| \to 2)(\exists f \in \mathsf{succ}_{\mathbb{T}}(t)) h \subseteq f$
- succ_T $(\tau) = [A_{\tau}]^{<\aleph_0}$
- if $\tau \subseteq \sigma$ and $|\tau| = n + 1$ and $k = \max(\tau(n))$ then $\mathbb{T}_{\sigma} \subseteq \mathbb{T}_{\tau}$ and $Lev_k(\mathbb{T}_{\tau}) = Lev_k(\mathbb{T}_{\sigma})$
- if $|\tau| = n + 1$ and $k = \max(\tau(n))$ and $t \in Lev_k(\mathbb{T}_{\tau})$ then $\mathbb{T}\langle t \rangle \in D_n$.



* ロ > * 個 > * 目 > * 目 >

æ

Proof.

Since T is a U-P-tree let B be a branch of T such that $\bigcup_n B(n) \in U$ and let

$$\mathbb{T}^* = \bigcup_n Lev_{B(n)} \left(\mathbb{T}_{B \upharpoonright (n+1)} \right).$$

It is routine to check that $\mathbb{T}^*\in\mathbb{P}(\mathcal{U})$ and it has the desired properties.

(4) (日本)

Definition 3

Given $P : [\omega]^2 \to 2$ a set $X \subseteq \omega$ will be said to be almost-J-homogeneous for P if for all $x \in X$ there are only finitely many $y \in X$ such that $P(x, y) \neq J$.

Lemma 2

If \mathcal{U} is a P-point and $P : [\omega]^2 \to 2$ then there is $J \in 2$ and a set $X \in \mathcal{U}$ that is almost-J-homogeneous for P.

Proof.

It is an exercise to see the same proof as for selective ultrafilters works.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma 3

If \mathcal{U} is a P-point and $J \in 2$ and \mathbb{Q} is a $\mathbb{P}(\mathcal{U})$ name for a partial order such that $1 \Vdash_{\mathbb{P}(\mathcal{U})*\mathbb{Q}} ``\mathbb{Q}$ is ω^{ω} bounding" and

 $1 \Vdash_{\mathbb{P}(\mathcal{U}) * \mathbb{Q}}$ "X is almost-J-homogeneous for $C_{\dot{G}}$ "

then there is $\mathbb{T} \in \mathbb{P}(\mathcal{U})$ and $A \in \mathcal{U}$ such that

 $\mathbb{T}\Vdash_{\mathbb{P}(\mathcal{U})*\mathbb{Q}} ``A \cap \dot{X} = \varnothing''.$

イロト イヨト イヨト イヨト

Proof.

Assume that J, the almost homogeneous colour for \dot{X} , is 0. If it happens that $1 \not\Vdash_{\mathbb{P}(\mathcal{U})*\mathbb{Q}} ``|\dot{X}| = \aleph_0$ " then the result is immediate, so let $\dot{\psi}$ be a $\mathbb{P}(\mathcal{U}) * \mathbb{Q}$ name such that

$$1 \Vdash_{\mathbb{P}(\mathcal{U})*\mathbb{Q}} ``(\forall k \in \omega)(\exists m \in X \setminus k)(\forall \ell \in X)$$

if $C_{\dot{G}}(m, \ell) = 1$ then $\ell < \dot{\psi}(k)$ ". (2)

Since $\mathbb{P}(\mathcal{U}) * \mathbb{Q}$ is ω^{ω} -bounding by Lemma 1 it is possible to find \mathbb{T} and $\Psi : \omega \to \omega$ such that

$$\mathbb{T}\Vdash_{\mathbb{P}(\mathcal{U})*\mathbb{Q}}$$
 " $(orall k\in\omega)$ $\dot{\psi}(k)\leq \Psi(k)$ ".

Find A such that:

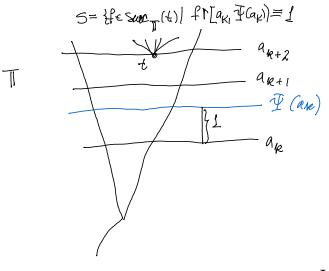
- $A \in \mathcal{U}$ and A is enumerated in order by $\{a_i\}_{i \in \omega}$
- A witnesses that $\mathbb{T} \in \mathbb{P}(\mathcal{U})$ in the strong sense that if $t \in \text{Lev}_{a_{n+1}}\mathbb{T}$ and $h: a_n \to 2$, then there is $f \in \text{succ}_{\mathbb{T}}(t)$ such that $h \subseteq f$

•
$$\Psi(a_n) < a_{n+1}$$
 for all n .

For $t \in \operatorname{Lev}_{a_{i+2}}(\mathbb{T})$ let

$$\mathcal{S}(t) = \{f \in \mathsf{succ}_{\mathbb{T}}(t) \mid (\forall x \in [a_i, \Psi(a_i))) \ f(x) = 1\}$$

and note that follows that if $t \in \text{Lev}_{a_{i+2}}(\mathbb{T})$ and $h: a_i \to 2$ then there is $f \in \text{succ}_{\mathbb{T}}(t)$ such that $h \subseteq f$ and $f(\ell) = 1$ if $a_i \leq \ell < a_{i+1}$. Since $\Psi(a_i) < a_{i+1}$ it follows that $f \in S(t)$.



æ

イロト イヨト イヨト イヨト

Therefore if \mathbb{T}^* is defined by

$$\mathbb{T}^* = \bigcap_{i \in \omega} \left(\bigcup_{t \in \mathsf{Lev}_{a_{i+2}}(\mathbb{T})} \bigcup_{f \in \mathcal{S}(t)} \mathbb{T} \langle t^{\frown} f \rangle \right)$$

then $\operatorname{succ}_{\mathbb{T}^*}(t) = \mathcal{S}(t)$ for each $i \in \omega$ and $t \in \operatorname{Lev}_{a_{i+2}}(\mathbb{T})$. It follows that A witnesses that $\mathbb{T}^* \in \mathbb{P}(\mathcal{U})$.

< ロ ト < 同 ト < 三 ト < 三 ト

Finally, it suffices to show that if k > 0 then $\mathbb{T}^* \Vdash_{\mathbb{P}(\mathcal{U})} ``a_k \notin X"$. In order to establish this, note that

$$\mathbb{T}^* \Vdash \text{``}(\exists x \in \dot{X} \cap [a_{k-1}, \Psi(a_{k-1})) (\forall y \in \dot{X} \setminus \Psi(a_{k-1})) P(x, y) = 0 \text{''}.$$

but this contradicts that if $t \in \text{Lev}_{a_k}(\mathbb{T}^*)$ and $f \in \text{succ}_{\mathbb{T}^*}(t)$ then $f \in S(t)$ and so $f(\{x, a_k\}) = 1$ for all $x \in [a_{k-1}, \Psi(a_{k-1})]$.

This is exactly what is required since then

$$T^* \Vdash_{\mathbb{P}(\mathcal{U})} ``\Psi(a_{k-1}) < a_k \& (\forall x \in \dot{X} \cap [a_{k-1}, \Psi(a_{k-1})) P(x, a_k) = 1". (3)$$

COROLLARY 1

If \mathcal{U} is a P-point and \mathbb{Q} is ω^{ω} -bounding then $\mathbb{P}(\mathcal{U}) * \mathbb{Q}$ does not preserve \mathcal{U} .

Proof.

If \mathcal{U} is a P-point then Lemma 1 establishes that and $\mathbb{P}(\mathcal{U})$ is proper and ω^{ω} bounding. One the other hand, it follows from Lemma 3 and Lemma 2 that \mathcal{U} is not a P-point after forcing with $\mathbb{P}(\mathcal{U}) * \mathbb{Q}$.

Using the corollary, countable support iteration over a model of \Diamond_{ω_2} and standard forcing theorems produces a third model with no P-points. But our current goal is to get a model with a single P-point (up to RK equivalence). **VOR K**

DEFINITION 4

Let \mathcal{U} and \mathcal{V} be ultrafilters on ω . Say that T is a $(\mathcal{U}, \mathcal{V})$ -SP-tree if for each $\tau \in T$ if

- au is even then there is $A \in \mathcal{U}$ such that $\operatorname{succ}_{\mathcal{T}}(au) = A$
- if τ is odd then there is $A \in \mathcal{V}$ such that $\operatorname{succ}_{\mathcal{T}}(\tau) = [A]^{<\aleph_0}$
- $\min(A) > \tau(\ell)$ for all ℓ in the domain of τ .

("P" is for P-point and "S" is for selective.)

Lemma 4

Let \mathcal{U} and \mathcal{V} be ultrafilters. The following are then equivalent:

- $\textbf{0} \hspace{0.1 is selective and} \hspace{0.1 is a P-point and} \hspace{0.1 is } \mathcal{U} \not \leq_{\mathsf{RK}} \mathcal{V}$
- **2** Every $(\mathcal{U}, \mathcal{V})$ -SP-tree has a branch B such that

•
$$\bigcup_{n \in \omega} B(2n+1) \in \mathcal{V}$$

• $\{B(2n) \mid n \in \omega\} \in \mathcal{U}.$

イロト イヨト イヨト イヨト

Peoof. • Jump to applying Lemma 4.

To see that (2) implies (1) note first that (2) implies that \mathcal{U} -S-tree has a branch with range in \mathcal{U} and so \mathcal{U} is selective. It also follows from (2) that \mathcal{V} -P-tree has a branch B such that $\bigcup_n B(n) \in \mathcal{V}$ and so \mathcal{V} is a P-point.

To see that $\mathcal{U} \leq_{\mathsf{RK}} \mathcal{V}$ suppose that $F : \omega \to \omega$ witnesses that $\mathcal{U} \leq_{\mathsf{RK}} \mathcal{V}$. Let T be the $(\mathcal{V}, \mathcal{U})$ -PS-tree such that:

• if
$$\tau \in T$$
 and $|\tau| = 2n$ is even then
 $\operatorname{succ}_{T}(\tau) = \omega \setminus F(\bigcup_{m \in n} \tau(2m+1))$

• if
$$\tau \in T$$
 and $|\tau| = 2n + 1$ is even then
 $\operatorname{succ}_{T}(\tau) = [\omega \setminus \bigcup_{m \leq n} F^{-1}(\tau(2m))]^{<\aleph_0}$

It follows that if B is a branch of T it must be the case that

$$F^{-1}(\{B(2k)\}_{k\in\omega})\cap \bigcup_{k\in\omega}B(2k+1)=\varnothing$$

and so either $\{B(2k)\}_{k\in\omega}\notin\mathcal{U}$ or $\bigcup_{k\in\omega}B(2k+1)\notin\mathcal{V}$.

SECOND PART OF PROOF.

To see that (1) implies (2) let T be a $(\mathcal{U}, \mathcal{V})$ -SP-tree. For each $\tau \in T$ such that $|\tau|$ is odd let $W_{\tau} \in \mathcal{V}$ be such that $\operatorname{succ}_{T}(\tau) = [W_{\tau}]^{<\aleph_{0}}$ and then find $W \in \mathcal{V}$ such that $W \subseteq *W_{\tau}$ for each $\tau \in T$ with $|\tau|$ odd. Now define the partition $[\omega]^{4} = P_{0} \cup P_{1}$ by $\{\ell_{0}, \ell_{1}, \ell_{2}, \ell_{3}\} \in P_{0}$ if $\ell_{3} \in \operatorname{succ}_{T}(\tau \upharpoonright (2n+2))$ for every $\tau \in T$ for which there is $n \in \omega$ such that

$$\bullet$$
 $au(2n) = \ell_0$

Use that \mathcal{U} is selective find $Y \in \mathcal{U}$ and $J \in 2$ such that $[Y]^4 \subseteq P_J$.

The first thing to observe is that J = 0. To see this let $\ell_0 \in Y$ and let

$$\mathcal{T} = \{ au \in \mathcal{T} \mid (\exists n) \ au(2n) = \ell_0 \& \mid t \mid = 2n+1 \}$$

and then let $M > \ell_0$ be so large that $W \setminus M \subseteq W_{\tau}$ for all τ in the finite set \mathcal{T} . Then let $\ell_1 \in Y$ and $\ell_2 \in Y$ be such that $M < \ell_1 < \ell_2$. Let

$$\ell_3 \in Y \cap \bigcap_{\tau \in \mathcal{T}} \operatorname{succ}_{\mathcal{T}}(\tau^{\frown}(W \cap [\ell_1, \ell_2))).$$

Note that $W \cap [\ell_1, \ell_2) \in [W_{\tau}]^{\aleph_0}$ for each $\tau \in T$ and so $\operatorname{succ}_{T}(\tau^{\frown}(W \cap [\ell_1, \ell_2)))$ is defined. Hence $\{\ell_0, \ell_1, \ell_2, \ell_3\} \in P_0$ and so J = 0.

Let Y be enumerated in order as $\{y_i\}_{i\in\omega}$. Consider first the case that for every $Z\subseteq\omega$

$$\bigcup_{i\in Z} [y_{i-1}, y_{i+1}) \in \mathcal{V} \quad \text{if} \quad \{y_i\}_{i\in Z} \in \mathcal{U}.$$
(4)

< ロ ト < 同 ト < 三 ト < 三 ト

Since $Y \in \mathcal{V}$ it follows that for some $J \in 3$ it must be the case $\{y_{3i+J}\}_{i\geq 1} \in \mathcal{V}$ and hence $\bigcup_{i\geq 1} [y_{3i+J-1}, y_{3i+J+1}) \in \mathcal{V}$. To simplify notation, there is no harm in assuming that J = 0. Then the mapping

$$F: \bigcup_{i\geq 1} [y_{3i-1}, y_{3i+1}) \to \{y_{3i}\}_{i\geq 1}$$

defined by $F(k) = y_{3i}$ if and only if $y_{3i-1} \le k < y_{3i+1}$ witnesses that $\mathcal{U} \le_{\mathsf{RK}} \mathcal{V}$ and there is nothing more to do.

Hence, it can be assumed that there is some $Z \subseteq \omega$ such that (4) fails. Let $\{z(i)\}_{i \in \omega}$ enumerate Z in order so that

$$\{y_{z(i)}\}_{i\in\omega}\in\mathcal{U}\quad\text{and}\quad \bigcup_{i\in\omega}[y_{z(i)-1},y_{z(i)+1})\notin\mathcal{V}.$$

In other words, $\bigcup_{i\in\omega}[y_{z(i)+1},y_{z(i+1)-1})\in\mathcal{V}$ and it follows that

$$D = W \cap \bigcup_{i \in \omega} ([y_{z(i)+1}, y_{z(i+1)-1}) \in \mathcal{V}.$$

< ロ ト < 同 ト < 三 ト < 三 ト

Let *B* be defined for $i \in \omega$ by

$$B(2i) = y_{z(i)} \& B(2i+1) = W \cap [y_{z(i)+1}, y_{z(i+1)-1}).$$

Then $\{B(2i)\}_{i\in\omega} = \{y_{z(i)}\}_{i\in\omega} \in \mathcal{U}$ and

$$\bigcup_{i\in\omega}B(2i+1)=\bigcup_{i\in\omega}W\cap[y_{z(i)+1},y_{z(i+1)-1})=D\in\mathcal{V}$$

and so it suffices to show that $B \upharpoonright k \in T$ for all k.

To see that this is so use that Z is P_0 -homogeneous.

By dropping finitely many elements of Z it may be assumed that $y_{z(0)} \in \mathbf{succ}_T(\varnothing)$. Now suppose that $B \upharpoonright 2n \in T$ and that $y(z(n)) \in \mathbf{succ}_T(B \upharpoonright 2n)$. (This holds with n = 0.) Then $\{y_{z(n)}, y_{z(n)+1}, y_{z(n+1)-1}, y_{z(n+1)}\} \in P_0$ and so

$$W \cap [y_{z(n)+1}, y_{z(n+1)-1}) \subseteq W_{B \upharpoonright 2n+1}$$

and so

$$B \upharpoonright (2n+2) = (B \upharpoonright 2n+1)^{\frown} W \cap [y_{z(n)+1}, y_{z(n+1)-1}) \in T$$

and so $y_{z(n+1)} \in \operatorname{succ}_{\mathcal{T}}(B \upharpoonright (2n+2))$ and so $B \upharpoonright (2n+3) \in \mathcal{T}$ as required to continue the induction.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NOTATION 1

If \mathcal{U} is an ultrafilter, \mathbb{P} is a partial order and \dot{A} a \mathbb{P} -name such that $1 \Vdash_{\mathbb{P}} ``\dot{A} \subseteq \omega"$ then let $D(\dot{A}, \mathcal{U}, \mathbb{P})$ denote the set

$$\left\{ r \in \mathbb{P} \mid (\exists Z \in \mathcal{U}) (\forall n \in \omega) (\exists r_n \leq r) \ r_n \Vdash_{\mathbb{P}} "Z \cap n \subseteq \dot{A} \cap n" \right\}.$$
(5)

Lemma 5

If \mathcal{U} is an ultrafilter and \mathbb{P} a partial order and A a \mathbb{P} -name such that $1 \Vdash_{\mathbb{P}} ``\dot{A} \subseteq \omega"$ then

$$D(\dot{A}, \mathcal{U}, \mathbb{P}) \cup D(\omega \setminus \dot{A}, \mathcal{U}, \mathbb{P}) = \mathbb{P}.$$

This can be proved using a fake generic.

Lemma 6

If \mathcal{U} is selective and \mathcal{V} is a P-point and $\mathcal{U} \not\leq_{\mathsf{RK}} \mathcal{V}$ then forcing with $\mathbb{P}(\mathcal{V})$ preserves \mathcal{U} .

Proof.

By Lemma 4 the hypothesis implies that for every (U, V)-SP-tree has a branch B such that

•
$$\bigcup_{n\in\omega} B(2n+1)\in\mathcal{V}$$

•
$$\{B(2n) \mid n \in \omega\} \in \mathcal{U}.$$

It will be shown that if $1 \Vdash_{\mathbb{P}(\mathcal{V})} "\dot{X} \subseteq \omega"$ then there is some $A \in \mathcal{U}$ and $\mathbb{T} \in \mathbb{P}(\mathcal{V})$ such that either $\mathbb{T} \Vdash_{\mathbb{P}(\mathcal{V})} "\dot{X} \supseteq A"$ or $\mathbb{T} \Vdash_{\mathbb{P}(\mathcal{V})} "\dot{X} \cap A = \varnothing"$. Using Lemma 5 and Notation 1 it is possible to find $\mathbb{T} \in \mathbb{P}(\mathcal{V})$ such that either $D(\dot{X}, \mathcal{U}, \mathbb{P}(\mathcal{V}))$ or $D(\omega \setminus \dot{X}, \mathcal{U}, \mathbb{P}(\mathcal{V}))$ is dense below \mathbb{T} ; without loss of generality, assume that $D(\dot{X}, \mathcal{U}, \mathbb{P}(\mathcal{V}))$ is dense below \mathbb{T} .

Proof.

Construct a $(\mathcal{U}, \mathcal{V})$ -SP-tree T such that for each $\tau \in T$ there is $\mathbb{T}_{\tau} \in \mathbb{P}(\mathcal{V})$ and A_{τ} such that

- 2) if $|\tau|$ is even then $\operatorname{succ}_{\mathbb{T}}(\tau) = A_{\tau} \in \mathcal{U}$
- ${ig 0}$ if | au| is odd then ${f succ}_{\mathbb T}(au)=[A_{ au}]^{<leph_0}$ and $A_{ au}\in \mathcal V$
- if $\tau \subseteq \sigma$ and $|\tau| = n + 1$ and $k = \max(\tau(n))$ then $\mathbb{T}_{\sigma} \subseteq \mathbb{T}_{\tau}$ and $Lev_k(\mathbb{T}_{\tau}) = Lev_k(\mathbb{T}_{\sigma})$

() if $|\tau|$ is even and $k \in A_{\tau}$ then $\mathbb{T}_{\tau \frown k} \Vdash_{\mathbb{P}(\mathcal{V})} ``k \in \dot{X}"$.

<ロト < 同ト < ヨト < ヨト

PROOF.

This is an induction similar to the proof of properness. For example, to see that (6) holds let $|\tau| = 2n$ and suppose that \mathbb{T}_{τ} is given. For $k = \max(\tau(2n-1))$ and $t \in \operatorname{Lev}_k(\mathbb{T})$ use that $D(\dot{X}, \mathcal{U}, \mathbb{P}(\mathcal{V}))$ is dense below \mathbb{T} to find $A_t^* \in \mathcal{U}$ and a sequence $\{\mathbb{T}_{t,n}\}_{n \in A_t^*}$ such that $\mathbb{T}_{t,n} \Vdash_{\mathbb{P}(\mathcal{V})}$ " $n \in \dot{X}$ " for each $n \in A_t^*$. Then let

$$A_{\tau} = \bigcap_{t \in \mathsf{Lev}_k(\mathbb{T})} A_t^*$$

and for each $n \in A_t^*$

$$\mathbb{T}_{\tau \frown n} = \bigcup_{t \in \mathsf{Lev}_k(\mathbb{T})} \mathbb{T}_{t,n}.$$

Y U J K P

PROOF.

Then T is a $(\mathcal{U}, \mathcal{V})$ -SP-tree and so there is a branch B of T such that $A = \{B(2n)\}_{n \in \omega} \in \mathcal{U}$ and $\bigcup_{n \in \omega} B(2n+1) \in \mathcal{V}$. As in the proof of properness

$$\mathbb{T}^* = \bigcup_n Lev_{B(n)} \left(\mathbb{T}_{B \upharpoonright (n+1)} \right) \in \mathbb{P}(\mathcal{V}).$$

$$\begin{split} \mathbb{T}^* &\subseteq \mathbb{T}^*_{B \upharpoonright (2n+1)} \text{ for each } n \text{ and } \mathbb{T}^*_{B \upharpoonright (2n+1)} \Vdash_{\mathbb{P}(\mathcal{V})} ``B(2n) \in \dot{X}'' \,. \\ \text{Hence } \mathbb{T}^* \Vdash_{\mathbb{P}(\mathcal{V})} ``A \subseteq \dot{X}'' \,. \end{split}$$

At this stage it is already possible to obtain a model of set theory with a unique selective ultrafilter. Start with a model of \Diamond_{ω_2} and to select an arbitrary selective ultrafilter \mathcal{V} in this model. Then construct a countable support iteration of partial orders \mathbb{Q}_{ξ} of length ω_2 such that each ξ^{th} iterand is of the form $\mathbb{P}(\mathcal{U}_{\xi})$ provided that the name \mathcal{U}_{ξ} is guessed by the \Diamond_{ω_2} sequence and

 $1 \Vdash_{\mathbb{Q}_{\xi}} "\mathcal{V}_{\xi}$ is a P-point and $\mathcal{V} \not\leq_{\mathsf{RK}} \mathcal{U}_{\xi}$ ".

Each \mathbb{Q}_{ξ} is proper and $\omega^{\omega}\text{-bounding.}$ Hence, by Corollary 1 it follows that

 $1 \Vdash_{\mathbb{Q}_{\omega_2}} ``\mathcal{V}_{\xi}$ is a not a P-point. "

Hence $1 \Vdash_{\mathbb{Q}_{\omega_2}}$ "if \mathcal{V}_{ξ} is a a P-point then $\mathcal{V} \leq_{\mathsf{RK}} \mathcal{U}_{\xi}$ ".

Since selective ultrafilters are RK minimal it follows that \mathcal{V} is the only possible selective ultrafilter in the generic model obtained by forcing with \mathbb{Q}_{ω_2} .

In order to get a single P-point, and not just a single selective ultrafilter, an argument is needed for destroying P-points $\mathcal V$ such that $\mathcal U \leq_{\mathsf{RK}} \mathcal V$ while preserving $\mathcal U$ when $\mathcal U$ is selective. Constructing such a partial order and establishing its key properties with be the focus of the remainder of this lecture.

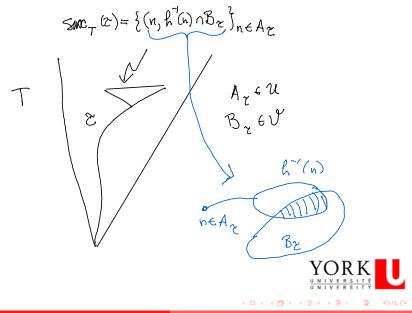
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The following definition combines aspects of \mathcal{U} -P-trees and $(\mathcal{U}, \mathcal{V})$ -SP-trees. Note that, unlike the case of $(\mathcal{U}, \mathcal{V})$ -SP-trees, there is no difference between even and odd levels.

Definition 5

Let \mathcal{U} and \mathcal{V} be ultrafilters and $h: \omega \to \omega$ a finite-to-one function witnessing that $\mathcal{U} \leq_{\mathsf{RK}} \mathcal{V}$. Define a tree T to be a $(\mathcal{U}, \mathcal{V}, h)$ -SP-tree if for each $\tau \in T$ there are $A_{\tau} \in \mathcal{U}$ and $B_{\tau} \in \mathcal{V}$ such that

$$\operatorname{succ}_{T}(\tau) = \{(n, h^{-1}\{n\} \cap B_{\tau}) \mid n \in A_{\tau}\}.$$



Lemma 7

Let \mathcal{U} be a selective ultrafilter and \mathcal{V} a P-point such that $h: \omega \to \omega$ a finite-to-one function witnessing that $\mathcal{U} \leq_{\mathsf{RK}} \mathcal{V}$. Then for any $(\mathcal{U}, \mathcal{V}, h)$ -SP-tree T there is a branch B such that letting $B(n) = (B_0(n), B_1(n))$

$$\{B_0(n) \mid n \in \omega\} \in \mathcal{U} \quad \& \quad \bigcup_n B_1(n) \in \mathcal{V}$$

Proof.

This uses ideas similar to those of the proof of Lemma 4.

∃ ► < ∃ ►</p>

Definition 6

Let \mathcal{U} and \mathcal{V} be ultrafilters and $h: \omega \to \omega$ a finite-to-one function witnessing that $\mathcal{V} \leq_{\mathsf{RK}} \mathcal{U}$. Define the partial order $\mathbb{P}(\mathcal{V}, \mathcal{U}, h)$ to consist of trees \mathbb{T} such that

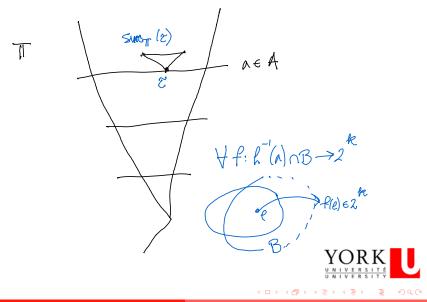
$$(\forall \tau \in \mathbb{T}) \operatorname{succ}_{\mathbb{T}}(\tau) \subseteq \left(2^{|\tau|}\right)^{h^{-1}(|\tau|)}$$
 (6)

and there are $A \in \mathcal{U}$ and $B \in \mathcal{V}$ such that for all $k \in \omega$

$$(\forall^{\infty} a \in A)(\forall t \in \operatorname{Lev}_{a}(\mathbb{T}))(\forall f : h^{-1}(a) \cap B \to 2^{k}) (\exists g \in \operatorname{succ}_{\mathbb{T}}(t))(\forall j \in h^{-1}(a) \cap B) \ f(j) \subseteq g(j).$$
(7)

Define C_G by letting $F_G(k) : h^{-1}(k) \to 2^k$ if for all $T \in G$ there is $t \in T$ such that $t(k) = F_G(k)$ and define

$$C_G(\ell,j) = \begin{cases} F_G(h(\ell))(\ell)(j) & \text{if } j \in h(\ell) \\ 0 & \text{otherwise.} \end{cases}$$



LEMMA 8

If \mathcal{V} be a selective ultrafilter and \mathcal{U} a P-point such that $h: \omega \to \omega$ a function witnessing that $\mathcal{V} \leq_{\mathsf{RK}} \mathcal{U}$ then $\mathbb{P}(\mathcal{V}, \mathcal{U}, h)$ is proper and ω^{ω} bounding.

Proof.

This is shown by argument similar to those that establish that $\mathbb{P}(\mathcal{U})$ is proper and ω^{ω} bounding.

Lemma 9

Suppose that

- *U* is a selective ultrafilter
- \mathcal{V} is a P-point
- h a function witnessing that $\mathcal{V} \leq_{\mathsf{RK}} \mathcal{U}$
- $\mathcal{V} \neq_{\mathsf{RK}} \mathcal{U}$
- $T \in \mathbb{P}(\mathcal{U}, \mathcal{V}, h)$
- $P: T \rightarrow 2.$

Then there is $T^* \subseteq T$ such that $T^* \in \mathbb{P}(\mathcal{U}, \mathcal{V}, h)$ and there is $W \in \mathcal{U}$ and $J \in 2$ such that

$$(\forall w \in W)(\forall t \in \operatorname{Lev}_{w+1}T^*) P(t) = J.$$

イロト イポト イヨト イヨト

A sketch of the proof of this lemma uses the following:

Lemma 10

For arbitrary sets R and D if $R^D = P_0 \cup P_1$ then there is $d \in D$ and a partition $D \setminus \{d\} = D_0 \cup D_1$ such that for all $f : D_i \to R$ there is $f^* \in P_i$ such that $f \subseteq f^*$.

This lemma is used in the following context: \dot{X} is a name for a subset of ω and

• $\tau \in \mathbb{T}$ and $A \in \mathcal{U}$ and $B \in \mathcal{V}$ witness that $\mathbb{T} \in \mathbb{P}(\mathcal{U}, \mathcal{V}, h)$

•
$$\mathbb{T}\langle \tau^{\frown}f \rangle \Vdash_{\mathbb{P}(\mathcal{U},\mathcal{V},h)} "\chi_{\dot{X}}(|\tau|) = J_f"$$
 for $f \in \operatorname{succ}_{\mathbb{T}}(\tau)$.

Let $D = h^{-1}(|\tau|) \cap B$ and $R = 2^{|\tau|}$. Then for each $f \in R^D$ there is $g[f] \in \mathbf{succ}_{\mathbb{T}}(\tau)$ such that

$$(\forall j \in h^{-1}(|\tau|) \cap B) \ f(j) \subseteq g[f](j).$$

Let $R^D = P_0 \cup P_1$ be the partition defined by

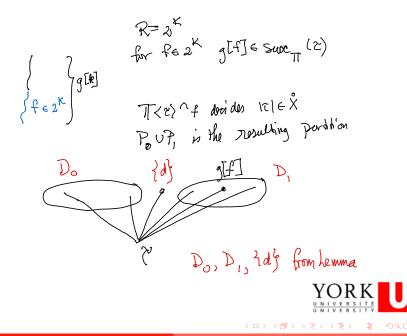
$$P_i = \left\{ f \in R^D \mid J_{g[f]} = i \right\}.$$

Lemma 10 then provides a partition

$$h^{-1}(|\tau|)\cap B=D=D_0\cup D_1\cup\{d\}$$

such that for all $f : D_i \to R$ there is $f^* \in P_i$ such that $f \subseteq f^*$. Letting D_i^{τ} denote D_i and d^{τ} denote d for a particular τ , an argument using Lemma 7 then yields $T^* \subseteq T$ such that $T^* \in \mathbb{P}(\mathcal{U}, \mathcal{V}, h)$ and $\overline{A} \in \mathcal{U}$ and $\overline{B} \in \mathcal{V}$ such that either:

- $D_0^{ au} \supseteq h^{-1}(| au|) \cap \bar{B}$ for each $w \in W$ and $au \in \mathsf{Lev}_w(\mathbb{T}^*)$
- $D_1^{ au} \supseteq h^{-1}(| au|) \cap \bar{B}$ for each $w \in W$ and $au \in \mathsf{Lev}_w(\mathbb{T}^*)$
- $\{d^{\tau}\} = h^{-1}(|\tau|) \cap \bar{B}$ for each $w \in W$ and $\tau \in \text{Lev}_{w}(\mathbb{T}^{*})$



If $J \in 2$ is such that one of the first two possibilities holds for J then

$$(\forall k \in W) (\forall \tau \in \text{Lev}_k(\mathbb{T}^*)) (\forall f : D_J^{\tau} \to 2^{|\tau|}) (\exists g \in \text{succ}_{\mathbb{T}^*}(\tau)) (\forall j \in D_J^{\tau}) f(j) \subset g(j)$$
(8)

and hence

$$(\forall k \in W) (\forall \tau \in \operatorname{Lev}_k(\mathbb{T}^*)) (\forall f : h^{-1}(|\tau|) \cap \bar{B} \to 2^{|\tau|}) (\exists g \in \operatorname{succ}_{\mathbb{T}^*}(\tau)) (\forall j \in D_J^{\tau}) f(j) \subset g(j)$$
(9)

and so $\mathbb{T}^* \Vdash_{\mathbb{P}(\mathcal{U},\mathcal{V},h)}$ " $(\forall w \in W) \ \chi_{\dot{X}}(w) = J$ " as required.

The third possibility is ruled out by the hypothesis that $\mathcal{V} \neq_{\mathsf{RK}} \mathcal{U}$.

イロト イボト イヨト イヨト

The immediate corollary now is the following.

COROLLARY 2

If \mathcal{U} is a selective, \mathcal{V} is a P-point and h witnesses that $\mathcal{V} \leq_{\mathsf{RK}} \mathcal{U}$ and $1 \Vdash_{\mathbb{P}(\mathcal{U},\mathcal{V},h)}$ " $X \in \mathcal{U}^+$ " then there is $\mathbb{T} \in \mathbb{P}(\mathcal{U},\mathcal{V},h)$ and $A \in \mathcal{U}$ such that

 $\mathbb{T}\Vdash_{\mathbb{P}(\mathcal{U},\mathcal{V},h)} ``A \subseteq X''.$

There is only one final piece of the puzzle needed and it is provided the next lemma, whose proof is similar to the corresponding result for $\mathbb{P}(\mathcal{U})$.

Lemma 11

If ${\cal U}$ is a selective, ${\cal V}$ is a P-point and h witnesses that ${\cal V}\leq_{\sf RK}{\cal U}$ and $J\in 2$ and

 $1 \Vdash_{\mathbb{P}(\mathcal{V},\mathcal{U},h)} \text{ "\dot{X} is almost-J-homogeneous for $C_{\dot{G}}$"}$ then there is $\mathbb{T} \in \mathbb{P}(\mathcal{V},\mathcal{U},h)$) and $E \in \mathcal{U}$ such that $\mathbb{T} \Vdash_{\mathbb{P}(\mathcal{V},\mathcal{U},h)} \text{ "$E \cap \dot{X} = \varnothing"$}.$

A countable support iteration, starting with a model of \Diamond_{ω_2} and a fixed selective ultrafilter \mathcal{U} , of partial orders $\mathbb{P}_{\xi} * \mathbb{Q}_{\xi}$ where

• $\mathbb{Q}_{\xi} = \mathbb{P}(\mathcal{V}_{\xi})$ if \Diamond_{ω_2} at ξ guesses \mathcal{V}_{ξ} and $1 \Vdash_{\mathbb{P}_{\xi}} "\mathcal{U} \not\leq_{\mathsf{RK}} \mathcal{V}_{\xi}"$

•
$$\mathbb{Q}_{\xi} = \mathbb{P}(\mathcal{U}, \mathcal{V}_{\xi}, h)$$
 if \Diamond_{ω_2} at ξ guesses \mathcal{V}_{ξ} and $1 \Vdash_{\mathbb{P}_{\xi}} ``\mathcal{U} \leq_{\mathsf{RK}} \mathcal{V}_{\xi}``.$

provides a model with a unique P-point.

It is not hard to modify this proof to get model of set theory with any specified number of RK-equivalence classes of P-points (but there is only homeomorphism class of P-points of character \aleph_1 .)

QUESTION 1

What RK structures are possible for the set of P-points?

Given that in the models discussed with some, but not many P-points, the P-points are all selective, one may ask whether it is possible to have P-points, but no selective ultrafilters.

THEOREM 1 (COMBINING KUNEN [2] AND DOW [1])

In a model obtained by adding \aleph_2 random reals to a model of V = L there are no selective ultrafilters, but there are P-points.

Alan Dow.

P-filters and Cohen, random, and Laver forcing. *Topology Appl.*, 281:107200, 16, 2020.

Kenneth Kunen.

Some points in βN .

Math. Proc. Cambridge Philos. Soc., 80(3):385-398, 1976.

Saharon Shelah.

Proper and improper forcing. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, second edition, 1998.

< ロ ト < 同 ト < 三 ト < 三 ト