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Abstract

The aim of this thesis was to solve the problem of scheduling elective surgeries in a multiple

operating room setting with the goals of minimizing the amount of overtime incurred. While

surgical durations cannot always be perfectly estimated and vary by procedure and surgeon,

we propose an approach that relies on leveraging the stochastic nature of surgical durations

to simulate each operating day and understand the probability of incurring overtime under a

certain schedule of surgeries. The heuristic optimization component of our approach strategi-

cally re-schedules surgeries. Through experimentation with three optimization techniques,

two showed promising results being able to reduce the total number of overtime surgeries

by 12-15%, equivalent to approximately 1h of total monthly overtime. This approach serves

as a tool for improving schedules and can be used for supporting decision making at any

hospital dealing with elective surgeries. Our contribution involves introducing the simulation

optimization model and describing the data-driven approach to analyzing the scheduling

problem.
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1. Introduction

The estimated total health spending in Canada for 2023 reached $344 billion, marking a

notable increase from $213 billion in 2013 [1], with operating rooms accounting for a significant

amount of the total expenditures due to expensive equipment and staffing. While COVID-19

had a noticeable impact on the number of surgeries being performed (approximately 13% fewer

surgeries between 2020 and 2022 compared to the pre-pandemic era), the delayed demand for

hospital services is expected to drive a rebound in spending growth in the upcoming years [1].

As hospitals grapple with managing rising costs and backlogs, patients face prolonged waiting

times and delayed access to surgical procedures.

Prolonged waiting times for total knee and hip arthroplasty (TKA and THA, respectively)

lead to a progression of the disease, a decline of the post-surgery outcomes, and a diminished

quality of life due to debilitating pain and mobility issues [2, 3, 4]. The provincial and

territorial ministries of health developed a benchmark waiting time for total hip or knee

joint replacements, that they be carried out within 6 months [5]. Given the rising costs and

prolonged wait times for surgical procedures, efficient scheduling is paramount. One way to
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achieve this would be to minimize minutes of overtime for the said surgeries while maximizing

the utilization of operating rooms.

Previous researchers have tackled the problem from different perspectives and areas.

Operating Room (OR) planning and scheduling has been receiving attention from diverse

research fields, including computer science [6, 7] and operations management [8, 9]. Exact

algorithms [10, 11] and approximate or heuristic algorithms [8, 12, 13, 14] have been widely

used in surgical scheduling. Fewer researchers have focused on using simulations in conjunction

with optimization in order to solve the scheduling problem. While many works rely on

discrete-event simulations (DES) and Monte Carlo simulations [15] to assess the robustness

of scheduling algorithms under uncertainty, fewer works use simulations as a basis for

understanding the scheduling scene and using that information for optimizing surgical

schedules. This thesis develops a simulation optimization framework that utilizes insights

from the simulation component in order to drive the optimization of surgical schedules.

The exploration of optimization of surgical schedules is of interest to the academic

community as much as it is to the real world, having a need for advanced practical solutions.

Practical projects enable us to ultimately translate the benefits from theory to practise [16],

however, we’ve seen a limited number of such works. Mainly, this is attributed to the

strict policies surrounding patient privacy that hinder the availability of open-source data

relating to hospital scheduling initiatives. Consequently, a significant portion of research

relies on generated data or a combination of de-identified real-world and synthetic data.
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Nevertheless, even when real data is used, surgical schedule optimization algorithms often

encounter obstacles that prevent them from being used in the real-world. For instance,

solutions developed using commercial tools can be financially burdensome for hospitals, while

customized solutions and algorithms present challenges related to adoption and learning

curves. Introducing new setups and processes is a complicated process, especially in the

critical domain of healthcare.

The work presented in this thesis has been done in collaboration with the Holland Centre,

a stand-alone hospital in Toronto focused on elective orthopaedic surgical care, which performs

the highest volume of hip and knee arthroplasty in Canada. This thesis focuses on solving

the problem of efficient scheduling of elective surgeries by applying a simulation optimization

framework along with using stochastic surgical durations. The approach effectively addresses

inefficiencies by evaluating the initially constructed schedule and rescheduling surgeries that

are most likely to result in overtime. The novelty of the approach is attributed to the

load balancing heuristic that aims to distribute planned surgeries within a short scheduling

horizon, minimizing the number of surgeries ending in overtime and maximizing OR utilization

throughout the day.

The remainder of the thesis is organized as follows: Chapter 2 introduces some background

information about surgery planning and scheduling. Chapter 3 dives into a review of

existing literature on heuristic optimization techniques, simulation optimization solutions and

stochastic surgical estimations. The section also discusses the limitations of existing work
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and how our approach is different. Chapter 4 presents the findings from the problem analysis

and contains a detailed overview of the methodology. Chapter 5 and 6 present experiments

with surgical duration distributions and turnover time predictions, respectively. Chapter 7

describes the discrete-event simulation model. Chapter 8 describes the optimization models

and presents the results of the simulation optimization experiments. Finally, Chapter 9

concludes the research and discusses the topics that could be expanded in the future works.
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2. Background

2.1 Planning and scheduling surgeries

An operating room (OR) refers to a medical facility designed and equipped to perform

surgeries. The process of planning and scheduling surgeries within the ORs is typically

divided into several decision levels. Depending on the organizational structure of the hospital

these decision levels may vary but generally each hospital distinguishes between long term

(strategic level), medium term (tactical level), and short term (operational level) planning

and scheduling. A quick overview of the levels is shown in Figure 2.1.

The long-term scheduling problem is referred to as the “Case Mix Problem (CMP)” in

which the goal is to allocate a certain amount of OR time to a surgical specialty in order

to optimize the profit and costs over a long time [17, 18] or to meet expected long-term

patient demand [14, 19]. The decisions made at this level include determining the number and

specialties of surgeries to be planned, the amount of resources required, and allocating the

amount of operating room time to the various specialties. The time-frame of these decisions

5



2.1 PLANNING AND SCHEDULING SURGERIES

Figure 2.1: Overview of scheduling decision levels.

could span from several months to one year or longer [20].

The medium-term scheduling problem is referred to as the “Master Surgery Scheduling

(MSS)” problem in which the goal is to assign surgical specialties to the OR time slots in

order to optimize the levels of resource utilization [6, 21, 22]. MSS is known as a cyclic

schedule and it is usually monthly or quarterly. The decisions made at this level include

determining the distribution of the workload which is restricted by the capacity and demand

constraints determined at the strategic level. The tactical level provides guidelines that

facilitate decisions at the short-term operational level.

The short-term scheduling problem is referred to as the “Operational Level” scheduling

or the “Surgical Case Scheduling (SCS)” problem in which the goal is to assign resources

(surgeons and nurses) and patients to a specific day, room, and time. The problem is typically

decomposed into two steps, namely advance scheduling and allocation scheduling. Advance
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2.2 STAGES OF THE SURGERY

scheduling is concerned with assigning a definite date for each operation (and room, in some

cases), while allocation scheduling is concerned with determining the exact start time of the

operations and the allocation of the OR resources.

At the operational level, it’s crucial to accurately estimate surgical durations and plan an

efficient OR usage, without incurring overtime or wasting undertime. This thesis will focus on

advance scheduling but from a rescheduling perspective. Given the unpredictability of surgical

durations, OR efficiency is often assessed after the day has ended. However, the proposed

simulation optimization method allows for the evaluation of OR utilization before surgeries

take place. The approach involves assessing an initial surgery schedule and recommending

rescheduling certain procedures to different days to prevent over- or under-utilization of

resources based on a probabilistic analysis of OR usage.

2.2 Stages of the surgery

The overall surgery process involves several activities before, during, and after the actual

surgical procedure [23]. These include pre-operative, intra-operative, and post-operative

stages illustrated in Figure 2.2. Pre-operative care begins with the patient and surgeon

deciding to have the surgerical procedure. This might include a visit to a preoperative clinic

for exams and tests. Preparation before the surgery day is also common. On the surgery day,

the patient arrives at the hospital at a scheduled time. Various administrative tasks may be

needed, and the patient might undergo a brief physical exam or medical tests (e.g., a blood
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2.2 STAGES OF THE SURGERY

Figure 2.2: Stages of surgery process.

test) before surgery.

Intra-operative care refers to activities that happen in the OR. This includes the patient

receiving anaesthesia, undergoing surgical activities, and waking up from the anaesthesia.

The patient triage post-operative stage starts when the patient is admitted to a recovery area,

either a Post Anaesthesia Care Unit (PACU) or Intensive Care Unit (ICU), depending on

the surgery’s nature. The whole surgical process ends when the patient has fully recovered,

and no further follow-up with the surgeon is needed. This could take weeks, months, or even

years. In this thesis, we focus on considerations and scheduling decisions made within the

intra-operative stage – our dataset does not include the availability of PHU and PACU beds,

so these constraints are beyond the scope of our current problem domain.
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2.3 EVALUATING SCHEDULE PERFORMANCE

2.3 Evaluating schedule performance

Different evaluation metrics can be used to evaluate the performance of OR schedules. The

choice of the measures reflects the needs of the stakeholders and the most important objectives

of the problem. For instance, patients are predominantly worried about their surgery being

cancelled and long waiting times. Whereas hospital staff are more concerned about overtime,

shift assignments (both in terms of time and colleagues they are working with during the

shift), and block time allocation [16]. The two most common measures that have been

used the most in the literature between 2015 and 2020 have been patient waiting time and

overtime. These two are also commonly selected with other popular metrics such as rate of

OR utilization, financial measures, throughput, and others presented in Table 2.1 [16, 24, 25].

Table 2.1: Common metrics used to evaluate performance of operating rooms.

Metric Description

First case start time Percentage of first cases of the day that start on time.
OR utilization Percentage of OR time used against that which was budgeted.
OR turnover time Average time elapsed between surgeries in one operating room.
Case duration accu-
racy

Percentage of OR cases with durations that are accurately estimated.

Excess staffing costs Staffing costs associated with underused and overused OR time.
Off hours / overtime
surgery

Volume, percentage, or duration of surgeries performed outside of
scheduled OR time.

Procedure cancella-
tion rate

Percentage of procedures cancelled on the day of the surgery.

Percentage of un-
planned closure

Percentage of OR time lost due to unplanned closures (lack of human
or hospital resources, environmental factors, etc).

9



2.3 EVALUATING SCHEDULE PERFORMANCE

Focusing only on one of the performance measures can impact the performance of the

others. For instance, focusing only on patient-centred metrics can lead to more satisfactory

patient outcomes but may negatively impact hospital revenue and lead to increased OR idle

times. Conversely, focusing only on hospital management metrics may increase profitability

at the expense of increased patient wait times, cancellations, and/or dissatisfied OR staff.

Researchers often turn to multi-objective modelling to balance the competing priorities [16].

In recent years, operating room utilization, patient wait times, and overtime have been the

most popular measures [20].

This work will predominantly focus on minimizing overtime. By minimizing overtime, we

aim to have a positive impact on OR utilization and staff workload. As ORs experience less

overtime and undertime, more surgeries can be performed, leading to reduced patient wait

times.
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3. Literature Review

Researchers started to address operating room planning and scheduling problems starting

in the late 1970s [26]. Many approaches and techniques have been proposed since then.

Our research is focused on utilizing a simulation optimization approach which addresses

uncertainty in surgical durations. Therefore, we dedicate a major portion of this chapter to

review the articles about heuristic optimization, simulation optimization, surgical durations,

and rescheduling.

3.1 Heuristic optimization

Heuristics are a set of procedures prioritizing efficiency and speed over guaranteed optimality.

Heuristic algorithms typically fall into six broad categories: heuristics based on exact methods,

constructive heuristics, improvement heuristics, metaheuristics, linear programming-based

heuristics, and dispatching-rule based heuristics [15].

Heuristics based on exact methods, as the name suggests, are inspired by exact methods.

Exact methods, such as Integer Programming (IP), are guaranteed to identify and verify an
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3.1 HEURISTIC OPTIMIZATION

optimal solution but by doing so they can become computationally expensive. In practice,

it is common to trade the guarantee of optimality for efficiency [27]. As such, hybrid

solutions combine heuristic algorithms with IP techniques like linear programming (LP),

mixed integer programming (MIP), dynamic programming, and others. Hybrid solutions may

be “collaborative” in nature, in which information is shared between algorithms but they are

ran separately. Alternatively, the solutions may be “integrative” in nature, where one technique

is an embedded component of the other. For instance, Jung and colleagues [10] proposed a

model that combines MIP and heuristic scheduling to create daily schedules, offering precise

solutions while considering the dynamic nature of surgical operations. Similarly, Astaraky

and Patrick [28] propose an approximate dynamic programming method to minimize waiting

time and resource congestion, highlighting the adaptability of exact methods to real-world

scheduling challenges.

Constructive heuristics involve methods that build feasible solutions from scratch, with

the primary goal of constructing a solution by iteratively adding elements one at a time. A

two-phase iterated constructive algorithm proposed by Molina-Pariente and colleagues [29]

demonstrates an iterative construction and improvement of a solution. The first phase is

concerned with creating a fast and feasible surgery schedule by constructing the schedule

based on specific criteria. The second phase is focused on improving the solution by iteratively

invoking the construction surgery schedule step, randomly selecting surgeries from the waiting

list, assigning new assistant surgeons and re-calculating the weighted objective function. The

12



3.1 HEURISTIC OPTIMIZATION

iterative process continues until a CPU time limit, dependent on the problem size, is reached.

Spratt and Kozan [30] considered a real-time reactive surgical case sequencing problem with

the objective of maximizing total OR utilization. They proposed two constructive heuristics:

modified block scheduling and modified open scheduling. In their modified block scheduling

approach, elective patients are initially assigned to surgeon blocks based on the recommended

surgical due dates. Then, non-elective patients are added to these blocks at the earliest

possible time. This process repeats for each specialty and patient throughout the day. In

contrast, their modified open scheduling method evaluates all possible surgeon-patient-OR

assignments to determine the earliest feasible surgery start time, without strict adherence to

surgeon-patient assignment.

Improvement heuristics involve methods that start with an initial solution and aim to

iteratively refine and improve the solution by making local changes. Lamiri and colleagues [31]

proposed sequential improvement, local optimization, and pair-wise switching methods

to iteratively refine surgical schedules based on OR utilization, emphasizing the iterative

refinement process. Their pair-wise switching heuristic always outperformed local optimization,

yet local optimization was always better than the sequential improvement heuristic. Similarly,

Marques and colleagues [32] addressed the problem of OR utilization by applying a genetic

algorithm with constructive and improvement heuristics. Their iterative approach addressed

not only the surgical suite occupation rate but also the priority of surgeries to accomplish

their goals.
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3.1 HEURISTIC OPTIMIZATION

Metaheuristics are high-level algorithms that are applicable to a wide variety of problems,

often chosen for combinatorial optimization problems that require searching over a large

set of feasible solutions. For instance, Xiang and colleagues [33] introduced Ant Colony

Optimization (ACO) to address operating room surgery scheduling challenges. By modifying

the original ACO and introducing a two-level hierarchical ant graph representing surgery

sequencing and resource allocation, the algorithm efficiently determines surgery start times

while considering various constraints. Comparative experiments demonstrate ACO’s superior

performance in minimizing makespan, overtime, and working time variation compared to a

discrete-event simulation model of the original schedule. Similarly, Farsi and colleagues [34]

tackle daily scheduling issues by integrating constraint programming (CP) with evolutionary

algorithms like NSGA-II and the multi-objective dragonfly algorithm with the objective of

reducing makespan while enhancing both patient and surgical teams’ satisfaction. While the

CP model suits smaller hospitals with less than 150 surgeries per week, their metaheuristic

approach proves more effective for larger-scale and multi-objective problems.

Dispatching-rule based heuristics are those that rely on predefined rules, such as first-come-

first-served, longest processing time, or a specified priority. Wang and colleagues [35] propose

an adaptive composite dispatching method, combining popular dispatching rules to minimize

makespan. Their combination of Longest Processing Time first (LPT), Least Flexible Job

first (LFJ) and Largest Resource Workload first (LRW) was shown to significantly shorten

the makespan and reduce the overtime work when testing the results through a case study
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3.2 SIMULATION OPTIMIZATION

using real data. Similarly, Pham and Klinkert [36] extend traditional scheduling rules by

building on top of a classical Job Shop scheduling problem (e.g. the multi-mode blocking

job shop (MMBJS)) for solving the surgical case scheduling problem. Their mixed integer

linear programming formulation of the MMBJS considers the availability and need of different

resources depending on the surgical stage (pre-operative, intra-operative, and post-operative)

and manages emergency cases, as well as add-on elective cases, adaptively and efficiently.

The widespread application of heuristics in surgical scheduling underscores its acceptance

as a viable problem-solving tool. However, due to the nature of the surgery scheduling

field, the majority of evaluations of these techniques have predominantly been numerical

or theoretical, with limited testing on real-world data. Strict patient privacy policies limit

the availability of open-source hospital data causing researchers to rely on generated or a

combination of de-identified real-world and synthetic data. Our objective is to contribute to

the field of heuristic algorithms by introducing novel improvement heuristic algorithms. We

aim to leverage the potential of heuristics to optimize schedules, considering their inherent

advantages in terms of resource efficiency and flexibility. We will validate the results not only

in a simulated environment but also through a comparative analysis with real hospital data.

3.2 Simulation optimization

Simulation and optimization have traditionally been considered as two different approaches.

On one hand, simulation is the process of designing a model of a real system and conducting

15



3.2 SIMULATION OPTIMIZATION

experiments with it. The goal is to either understand the behaviour of the system or to

evaluate various strategies. On the other hand, optimization is the process of finding a

solution that conforms to predefined constraints and reaches the ultimate goal or objective.

However, increasing computational power has been enabling the combination of both of these

approaches together [16, 37]. Xiao and colleagues [38] developed a simulation optimization

approach to find heuristic solutions for the surgery scheduling problem and have devised

several scheduling policies useful for hospital planning teams. They developed a two-step

approach where initial schedules were created by a simulation optimization approach, and then

numerically evaluated by different sequencing and allocation policies using a discrete-event

simulation model. Bovim and colleagues [21] also developed a simulation optimization model,

however, in their case the simulation model was used as input for the optimization model.

The proposed method was run repeatedly, creating a feedback loop, until a certain stopping

criterion has been met.

Simulation optimization is a very wide term used in research since there are different ways

simulation can interact with optimization and vice versa. Thus, simulation optimization is

a field of its own that can be classified into several dimensions. The taxonomy proposed

by Figueira and Almada-Lobo [37] classifies simulation-optimization methods into four key

dimensions: Simulation Purpose, Hierarchical Structure, Search Method, and Search Scheme

employed.

Purpose and structure both relate to the interaction between simulation and optimization.
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3.2 SIMULATION OPTIMIZATION

When combining the approaches, the purpose of the simulation can be different. It may be

used to evaluate solutions, to generate solutions, or to combine both of those approaches. The

extent and nature of interaction between simulation and optimization components depends on

the structure. Both modules could run sequentially (Sequential Simulation-Optimization) or

could alternate in each iteration (Alternate Simulation-Optimization). Moreover, simulation

could be simply a part of an optimization procedure (Optimization with Simulation-based

Iterations), or alternatively optimization could be a part of a simulation process (Simulation

with Optimization-based Iterations). Liang and colleagues [39] employed a sequential simula-

tion–optimization to maximize patient throughput and minimize patient waiting time. The

purpose of their simulation model was to evaluate the scheduling performance of three simple

scheduling rules, namely shortest processing time (SPT), critical ratio (CR), and first-come

first-served (FCFS) rules. The structure relied on simulation to obtain evaluation results

which would be passed to a response surface methodology (RSM) to determine an optimal

weights configuration of the simple rules and to a Tabu search optimizer to find an optimal

combined scheduling policy, finally selecting the best policy.

Search method and scheme are more concerned with search algorithm design. The

search method specifies the type of optimization method that could be employed: an exact

method or any type of heuristic methods (which can also be categorized into several types:

Derivative-Based Heuristic, Other Continuous Heuristic, Discrete Heuristic). While the search

scheme determines how the optimization algorithm navigates through the solution and the
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probability space to find the best possible solution. Landa and colleagues [40] proposed a

hybrid optimization approach that uses heuristic techniques combined with a Monte Carlo

simulation to attempt to achieve an acceptable OR utilization rate while limiting the negative

effects of surgery cancellations and delays. Their two-fold optimization technique started

off with a Local Search for Feasibility module, followed by a Tabu Search for Improvement

module. In a paper by Lamiri and colleagues [41], instead of a heuristic search, the authors

combined Monte Carlo simulation with a Mixed Integer Programming (an exact method),

aiming to minimize the expected overtime costs as well as costs related to elective cases

(waiting time costs, hospitalization costs, etc).

In surgical scheduling, Monte Carlo and discrete-event simulation have both been utilized,

but they differ in key design aspects. Monte Carlo techniques are suitable for continuous

systems with uncertain parameters and have been predominantly applied in industrial

engineering, physical processes, economics, and finance areas, where stochastic sampling

drives simulation [42]. In surgical scheduling, Monte Carlo techniques have been useful for

scenario reduction and modelling emergency patient arrivals. Lamiri and colleagues [41] used

Monte Carlo methods to simulate the arrival of emergency patients to the hospital, similar to

Antogini and colleagues [43] who also simulated non-elective arrivals with random patient

classes, surgery times, and wait times using Monte Carlo methods. Pulido and colleagues [44],

on the other hand, used Monte Carlo simulation to emulate 100 scenarios obtaining an

optimal value, thus reducing the number of scenarios that will need to be used in the solution
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and decreasing solution time.

Discrete-event simulations, on the other hand, are suitable for systems with distinct events

and state changes and have been applied in manufacturing processes and queuing systems,

where the system is driven by discrete events triggering state transitions. Discrete-event

simulations (DES) have been popular within surgery scheduling circles. Ma et al. [17] built

a DES model through Arena (a simulation software) with random elective patient arrivals

and random patient requirements achieved by adopting probability distribution functions.

Arriving patients are put into a waiting queue and then allocated to a proper surgical centre

to be operated on by a specific surgeon. After surgery, patients are moved to a proper

recovery ward. The simulation modelling of the hospital is portrayed from the perspective of

the patient flow. McRae and colleagues [18] modelled their discrete-event simulation in Java

8 with stochastic elective and non-elective patient arrivals, surgery durations, and lengths of

stay in the intensive care unit (ICU).

3.3 Surgical durations

Surgical durations are one of the major categories of uncertainties that hinder the accuracy

of scheduling practices. The uncertainty of surgery duration is mainly attributed to the

inability to accurately predict the effect of patient conditions and the effect of surgeon

experience on the duration of the surgery [15]. Furthermore, the duration depends not only

on the specialty, such as orthopaedic, cardiac, or neurological but also the specific procedure

19



3.3 SURGICAL DURATIONS

being performed, such as interventions on the hip, on the knee, or other bodily parts, and

anaesthetic being used. Thus, the uncertainty of actual surgery duration contributes to the

challenge of accurately forecasting it.

While some researchers focused on solving this problem deterministically, others turned

to stochastic modelling. Deterministic approaches, such as machine learning techniques, have

been highly popular in the surgical field. Techniques such as Random Forest Regression,

Support Vector Machine, Linear Regression, Artificial Neural Networks (ANNs), and Naive

Bayes have been applied for predicting the duration of surgeries based on preoperative

factors [45, 46]. Different machine learning models continue being experimented with in order

to better incorporate the non-linear relationships between the variety of factors that affect

surgical durations.

Nonetheless, while deterministic approaches aim to accurately predict durations, stochastic

approaches aim to estimate surgical durations and incorporate an amount of variability that

comes with them. Thus, stochastic approaches have been more popular within the simulation

optimization field where variability and uncertainty are crucial components in planning and

scheduling. A widely adopted technique for such purposes has been to draw surgical durations

from probability distribution functions (PDFs).

In summary, a PDF is a mathematical function that gives the probabilities of occurrence

of different possible outcomes for an experiment. Surgical durations are typically modelled as

continuous variables, with the probability of a certain outcome depending on the probability
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of its specified interval. The majority of researchers have modelled their surgical durations as

one type of a PDF, such as a log-normal distribution function [9] or an exponential distribution

function [47] which considers the property that typical surgical duration distributions have

long tails. However, this approach lacks the consideration that certain surgical procedures

can fit different PDFs. Only a minority of works incorporate this consideration and fit their

surgical durations to several PDFs, depending on which function better fits the specific

procedure [48, 49, 50].

3.4 Surgery rescheduling

Surgery rescheduling is a crucial aspect of operations aimed at optimizing the use of operating

rooms (ORs) and minimizing costs, based on either additional knowledge or disruptions that

arise after the creation of an initial surgical schedule. Rescheduling stems from a desire to

reduce uncertainty and can arise at the tactical or at the operational level. At the tactical

level, there might be changes to the required capacity or demand for a specific discipline or

surgeon. At the operational level, there might be stochastic arrivals of urgent or emergency

cases, case cancellations, or deviations to scheduled case durations [51]. The uncertainty can

be managed from a proactive or reactive approach. In proactive approaches, managers try to

anticipate disruptions and plan to minimize their impact, whereas in reactive approaches,

the surgical schedule is changed only if the disruptions occur.

The majority of literature focuses on the on-line reactive approaches, re-scheduling elective
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cases upon the arrival of emergency cases or prolonged surgery durations [52]. Eshghali and

colleagues [53] introduced a three-phase reactive model for surgery planning with emergency

arrivals. In the first phase, surgeries are scheduled a week in advance. The second phase

determines the exact timing and sequence of the surgeries. In the third phase, if an emergency

case arises during the day, the remaining subset of scheduled surgeries for the day are

rescheduled. Their model ensures that the rescheduling is done within a reasonable time

limit and that the original surgery day for patients remains unchanged, which helps reduce

patient dissatisfaction and anxiety. The model also accounts for the use of multiple operating

rooms and includes constraints related to recovery bed availability. Allen and colleagues [54]

proposed a simulation model which reactively reschedules surgeries in an operating room, if

a procedure runs late beyond a set criterion. The study examined the start and end time

offsets, the number of rescheduling events, and their impact on schedules. Results showed

that increasing the set criterion reduces the number of rescheduling events, with an optimal

criterion of 10-minutes for their particular hospital.

A proactive rescheduling approach was proposed by Ballestin and colleagues [55] which

consisted of two phases. In the first phase, a tentative schedule is built 2 weeks in advance

to minimize the the percentage of tardy patients (those who are scheduled after their

estimated due date). In the second phase, a final schedule is made a few days before the

planning period as a consequence of rescheduling certain surgeries based on the changes in

the available information (new arrival of patients or unavailability of scheduled patients,
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surgeons, equipment, etc.).

This thesis focuses on a proactive rescheduling approach, where we begin with an initial

surgical schedule prepared by the hospital staff and run it through the simulation model to

obtain a probabilistic evaluation of the schedule efficiency. Once the overtime and undertime

are quantified, the proposed optimization model reschedules surgeries to balance the schedule

and reduce the amount of overtime incurred.

3.5 Contribution of the thesis

While the field of surgical scheduling is not new and has been of interest to researchers for

some time now, the field of simulation optimization remains relatively understudied despite

being highly promising for this area [16, 37]. A majority of simulation optimization works

in surgery optimization have focused on using simulations for performance evaluations, and

less work integrates both modules to depend on each other. The approach presented in the

thesis relies on combining simulation findings with an algorithm that reshuffles surgeries to

minimize the minutes of overtime incurred. The use of stochastic durations incorporates a

level of uncertainty that’s useful for estimating variability of the real world and utilizing it

for creating an efficient schedule.

In addition, there haven’t been many works relying on real-word data, making it harder

to translate the ultimate benefit of theory to practice. The work in this thesis relies on the

data provided by a local hospital and retains the assumptions posed from the real world.
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Thus, the second contribution of this thesis includes a data-driven approach to solving an

elective patient scheduling problem, making use of a discrete-event simulation model and a

heuristic optimization algorithm. Heuristics and simple scheduling rules gathered from this

approach could be useful not only within the algorithmic model but also easily applied by

hospital administrators for surgical scheduling.
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4.1 Problem Description

We consider the problem faced at the the Holland Centre (part of Sunnybrook Health Sciences

Centre), a stand-alone hospital in Toronto, performing the highest volume of hip and knee

arthroplasty in Canada. Inefficiencies of surgical schedules arise mainly from the inability

to accurately estimate surgical durations, as well as from delays occurring due to cleaning

and preparation activities between surgeries inside a room. Over and under estimation of

durations has a large effect on the over and under utilization of the ORs, which entails

financial implications and disruptions to the schedule of the staff. Our goal is to investigate

the problem and address the root cause to create more optimal schedules.

This research is split into three phases. First, we analyze the current state of the scheduling

practise. Our aim is to understand and quantify the problem of turnover times, overtime and

undertime. Second, we build a simulation that models the hospital operations and allows us

to deepen our understanding of the relationship between scheduled surgeries and performance
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metrics. Third, we create an optimization algorithm that addresses the specific problem with

the current schedules and proposes an improved schedule to avoid delays.

4.2 Problem Analysis

In the beginning of our problem exploration, the main issue seemed to arise from the delays

between surgeries. As such, our problem analysis begins with an exploration of trends and

correlations related to turnover times. We identify one major predictor of turnover time

delays: concurrently ending surgeries, which impose a a strain on the environmental team

who are then called on to clean several rooms simultaneously. Thus, we analyze and quantify

the problem of concurrent ends. Finally, we turn our attention to the problem of overtime

and undertime, both of which highlight a greater source of inefficiency.

We obtain the data for the analysis from the Hospital’s Decision Support over a 10-

year period. It comprises of information on each surgery, including procedure descriptions,

estimated and actual surgery durations, timestamps for when each patient entered and exited

the operating room, and when each procedure started and ended. A full list of features used

is presented in Table 4.1. There were several important features in the dataset that weren’t

included nor collected by the hospital. For instance, there was no record of which room the

surgery was performed in or how long the turnover time was between surgeries. Since these

features are critical for our analysis, we had to infer them from the data based on certain

assumptions. To do that, we first had to transform the data into a proper format.

26



4.2.1 Transforming and enriching the data 4.2 PROBLEM ANALYSIS

Table 4.1: List of features extracted and calculated from the hospital dataset.

Feature Description Type

Surgery ID Surgery identifier Extracted
Patient ID Patient identifier Extracted
Date Date of surgery Extracted
Surgery Procedure Procedure code of the surgery Extracted
Estimated Surgery Du-
ration

Manual duration estimation of the surgery Extracted

Actual Surgery Dura-
tion

Actual duration of the surgery Extracted

Patient Wheeled Into
Room

Time when patient is wheeled into the OR Extracted

Procedure Start Time when surgeon begins operating Extracted
Procedure End Time when surgeon stops operating Extracted
Patient Wheeled Out
of Room

Time when patient is wheeled out of the OR Extracted

Turnover Duration Time between one surgery end and the next surgery
start in one room

Calculated

Room Room number where surgery takes place Calculated

4.2.1 Transforming and enriching the data

The original dataset was structured the following way: each surgical case occupied one row

and each column represented surgical features described in Table 4.1. However, this format

was not suitable for our analysis for one main reason - the sequence of surgeries for the

day was not obvious from such a format. We needed to have an ability to sort surgeries by

their start times to calculate the missing features of Room and Turnover Time. Thus, a

transformation of the data into an event log format was needed.

Event logs are structured files containing a chronologically ordered list of the recorded
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Figure 4.1: Transposing the original data to event log format.

events. Each event in the log has an ID, an associated timestamp, and an event name. Event

logs are a foundation of process mining - a technique used to discover, analyze and improve

real processes by extracting knowledge from event logs [56]. To transform our original dataset,

mindize software was used [57]. Each row representing one surgical case was split into several

rows, representing each separate event related to the surgery such as patient wheeled into

the room, procedure start, procedure end, and patient wheeled out of the room. A visual

representation of the transformation is shown in Fig. 4.1.

Following the transformation, the dataset was sorted by the timestamp of each event.

This allowed us to establish a chronological order of surgeries. This served as a foundation for

introducing new key features. Firstly, we enumerated each surgery in the operating theatre
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from the first to the last surgery per day and called it "Surgery Number Today". Secondly,

we introduced features to store information about the assigned room for each surgery and

the turnover time between consecutive surgeries in the same room. To calculate the "Room"

and "Turnover Time" features we initialized two dictionaries. First, to store surgeon-to-room

assignments throughout the day (needed for the "Room" feature) and, second, to track the

index of the last surgery in each room (needed for the "Turnover Time" feature). We iterated

through each row, identifying the current date. For each date, a list of unique surgeons was

compiled and each surgeon was assigned to a room randomly. Surgeries were assigned to

rooms throughout the day based on the surgeon performing the operation. Parallel to the

assignment of surgeries, turnover times were calculated and assigned retrospectively. To

illustrate this, let’s say surgery #1 ended in a room at 9:50am and surgery #2 started in that

same room at 10:22am. The turnover time of 32 minutes was calculated and assigned to the

row corresponding to surgery #1 in the dataframe. Last surgeries were assigned a turnover

time of 0 minutes, since the next surgery in that room only occurred the following morning.

Subsequently, we introduced several features relating to surgeries ending concurrently

with one another. Concurrently ending surgeries are those that ended within 5 or 10 minutes

of another surgery in a different room. To calculate the feature, we introduced two boolean

features, namely ‘concurrent end 5 mins’ and ‘concurrent end 10 mins’. The features denoted

whether a surgery ended concurrently within 5 or 10 minutes of one another. Additionally,

two numerical features, ‘concurrent end number 5 mins’ and ‘concurrent end number 10 mins’,
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were introduced to indicate the number of surgeries that ended concurrently within the 5 or 10

minutes interval. The calculation function operated in two steps. First, it traversed through

each row, noting the end time of the current row surgery and next row surgery. If the next

surgery ended within 5 or 10 minutes of the current surgery, then the corresponding feature

was marked as ‘1’ (concurrent end happened); otherwise, it was marked as ‘0’ (concurrent

end did not happen). Second, the function revisited each row, focusing solely on surgeries

that ended concurrently. For each identified concurrent end, it determined the number of

neighbouring surgeries that ended within 5 and 10 minutes of the current row surgery. The

iterations continued until no neighbours within a 10-minute range were found, marking the

completion of the concurrent ending surgery search.

4.2.2 Turnover times

Turnover time is the average time that elapses between one surgery end for a surgeon and the

next surgery start for that same surgeon. At our hospital, the average turnover time between

2012 and 2022 was 25 minutes with a standard deviation of 25 minutes. The large standard

deviation has been attributed to the heavily skewed distribution of turnover times, as well as

misleading cases that were included into this calculation.

It’s important to note for turnover times is that it is a calculated feature, which led us

to find some instances of misleading values. Firstly, we identified that sometimes surgeons

performed two surgeries in one room or two surgeries in different rooms. As such, the
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calculation of turnover times for such cases resulted in negative values. Typically, such cases

happened at the end of the day, where surgeons had to start their next surgery concurrently

to finish their day on time. In total, there were 124 (less than 1%) instances of negative

turnover time values. Since these cases are rare, we have completely removed them from the

dataset. Secondly, there were instances where turnover time had no value. This occurred for

surgeries that happened last in a room for the day. Since the next surgery in that same room

doesn’t happen until the next day, there’s no way for us to estimate how long the cleaning

for the room took place. To avoid missing values and to indicate last surgeries in rooms

for the day, we assigned a value of 0 minutes to such cases. After removing rare cases and

re-calculating the turnover times without last surgery cases, it was found that the average

turnover time between 2012 and 2022 was 37.34 minutes with a standard deviation of 21.06

minutes.

To understand turnover time delays more, we looked at cases that incurred very long

turnover times, defined as cases with turnover times more than 58.40 minutes (average turnover

time plus one standard deviation). In our analysis long turnover times were identified in

2.88% of cases. The mean duration of long turnover times was 133.97 minutes with standard

deviation of 60.47 minutes. Typically, compared to all cases, long turnover cases occurred for

surgeries that ended between 9am and 12pm, as seen in Fig. 4.2. This is rationalized by the

fact that the first half of the day can allow more delays since there’s time in the second half

to catch up on those inefficiencies.
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Figure 4.2: Long turnover cases by the hour when surgery ended.

4.2.3 Concurrently ending cases

Concurrently ending cases are those surgeries that end within 5 to 10 minutes of each other

in the same operating theatre but different ORs. These cases have an impact on the length

of turnover time because they impose a strain on the environmental services team, who are

called on to clean several rooms simultaneously. Between 2012 and 2022, there were 2,499

(16.37%) cases of surgeries in different ORs ending within 5 minutes and 4,587 (30.03%)

cases ending within 10 minutes of each other. Typically, concurrently ending cases happened

between 9am and 10am, as seen in Fig. 4.3. Surgeries tend to end concurrently predominantly

in the morning due to most surgeries having the same time in the morning (around 7:30 am -

8:00 am) and having similar surgical durations.
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Figure 4.3: Percent of concurrent ends by the hour when surgery ended.

We analyzed the effect of concurrently ending surgeries on turnover time. Box plots

shown in Fig. 4.4 show a visible trend where turnover time increases as more surgeries end

concurrently with one another. A linear regression analysis was run to examine significance

of the observed trend. It was found that surgeries ending within 5 and 10 minutes of each

other are both significantly correlated with increased turnover time (p-value <0.01) for all

surgeries performed between 2012 and 2022. However, for the more recent data (i.e.: surgeries

performed between 2020 and 2022) only surgeries ending within 5 minutes of each other were

significantly correlated with longer turnover time (p-value <0.01). This highlights a change

in hospital operations, where surgeries ending within 10 minutes of each other don’t pose the
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(a) Concurrently ending cases within 5 minutes. (b) Concurrently ending cases within 10 minutes.

Figure 4.4: The impact of the number of concurrent ends on turnover time.

same level of strain on the environmental team as 5 minutes cases. In addition, this suggests

a trend towards more efficient hospital operations, where concurrently ending surgeries have

less impact on turnover time delays.

4.2.4 Overtime

Overtime surgeries are those that finish the procedure past the scheduled room end time.

The hospital we worked with scheduled each of their ORs to end at either 3:30pm, referred

to as a short room; or at 5pm, referred to as a long room. The OR end times varied daily. In

our analysis we look at overtime from January to December 2021, as that is the only period

with the room end time label.

In 2021, 230 cases ended in overtime, representing 11.31% of all cases. In total, it resulted

in 156.33 hours of overtime for the whole year. On average, each month incurred 13.03 hours
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of overtime. The summer months of June, July and August incurred 85.51 hours of overtime

alone (54.70% of total annual overtime).

When comparing actual ends times to the scheduled end times, we found that the majority

of overtime has been incurred by rooms scheduled to end early, at 3:30pm. As seen in Fig. 4.5,

rooms that were supposed to end at 3:30pm overrun their scheduled end time by 0.5 - 2.5

hours, sometimes ending even past the long room end time of 5pm. The long rooms also

tended to overrun their scheduled ends but never by more than 1.5 hours.

Figure 4.5: Overtime incurred by short (3:30pm) versus long (5pm) rooms.

Typically, for each analyzed month, the amount of overtime incurred was less than the

amount of undertime incurred. Table. 4.2 shows the daily average of overtime and undertime

during the month, while Table. 4.3 shows the total number of overtime and undertime hours
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incurred during the month. Fig. 4.6 shows the general trend of undertime exceeding overtime

in each month. These findings suggests an opportunity for optimization, where surgeries that

end up in overtime are re-scheduled to days when the OR is underutilized.

Figure 4.6: Total hours of overtime compared to undertime per month.
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Table 4.2: Summary of average overtime and undertime incurred in 2021 (hh:mm).

Month Average overtime Average undertime

Jun 0:57 1:32

Jul 0:36 1:46

Aug 0:49 1:41

Sep 0:35 2:28

Oct 0:24 2:24

Nov 0:03 2:53

Dec 0:16 3:20

Grand Average 0:33 2:11
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Table 4.3: Summary of total overtime and undertime incurred in 2021 (hh:mm).

Month Total overtime Total undertime

Jun 25:07 57:57

Jul 25:34 49:08

Aug 28:06 46:51

Sep 21:53 42:58

Oct 21:12 54:27

Nov 18:14 55:49

Dec 9:28 35:20

Grand Total 149:37 342:33

4.3 Problem Formulation

Given the challenge of excess undertime and overtime at the hospital, our primary objective

is to minimize total overtime. We begin with the initial schedule created by surgeons

and administrators, aiming to enhance it by rescheduling certain surgeries. The problem

parameters and constraints are largely determined by the hospital setting, as we strive to

minimize disruptions to existing preferences and workflows while adhering to the department’s

established policies and assumptions.
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• Parameters

– Operating Rooms (ORs)

∗ 5 ORs.

∗ Each OR ends either at 3:30pm or 5pm.

– Surgeons

∗ Surgeons do not share ORs.

∗ Surgeons do not share patients.

– Surgeries

∗ Duration of each surgery is drawn from it’s duration distribution.

∗ Turnover time is drawn from a Gaussian distribution with a mean of 25

minutes and a standard deviation of 2.75 minutes.

– Assumptions

∗ Surgeries are known and can be scheduled one month in advance.

∗ No cancelled surgeries.

∗ No constraints on recover beds.

∗ No emergency patients.

• Hard constraints

– Non-overlapping surgeries

∗ Each surgery must be assigned to exactly one OR.

– Non-overlapping ORs
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∗ Surgeries scheduled in the same room must not overlap in time.

– OR start time

∗ Each OR starts its first surgery at 8am.

• Soft constraints

– OR end time

∗ Each OR ends its surgeries as close as possible to the scheduled end time of

3:30pm or 5pm.

4.4 Methodology

We aim to solve the surgical case scheduling problem by re-scheduling the existing plan of

elective surgeries to a more preferable day and time in order to minimize overtime incurred

for each day. Since the hospital department we work with does not accept emergency patients

and has no known recovery bed availability constraints, these considerations are out of scope

for the current study.

The solution approach to the scheduling problem involves several components. Firstly,

we create surgical duration distributions based on the historical data to use for estimating

the duration of each new surgical case. Secondly, we create a discrete-event simulation that

initially helps us to better understand the problem at hand before it then serves as a solution

approach for the problem. Finally, we create a heuristic optimization algorithm that utilizes
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the insights from the simulation and reschedules surgeries to days where each surgeon is least

likely to run into overtime.

We begin with an overview of the surgical duration distribution experiments in Section 5.

We experiment with different models to draw durations and select the one that produces

the most accurate results. Next, Section 7 covers the inner workings of the discrete-event

simulation (DES) model that takes an initial sequence of surgeries as input and produces an

overview on each day’s performance (including how much overtime and undertime each day

and each room has incurred). Overall, the DES model is used for stochastic and deterministic

evaluations, with the output either being used for optimization or evaluation purposes. Finally,

Section 8 covers the proposed heuristic algorithm that optimizes the current schedule based

on the metrics gained from the DES model. We rely on greedy heuristics with the objective

to reduce the total overtime incurred by the schedule. The simulation optimization solution

framework is presented in Fig. 4.7.

Figure 4.7: Simulation optimization architecture.
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The simulation optimization approach presented in this thesis relies on drawing surgical

durations from probability distribution functions (PDFs). These distributions represent the

range of possible surgical durations based on historical data. By drawing surgical durations

from the distributions, we simulate possible durations for a surgery based on the procedure.

This method helps incorporate stochasticity into our simulation optimization model, capturing

the inherent variability and uncertainty in surgery durations.

Surgical durations at large depend on a combination of patient, surgeon, and surgery

factors. Several models have been experimented with to create distributions that can provide

accurate surgical duration estimations for surgical cases. A number of key considerations

were made in order to refine the final model.

The first consideration was the appropriate time frame of surgical data needed to be

considered in order to strike a balance between historical depth and contemporary relevance.

Hospitals are dynamic entities that change with time depending on new technological advances

or certain regulations. As procedures change at the hospital, there might be more or less

42



5. SURGICAL DURATION DISTRIBUTIONS

time needed to perform certain activities. For instance, a shift in the preferred anaesthesia

technique within surgical teams can reduce or increase the time needed to put the patient to

sleep or to wake them up after procedure ends, contributing to the overall surgical duration.

The last 12 months of surgical data can be very reflective of the most up-to-date procedures

and techniques used at the hospital, however, it might not provide enough samples for fitting

the PDFs.

The second consideration was the choice of features that needed to be included in the data

to enhance the accuracy of estimating surgical durations. There are two considerations here:

the number of features to include and the granularity of these features. In terms of number of

features, durations could be fitted not only based on their procedure types but also surgeon ID,

making the distribution more accurately represent not only the uniqueness of the procedure

but also the expertise and quickness of the surgeon performing the surgery. In terms of

granularity, one particular example relates to the description of the procedure. Each procedure

has a procedure category, class, and code which starts from a broad categorization of the

procedure to a more specific identification of the procedure code. The main challenge that

relates to both of these considerations is the curse of dimensionality. As the number of included

features increases, the available data samples become sparse, leading to issues in accurately

characterizing the underlying probability distribution [58]. This poses complications in fitting

appropriate distribution functions and deriving meaningful insights, as the method not only

suffers from estimation inaccuracies, but also becomes computationally intensive.
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The third consideration was the choice of PDFs to use for fitting historical data. There

exists a broad range of PDFs for continuous variables, with some having a better ability

to represent certain distributions. Even if only the 10 most popular distributions are used,

it can still be cumbersome to work with them. In the case of normal distributions - they

only have two parameters, namely location and scale, which are widely referred to as mean

and standard deviation. However, other distributions have additional parameters such as

a shape which requires additional consideration when drawing distributions. As a result,

accommodating distribution tails can be challenging as they are often highly skewed or long.

5.1 Duration distribution models

We experimented with three duration distribution models to test out various considerations,

such as the appropriate time frame of the duration samples, the specific features to include,

and tail trimming techniques. We used the python distfit package [59] to perform the fitting.

Figure 5.1 summarizes the models we experimented with.

The first model includes all surgical durations grouped by procedure codes. For each

procedure code, durations below the 5th percentile and above the 95th percentile are removed

to ensure that rare or extreme values do not affect the mean or standard deviation of our

distributions. Next, for each procedure code, we take the filtered duration samples and

evaluate their fit against five different distributions: uniform, normal, generalized extreme

value, Weibull, and Student’s t. The best-fitting distribution is chosen based on a goodness
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Figure 5.1: Duration distribution models

of fit test, specifically the lowest residual sum of squares (RSS). After all procedures are

evaluated, we retrieve the duration distribution dataset of the model. Each row in the dataset

represents a procedure code with the details of the best fitting distribution and its associated

parameters. The parameters include the location, scale, shape, and size of the distribution.

To provide an example, let’s take one procedure code and collect all duration samples from

January 2012 and May 2021. Next, we fit the durations against five different distributions.

Figure 5.2 shows a summary of how well the durations fit against the distributions. Based on

the graph, the generalized extreme value (genextreme) distribution has the lowest RSS and

is therefore chosen to represent the procedure’s duration distribution. The PDF is shown

in Figure 5.3, where we see the mean, the confidence interval, and the overall shape of the

distribution with a heavy right skewness.

The second model is similar to the first model but involves a different tail trimming

technique. In the first model, the tails are trimmed before the durations are fitted to the
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Figure 5.2: Summary of fitted theoretical distributions for one of the procedure codes.

Figure 5.3: Distribution fit for one of the procedure codes.
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distributions. However, in the second model, the durations are fitted to the distributions

first. Then, based on the distribution parameters, we trim the tails. This approach allows us

to customize the trimming technique depending on the distribution since each distribution

typically has its own unique way of dealing with tails. After all durations under the procedure

codes are trimmed, the revised duration samples are fitted onto 5 distributions and the

duration distribution dataset of the second model is retrieved.

The third model is similar to the first model but all surgical durations are grouped by

procedure codes, as well as by surgeon codes. In addition, the third model only collects

and uses the last 30 samples of durations for each procedure and surgeon code combination

instead of all samples between 2012 and 2022. This approach ensures that we only collect

the recent samples of surgeries, increasing the chances to obtain distributions that are more

accurate and relevant to the current practices. Similarly to model 1, the tails of the durations

are trimmed before fitting and all durations below 5th percentile or above 95th percentile are

removed. Then, durations are fitted onto 5 distributions. Finally, the duration distribution

dataset of the third model is retrieved.

The process of fitting and evaluating our duration distributions is similar to how training

and testing is done within the machine learning realm. First, we train our models (i.e.: fit

surgical durations to the distributions). Second, we test each model’s performance. This is

why the duration distributions are fit on data between January 2012 and May 2021, whereas

the data after May 2021 is used for our distribution performance evaluations as well as
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simulation and optimization work. Thus, we train on the historical data and test on the

unseen data.

5.2 Performance evaluation

To evaluate the performance of the models, all three were run through the discrete-event

simulation. The stochastic durations produced by the distributions were compared to the

actual durations of each surgery that happened in real life. The testing was performed on

June 2021 data. We took all surgeries during that month and generated duration samples for

each surgery 1,000 times. These durations were determined based on the surgery’s procedure

code and, if applicable, the surgeon code. Mean absolute error (MAE) was used to measure

the absolute difference between stochastic durations and actual durations. After analyzing

the performance of surgical durations, we compared the average MAE value between the

three models.

For some surgical cases, the procedure code that we needed wasn’t present in the distri-

bution table due to the procedure never happening in the past. To overcome this limitation,

we employed strategy that would find the distribution of a similar procedure. The strategy

involved searching for the distribution of the procedure code being performed by another

surgeon or searching for a less granular description of the procedure. The latter works

by leveraging the hierarchical nature of procedure descriptors: procedure codes are more

granular descriptions of procedure classes which are more granular descriptions of procedure
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categories. For example, a procedure category of 1VA represents therapeutic interventions on

the hip joint which is a very broad explanation. A procedure class of 1VA53 provides a more

granular explanation and represents the implantation of internal device in the hip joint. A

procedure code of 1VA53LAPNA provides the most granular explanation of the procedure

and represents the implantation of internal device in the hip joint using an open approach

with other specialized details. Let’s say we can’t find any distributions for a procedure code of

1VA53LAPNA. Then, we can start to iteratively truncate the procedure code by one character

until we find a match in the distributions table. Suppose it takes us five iterations to find

a suitable match for 1VC53. Now, if there are several distributions that match 1VC53, we

take the distribution that is associated with the specific surgeon we’re looking for. However,

if there are still multiple distribution matches - we simply take the average of the returned

surgical duration means, to avoid over-complicating the strategy. While this approach may

result in a loss of granularity, it ensures we generate surgical durations based on the available

knowledge.

After generating 1,000 surgical durations for each surgery in June 2021, we calculated

the average MAE value for each model. The first and second distribution models achieved

a similar MAE, with 29.73 and 30.40 minutes respectively. The third model demonstrated

a slight improvement, resulting in a MAE of 22.70 minutes. We attribute the performance

enhancement to the fact that the third model incorporates not only procedure codes but also

surgeon codes, which makes generating surgical durations more accurate, preserving the skill

49



5.2 PERFORMANCE EVALUATION

level of each surgeon as well as their unique operating capabilities. As such, since the third

model exhibits the best performance relative to the other models, it is selected for use in all

subsequent simulation and optimization experiments.
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6. Turnover Time Predictions

To maximize the accuracy of our simulation optimization approach, we attempted to pre-

dict turnover times. During brainstorming sessions, we identified several potential factors

influencing turnover times, including surgery type, surgeon, time of day, and the number

of surgeries concluding concurrently. The final prediction model yielded a mean absolute

error of 10 to 11 minutes which was deemed to be insignificant by our clinical partners, so

the prediction model wasn’t used in the final discrete-event simulation model. However, the

findings from this predictive modelling were utilized in the analysis section.

6.1 Linear regression

A linear regression model was chosen to predict turnover time, as it is well-suited for estimating

the number of minutes it will take to prepare the room between surgeries. Linear regression

fits a linear model by assigning weights to minimize the residual sum of squares. When

multiple features are used to train the model, it is called a multiple linear regression (MLR)

model. Table 6.1 presents the full list of features used.
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As with duration distributions, time horizon is an important consideration when training

the model. Two MLR models were trained: the first on data between 2012 to 2022 and the

second on just the most recent data between 2020 to 2022.

Table 6.1: Features used to construct the multiple linear regression model

Feature type Feature names

Numerical Number of surgeries today, number of rooms in use today, hour of

the day, number of concurrently ending surgeries

Categorical Procedure category, anaesthesia technique, surgeon, concurrently

ending surgery

Ordinal Surgery number today, day of the week

Models were evaluated based on two metrics suitable for regression evaluations: R-squared

(R2) and mean absolute error (MAE). R2, also known as the coefficient of determination,

works by measuring the amount of variation of data predictions explained by the model. The

higher the R2 score, the more accurate the predictions are and the less variance there is in

them. Generally, the value of R2 lies in the range between 0 and 1 and, thus, is interpreted

as a percentage value. MAE works by calculating the average absolute difference between

the predicted values and the actual values. There are several reasons why the metric was

chosen for our study. First, MAE is easy to interpret. The metric is expressed at the same

scale as the target variable, making it easier for us to understand how well the MLR model

predicts turnover time against actual values. Second, MAE treats all errors equally, making
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it robust to outliers (i.e.: scenarios where turnover times were longer than usual due to

unforeseen circumstances). Third, MAE disregards direction of errors. Over-forecasting and

under-forecasting of turnover times are both treated as equivalent errors.

6.2 Performance evaluation

For each of the models, the data was split into 80% training and 20% testing. In short, testing

did not bring promising results. The first MLR model with 10 years worth of data (between

2012 and 2022) returned R2 value of 39% and MAE of 10.86 minutes. The second MLR with

2 years worth of data (between 2020 and 2022) returned R2 of 41% and MAE of 10.48. A

prediction that is off by 10 - 11 minutes from the actual time is not an acceptable result for our

clinical partners. In addition, the R2 suggests that less than half of variation of predictions is

explained by the model, which is not an acceptable result. As such, the predictions produced

by the model could not be used in our stochastic simulation optimization model. Nevertheless,

the feature importance extracted from the model proved to be of interest. It highlighted

that certain procedures, anaesthesia techniques, and concurrently ending cases had a high

correlation with turnover times between 2012-2022 and 2020-2022. Specifically, correlations

related to concurrently ending cases proved to us that turnover time delays are caused from

multiple surgeries ending at the same time, leading to a constraint on the environmental

team, who are called to clean and prepare several rooms. The Problem Analysis Section 4.2.3

outlines these findings and clinical interpretations of the results.

53



7. Discrete-Event Simulation

A discrete-event simulation (DES) model was chosen for this project for several reasons. First,

DES is event-driven, allowing us to model and evaluate the sequence and impact of events

within the operating theatre. Second, DES is a powerful tool for assessing performance,

providing a more robust analysis of schedule efficiency compared to simple historical analyses.

Third, DES enables us to customize the logic of processes and metric collection, forming the

basis for our optimization efforts presented in the next chapter. Consequently, the value of

implementing a DES model in our project is twofold: it allows us to evaluate the performance

of both original and optimized schedules, and it works in conjunction with the optimization

algorithm to generate optimized solutions.

In hospital settings, simulation models can be quite extensive and consider upstream as

well as downstream units. For instance, the hospital may be modelled as a dynamic system

that includes pre-operative events (i.e.: surgeon consultation, patient registration), as well

as post-operative events (i.e.: recovery bed assignment, patient discharge). However, in our

case, we solely consider the inter-operative events. The events that trigger state transitions
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in our model are surgery start, surgery end, and activities of the cleaning crew. Figure 7.1

showcases the states that the room can be in depending on which event is happening. On

a broader scale, Figure 7.2 illustrates the events and state transitions that happen in our

model.

Figure 7.1: Room state transitions

Figure 7.2: DES model flow

7.1 Simulation model setup

The input for our discrete-event simulation model is the sequence of surgeries that occurred

in the hospital. We take each surgery, meaning each patient, one by one and dispatch them
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to a room once their assigned surgeon is available (has finished their previous surgery) and

the room is available (has been prepared by the cleaning crew). Since the data we work with

does not specify which room each surgeon operates in, we randomly assign each surgeon to

a room at the beginning of the day. This follows the standard process at the hospital and

ensures that no two surgeons share a room throughout the day. After the surgery finishes, the

cleaning crew is dispatched into the room to prepare it for the next surgery. Since the data

also doesn’t have any information about expected turnover times or cleaning crew schedules,

we estimate turnover time stochastically, drawing it from a probability distribution function.

Each room begins its surgeries at 8am and is scheduled to end either at 3:30pm or 5pm,

depending on the predetermined assignment.

Our DES operates in two modes: stochastic or deterministic, with outputs being used for

optimization purposes and/or evaluation purposes respectively. The differentiation between

the modes is presented in the next two sections, with the main algorithmic steps described in

Algorithm 1. We built our discrete-event simulation model in Python 3.8.

7.2 DES for optimization

When the DES module is used for schedule optimization, surgery durations and turnover

times are stochastic. Surgery durations get drawn from the probability distribution functions,

depending on their surgical procedure code and surgeon performing the surgery. Turnover

times are drawn from a Gaussian distribution with a mean of 25 minutes and standard
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Algorithm 1 Simulation Algorithm
1: INITIALIZE
2: Load original schedule
3: Set mode to stochastic or actual
4: Declare simulated schedule dataframe
5: Declare simulated metrics dataframe
6: for each day in original schedule do
7: for i in range 1,000 do
8: Declare today’s metrics
9: Declare today’s doctors, room assignment, room status, doctor status

10: SIMULATE
11: for each row in original schedule do
12: Get surgery id, doctor id, procedure code
13: Assign room to doctor id at surgery start time (current time)
14: Set room status to occupied, doctor status to busy Calculate surgical duration:
15: if mode == stochastic then
16: Get duration from stochastic_duration(procedure code, surgeon id)
17: else
18: Get duration from original schedule
19: end if
20: Set surgery status end time (surgery start time + surgical duration)
21: Set doctor status to available
22: Calculate cleaning time, cleaning end time
23: Set room status to available
24: Append surgery details (i.e.: ID’s, start and end times, duration) to simulated

schedule dataframe
25: COLLECT METRICS
26: Calculate overtime and undertime
27: Append overtime and undertime to the metrics
28: end for
29: end for
30: Average out all metrics over 1,000 simulations
31: Append averaged out metrics to simulated metrics dataframe
32: end for
33: Return simulated metrics dataframe
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deviation of 2.75 minutes, the historical average turnover time at the hospital.

7.3 DES for evaluation

When the DES module is used for evaluation, surgery durations and turnover times can be

either stochastic or deterministic, depending on the schedule being evaluated and purpose

of the evaluation. There are two types of schedules: original (i.e.: the original sequence of

surgeries) and reshuffled (i.e.: the optimized sequence of surgeries). In addition, there are two

types of evaluations that we perform: evaluation of the current scheduling practices (as-is)

and evaluation of the proposed scheduling optimization practises (to-be).

During the as-is evaluation, we compare the performances of the estimated schedule of

surgeries to the actual schedule that happened. This gives us an idea of how much undertime

and overtime was originally planned and how much undertime and overtime there actually

was after the day has ended. The estimated schedule contains durations that were estimated

by the hospital staff and relies on stochastic turnover times between surgeries in each room.

Conversely, the actual schedule contains the actual timestamps of each surgery, thus it relies

on surgical durations and turnover times that actually happened in real life. The parameters

of the as-is evaluations are presented in Table 7.1.

Table 7.1: As-is schedule evaluations.

Schedule Type Surgical Durations Turnover Times

Original
Estimated Estimated Stochastic
Actual Actual Actual
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During the to-be evaluation, we compare the performances of the original sequence of

surgeries to the optimized sequence of surgeries. Here, the performances are evaluated in two

ways: under a simulated environment and under an actual environment, as if the surgeries

happened in real life.

Under the simulated environment, the original and the reshuffled schedules rely on

stochastic turnover times and stochastic durations. Whereas under the actual (assumed real

life) environment, each schedule relies on stochastic turnover times but actual durations. The

simulated environment allows us to compare the performances under a controlled environment,

whereas the actual environment allows us to play out and compare the schedules as if they

were to happen in real life. The parameters of the to-be evaluations are presented in Table 7.2.

Table 7.2: To-be schedule evaluations.

Schedule Type Surgical Durations Turnover Times

Original
Actual Actual Stochastic
Simulated Stochastic Stochastic

Reshuffled
Actual Actual Stochastic
Simulated Stochastic Stochastic

7.4 Performance metrics

The performance metrics that get collected by the DES model are the same whether they

are being collected for optimization or evaluation purposes. The difference only lies in the

way those metrics are used. In optimization they’re used for finding days that are likely to

end up in overtime, while in evaluation they’re used to compare performances of different
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schedules (i.e.: compare the amount of overtime incurred in the original schedule versus the

optimized schedule).

(a) DES input: sequence of
surgeries

(b) DES output: simulation
metrics

Figure 7.3: Diagrams of tables used and produced by the simulation.

To calculate the simulation metrics, we first simulate each day in the schedule 1,000

times. Figure 7.3a describes the features that serve as input for the simulation. After 1,000

simulations, we are provided with an overview of the schedule performance in terms of

total operating time, overtime, and undertime - all of which are averaged out across the

simulation runs. Since each day is presented with uncertainty of surgical durations, simulating

it numerous times provides us with an expected performance that is most likely to happen.

After each day in the input schedule has been simulated, the averaged daily metrics are

collected. Figure 7.3b describes the features (i.e.: metrics) that serve as output for the

simulation. The full list and descriptions of the simulation metrics are presented below:

• Average overtime - Average minutes of overtime across all rooms in the day
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• Average undertime - Average minutes of undertime across all rooms in the day

• R# Average overtime - Average minutes of overtime in Room #

– If the room wasn’t in use on any given date, the cell returns empty

• R# Average undertime - Average minutes of undertime in Room #

– If the room wasn’t in use on any given date, the cell returns empty

We differentiate between metrics for rooms and days in order to pinpoint not only the

days with the most overtime/undertime but also specific rooms having the most effect on

overtime/undertime.
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8. Heuristic Optimization

During the brainstorming sessions with clinical partners, three candidate optimization tech-

niques were proposed. One of them addresses the long-term Case Mix Problem (CMP) and

two others address the short-term Surgical Case Scheduling Problem (SCSP).

The first technique (aimed at solving the CMP) focused on increasing the length of the op-

erating day to better accommodate the delays and increase the number of surgeries happening

in a day. By extending the length of the day, more surgeries could be accommodated within

the open hours. However, the technique didn’t seem appropriate for solving the presented

problem of undertime versus overtime. The technique doesn’t tackle the issue of OR utiliza-

tion, rather it aims to increase throughput. Undeniably, once an appropriate optimization

algorithm is identified, the opening hours of ORs could be re-considered depending on the

surgical demand and the availability of resources to aid in dealing with surgical backlogs.

The second technique (aimed at solving the SCSP) focused on staggering the end times

of surgeries, to make sure no two surgeries end concurrently. Figure 8.1 shows an example

of a schedule with concurrently ending surgeries. When this happens, the cleaning crew is
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called to clean every room but they’re only able to attend one OR at a time.

Figure 8.1: Schedule with multiple surgeries ending concurrently.

By staggering the end times of surgeries, the cleaning crew can have enough buffer to

finish preparing one room and move on to the next room. Figure 8.2 shows an example of a

potential revised schedule, where all surgeries end at least 15 minutes apart. This technique

could effectively reduce the strain on cleaning crew and thus reduce the turnover time delays.

However, from our analysis presented in Section 4.2, it was determined that while there’s

undeniably a strain on the cleaning crew when multiple surgeries end at the same time, the

average delay of 2-3 minutes, caused by the cleaning crew delay, is not clinically significant

to focus on and search for a solution at this time.
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Figure 8.2: Optimized schedule where no two surgeries end concurrently.

The third technique (aimed at solving the SCSP) focused on switching surgeries between

days within a monthly horizon. The objective is to minimize the amount of overtime each day

accumulates by reshuffling surgeries from overtime days into undertime days. This technique

was identified to have the best potential for optimizing the schedule comprehensively since it

directly tackles the issue of overtime. Figure 4.3 in the analysis section showed that besides

the presence of overtime, there’s plenty of undertime in the current schedules. This means

that with a more efficient scheduling technique, surgeries that end up in overtime could have

been allocated into slots with undertime, and this could have reduced both the amounts of

undesirable under or over utilization of the ORs. Thus, this thesis focuses on developing
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the reshuffling technique that would move certain surgeries from the overtime days into the

undertime days, achieving a more optimal solution. The details of the reshuffling heuristic is

presented in Section 8.1.

8.1 Reshuffling optimization models

We experimented with three reshuffling models: the "injection" model, which moves surgeries

from overtime days to undertime days for the same surgeon; the "swapping" model, which

exchanges long and highly variable surgeries from overtime days with short and less variable

surgeries from undertime days; and the "combined" model, which blends both techniques

based on their effectiveness in reducing total overtime.

Next, we compared the performances of the reshuffled schedules with those of the original

schedule, evaluating them under both simulated and actual environments. Both environments

relied on the same daily sequence of surgeries, but in the simulated environment, we used

stochastic durations and turnover times, while in the actual environment, we relied on real

durations and stochastic turnover times.

To conduct the simulation optimization of schedules, we used data from the last 7 months

of 2021 surgical operations, comprising 1,415 surgeries. Our primary objective was to minimize

overtime, so we selected data based on the availability of labels indicating the expected end

times of operating rooms, either 3:30 pm or 5 pm. Additionally, we excluded the first 5

months of 2021 from our simulations due to COVID-19 restrictions, which influenced the
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number of surgeries performed during that period.

Before delving into the specifics of the optimization models, it’s crucial to understand the

overarching constraints imposed by the hospital. First, each surgeon’s working days are fixed,

meaning surgeries can only be rescheduled within days when the surgeon is scheduled to work,

with no additional days added or removed. Second, the length of each surgeon’s working day

is predetermined as either a short or long day, maintaining this assumption while injecting

or swapping surgeries. Third, the assignment of surgeons to patients is predetermined and

cannot be modified. Our optimization objective is to minimize total monthly overtime while

making limited changes to the original schedule.

Now, let’s delve into the general structure of the optimization process, which remains

consistent across all models. The input of the optimization models includes the original

sequence of surgeries and associated metrics from the discrete-event simulation model. The

model begins by iterating over each month present in the schedule and assumes that all

of the surgeries in that month can be rescheduled to any other day within the month. To

determine which surgeries in the selected month need to be reshuffled, we rank all days and

their associated rooms based on the incurred overtime, then identify the surgeons responsible

for those rooms. After selecting the top overtime room, we identify the surgeon that works in

that room. Next, we select all other days that the surgeon works on and rank their days based

on the incurred undertime. The day with the most undertime is selected as the best candidate.

For each surgery in the selected overtime day, we draw 1,000 durations to determine average
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duration and standard deviation of each surgery. Subsequent steps vary depending on the

selected model and the steps for each model is presented below. The overall pseudo-code for

all models is presented in Algorithm 2.

Algorithm 2 Reshuffling algorithm
1: Load schedule dataset
2: Set mode to injection, swapping, or combined
3: for each month in schedule dataset do
4: Initialize current overtime, current undertime, new overtime, new undertime
5: while new overtime < current overtime do
6: Select day, room, surgeon with the most overtime
7: Find all other days that surgeon works on
8: Select day and room with the most undertime
9: for each surgery in overtime room do

10: Draw 1,000 durations. Calculate mean and standard deviation
11: if mode == injection then
12: Go to Algorithm 3
13: end if
14: if mode == swapping then
15: Go to Algorithm 4
16: end if
17: if mode == combined then
18: Go to Algorithm 5
19: end if
20: Update new overtime and new undertime
21: end for
22: end while
23: end for

8.1.1 Injection model

The injection model aims to reduce overtime by moving the longest and most variable surgery

from an overtime room to an undertime room. The model checks if the injection is feasible

by comparing the duration of the surgery with the available undertime in the room. If the
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surgery fits into the available undertime, the injection is performed, and monthly metrics are

updated. If the surgery doesn’t fit into the available undertime, the model tries to inject the

next longest and most variable surgery until a feasible injection is found or all surgeries in

the overtime room are exhausted. The model then repeats this process for all overtime days

and rooms before moving on to optimize the next month. The pseudo-code is presented in

Algorithm 3.

Algorithm 3 Injection algorithm
1: Sort surgeries in the overtime room in descending order by mean and standard deviation
2: for each surgery in the overtime room do
3: Select the longest and most variable surgery
4: if injection is feasible then
5: Inject long surgery to undertime room
6: Break out of the loop
7: end if
8: end for

8.1.2 Swapping model

The swapping model aims to reduce overtime by exchanging long and highly variable surgeries

from overtime days with short and less variable surgeries from undertime days. After the

overtime day and room is selected, the swapping model begins by drawing 1,000 durations

for each surgery in the selected undertime day to determine average duration and standard

deviation of each surgery. The model then selects the longest and most variable surgery

from the overtime room and attempts to swap it with the shortest and least variable surgery

from the undertime room. Feasibility of the swap is determined by analyzing its impact on
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Figure 8.3: Overtime and undertime values on a continuum.

overtime and undertime in both rooms.

Let’s say room 1 has overtime of R1initial and room 2 has undertime of R2initial. If we

imagine each room’s timeline on a continuum, the value of overtime is going to be a positive

one, whereas the value of undertime a negative one, with zero representing absence of over

and under utilization of the OR, as illustrated in Figure 8.3. Once the swap is performed,

R1swap is calculated as R1initial minus the duration of the removed long surgery SL plus

the duration of the added short surgery SS. Similarly, R2swap is calculated by adding the

duration of the long surgery SL and subtracting the duration of the short surgery SS. Refer

to Equation 8.1.

• Calculate the feasibility of a swap:

R1swap = R1initial − SL + SS

R2swap = R2initial + SL − SS (8.1)

If R1swap or R2swap results in an overtime greater than the original overtime value of
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R1initial, the swap is rejected, and the next longest surgery is attempted for swapping. The

model continues to iterate through all surgeries in the overtime room until a feasible swap is

found or until all surgeries in the overtime room are exhausted. The model then repeats this

process for all overtime days and rooms before moving on to optimizing the next month. The

pseudo-code is presented in Algorithm 4.

Algorithm 4 Swapping algorithm
1: for each surgery in undertime room do
2: Draw 1,000 durations. Calculate mean and standard deviation
3: end for
4: Select surgery with shortest mean and standard deviation from undertime room
5: for surgery in overtime day do
6: Select surgery with largest mean and standard deviation from overtime room
7: if swap is feasible then
8: Swap long overtime surgery with short undertime surgery
9: Break out of the loop

10: end if
11: end for

8.1.3 Combined model

The combined model blends the injection and swapping techniques and utilizes one or the

other in each case based on their effectiveness in reducing total overtime. First and foremost,

after the overtime day and room is selected, the combined model draws 1,000 durations

for each surgery in the selected undertime day to determine average duration and standard

deviation of each surgery. Then, the model evaluates the feasibility of both injection and

swap techniques, considering the impact on cumulative overtime and undertime.

The feasibility of an injection is presented in Equation 8.2. It begins with a record of
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initial overtime and undertime in rooms R1initial and R2initial. Then, the long duration

surgery is added to the undertime room R2initial and is subtracted from the overtime room

R1initial. The resulting value of overtime/undertime in each room is denoted as R1inject and

R2inject. Similarly, the feasibility check of a swap returns the values of R1swap and R2swap, as

per the previously described Equation 8.1.

• Calculate the feasibility of an injection:

R1inject = R1initial − SL

R2inject = R2initial + SL (8.2)

Then, in order to decide which technique is better, we calculate the original cumulative

overtime and undertime, as well as cumulative overtime and undertime after each model’s

reshuffle. These values are used to evaluate the total impact on overtime and undertime

after performing one or the other technique. The cumulative overtime after swap COswap is

calculated as a sum of R1swap and R2swap, considering they’re both positive. If only one of

the R1swap or R2swap is positive, then only one is added to the sum. If none of the R1swap or

R2swap is positive, then the sum is zero. The cumulative undertime after swap is calculated

as a sum of R1swap and R2swap, considering they’re both negative. If only one of the R1swap

or R2swap is negative, then only one is added to the sum. If none of the R1swap or R2swap

is negative, then the sum is zero. A similar process is applied to calculate the cumulative
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overtime after injection COinject and cumulative undertime after injection CUinject, shown in

Equation (8.3) and (8.4), respectively.

• Calculating cumulative overtime after an injection:

COinject =



R1inject +R2inject, if R1inject ≥ 0 and R2inject ≥ 0,

R1inject, if R1inject ≥ 0 and R2inject < 0,

R2inject, if R1inject < 0 and R2inject ≥ 0,

0, if R1inject < 0 and R2inject < 0.

(8.3)

• Calculating cumulative undertime after an injection:

CUinject =



R1inject +R2inject, if R1inject < 0 and R2inject < 0,

R1inject, if R1inject < 0 and R2inject ≥ 0,

R2inject, if R1inject ≥ 0 and R2inject < 0,

0, if R1inject ≥ 0 and R2inject ≥ 0.

(8.4)

If the cumulative overtime after an injection COinject is less than the cumulative overtime

after a swap COswap and the cumulative overtime after an injection COinject is less than the

original cumulative overtime COoriginal, then the injection is accepted and vice versa. This

ensures that whichever model is chosen reduces the original overtime better than the other

model. If neither techniques sufficiently reduce overtime, the next longest surgery in the
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overtime room is checked again for both injection and swap feasibility. The model continues

this process until a suitable technique is chosen or until all surgeries in the overtime room

are exhausted. The model then repeats this process for all overtime days and rooms before

moving on to optimizing the next month. The pseudo-code is presented in Algorithm 5.

Algorithm 5 Combined algorithm
1: for each surgery in undertime room do
2: Draw 1,000 durations. Calculate mean and standard deviation
3: end for
4: Select undertime surgery with shortest mean and standard deviation
5: Check injection feasibility
6: Check swap feasibility
7: Select model that better improves cumulative overtime and cumulative undertime

To illustrate how the injection and the swapping models work, let’s walk through the

mechanism of the combined model. As an example, we take a scenario from June 2021. We

identify the day and room with the most overtime (e.g., June 9) and the room with the most

undertime (e.g., June 16). We assess the feasibility of both injection and swapping techniques

and select the one that reduces the original overtime to a greater extent.

First, we check the feasibility of injecting a surgery. We take the longest surgery from the

overtime room and attempt to fit it into the undertime room. If that doesn’t work, we loop

through other surgeries during the day and try to fit in any of them. In our case, we find it

feasible to fit the shortest surgery from the overtime room into the undertime room as shown

in Figure 8.4
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Figure 8.4: Injection model in action.
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Second, we check the feasibility of swapping surgeries. We take the longest surgery from

the overtime room and attempt to swap it with the shortest surgery from the undertime day,

as shows in Figure 8.5.

Figure 8.5: Swapping model in action.

Finally, as seen from the illustrations, both techniques are feasible (i.e. reduce the original

cumulative overtime). Yet the swapping technique reduces overtime to a greater extent and

would get chosen in this case.
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8.2 Performance evaluation and results

To evaluate the performance of the models, each schedule that was generated by the opti-

mization was run through the discrete-event simulation, collecting the performance metrics.

The performances were first evaluated under the simulated environment (using stochastic

durations), then under the actual environment (using actual durations).

8.2.1 Simulated environment comparison

Under the simulated environment, the swapping optimization model exhibited the poorest

performance. It had the least ability to reduce the amount of overtime and undertime.

Nonetheless, it was still able to achieve a 14.08% reduction of overtime compared to the

original schedule and a 1.33% reduction of undertime. In contrast, the injection and combined

models achieved better results. The injection model had a slightly better effect on overtime

reduction, achieving a 43.95% reduction compared to 42.31% of the combined model. However,

the combined model achieved a slightly better effect on undertime reduction, achieving a

4.48% reduction compared to 3.04% of the injection model. Table 8.1 compares performances

of all models, both in terms of hours and percentage improvement.
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Table 8.1: Total improvement of schedules under simulated durations (hh:mm).

Comparison Schedule Total Overtime Improvement Total Undertime Improvement

Simulated durations

Original 71:52 - 278:37 -

Injection 40:17 43.95% 270:08 3.04%

Swapping 61:41 14.17% 274:54 1.33%

Combined 41:30 42.26% 266:08 4.48%

In terms of the number of surgeries ending in overtime, we looked at the count of overtime

ends for the day and percent of surgeries ending in overtime compared to total number of

surgeries for the day. Figure 8.6 shows the mean percentage of surgeries ending in overtime.

Both the injection model and the combined model were able to reduce the mean percentage

of surgeries ending in overtime from 21% to 16%, whereas the swapping model had almost

no effect.

Figure 8.6: Percent of average overtime ends by model
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Figure 8.7 shows the distribution of the average count of surgeries ending in overtime.

The original model shows a relatively broad spread of values compared to the injection and

combined models. This suggests that the injection and combined models not only reduce the

mean number of overtime surgeries but also reduce the occurrence of more than 3 surgeries

ending in overtime per day.

Figure 8.7: Distribution of average count of overtime ends by model

Table 8.2 shows the overtime and undertime achieved by each model grouped by month.

Each model’s performance is compared to the performance of the original schedule. Monthly

overtime and undertime trends are shown in Figure 8.8. Certain months saw a higher

reduction of overtime than others. November was the only month where all three models
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(a) Average monthly overtime minutes. (b) Average monthly undertime minutes.

Figure 8.8: Comparison of simulated schedules by month.

exhibited a worse amount of overtime compared to original overtime value.

In addition to overtime and undertime performance evaluations, we also considered the

number of reshuffles each model did per month, which is summarized in Table 8.3. The

combined model performed less injections and less swaps compared to the injection and

swapping models. This is attributed to the logic that in order to accept a swap or an injection,

one of them must improve the original value of overtime better than the competing model. If

one of the models produces overtime that’s less that the competing model but that’s greater

than the original overtime value, then neither an injection nor a swap is performed.
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Table 8.2: Comparison of simulated schedules by month using stochastic durations (hh:mm)

Month Metric Original Injection Swapping Combined

June

Total overtime 20:12 14:07 17:24 13:42
Overtime improvement - 30.12% 13.86% 32.18%
Total undertime 32:19 31:25 31:51 31:24
Undertime improvement - 2.78% 1.44% 2.84%

July

Total overtime 12:46 4:17 11:01 5:07
Overtime improvement - 66.45% 13.71% 59.92%
Total undertime 37:28 35:53 38:01 35:50
Undertime improvement - 4.23% -1.47% 4.36%

August

Total overtime 17:10 9:39 16:50 7:56
Overtime improvement - 43.79% 1.94% 53.73%
Total undertime 35:32 32:48 35:19 31:07
Undertime improvement - 7.69% 0.61% 12.43%

September

Total overtime 10:04 5:18 8:22 5:09
Overtime improvement - 47.34% 16.87% 48.80%
Total undertime 42:10 40:08 40:37 40:19
Undertime improvement - 4.83% 3.69% 4.42%

October

Total overtime 7:54 5:12 4:12 5:23
Overtime improvement - 34.13% 46.82% 31.92%
Total undertime 45:42 43:39 42:36 43:56
Undertime improvement - 4.46% 6.78% 3.86%

November

Total overtime 0:51 0:54 0:57 1:20
Overtime improvement - -6.77% -11.44% -57.60%
Total undertime 52:00 51:47 53:10 50:05
Undertime improvement - 0.44% -2.23% 3.68%

December

Total overtime 2:51 0:47 2:52 2:49
Overtime improvement - 72.53% -0.21% 1.37%
Total undertime 33:22 34:25 33:18 33:23
Undertime improvement - -3.13% 0.20% -0.06%

Overall, if we’re comparing the models, the injection and combined models performed

relatively similar in terms of reducing overtime, whereas the swapping model performs poorly

compared to them. This can be attributed to the uniqueness of our data, where the original
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Table 8.3: Number of injections and swap in each model.

Month Metric Injection Swapping Combined

June Number of injections 4 - 4
Number of swaps - 6 0

July Number of injections 9 - 8
Number of swaps - 11 3

August Number of injections 5 - 6
Number of swaps - 11 2

September Number of injections 5 - 3
Number of swaps - 9 3

October Number of injections 2 - 0
Number of swaps - 4 2

November Number of injections 1 - 2
Number of swaps - 3 0

December Number of injections 3 - 1
Number of swaps - 0 0

Grand Total Number of injections 29 - 24
Number of swaps - 44 10

schedule contains plenty of scheduled undertime, suggesting that injections of surgeries

to undertime days are more likely to address the issue of overtime than swaps. However,

injections alone might not be as effective at times. As such, the combination of injections

with swaps enables us to not only address the underlying problem of undertime but also

affect overtime to a greater extent, since swaps consider variability of surgery durations and

help to redistribute surgeries based on length and historical variability of surgical durations.

The reason why there’s still plenty of undertime even after reshuffling can be attributed to

the fact that our optimization technique overlooks surgeons who don’t work overtime. Since

these surgeons are not considered for reshuffling by our models, the undertime amounts that

those surgeons incur remains the same as in the original schedule. What’s also interesting,
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not all surgeons experience undertime, or if they do, it’s not enough undertime that would

allow us to fit surgeries from overtime into. Our approach prioritizes minimal swaps and

minimal schedule disruptions, therefore, we are not able to effectively addressed this issue

with simple heuristics.

8.2.2 Actual environment comparison

Under actual environment comparison, we attempt to compare the actual schedule that

happened to the optimized schedule that could’ve happened. Since neither our simulation,

nor optimization components have seen the actual durations, in this comparison for both

original and optimized schedules we use actual surgical durations that happened in real life

and assume a stochastic turnover time drawn from a Gaussian distribution with a mean of

25 minutes. Table 8.4 compares performances of the models, both in terms of hours and

percentage improvement.

Table 8.4: Total improvement of schedules under actual durations.

Comparison Schedule Total Overtime hh:mm Improvement Total Undertime hh:mm Improvement

Actual durations

Original 57:46 - 240:16 -

Injection 51:28 10.93% 239:13 0.44%

Swapping 60:00 -3.84% 237:20 1.22%

Combined 51:46 10.40% 234:15 2.50%

Once again, even under the inherently unpredictable conditions of the real-world surgical

operations, the injection and combined models produce schedules that yield positive outcomes.
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Under the actual environment, the injection model achieved an average of 10.93% reduction

of overtime minutes and a 0.44% reduction of undertime minutes throughout the 7 months.

The combined model achieved comparable results, with 10.40% reduction of overtime and

2.50% reduction of undertime. However, the swapping model did poorly. Compared to the

original schedule, it incurred 7.33% more overtime and just 0.55% less undertime.

The reduction in overtime minutes by the injection and combined models highlights the

practical applicability and effectiveness of these techniques in real-world healthcare settings.

The potential reason for worse results with the swapping model is the fact that we’ve only

tried swapping overtime with undertime days. The effects of reshuffling from overtime days

to overtime days or from overtime days to days with very little undertime hasn’t been studied

in this work.
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9. Conclusions and Future Work

Efficient operating room scheduling is important for keeping up with the growing demand

for surgeries, as well as for staff and financial planning. This thesis demonstrates that a

simulation optimization approach can be applied to solving the surgical scheduling problem.

We show how the simulation component can be used for evaluating the impact of surgical

duration variability on the overall schedules. In addition, we explain how the optimization

component can be used for selecting surgeries that affect overtime and reshuffling them

into days with undertime. While we found that taking surgeries from overtime days and

injecting them into undertime days has the most effect on overtime, a combined approach

that intelligently decides between injecting one surgery or swapping two surgeries shows a

similar effect on overtime yet produces a slightly better effect on undertime. Since elective

surgical scheduling is practically a dispatch system, the main issue remains to be the ability

to predict surgical durations and handle their variances. Thus, future work needs to focus

on improving the ability to estimate surgical durations that are more accurate compared to

actual durations and experiment with other reshuffling techniques for achieving less overtime
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and higher utilization.

In general, this thesis work presents a contribution not only to the academic community

but also to the practical healthcare management field. By bridging the gap between theoretical

insights and real-world problems, we provide a data driven and tangible solution framework to

the efficient surgical scheduling problem. The reliance on real-world scheduling data provided

by the hospital enabled us to build the solution framework. It also allowed us to showcase

the relevance of not only our theoretical results under the simulation environment, but also

results under the presumed actual environment. In this environment, we attempted to mimic

the real world by using actual surgical durations for each surgical case. Such an approach

allowed us to contribute to one of the significant gaps that many of the theoretical papers

exhibit - lack of real-world testing.

The development of the presented simulation optimization architecture is also a useful

contribution for future research and innovation within the research group. Establishing

the model has been necessary for developing a robust architecture that can be used to

create and test optimization algorithms. This work will help to address the gap that exists

currently in the field where there is limited unified ability to test optimization algorithms and

compare results. The established architecture is also an example of the combined simulation

optimization, which is a growing field due to advancements of computational powers and the

need for innovative solutions.

There are several avenues for future research and refinement of the optimization algorithm.
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Firstly, future work should enhance the optimization component by incorporating more

scenarios and assumptions. For example, we should consider reshuffling surgeries for surgeons

who either have no undertime and only work overtime or vice versa. This requires adjusting

the monthly surgery throughput for each surgeon, either by reducing their workload to

decrease overtime or increasing their workload to decrease undertime. Moreover, with such

adjustments we could also change the scheduling horizon from a static monthly one to a

variable rolling one, that could be on a weekly, bi-weekly, or monthly basis. This would

enable us to more freely re-schedule surgeries considering a more flexible planning horizon.

Secondly, experimentation with multi-objective optimization is needed to study the effect

of reshuffles not only on overtime but also undertime, OR utilization, throughput and waiting

time. Incorporation of such objectives could help to develop more comprehensive and nuanced

scheduling strategies that balance competing priorities and objectives.

Finally, ongoing collaboration between researchers, healthcare practitioners, and hospital

administrators will be essential for driving innovation and implementing sustainable solutions

in surgical scheduling. By fostering interdisciplinary partnerships and leveraging insights from

both academia and industry, we can continue to advance the field of healthcare operations

management and improve patient outcomes.
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