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Abstract

This thesis evaluates a hierarchical classification model applied to the CIFAR-10 dataset,

focusing on addressing the limitations of existing methods, which often struggle with (i)

overlapping features and (ii) poor interpretability of classification decisions. Designed

to improve interpretability and targeted accuracy, the model demonstrates strengths in

specifically targeted categorization through an incremental, multi-stage approach. While the

model demonstrates strengths in targeted categorization, it introduces trade-offs in overall

performance, particularly in categories with subtle differences. These insights provide a

foundation for further research into optimizing such models for balanced accuracy across

diverse categories.
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1. Introduction

Image classification remains a cornerstone of computer vision, vital for applications from

automated tagging systems to autonomous vehicle navigation [1]. Traditional classification

methods often struggle with overlapping features and subtle distinctions between categories [2].

Recent advancements in deep learning have led to the development of very deep con-

volutional neural networks (CNNs) [3, 4, 5, 6, 7, 8, 9] that have set new benchmarks in

image classification accuracy. Models such as ResNet, which features residual learning frame-

works to enable the training of networks that are substantially deeper than those previously

used [10], and Google’s EfficientNet, which scales up CNNs in a more structured manner, have

demonstrated remarkable performance on standard datasets like ImageNet [10]. However,

the increased depth and complexity of these models have also made their decision-making

processes less interpretable. The layers of transformations in very deep CNNs (more than 100

layers) [11] tend to obscure the logic behind their classifications, rendering them opaque and

challenging to audit, especially in applications where understanding the model’s reasoning is
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crucial.

Despite ongoing advancements, improvements in both accuracy and interpretability have

been modest. This situation arises primarily from the limitations inherent in traditional

classification architectures, particularly when applied to state-of-the-art models. While these

advanced models, such as very deep convolutional neural networks, achieve high levels of

accuracy, they often do so by becoming increasingly complex. This complexity tends to

obscure the internal mechanisms of the models, reducing their interpretability. The need

for transparency is particularly critical in safety-sensitive areas such as healthcare [12] and

finance [13], where explaining and justifying model decisions is often mandated by regulations.

In these domains, opaque models can hinder trust and compliance, making it essential to

develop methods that enhance the explainability of deep learning systems.

To address the aforementioned concerns, this thesis introduces a hierarchical model to

enhance transparency and targeted error correction. The hierarchical classification approach

organizes the decision-making process into multiple layers, focusing on specific categories

with high confusion rates. By structuring the decision process hierarchically, each stage

can be examined independently, facilitating a clearer understanding of how classifications

are made and allowing for incremental refinements. This layered approach also allows for

targeted analysis of specific categories or pairs of categories, making it easier to understand

and address the reasons behind certain misclassifications in subsequent layers.
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The hierarchical model adopts a ‘divide-and-conquer‘ strategy [14], where instead of

tackling the entire classification problem at once, it breaks it down into smaller, more

manageable sub-problems. For instance, rather than classifying all n elements simultaneously,

the model first divides them into n/2 subcategories. Each subcategory is then further

classified, greatly reducing the complexity at each stage. This method leverages the principle

that smaller sub-problems should, theoretically, lead to fewer errors [15]. However, the initial

classification into these subcategories introduces a new source of error. Thus, the thesis

explores whether this hierarchical approach leads to overall improvements in classification

accuracy, when and why it leads to improvements, and conversely, when and why it might

result in worse performance.

The key research objectives (ROs) in this thesis to guide our exploration of hierarchical

classification models are as follows:

1. RO1: Examine how using a consistent classifier ensures comparative fairness in hier-

archical classification by isolating the hierarchical structure as the primary variable,

rather than differing model architectures.

2. RO2: Identify the most confused class pairs in the baseline model and design a

hierarchical model structure that specifically addresses these pairs, analyzing the impact

on classification accuracy.
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3. RO3: Evaluate the overall performance trade-offs of implementing a hierarchical model,

focusing on changes in accuracy and training time, to understand the implications of

hierarchical segmentation.

Using the CIFAR-10 dataset as a benchmark [16, 17, 18], the standalone model establishes

a reference point for evaluating the improvements offered by the hierarchical models. Our

experimental design progresses from a two-stage to a four-stage hierarchical model that relies

on the divide-and-conquer principle, allowing us to examine the impact of each additional

stage on performance compared to the baseline model. Within this framework, each model

layer focuses on sets of categories frequently mistaken for one another. This approach enables

targeted analysis and precise error correction at every stage[19].

To ensure the reproducibility of the experiments, we set the same random seed at the

beginning of each experiment. This standardization controls all stochastic components of

the model, making the training process deterministic and ensuring that identical results are

produced when the experiments are repeated, even if conducted on different computers [20,

21, 22].

The novelty of this research lies in its iterative hierarchical model, which enhances both

targeted accuracy and interpretability in image classification. This approach lays a robust

foundation for further exploration and practical application of these strategies across diverse

4



and complex datasets.

The remainder of the thesis is organized as follows: Chapter 2 introduces the back-

ground information on image classification and supervised learning, including an overview of

convolutional neural networks (CNNs) and deep CNNs. Chapter 3 reviews existing research

on hierarchical models in image classification, discussing their advantages and challenges and

identifying gaps that this thesis seeks to address. Chapter 4 details the research methodology,

including the dataset, preprocessing techniques, model architecture, and training parameters

used in this study. Chapter 5 presents the results of the experiments conducted with the

baseline and hierarchical classification models. Chapter 6 summarizes the key findings, and

outlines the study’s limitations. Chapter 7 suggests directions for future research. Chapter

8 concludes the research contributions.
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2. Background

Image classification represents a critical application within the broader domain of artificial

intelligence, where the goal is to categorize images into predefined classes based on their

visual content. This task is primarily accomplished through supervised learning, a method

wherein a model is trained on a dataset comprised of input-output pairs. The model learns

to map inputs (in this case, images) to their correct outputs (class labels) by recognizing

patterns and features that distinguish each class.

2.1 Supervised Learning for Image Classification

Supervised learning in the context of image classification is an iterative process where a

computational model is trained on a dataset comprised of images, each paired with an

optimizing label. The primary goal of such a model is to accurately predict the class of new,

unseen images by leveraging the patterns and features it has discerned during the training
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2.1 SUPERVISED LEARNING
FOR IMAGE CLASSIFICATION

phase. This involves optimizing the model’s internal parameters to minimize the discrepancy,

often quantified by a loss function, between the predicted labels and the actual labels of the

training images.

Algorithm 1 Supervised Learning Algorithm for Image Classification
Data: Training set D = {(x1, y1), (x2, y2), . . . , (xN , yN)}
Result: Optimized model parameters θ
Initialize model parameters θ
Define learning rate α
while not converged do

Shuffle D at the start of each epoch
Divide D into mini-batches of size M
for mini-batch B = {(xi, yi), . . .} do

Compute the predicted outputs for B using ŷi = f(xi;θ)
Compute the loss for B using LB = 1

M

∑
(xi,yi)∈B LossFunction(yi, ŷi)

Compute the gradient of LB w.r.t. θ as ∇θLB
Update θ by θ = θ − α∇θLB

end
end
Return the learned parameters θ

The Algorithm 1 presents a step-by-step process designed explicitly for image classification

tasks in supervised learning. This process involves adjusting the model’s internal settings, or

parameters, to improve its ability to identify the categories of images correctly.

The algorithm begins by initializing the model’s parameters, denoted as θ. In machine

learning, parameters like weights and biases are crucial. Weights control the impact of each

input feature on the model’s predictions, and biases allow adjustments to the output that are

not dependent on the input values. Starting with random values for these parameters allows

the model to explore possible solutions.
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2.1 SUPERVISED LEARNING
FOR IMAGE CLASSIFICATION

The learning rate (α) is a key value that determines how much the parameters change

with each update. It’s a delicate balance: too high, and the model might skip over the best

solution; too low, and the model might take too long to find it or get stuck in a suboptimal

solution.

The algorithm’s core is an iterative process that continues until a predefined performance

(‘convergence’) criterion is met, such as a specific number of loops (‘epochs’) or minimal

improvement in loss.

Each time the loop starts (an ‘epoch’), the training data (D) is shuffled. This means

changing the order of the data to ensure the model doesn’t just memorize the sequence but

learns the distinguishing features of each category.

After shuffling, the data is divided into ‘mini-batches’. This makes computing more

manageable and faster and helps the model to generalize better, meaning it can perform well

on data it hasn’t seen before.

Within each mini-batch, the algorithm employs the current set of model parameters θ

to predict the class of each image. It then assesses the accuracy of these predictions by

comparing them to the true labels of the images, a process that yields a numerical value

known as the ‘loss’. This loss quantifies the discrepancy between the predicted and actual

labels, serving as a critical indicator of the model’s performance on that particular mini-batch.

To enhance the model’s predictive accuracy, the algorithm leverages a backpropagation
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2.2 EVALUATION OF IMAGE
CLASSIFICATION MODELS

technique. Backpropagation calculates the gradient of the loss function concerning each

parameter θ, effectively determining how parameter changes will impact the loss. This

gradient information guides the model in adjusting its parameters, aiming to reduce the loss

in subsequent iterations.

Specifically, the parameters are updated by moving them in the opposite direction of the

loss gradient, a step conceptually akin to descending a hill to reach the lowest point. This

updating process, governed by the learning rate α, incrementally improves the model’s ability

to make accurate predictions. By continuously iterating over mini-batches and updating the

parameters based on backpropagation, the model systematically refines its understanding

of the complex relationships within the data, ultimately enhancing its capability to classify

images correctly.

2.2 Evaluation of Image Classification Models

Evaluating the performance of supervised machine learning models is crucial for understanding

their effectiveness and identifying areas for improvement. Various evaluation techniques offer

insights into different aspects of a model’s performance.
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2.2.1 Accuracy 2.2 EVALUATION OF IMAGE
CLASSIFICATION MODELS

2.2.1 Accuracy

Accuracy is the initial metric often used to evaluate an image classification model. It represents

the proportion of correct predictions made by the model out of all predictions. Accuracy is

calculated as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

While accuracy provides a straightforward measure of effectiveness, it can be misleading

in imbalanced datasets where some classes are more prevalent than others.

2.2.2 Confusion Matrix

A confusion matrix offers a detailed breakdown of the model’s performance by showing the

counts of true positives (TP), false positives (FP), true negatives (TN), and false negatives

(FN). The confusion matrix is structured as follows:

10



2.3 CONVOLUTIONAL
NEURAL NETWORKS

Predicted Class

Positive Negative

Actual Class
Positive TP FN

Negative FP TN

Table 2.1: Confusion Matrix

• True Positives (TP): The number of instances correctly predicted as positive.

• False Positives (FP): The number of instances incorrectly predicted as positive.

• True Negatives (TN): The number of instances correctly predicted as negative.

• False Negatives (FN): The number of instances incorrectly predicted as negative.

The confusion matrix provides a granular view of the model’s strengths and weaknesses,

highlighting specific areas for improvement.

2.3 Convolutional Neural Networks

Among supervised learning algorithms, Convolutional Neural Networks (CNNs) have become

a cornerstone, particularly in image and video recognition [23, 24]. CNNs are designed to

automatically and adaptively learn spatial hierarchies of features from input images. They
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2.3 CONVOLUTIONAL
NEURAL NETWORKS

consist of an input layer, multiple hidden layers, and an output layer. The hidden layers of a

CNN typically include convolutional layers and fully connected layers [25].

Figure 2.1: Architecture of a neural network with an input layer, a hidden layer, and an
output layer.

Figure 2.1 illustrates the architecture of a neural network with an input layer, a hidden

layer, and an output layer. The input layer consists of neurons (x1, x2, x3, x4) that receive the

raw data. These neurons are connected to the hidden layer neurons (a1, a2, a3, a4, a5) through

weighted connections, represented by different colored lines. The hidden layer processes the
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2.3 CONVOLUTIONAL
NEURAL NETWORKS

inputs and passes the output to the final layer, which consists of output neurons (y1, y2) that

produce the final prediction.

CNNs enhance this basic architecture by incorporating convolutional layers. These layers

apply convolution operations to the input, extracting features like edges, textures, and

patterns. These features are then passed through additional convolutional layers, further

refining the feature maps. Finally, fully connected layers, similar to the hidden layers in

traditional neural networks, are used to make the final prediction.
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3. Literature Review

This chapter aims to provide a comprehensive understanding of the current state of research

and identify gaps that this thesis seeks to address.

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have emerged as a powerful class of deep learning

models, particularly well-suited for tasks involving grid-like data structures, such as images.

As described by Singh et al. [26], CNNs are designed with layers that progressively extract

higher-level features from the input data, enabling robust and efficient processing of complex

visual information.

The success of CNNs extends across various domains, as highlighted by Dhaka et al.

[27]. Their survey explores applications in image recognition, object detection, and even

medical image analysis. Notably, they showcase the flexibility and effectiveness of CNNs in
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3.1 CONVOLUTIONAL
NEURAL NETWORKS

agriculture by demonstrating their ability to predict plant leaf diseases. Furthermore, Dhaka

et al. [27] emphasize the importance of pre-processing techniques like resizing, normalization,

and augmentation for improved CNN model accuracy and efficiency.

Optimizing the training process for CNNs is crucial, and one important factor is the

training set batch size [28]. Radiuk [28]’s research explores the impact of batch size on CNN

performance, emphasizing the importance of selecting an appropriate size to achieve optimal

accuracy. Their study, which used datasets like MNIST and CIFAR-10, revealed that larger

batch sizes generally lead to higher recognition accuracy, but they also come with increased

computational demands.

Goyal et al. [29] further explored this concept by demonstrating that large mini-batch

sizes can accelerate the training process without sacrificing model accuracy. They achieved

this by utilizing advanced Stochastic Gradient Descent (SGD) variants, which help stabilize

the training process and enhance the model’s ability to generalize to unseen data [29]. This

approach is particularly beneficial in scenarios where computational resources and training

time are limited.

In practical implementations, frameworks like PyTorch have facilitated the development

and training of CNNs [27]. PyTorch provides dynamic computation graphs, particularly useful

for research and development as they allow for more flexible model design and debugging.

This flexibility has made PyTorch a popular choice among researchers for implementing
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state-of-the-art CNN architectures and experimenting with novel ideas.

3.2 Deep Convolutional Neural Networks

Deep Convolutional Neural Networks (DCNNs) have profoundly advanced the field of image

classification [30, 31]. DCNNs differ from traditional CNNs in their depth and complexity.

Traditional CNNs typically consist of a few convolutional layers, whereas DCNNs can have

dozens or even hundreds of convolutional layers [31], which allow them to find more complex

hidden patterns [32]. One notable advancement in DCNNs is the introduction of techniques

like ReLU activation functions, which are piecewise linear functions that lead to faster

convergence by introducing non-linearity [11]. In DCNNs, each network layer builds on the

previous layers to create increasingly abstract and complex representations of the input data.

This hierarchical structure allows the network to capture fine-grained details in the early

layers and more abstract, high-level features in the deeper layers.

The success of DCNNs is also due to the availability of larger datasets [33, 34, 35], which,

during training, impose a greater computational burden. Additionally, DCNN models have

many parameters, which are the variables that the model learns during training. These

parameters lead to increased storage and memory requirements [33, 36, 37]. For instance, the

DCNN from Krizhevsky et al. [33] had 60 million parameters and took six days to train on
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two Graphic Processor Units (GPUs), while the largest model presented by Simonyan and

Zisserman [37] consisted of 144 million parameters, trained on four GPUs in two to three

weeks. Consequently, subsequent research has focused on reducing the computational costs

and storage space requirements of DCNNs [11].

To address these challenges, researchers have explored various solutions. Ensemble

learning has demonstrated efficiency when integrated with DCNNs [38]. This approach

involves training multiple instances of the same model with different random initializations

and averaging their predictions in a parallel fashion. Similarly, hierarchical models in image

classification share conceptual similarities with ensemble learning by utilizing multiple models

or stages of processing. By decomposing the classification task into simpler, more manageable

subtasks [39, 40, 41], hierarchical models can reduce overfitting and enhance generalization [39,

41]. Moreover, hierarchical classification can reduce the computational resources required

for DCNNs, particularly in scenarios where broad category classifications suffice or where

computational efficiency is a priority.

3.3 Challenges of Convolutional Neural Networks

Deep learning models, especially CNNs, are notoriously data-hungry, requiring vast amounts

of labeled data to achieve optimal performance [42, 43, 44]. This issue is particularly
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pronounced in domains with limited available data where obtaining labeled data is both

time-consuming and expensive [45]. Win et al. [44] discuss this issue in their study on

ensemble learning for COVID-19 detection, emphasizing the need for large datasets to avoid

overfitting. Also, Boulent et al. [46] provide a comprehensive review of the use of CNNs for

the automatic identification of plant diseases, emphasizing that robust model performance

in real-world conditions requires datasets that capture the variability of field environments,

including different lighting conditions, backgrounds, and disease symptoms. Boulent et

al. [46] highlights the importance of data diversity, noting that models trained on images

from controlled environments often fail to generalize to field conditions. They recommend

using images captured under various conditions and incorporating different plant parts to

improve model robustness. Additionally, Adadi [43] discusses the critical need for data-efficient

algorithms in the big data era, highlighting that obtaining labeled data is both costly and

labor-intensive, exacerbating the challenges faced by deep learning models in data-scarce

environments.

In imbalanced datasets, CNNs tend to be biased towards the majority class, leading to

poor performance on the minority class. Gomez et al. [9] propose data augmentation as a

technique to mitigate these issues, which artificially increases the diversity of the training set

by applying transformations to the existing data. Seth et al. [47] discuss the use of synthetic

data generation, specifically using Generative Adversarial Networks (GANs), to create new
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training examples and address the class imbalance. Ekim et al. [48] further emphasize the

effectiveness of GANs for synthetic data generation, noting that these techniques can improve

model robustness and performance on diverse datasets.

Furthermore, data quality is a pressing concern. Alzubaidi et al. [49] discuss how in-

the-wild data often contains artifacts and noise, which affect deep learning models. They

emphasize the importance of addressing these issues through various advanced augmentation

techniques, such as Generative Adversarial Networks (GANs) and diffusion models, although

their effectiveness can vary depending on the context and implementation [49].

An example that highlights these challenges is the classification of fruits and vegetables at

supermarket self-checkouts [50]. This domain is characterized by massive variability in physical

features such as color, texture, shape, and size, influenced by factors like ripeness and storage

conditions. Constructing an exhaustive dataset to encompass all these variations is practically

infeasible, complicating the classification task. A class distribution-aware adaptive margins

approach with cluster embedding has been proposed to enhance the classification of highly

variable classes by maintaining large inter-class separability and intra-class compactness [50].

The challenges of data quality and quantity are also evident in driver activity recognition

systems, where CNNs are used to monitor driver behaviors. Roitberg et al. [42] emphasize

that many classification errors in such systems stem from underrepresenting certain activities

in the training set. Their study reveals that object- or movement-specific biases, which lead
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to misclassifications, often arise due to the distribution and quality of the training data. They

highlight the necessity for a more balanced and comprehensive dataset to improve model

performance on rare behaviors.

In addition, training deep learning models is computationally intensive, often requiring

hefty hardware resources [51, 52]. Banerjee and Chakraborty [51] highlight the challenges of

using high-end graphic processor units (GPUs) and distributed computing infrastructures

for applications with limited memory and computational resources, such as those running

on mobile platforms. They propose a novel framework to address the problem of fine-

tuning pre-trained deep learning models in resource-constrained applications by selecting

an informative subset of training data, thereby reducing the computational load without

significantly compromising performance [51]. Their method involves posing the subset selection

as a constrained NP-hard integer quadratic programming problem and deriving an efficient

linear relaxation to select a subset of exemplar instances. This requirement poses a barrier

to entry for many researchers and practitioners, particularly those in resource-constrained

environments [51]. Additionally, the energy consumption associated with training large

models has raised concerns about the environmental impact of deep learning research [53, 52].

Barbierato et al. [52] discuss the energy consumption associated with training large

models, raising concerns about the environmental impact of deep learning research. They

emphasize the need for more energy-efficient algorithms and hardware to mitigate this
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impact. Additionally, the high cost associated with cloud services such as Amazon Web

Services, Microsoft Azure, and Google Cloud Platform can be prohibitive [51]. These services

offer robust computational resources but come at a hefty price, and data privacy concerns

further complicate their use. Consequently, local training becomes a viable alternative when

considering privacy and cost issues.

Quetu et al. [53] address similar concerns, emphasizing the importance of developing

simpler, less resource-intensive models to reduce the environmental footprint of deep learning.

They advocate for green AI (Artificial Intelligence) principles, prioritizing energy efficiency

and sustainability in AI research and practice.

3.4 Hierarchical Models in Image Classification

Hierarchical methods represent an advanced approach to classification. They combine multiple

classifiers at various hierarchy levels to enhance accuracy and robustness [54, 55, 56]. Berno

et al. [57] illustrates a hierarchical classification process where the classification problem is

divided into subsets, each handled at different stages of the hierarchy, as shown in Figure 3.1.

Initially, all data points (ALL) are considered. The process begins by classifying the first

category (CAT 1) against the rest (REST 1). Once CAT 1 is classified, the remaining data

(REST 1) is further divided to classify the next category (CAT 2) against the rest (REST
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Figure 3.1: Illustration of the hierarchical classification process, where the dataset is progres-
sively divided into subsets [57].

2). This continues until all categories are classified. This method allows for targeted error

correction and enhances model interpretability by systematically narrowing down the decision

space.

In their experiments, Berno et al. [57] used the Darknet framework for object detection on

book covers, identifying relationships between visual attributes (such as predominant colors

and objects) and book categories. They employed data mining techniques to analyze these

relationships. Their findings revealed strong connections between co-purchased books and

their visual features, demonstrating the potential of hierarchical classification in e-commerce
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and recommendation systems. However, the methodology involves several computationally

intensive steps, including object detection, color analysis, and data mining, making it

challenging to scale this approach to larger datasets or real-time applications [57]. Additionally,

validating the findings and the accuracy of the classification rules can be difficult due to

the lack of a definitive ground truth. The subjective nature of book cover design and

interpretation adds to this challenge.

Yan et al. [58] introduce the Hierarchical Deep Convolutional Neural Network (HD-

CNN), which extends the hierarchical classification approach by incorporating a coarse-to-fine

classification strategy within a deep learning framework [58]. HD-CNN first uses a ‘coarse‘

classifier CNN to separate classes that are easy to distinguish. For example, it might easily

differentiate between animals and vehicles. Then, for more difficult classifications, such as

distinguishing between different types of animals, the model routes these to specialized ‘fine‘

CNNs, each focusing on subsets of confusing classes. The final prediction is made by taking

a weighted average of the predictions from all the branches, where the probabilities from the

coarse category classifier determine the weights.

The architecture of HD-CNN is illustrated in Figure 3.2. Initially, an input image is

processed by the coarse category CNN component, which generates broad (coarse) predictions.

These predictions determine the routing of the image to one of several fine category branching

components. Each fine branching component specializes in distinguishing between a subset
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Figure 3.2: Hierarchical Deep Convolutional Neural Network (HD-CNN) architecture [58]. The
coarse category component and each branching fine category component can be implemented
as standard deep CNN models. Branching components share shallow layers while having
independent deep layers.

of more similar and confusing categories. The predictions from these fine branches are

then combined in a probabilistic averaging layer to produce the final, detailed (fine-grained)

classification.

Yan et al. [58] demonstrated the effectiveness of HD-CNN on the CIFAR100 dataset. They

compared HD-CNN’s performance with standard CNN models and showed that HD-CNN

outperformed these models. For instance, HD-CNN with CIFAR100 as the building block

achieved a testing error of 32.62%, compared to 35.27% testing error for the standard CNN

model, which improves the building block net by 2.65%. This method reduces interpretability

because it becomes unclear which branch’s prediction had the most influence on the final

decision. It is also difficult to understand why certain branches were given more weight than

others in the final prediction.

Another notable application of hierarchical classification methods is in the diagnosis
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of Alzheimer’s Disease (AD) and its early stage, mild cognitive impairment (MCI). Liu et

al. [59] introduced a hierarchical classification method to analyze brain MR images, aiming

to improve diagnostic accuracy by effectively handling high-dimensional imaging data. The

model integrates various features extracted from both local brain regions and interactions

between different regions. The process begins by partitioning the brain image into smaller

local patches. For each patch, low-level classifiers are trained to transform local imaging

features and inter-region correlations into higher-level features. Specifically, the local features

include gray matter (GM) densities, while the inter-region features capture correlations

between different brain regions. These transformed features are then used to train multiple

high-level classifiers, each focusing on different larger brain regions. The outputs of these

high-level classifiers are combined to make the final classification decision. This hierarchical

approach decomposes the large-scale classification problem into smaller, more manageable

tasks, improving accuracy and robustness [59]. The final decision is made by aggregating

the results from the high-level classifiers using a method that assigns weights based on their

performance (weighted voting strategy of ensemble learning) [59].

Liu et al. [59]’s method demonstrated high classification accuracies, achieving 92.0%

accuracy for distinguishing AD from normal controls and 85.3% accuracy for distinguishing

MCI from normal controls. This hierarchical classification approach proved effective in

handling the complexity of medical imaging data and improved the interpretability and
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diagnostic performance of traditional single-classifier methods.

However, similar to HD-CNN, this hierarchical method also reduces interpretability. This

is because multiple intermediate steps and transformations influence each decision in this

model. As a result, it becomes difficult to trace back and identify which specific features

(e.g., gray matter densities or inter-region correlations) and which specific classifiers (e.g.,

low-level or high-level classifiers) were most responsible for a particular classification outcome.

This complexity can obscure the decision-making process, making it difficult for clinicians to

trust and validate the model’s predictions. Additionally, Liu et al. [59] noted that while a

three-level hierarchy provided the best performance, increasing the number of levels beyond

three did not enhance performance and significantly increased computational costs. This

highlights the balance needed between model complexity and interpretability, as well as the

computational feasibility of deploying such models in practical settings.

26



4. Methodology

Building on the insights from the Literature Review, this research proposes a more straight-

forward yet interpretable approach to hierarchical methods for multi-category classification.

The primary objective of the method design is to explore a more interpretable and scalable

model with an easily available balanced dataset that can serve as a foundation for future

enhancements in multi-category image classification.

The methodology involves starting with a baseline Convolutional Neural Network (CNN)

and progressively adding hierarchical stages to refine classifications. While the training and

testing principles remain consistent across all models, the hierarchical classification models

incorporate a unique hierarchical data flow design.
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4.1 Computational Tools and Framework

4.1.1 Deep Learning Framework

This research employs PyTorch, an open-source machine learning library developed by

Facebook’s AI Research Lab (FAIR), as the primary tool for model development, training,

and evaluation. PyTorch offers a flexible and intuitive platform for building and training

deep neural networks using Python. Its user-friendly interface is compatible with beginner

and expert users, allowing for rapid prototyping and efficient experimentation with various

model architectures [27].

Additionally, PyTorch provides a rich set of tools and utilities for tasks like data loading,

preprocessing, and augmentation, as well as built-in support for GPU acceleration. These

features streamline the development process and enable efficient utilization of hardware

resources, making PyTorch well-suited for training deep neural networks on large-scale

datasets.

4.1.2 GPU Acceleration

The research utilizes a CUDA-enabled GPU to accelerate processing and reduce training

times. GPU acceleration is crucial for handling the extensive computations required in
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training deep neural networks, especially when processing large datasets like CIFAR-10.

4.2 Data

4.2.1 Dataset

To bridge the research gap using an easily accessible and balanced benchmark dataset for

image classification, this research utilizes the CIFAR-10 dataset [60] (Figure 4.1). CIFAR-10

consists of 60,000 32x32 color images evenly distributed among 10 classes, encompassing

four types of vehicles and six types of animals: airplanes, automobiles, birds, cats, deer,

dogs, frogs, horses, ships, and trucks. Each class contains 6,000 images, ensuring a balanced

representation. The dataset is split into 50,000 training and 10,000 testing images, following

a standard division widely used for evaluating different modeling approaches [60].

4.2.2 Data Preprocessing

To enhance the dataset’s diversity and robustness, we employ data augmentation techniques

during preprocessing [49], aiming to enhance the model’s ability to generalize from the

training data to unseen data. These techniques introduce variability and complexity into

the training process, which is crucial for developing a robust neural network model. The

employed techniques are as follows:
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Figure 4.1: The example of CIFAR-10 dataset
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• Random Horizontal Flip: Images are horizontally flipped with a certain probability,

which introduces variations and helps the model learn invariant features. This strategy

is particularly effective in teaching the model to identify features invariant to horizontal

orientation. Such invariance is desirable in many real-world applications where the

orientation of objects in images can vary.

• Random Cropping: A random crop is applied to the images, with padding of 4

pixels around the original 32x32 size based on common practice. This results in a

40x40 image. Then, a 32x32 crop is randomly selected from this padded image. This

crop could be from the center, a corner, or any random position within the padded

area. This technique introduces spatial variability by cropping images in different areas,

which helps the model learn to recognize objects even when they are shifted, scaled, or

partially occluded.

• Normalization: In our study, we implement a channel-wise normalization of the

image data, a standard practice in deep learning for image processing tasks. This

process involves adjusting the pixel values across the dataset to achieve a specific mean

and standard deviation for each color channel in RGB images. The details of this

normalization process are as follows:

– Mean Values: The normalization process sets the mean of the pixel values to these
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specific numbers for each of the three channels—Red, Green, and Blue—respectively.

These mean values (0.4914 for Red, 0.4822 for Green, and 0.4465 for Blue) are

computed based on the pixel intensity distributions across the entire dataset.

Aligning the mean of each channel to these values ensures a consistent baseline for

the input data, which facilitates the learning process of the neural network.

– Standard Deviation Values: Alongside mean normalization, we standardize

the pixel values’ spread or variance. The standard deviation for each channel is

set to 0.247 for Red, 0.243 for Green, and 0.261 for Blue. This standardization

ensures that the range of pixel values in each channel is consistent, mitigating

issues related to scale and variance in the input data.

By applying data augmentation and tuning hyperparameters, we aim to:

• Increase dataset diversity and robustness.

• Mitigate overfitting by introducing variations in the training data.

• Ensure that the model converges efficiently during training [49].
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4.3 Model Architecture

4.3.1 Convolutional Layers

The neural network model in this research starts with a single convolutional layer that begins

the feature extraction process. Convolutional layers are a fundamental component of CNNs

designed to process grid-like data such as images [61]. Each convolutional layer applies filters

(kernels) to the input image to produce feature maps [61]. These filters slide over the image,

computing dot products between the filter and patches of the input image [62]. This process

enables the network to detect local features such as edges, textures, and shapes, which are

crucial for image recognition tasks [62, 49].

The basic building block of neural networks is a neuron. A neuron in a neural network

performs operations on the input data. This process is depicted in Figure 4.2 [63].
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Figure 4.2: Illustration of the operations within a neural network node, showing how inputs
(Xi) are weighted (weights Wi), summed, and then transformed by an activation function
to produce an output. This process underpins the functionality of convolutional layers in
feature extraction and transformation.

In a convolutional layer, the operations can be described as follows:

1. Input (Xi): The input to a convolutional layer is typically a multidimensional array

representing the image or feature map from the previous layer. For an RGB image,

this would be a 3D array with dimensions corresponding to height, width, and color

channels.

2. Weights (Wi): Convolutional layers use small matrices of weights known as filters or

kernels. Each filter is convolved with the input image to produce a feature map. The

filter size is smaller than the input dimensions, typically 3x3 or 5x5.
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3. Summation (Z): For each filter position over the input image, a weighted sum of the

input values and the filter weights is computed. This operation is called convolution.

The result is a single value in the output feature map.

4. Bias (b): An additional parameter, the bias, is added to the weighted sum to shift the

output.

5. Activation Function (f(z)): After the convolution operation, an activation function

is applied to introduce non-linearity into the model. Common activation functions

include the Rectified Linear Unit (ReLU), which replaces negative values with zero.

The entire process of convolution, summation, and activation is repeated for each filter

across the entire input image, producing multiple feature maps that capture different aspects

of the image’s local patterns.

In this experiment, the neural network model includes three convolutional layers: one

in the initial input layer and two in the hidden layers. This multi-layer setup allows the

model to progressively extract more complex and abstract features from the input images,

enhancing its ability to perform accurate image classification.
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4.3.2 Convolutional Layer Design Considerations

The design of the convolutional layers in the model is tailored to optimize feature detection

and facilitate effective learning:

• Number of Filters: Each layer uses 64 filters to ensure robust extraction of various

features from the input images. This number allows the network to learn an extensive

array of features without being overly computationally expensive [60].

• Kernel Size: A kernel size 3x3 is selected for all convolutional layers to capture

sufficient spatial information without losing detail. This size balances capturing enough

contextual data and maintaining reasonable computational efficiency [64].

• Stride: A stride of 1 is employed to process every pixel of the input image, preserving

the spatial resolution and ensuring that valuable information is not skipped over during

convolution. Using a stride of 1 allows the network to maintain the input dimensions

and capture fine-grained image details [65].

• Padding: Padding of 1 is used to maintain the dimensionality of the feature maps,

allowing edges and corners of the images to be processed adequately without distortion

or loss of information. This technique, known as the same padding, ensures that the

output feature maps have the same dimensions as the input, which is crucial for deep
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networks where the spatial dimensions might otherwise shrink too quickly [66].

4.3.3 Batch Normalization

In this neural network model, a batch normalization layer follows each convolutional layer.

Batch normalization is a technique to improve the training of deep neural networks by

normalizing the input of each mini-batch to have zero mean and unit variance [67]. The steps

involved in batch normalization can be described as follows:

1. Mini-Batch Mean (µB): Calculate the mean of the mini-batch:

µB =
1

m

m∑
i=1

xi (4.1)

where m is the number of examples in the mini-batch, and xi represents the input

values.

2. Mini-Batch Variance (σ2
B): Calculate the variance of the mini-batch:

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (4.2)
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3. Normalization (x̂i): Normalize the input values:

x̂i =
xi − µB√
σ2
B + ϵ

(4.3)

Here, ϵ is a small constant added to the variance to avoid division by zero.

4. Scale and Shift: Introduce two learnable parameters, γ and β, to scale and shift the

normalized value:

yi = γx̂i + β (4.4)

The parameters γ and β allow the model to undo the normalization if necessary and

ensure that the batch normalization layer can represent the identity transformation if

optimal for the learning process.

The batch normalization process can be summarized as follows:

BN(xi) = γ

(
xi − µB√
σ2
B + ϵ

)
+ β (4.5)

By normalizing the inputs, batch normalization reduces the internal covariate shift,

which refers to the change in the distribution of network activations due to the updating of

parameters during training. This reduction helps stabilize the learning process and allows
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higher learning rates, ultimately leading to faster convergence [67].

4.3.4 Activations Functions

Activation functions introduce non-linearity into the neural network models, allowing them

to learn and represent complex patterns and relationships within the data [68, 69]. Without

activation functions, neural networks would be limited to linear transformations, greatly

reducing their modeling power and effectiveness. Activation functions are applied after each

neuron computes its weighted sum and bias, transforming the result into an output that can

be passed to the next layer in the network.

Several activation functions are commonly used in neural networks, including sigmoid,

tanh, and Rectified Linear Unit (ReLU) [70, 68, 69]. In this research, the ReLU activation

function is employed after the batch normalization layer normalizes and scales the data due

to its simplicity and effectiveness.

Mathematically, the ReLU function is defined as:

f(x) = max(0, x) (4.6)

where z is the input to the activation function. The ReLU function outputs z if z is

positive and 0 otherwise.
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Figure 4.3: Graphical representation of the activation functions, illustrating ReLu function’s
effect of zeroing out negative inputs and maintaining positive inputs unchanged.

ReLU introduces non-linearity by outputting the input directly if it is positive; otherwise, it

outputs zero, as Figure 4.3 shows. This mechanism allows ReLU to address some limitations of

earlier activation functions, such as the vanishing gradient problem encountered with sigmoid

and tanh functions [69]. The vanishing gradient problem occurs when gradients become

extremely small during backpropagation, leading to slow or stalled learning in deeper layers.

ReLU mitigates this issue by maintaining gradients for positive values, thereby ensuring

that the network continues to learn effectively. Furthermore, ReLU is computationally
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efficient because it involves simple thresholding at zero, which speeds up the training process

compared to the more complex computations required for sigmoid and tanh functions. Its

sparsity-inducing property, where neurons are deactivated (output zero) for negative inputs,

can also lead to more efficient representations and improved generalization. Given these

benefits, ReLU is chosen in this research to enhance the performance and efficiency of the

hierarchical classification models, enabling them to learn more effectively and handle complex

patterns within the CIFAR-10 dataset.

4.3.5 Residual Connections

In our neural network model, residual connections [71] are introduced after every second

convolutional layer. Residual connections, or skip connections, are an essential component

of modern deep neural networks. These connections help mitigate the vanishing gradient

problem and enable the training of much deeper networks by allowing gradients to flow more

easily through the network during backpropagation.

A residual connection essentially allows the input of a layer to bypass the layer and be

added directly to the output. This approach helps preserve the information from earlier layers

and stabilizes the training process. The main idea is to learn a residual mapping, denoted as

F(x), which represents the difference between the desired mapping H(x) and the identity
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mapping x. Mathematically, this can be expressed as:

H(x) = F(x) + x (4.7)

where H(x) is the original mapping to be learned, and x is the input to the layer. The

function F(x) represents the residual mapping that is easier to optimize.

4.3.6 Fully Connected Layers

Fully connected layers, also known as dense layers, are an integral part of neural networks,

especially in the final stages where high-level reasoning is required [25]. Unlike convolutional

layers, which focus on extracting spatial features from the input data, fully connected layers

process these features to make the final classification decisions [25]. In a fully connected layer,

each neuron is connected to every neuron in the previous layer, allowing the network to learn

complex representations and relationships between features.

A fully connected layer performs a linear transformation followed by an activation function.

Mathematically, the output y of a fully connected layer can be expressed as:

y = f(Wx+ b) (4.8)
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where x is the input vector, typically a flattened feature map from the previous layer, W is

the weight matrix, b is the bias vector, and f is the activation function for the final layer.

In our neural network model, the fully connected layer follows the convolutional and

residual layers. After the final convolutional layer, the feature maps are flattened into a

one-dimensional vector, which serves as the input to the fully connected layer. This layer

processes the input to produce the final class scores for the CIFAR-10 dataset.

The overall structure and flow of these elements, including the convolutional layers, batch

normalization, ReLU activations, residual connections, and fully connected layers, are visually

represented in Figure 4.4.
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Figure 4.4: Diagram illustrating the data flow through convolutional layers enhanced with
residual connections. This setup highlights the feedforward path, batch normalization, and
ReLU activations. The process starts with an input x that undergoes a 1st Convolution,
followed by Batch Normalization and ReLU Activation. It then goes through a 2nd Convo-
lution, Batch Normalization, and ReLU Activation to produce Output a. Simultaneously,
a 3rd Convolution, Batch Normalization, and ReLU Activation occur to produce Output b.
The residual connection adds Output a and Output b, resulting in the final output of the
convolutional block, which is fed into a Fully Connected Layer to produce the classification
result y.
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4.4 Training Parameters

The performance of a neural network heavily depends on the choice of training parameters.

These parameters control various aspects of the training process, including how the model

learns from the data, the speed of learning, and the stability of the training. The key training

parameters in this research are batch size, learning rate, momentum, the number of epochs,

and the choice of optimizer.

4.4.1 Reproducibility through Random Seed Setting

To ensure the reproducibility of the experiments, the same random seed is set at the beginning

of each experiment. This standardization controls all stochastic components of the model,

making the training process deterministic. As a result, identical results are produced when

the experiments are repeated, even if conducted on different computers [20, 21, 22].

• Role of the Seed: The random seed functions as a fixed numerical starting point for

generating sequences of random numbers. This guarantees that each run of the model

when initiated with the same seed, produces identical sequences of random numbers that

are used throughout the training process. Consequently, each model run is identical,

allowing direct comparisons between different training configurations under controlled
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conditions.

• Implementation Details: The seed is implemented in the PyTorch framework with

the following command:

torch.manual_seed(42)

This command sets PyTorch’s random number generator to ‘42’, a commonly used

example value that ensures repeatability. It is crucial to set this seed before initializing

the model or processing any training data to maintain consistency across training

sessions.

4.4.2 Batch Size

In this research, a batch size of 8 is used for both training and testing. Batch size is

a parameter that defines the number of training examples used in one iteration [72]. A

smaller batch size allows for more frequent updates to the model weights, leading to faster

convergence but might introduce noise in the gradient estimates. Conversely, a larger batch

size provides more stable gradient estimates but requires more memory and might lead to

slower convergence. The choice of batch size in this research strikes a balance between efficient

memory usage and the stability of gradient updates.
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4.4.3 Number of Epochs

In this research, the number of epochs is set to 20. The number of epochs defines how often

the entire training dataset is passed through the network during training. A higher number

of epochs allows the model to learn more from the data, but it also increases the risk of

overfitting [49] if the model starts to learn noise in the training data. The epoch value is

selected to be a starting point for exploration, allowing us to assess the model’s behavior in

early training stages before committing to longer training sessions.

4.4.4 Optimizer

In this research, we use the Stochastic Gradient Descent (SGD) optimizer with a momentum

of 0.9 and a learning rate of 0.001. These parameters are chosen based on standard practice

and empirical experimentation to ensure a good balance between convergence speed and

training stability [73]. An optimizer determines how the model’s weights are updated based

on the calculated gradients of the loss function, and the choice of optimizer can greatly impact

the speed and efficiency of the training process.

SGD is a widely used optimization algorithm known for its simplicity and effectiveness.

Unlike traditional gradient descent, which uses the entire dataset to compute the gradient of

the loss function, SGD updates the model weights iteratively using small batches of data.
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This approach allows for more frequent updates, leading to faster convergence.

SGD with momentum further enhances the optimization process by incorporating past

gradients into the current update. This helps smooth the updates, accelerate convergence, and

avoid oscillations. The momentum term essentially helps the optimizer navigate through the

optimization landscape more effectively. The momentum parameter is typically set between

0 and 1, where a value closer to 1 can lead to faster convergence.

The learning rate determines the step size at which the model weights are updated during

training. It controls how quickly or slowly a neural network learns. A higher learning rate

can lead to faster convergence but might cause the training process to overshoot the optimal

solution. Conversely, a lower learning rate ensures more stable convergence but can make the

training process excessively slow.

Mathematically, the weight update rule for SGD with momentum is given by:

vt = µvt−1 + η∇wJ(w) (4.9)

wt+1 = wt − vt (4.10)

where: - vt is the velocity at time step t, - µ is the momentum coefficient, - η is the learning

rate, - ∇wJ(w) is the gradient of the loss function for the weights w, - wt+1 are the updated
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weights.

4.5 Evaluation Protocol

4.5.1 Accuracy in Baseline Model

Accuracy is a fundamental metric for evaluating classification models, representing the

proportion of correctly predicted instances out of the total instances [74]. It provides a

straightforward measure of the overall effectiveness of the baseline model. The accuracy is

calculated as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(4.11)

While accuracy is an important measure, accuracy alone does not provide a complete picture

because it does not reveal where the misclassifications occur or which classes are causing the

confusion.

4.5.2 Normalized Confusion Matrices

Confusion matrices provide a detailed breakdown of the model’s performance by showing

the counts of true positive, false positive, true negative, and false negative predictions for

each class [75, 74]. Normalized confusion matrices are particularly useful as they represent
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these counts as proportions, allowing for easier comparison across classes regardless of their

representation in the dataset [74]. The entries of a normalized confusion matrix are calculated

as follows:

Normalized Entryi,j =
Count of Class i predicted as Class j

Total Count of Class i
(4.12)

Where:

• Normalized Entryi,j represents the normalized value for the number of instances of

Class i that were predicted as Class j.

• Count of Class i predicted as Class j is the raw count of instances from Class i that

were classified as Class j.

• Total Count of Class i is the total number of instances of Class i in the dataset.

An essential principle of normalized confusion matrices is that the entries in each row

sum to 100%. This indicates the distribution of predictions for each actual class. However,

the entries in each column do not necessarily sum to 100% as they represent the distribution

of predicted classes across different actual classes.
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4.5.3 Accuracy in Hierarchical Models

In a hierarchical classification model, the overall accuracy for each specific category is

influenced by the accuracy of each stage in the hierarchy. The first stage usually classifies

images into broad categories (e.g., animals vs. vehicles), and subsequent stages classify

images within those broad categories into specific categories. The overall accuracy for a

specific category is determined by tracking the correct classifications through each stage of

the hierarchy. Let:

• N be the total number of images.

• C be the specific category (e.g., dogs).

• Abroad be the accuracy of the broad classification stage.

• Aspecific be the accuracy of the specific classification stage within the broad category.

The overall accuracy for the specific category C can be calculated as:

OverallAccuracy(C) =
Number of images correctly classified as C

N
(4.13)
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Example

Suppose we have a dataset consisting of 40 images, equally distributed among 4 categories:

dogs, cats, automobiles, and trucks. Each category has 10 images. We use a two-stage

hierarchical model for classification. The first stage classifies images into broad categories:

animals or vehicles. The second stage further classifies the images into specific categories

within each superclass.

In the first stage, there are 40 images in total (10 dogs, 10 cats, 10 automobiles, 10 trucks).

The classification results are as follows:

• 13 out of 20 animal images (dogs + cats) are correctly classified as animals.

• 7 out of 20 animal images are misclassified as vehicles.

• 15 out of 20 vehicle images (automobiles + trucks) are correctly classified as vehicles.

• 5 out of 20 vehicle images are misclassified as animals.

The confusion matrix for the first stage is:

Animals Vehicles

Animals 13
20

7
20

Vehicles 5
20

15
20
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Within each superclass (animals and vehicles), images are further classified into specific

categories in the second stage. For the animal superclass:

• Dogs: 5 out of 6 dog images (correctly classified as animals in the first stage) are

correctly classified as dogs.

• Cats: 5 out of 7 cat images (correctly classified as animals in the first stage) are correctly

classified as cats.

For the vehicle superclass:

• Automobiles: 6 out of 8 automobile images (correctly classified as vehicles in the first

stage) are correctly classified as automobiles.

• Trucks: 5 out of 7 truck images (correctly classified as vehicles in the first stage) are

correctly classified as trucks.

The confusion matrix for the second stage is:

Cats Dogs

Cats 5
7

2
7

Dogs 1
6

5
6
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Automobiles Trucks

Automobiles 6
8

2
8

Trucks 2
7

5
7

The overall accuracy for each specific category is calculated by considering the correct

classifications at each stage.

For dogs, 13 out of 20 images are correctly classified as animals in the first stage. In the

second stage, 5 out of 6 dog images (correctly classified as animals) are correctly classified as

dogs. Therefore, the overall accuracy for dogs is:

Overall Accuracy (Dogs) =
Number of correctly classified dogs

Total number of dogs
=

5

10
= 50%

For cats, 13 out of 20 images are correctly classified as animals in the first stage. In the

second stage, 5 out of 7 cat images (correctly classified as animals) are correctly classified as

cats. Therefore, the overall accuracy for cats is:

Overall Accuracy (Cats) =
Number of correctly classified cats

Total number of cats
=

5

10
= 50%

For automobiles, 15 out of 20 images are correctly classified as vehicles in the first stage.
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In the second stage, 6 out of 8 automobile images (correctly classified as vehicles) are correctly

classified as automobiles. Therefore, the overall accuracy for automobiles is:

Overall Accuracy (Automobiles) =
Number of correctly classified automobiles

Total number of automobiles
=

6

10
= 60%

For trucks, 15 out of 20 images are correctly classified as vehicles in the first stage. In the

second stage, 5 out of 7 truck images (correctly classified as vehicles) are correctly classified

as trucks. Therefore, the overall accuracy for trucks is:

Overall Accuracy (Trucks) =
Number of correctly classified trucks

Total number of trucks
=

5

10
= 50%

The overall accuracy for each specific category in a hierarchical model is influenced by

the correct classifications at each stage. The overall accuracy is not simply the product of

the stage accuracies but rather the fraction of the total images that are correctly classified

through all stages. The hierarchical structure ensures that the overall accuracy reflects the

performance of the model across all classification stages.
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5. Experiments

This chapter describes the experimental methodologies used to establish a baseline CNN model

for initial performance benchmarking and iteratively build hierarchical models, progressing

from a two-stage to a four-stage hierarchy. Each stage is designed based on insights from the

previous model’s confusion matrix analysis, focusing on refining classification accuracy.

5.1 Baseline Model

5.1.1 Analysis of Vehicle Classification

1. Automobile: The model achieves an accuracy of 81.0%, with an average confusion

rate of 2.1%. The classes that exceed this average confusion rate are trucks (10.4%),

ships (2.3%), and airplanes (2.3%). The confusion between automobiles and trucks is

notably high, indicating a potential area for model improvement.

2. Truck: With the highest accuracy among vehicle classes at 84.8%, the truck model has
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an average confusion rate of 1.7%. The vehicle classes most commonly confused with

trucks, surpassing this average confusion rate, are automobiles (4.3%), ships (3.6%),

airplanes (2.4%), and cats (2.0%). Interestingly, trucks are seldom confused with other

animals: 0.3% with birds, 0.5% with deers, and 0.7% with dogs, but they are obviously

confused with cats.

3. Ship: The ship model has a high accuracy of 84.3% and an average confusion rate

of 1.7%. The classes with confusion rates exceeding this average are airplanes (5.9%),

trucks (2.1%), and automobiles (1.8%).

4. Airplane: The airplane model has the lowest accuracy among vehicle types at 73.5%,

with an average confusion rate of 2.9%. The classes most frequently confused with

airplanes, above this average confusion rate, are ships (8.2%), birds (5.2%), and trucks

(4.8%). Notably, ‘Bird’ is the most frequently confused animal category within the

vehicle classification (not just for airplanes but across all vehicle types).

All vehicle types except for airplanes achieved accuracies exceeding the average accuracy

of 80.9%. Trucks have the highest accuracy at 84.8%, followed by ships at 84.3%, and

automobiles at 81.0%. In contrast, airplanes have a noticeably lower accuracy of 73.5%.

The average confusion rate among vehicles is 2.1%. The most frequent confusion pairs are

(‘Airplane’, ‘Ship’) and (‘Automobile’, ‘Truck’), contributing to an average confusion rate of
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7.1% and 7.4%, respectively. Specifically, 8.2% of airplanes are misclassified as ships, and

5.9% of ships are misclassified as airplanes. For the (‘Automobile’, ‘Truck’) pair, 10.4% of

automobiles are misclassified as trucks, and 4.3% of trucks are misclassified as automobiles.

5.1.2 Analysis of Animal Classification

1. Frog: The model achieves the highest accuracy among animals at 85.7%, with an

average confusion rate of 1.6%. The classes with confusion rates above this average are

cats (5.4%), dogs (3.1%), and birds (3.0%).

2. Cat: The model has the lowest accuracy among animals at 52.6%, with an average

confusion rate of 5.3%. The classes with confusion rates above this average are dogs

(20.7%), frogs (8.4%), and birds (6.1%).

3. Dog: The model achieves an accuracy of 71.7%, with an average confusion rate of 3.1%.

The classes with confusion rates above this average are cats (14.1%), horses (3.6%),

and frogs (3.0%).

4. Bird: The model achieves an accuracy of 55.2%, with an average confusion rate of 5.0%.

The classes with confusion rates above this average are frogs (10.8%), dogs (7.9%),

airplanes (7.3%), deers (7.2%), and cats (6.2%). Notably, birds are rarely mistaken for

other vehicles, such as automobiles (0.0%), trucks (0.9%), and ships (1.3%). However,
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they are often confused with airplanes, with a rate of 7.3%, making this the most

frequent confusion between a vehicle and an animal category.

5. Deer: The model achieves an accuracy of 64.0%, with an average confusion rate of

4.0%. The classes with confusion rates above this average are frogs (8.1%), cats (7.3%),

birds (6.3%), dogs (5.9%), and horses (4.9%).

6. Horse: The model achieves an accuracy of 74.5%, with an average confusion rate of

2.8%. The classes with confusion rates above this average are dogs (8.7%), cats (4.9%),

deers (4.7%), and birds (3.1%).

As seen in Figure 5.1, the average accuracy of animal classes in the CIFAR-10 dataset

is 67.3%. Frogs (85.7%), horses (74.5%), and dogs (71.7%) exhibit higher accuracies, while

deers (64.0%), birds (55.2%), and cats (52.6%) show lower accuracies. This indicates that

frogs, horses, and dogs have more salient features that are easier for the current CNN to

recognize than other animal categories.

The average confusion rate among animals is 3.6%. The most frequent confusion pairs

are (‘Bird’, ‘Frog’), (‘Cat’, ‘Dog’), and (‘Deer’, ‘Horse’), with average confusion rates of 6.9%,

17.4%, and 4.8%, respectively. Specifically, 10.8% of birds are misclassified as frogs, and

3.0% of frogs are misclassified as birds. Additionally, 20.7% of cats are misclassified as dogs,

and 14.1% of dogs are misclassified as cats. For the (‘Deer’, ‘Horse’) pair, 4.9% of deers are
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misclassified as horses, and 4.7% of horses are misclassified as deers.

Overall Model Performance

The confusion matrix result (Figure 5.1) of the baseline model shows an average accuracy of

72.7% with a time cost of 704 seconds. The model demonstrates strong performance with

vehicle images in CIFAR-10, where all four vehicle categories achieved above-average accuracy,

and only ‘Frog’ and ‘Horse’ in the animal categories achieved above-average accuracy. The

range of the accuracy of vehicles falls from 73.5% to 84.8%, and the range of the accuracy of

animals falls from 52.6% to 85.7%. The range of accuracies for animals is more extensive at

both the high and low ends of the range. This enormous variance in accuracy indicates that

animals have a higher degree of intra-class variability, which leads to challenges in achieving

consistent classification accuracy.

Overall, vehicles are most often confused with other vehicles, and animals are most

often confused with other animals, except for birds, which are also frequently confused with

airplanes (7.3%). This pattern indicates that common features within these super-categories

could benefit from a hierarchical model. By using a hierarchical model, the classification

process can be broken down into stages. Initially, the model can differentiate between broad

categories (such as vehicles and animals) and then focus on finer distinctions within each

category (such as cars, trucks, ships, and airplanes). The smaller sub-problems, once the
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Figure 5.1: Confusion matrix showing the accuracy of each class for the baseline model. The
vertical axis represents the true classes, while the horizontal axis represents the predicted
labels. The values in each row sum to 100%, indicating the distribution of predictions for
each true class. Values in each column may not sum to 100%, reflecting the nature of
misclassification errors.
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initial broad classification is made, should be easier to solve, potentially leading to better

overall performance. The subsequent analysis of hierarchical models directly addresses this

hypothesis.

5.2 Hierarchical Classification Models

5.2.1 Two-Stage Hierarchical Classification for Broad Visual Dis-

tinction

Our analysis of the baseline model’s confusion matrix revealed that vehicles are often confused

with other vehicles and animals with other animals, indicating that vehicles and animals

have distinct features within their super-categories. This observation supports the use of a

hierarchical model to leverage these distinct features to improve overall classification accuracy.

By applying the two-stage hierarchical classification, we aim to improve the model’s ability

to distinguish between visually similar classes within each broad category, thereby enhancing

overall classification accuracy. The two-stage hierarchical classification framework applies the

divide-and-conquer strategy to improve differentiation between visually distinct categories,

which often causes confusion among the classes within each category in the baseline model.

This approach aims to break down the complex classification problem into simpler, more
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manageable sub-problems. By dividing the problem into two stages, each sub-problem should

be easier to solve, leading to better overall results.

Figure 5.2: Diagram of the Two-Stage Hierarchical Classification framework

In the first stage (Figure 5.2), the model determines whether an item belongs to the broad

category of vehicles or animals. This broad classification is crucial because it reduces the

problem space, allowing the model to focus on more specific features in the subsequent stage.

If this initial classification is incorrect, it will lead to a nonsensical classification later, as the

model will then try to identify the item within the wrong broad category. For example, an

animal mistakenly classified as a vehicle will lead to incorrect identification of the type of

vehicle, resulting in fundamentally flawed outcomes.
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Analysis of Vehicle Classification

Before analyzing the change in the performance of superclasses (‘Vehicle’ or ‘Animal’)

categorization from the baseline model (Table 5.1) to a two-stage model, we observed that

the average accuracy for vehicle categorization in the baseline model is 93.1%. Among the

vehicle classes, ‘Airplane’ faces more challenges in being classified correctly into ‘Vehicle’ in

the baseline model, where 12.8% is misclassified into ‘Animal’ as shown in Table 5.1, primarily

because ‘Bird’ is the most commonly confused animal category with ‘Airplane’. This trend

suggests that the features used to identify airplanes overlap with those used to identify birds.

Class Vehicle (%) Animal (%)
Airplane 87.2 12.8
Automobile 96.0 4.0
Ship 94.1 5.9
Truck 95.1 4.9
Mean 93.1 6.9

Table 5.1: Classification percentages of each class into vehicle and animal categories by the
baseline model. These percentages are calculated by summing the relevant rates allocated to
vehicle and animal types, as illustrated in Figure 5.1.

In the two-stage model, the average accuracy for vehicle categorization improves to 93.8%

(Table 5.2). Despite this improvement, the relatively high misclassification rate of ‘Airplane’

as an ‘Animal’ in both the baseline and hierarchical models suggests that the features used to

identify airplanes overlap with those of certain animals. In the baseline model, ‘Bird’ is the

most commonly confused animal category for ‘Airplane’. It is likely that ‘Bird’ remains the
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most confusing animal category for ‘Airplane’ in the two-stage model. The following analysis

of the two-stage hierarchical model and the final overall confusion matrix will provide further

insights and confirm whether this trend persists.

Class Vehicle (%) Animal (%)
Airplane 88.2 11.8
Automobile 97.2 2.8
Ship 94.6 5.4
Truck 95.0 5.0
Mean 93.8 6.3

Table 5.2: Classification percentages of each class into vehicle and animal categories by the
two-stage hierarchical classification model. These percentages are calculated by summing the
relevant rates allocated to vehicle and animal types, as illustrated in Figure 5.5.

The comparison between the baseline model and the two-stage hierarchical classification

model reveals distinct trends in classification accuracy across different classes (Table 5.3).

Most vehicle classes saw an improvement in accuracy when correctly classified into the

‘Vehicle’ superclass from the baseline model to the hierarchical model. The newly added

stage, which is intended to help the model classify vehicles from animals more correctly,

indeed improves the overall ‘Vehicle’ superclass classification. Specifically, the ‘Airplane’

class improved by 1.0% to correctly be classified into the ‘Vehicle’ superclass (Table 5.3),

increasing its vehicle classification accuracy to 88.2% (Table 5.2). The ‘Automobile’ class

saw a 1.2% improvement (Table 5.3) to correctly be classified into the ‘Vehicle’ superclass

(Table 5.3), achieving a classification accuracy of 97.2% (Table 5.2). On the other hand, the

‘Truck’ class did not benefit from the hierarchical structure. Its classification accuracy as
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a vehicle decreased by 0.1% (Table 5.3). This indicates that the newly added superclasses,

which were intended to differentiate vehicles from animals, instead caused 0.1% more ‘Truck’

images to be incorrectly classified as ‘Animal’ (Table 5.3).

Class Change in Vehicle (%) Change in Animal (%)
Airplane 1.0 -1.0
Automobile 1.2 -1.2
Ship 0.5 -0.5
Truck -0.1 0.1

Table 5.3: Difference in classification accuracy between the baseline model and the two-stage
hierarchical model for vehicle and animal categories. The values represent the change in
classification percentages, calculated by subtracting the baseline model values Table 5.1 from
the two-stage model values for each category 5.2.

The average accuracy of vehicle categories in the second stage improved to 85.7% (Fig-

ure 5.3) from the baseline model’s counterparts, which was 80.9% (Figure 5.1). This improve-

ment indicates that the hierarchical model has the potential to improve the subsequent stage’s

accuracy of the subclasses. However, the same key confusion pairs exist, demonstrating a

fundamental limit of the current system. For example, if this neural net architecture thinks a

truck image is an automobile, it will be inclined to do so no matter where that classification

occurs in the hierarchy.

The detailed confusion matrix for the second stage within the ‘Vehicle’ superclass (Fig-

ure 5.3) shows the most frequently confused pair combination is (‘Airplane’, ‘Ship’) and

(‘Automobile’, ‘Truck’). This leads to an increased average confusion rate for ‘Airplane’ and

‘Ship’ at 7.6%, while the confusion rate for ‘Automobile’ and ‘Truck’ decreases to 6.5%. The
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Figure 5.3: Confusion matrix for the second stage within ‘Vehicle’ superclass in the two-stage
hierarchical classification model. The vertical axis represents the true classes, while the
horizontal axis represents the predicted labels.

7.6% rate is the average of the sum of 7.6% (the confusion rate of ‘Ship’ for ‘Airplane’) and

7.6% (the confusion rate of ‘Airplane’ for ‘Ship’). Similarly, the 6.5% rate is the average of

the sum of 4.2% (the confusion rate of ‘Automobile’ for ‘Truck’) and 8.8% (the confusion rate

67



5.2.1 Two-Stage Hierarchical Classification
for Broad Visual Distinction

5.2 HIERARCHICAL CLAS-
SIFICATION MODELS

of ‘Truck’ for ‘Automobile’). These rates are higher compared to the baseline model, where

the corresponding average confusion rates were 7.1% and 7.4%, respectively (Figure 5.1).

This trend indicates that the hierarchical approach of isolating vehicles from animals has

made the features of ‘Automobile’ and ‘Truck’ more distinct from each other, reducing their

confusion rate. However, it has also made the features of ‘Airplane’ and ‘Ship’ more similar,

increasing their confusion rate. This suggests that while the hierarchical model can enhance

classification accuracy for certain pairs by making features more distinguishable, it can also

inadvertently increase confusion for other pairs by making their features more similar.

Comparing the overall accuracy of each vehicle class in the two-stage hierarchical model

(Figure 5.5) with the baseline model (Figure 5.1), it is evident that the ‘Airplane’ and the

‘Automobile’ are the only categories that show an improvement in classification accuracy

within the hierarchical model. Both categories successfully reduced the confusion with their

most frequently confused classes from the baseline model (‘Ship’ for ‘Airplane’ and ‘Truck’ for

‘Automobile’). These improvements underline the model’s potential effectiveness in refining

classification processes for specific vehicle types with distinctive visual features.

For ‘Airplane’ in the overall confusion matrix (Figure 5.5), the accuracy increased from

73.5% in the baseline model to 76.9% in the current hierarchical model, reducing the

confusion with the ‘Bird’ from 5.2% to 4.2%. Despite this improvement, ‘Bird’ remains the

most frequently confused animal category for ‘Airplane’ and the second most confused class
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after ‘Ship’ for ‘Airplane’. This persistence indicates that while the hierarchical approach

can improve classification accuracy for certain vehicle types, it does not fully eliminate

misclassification with certain visually similar animal classes.

The aforementioned observations underscore that the current hierarchical approach does

not alter the misclassification trends observed in the baseline model for the most commonly

confused pairs. It motivates us to add a new grouping layer focusing on the most confused

pairs of (‘Airplane’, ‘Ship’) and (‘Automobile’, ‘Truck’) into the current hierarchical model

to observe the further implications of the refined categorization strategy. The next section

will discuss the results of this new three-stage hierarchical model.

Analysis of Animal Classification

Before analyzing the change in the performance of superclasses (‘Vehicle’ or ‘Animal’)

categorization from the baseline model (Table 5.4) to a two-stage model, we observed that the

average accuracy for animal categorization in the baseline model is 96.1%. Among the animal

classes, ‘Bird’ faces more challenge in being classified correctly into ‘Animal’ in the baseline

model, with 9.5% misclassified into ‘Animal’. This result corresponds to the animal analysis

of the baseline model, which found ‘Airplane’ was the most frequent confusion between a

vehicle and an animal category.

When moving to the two-stage model to analyze the performance of superclasses (‘Vehicle’
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Class Vehicle (%) Animal (%)
Bird 9.5 90.5
Cat 5.0 95.0
Deer 3.5 96.5
Dog 1.6 98.4
Frog 0.7 99.3
Horse 3.2 96.8
Mean 3.9 96.1

Table 5.4: Classification percentages of each class into vehicle and animal categories by the
two-stage hierarchical classification model. These percentages are calculated by summing the
relevant rates allocated to vehicle and animal types, as illustrated in Figure 5.5.

or ‘Animal’) categorization, we observe that the average accuracy for animal categories drops

to 92.7% (Table 5.5). The misclassification rate for ‘Bird’ into Vehicle remains high at 12.8%,

same as the misclassification rate observed for ‘Airplane’ in the vehicle superclass (Table 5.1).

This suggests that ‘Airplane’ likely remains the most confused vehicle category for ‘Bird’ in

the two-stage model, as it was in the baseline model. This trend is confirmed by the final

overall confusion matrix of the two-stage model (Figure 5.5), indicating that the hierarchical

approach has not fully resolved the misclassification issues between these categories.

Class Vehicle (%) Animal (%)
Bird 12.8 87.2
Cat 8.6 91.4
Deer 5.0 95.0
Dog 4.4 95.6
Frog 5.9 94.1
Horse 7.3 92.7
Mean 7.3 92.7

Table 5.5: Classification percentages of each class into vehicle and animal categories by the
two-stage hierarchical classification model

The comparison between the baseline model and the two-stage hierarchical classification
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model reveals a consistent downward trend in classification accuracy across different classes

(Table 5.6). Every animal class saw a reduction in accuracy when classified into the ‘Animal’

superclass from the baseline model to the hierarchical model (Table 5.3). This indicates that

the features used to differentiate these superclasses overlap greatly for animal categories,

which causes the newly added superclass differentiation, intended to separate vehicles from

animals, instead cause more ‘Animal’ images to be incorrectly classified as ‘Vehicle’ (Table

5.6).

Class Change in Vehicle (%) Change in Animal (%)
Bird 3.3 -3.3
Cat 3.6 -3.6
Deer 1.5 -1.5
Dog 2.8 -2.8
Frog 5.2 -5.2
Horse 4.1 -4.1

Table 5.6: Difference in classification accuracy between the baseline model and the two-stage
hierarchical model for vehicle and animal categories. The values represent the change in
classification percentages, calculated by subtracting the baseline model values Table 5.4 from
the two-stage model values for each category 5.5.

The confusion matrices for the second stage within the ‘Animal’ superclass in Figure 5.4

reveal ongoing difficulties in differentiating closely related animal pair combination: (‘Bird’,

‘Frog’), (‘Cat’, ‘Dog’), and (‘Deer’, ‘Horse’) while the reduction in misclassification rates within

the (‘Bird’, ‘Frog’) and (‘Cat’, ‘Dog’) pairs are suggesting that the hierarchical approach can

be effective in specific areas where confusion occurs. Notably, the pairs (‘Bird’, ‘Frog’) and

(‘Cat’, ‘Dog’) demonstrated reduced average confusion rates of 5.1% and 14.5%, respectively,
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Figure 5.4: Confusion matrix for the second stage within the ‘Animal’ superclass in the
two-stage hierarchical classification model. The vertical axis represents the true classes, while
the horizontal axis represents the predicted labels.
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compared to the baseline model’s rates of 6.9% and 17.4%. Conversely, the pair (‘Deer’,

‘Horse’) showed an increased confusion rate of 7.3%, up from the baseline model’s rate of

4.8%. For the (‘Birds’, ‘Frogs’) pair in the two-stage hierarchical model, 4.6% of birds are

misclassified as frogs, and 5.5% of frogs are misclassified as birds. Additionally, 14.1% of cats

are misclassified as dogs, and 14.9% of dogs are misclassified as cats. For the (‘Deer’, ‘Horse’)

pair, 11.6% of deers are misclassified as horses, and 2.9% of horses are misclassified as deers.

Similar to the average accuracy improvement in vehicle subclasses from the hierarchical

model, the simpler sub-problem of classifying animal images also leads to improvements. The

average accuracy of animal categories in the second stage improved to 70.1% (Figure 5.4)

from the baseline model’s counterparts, which was 67.3% (Figure 5.1). What is special from

the insights gained from the animal images is the ‘Bird’ class’ biggest confusion becomes

the ‘Deer’ class (7.9%) from the ‘Frog’ class of the baseline model (10.8%), showing the

breakthrough of not only reducing the confusion the subsequent stage but also diverting the

confusion to other classes, which can be potentially beneficial for aiming to reduce a specific

easily confused area.

The observed improvements in classification accuracy (Formula 4.13) from the baseline

model’s confusion matrix (Figure 5.1) to the hierarchical model’s confusion matrix (Figure 5.5)

for ‘Bird’, ‘Deer’, and ’Horse’ categories indicate that the hierarchical structure is particularly

effective at refining feature distinctions for these animals. Specifically, the accuracy for ‘Bird’
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increased from 55.2% (Figure 5.1) to 59.0% (Figure 5.5), for ‘Deer’ from 64.0% (Figure

5.1) to 67.0% (Figure 5.5), and for ‘Horse’ from 74.5% (Figure 5.1) to 77.9% (Figure 5.5).

These enhancements can be attributed to the hierarchical model’s ability to better focus on

distinguishing features unique to each category by reducing the interference of non-relevant

features from other classes.

Overall Model Performance

The implementation of the hierarchical classification model led to a mixed performance,

where overall average accuracy decreased to 72.0% (Figure 5.5) with a slightly longer time

cost of 806 seconds, which is composed of 404 seconds from the first stage, 165 seconds

from the vehicle subclasses in the second stage, and 238 seconds from the animal subclasses.

The hierarchical model’s structure shows promise in refining classification tasks for specific

vehicle and animal categories such as airplanes, automobiles, birds, deers, and horses that

benefit from focused feature extraction and classification strategies. Additionally, vehicle

classification accuracy experienced a slight improvement, increasing from the baseline’s 93.1%

to 93.8% (Table 5.7).

Conversely, the accuracy for animal classifications declined from 96.1% to 92.7% (Table 5.7).

This disparity in performance suggests that hierarchical classification models can improve

performance in specific areas, such as vehicle classification, but in the meantime, they can also
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Figure 5.5: Confusion matrix for each class’ accuracy of the two-stage hierarchical model.
The vertical axis represents the true classes, while the horizontal axis represents the predicted
labels.

have no distinctive feature in other areas despite the implications of the previous confusion

rates. This indicates a fundamental limitation in the current neural network architecture.

Specifically, the hierarchical model doesn’t always correct initial misclassifications. For

instance, if a bird was previously misclassified as a plane, it is likely still misclassified as a
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Baseline Model
Acc % Vehicle Animal

Vehicle 93.1 6.9
Animal 3.9 96.1
First-Stage of Hierarchical Classification
Acc % Vehicle Animal

Vehicle 93.8 6.2
Animal 7.3 92.7

Table 5.7: Confusion matrices (Formula 4.12) for
‘Vehicle’ and ‘Animal’ superclasses comparison
between the baseline model and the hierarchical
classification model.
Note: In confusion matrices, rows are actual
classes, columns are predicted classes and each
row’s percentages sum to 100%.

vehicle (Figure 5.1, 5.5). A much later analysis can highlight the need for each classifier in

the hierarchy to be specifically designed for the sub-problem at hand (the most frequently

confused pairs) so that the same error/weakness doesn’t appear in a different stage.

5.2.2 Three-Stage Hierarchical Classification for Detailed Subgroup

Discrimination

The newly added intermediate stage in the three-stage hierarchical classification model targets

the most confused pair combinations identified in the second stage of the previous model:

‘Airplane’ and ‘Ship’, ‘Automobile’ and ‘Truck’, ‘Bird’ and ‘Frog’, ‘Cat’ and ‘Dog’ and ‘Deer’

and ‘Horse’ (Table 5.8 and Table 5.12).

Specifically, the model shown in Figure 5.6 is designed as:
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Figure 5.6: Diagram of the Three-Stage Hierarchical Classification framework

1. Stage 1: This superclass stage is identical to Stage 1 in the two-stage hierarchical

classification approach, categorizing images broadly into ‘Vehicle’ and ‘Animal’ groups.

2. Stage 2 (Newly Introduced Categorization): This intermediate stage addresses

problematic pairs identified in the baseline model by further subdividing the primary

groups. The selected subgroups are:

• Within Animals: The pairs (‘Bird’, ‘Frog’), (‘Cat’, ‘Dog’), and (‘Deer’, ‘Horse’)

were chosen for further classification due to the high confusion rates observed in

the baseline model.

• Within Vehicles: (‘Airplane’, ‘Ship’) and (‘Automobile’, ‘Truck’) subgroups were

77



5.2.2 Three-Stage Hierarchical Classifica-
tion for Detailed Subgroup Discrimination

5.2 HIERARCHICAL CLAS-
SIFICATION MODELS

identified as focus areas, given their higher misclassification rates.

3. Stage 3: The final stage aims to resolve the classification of individual classes within

the previously identified subgroups.

Analysis of Vehicle Classification

The subsequent stage under the ‘Vehicle’ superclass in the three-stage model shows a higher

accuracy of 95.1% for the (‘Airplane’, ‘Ship’) subclass and a lower accuracy of 92.4% for the

(‘Automobile’, ‘Truck’) subclass (Table 5.8). This indicates more distinct visual cues between

airplanes and ships compared to automobiles and trucks, which show features similar to those

of the neural net.

Acc % (‘Airplane’, ‘Ship’) (‘Automobile’, ‘Truck’)
(‘Airplane’, ‘Ship’) 95.1 4.9

(‘Automobile’, ‘Truck’) 7.5 92.4

Table 5.8: Confusion matrices for the second stage of the vehicles’ three-stage model.

Initially, the accuracies for ‘Airplane’ and ‘Ship’ in the baseline model were 73.5% and

84.3%, respectively (Figure 5.1), with corresponding confusion rates of 26.5% for airplanes

and 15.7% for ships. As shown in Figure 5.7, assuming a 50-50 distribution in the binary

classification of these misclassified rates, one would expect an accuracy of 86.8% for ‘Airplane’

and 92.2% for ‘Ship’. However, when analyzing deeper into the third stage, the actual

accuracies were 91.0% for ‘Airplane’ and 83.0% for ‘Ship’ (Table 5.9). This suggests that
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only the ‘Airplane’ class met the expected improvement, whereas the ‘Ship’ class did not

achieve the anticipated accuracy based on the initial confusion rates.

Figure 5.7: If a confused pair in the second stage consists of Class A and Class B, we assume
the original confusion rate splits equally between the two classes because of the added stage,
leading to the expected binary classification accuracies.

Acc % Airplane Ship
Airplane 91.0 9.0

Ship 17.0 83.0

Table 5.9: Confusion matrices for airplanes and ships in the third stage of the vehicles’
three-stage model.

Initially, automobile and truck accuracies were 81.0% and 84.8% in the baseline model

respectively (Figure 5.1); their confusion rates were 19.0% and 15.2% respectively (Figure

5.1). If their 19.0% and 15.2% confusion rates that are misclassified were even 50-50 for the

binary classification, there should be 90.5% accuracy for ‘Automobile’ and 92.4% accuracy for

the ‘Truck’ binary classification problem. This assumption did not happen as shown in Table

5.11: ‘Automobile’ vs. ‘Truck’ records accuracies of 85.9% for automobiles and 90.5% for
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trucks (Table 5.11), which didn’t improve their overall accuracy (Formula 4.13) but dropped

it accordingly (Figure 5.8). The findings highlight the effectiveness of the hierarchical model

designed to address specific sub-problems in improving classification accuracy for classes of

the most frequently confused pairs with distinct visual features, such as airplanes. However,

the drop in accuracy for ‘Ship’, ‘Automobile’ and ‘Truck’ indicates that divide and conquer

of the hierarchical model has failed (Tab 5.10). The smallest and ideally easiest classification

problem still leads to large error rates.

Acc % Baseline Accuracy Expected Binary Accuracy Achieved Accuracy
Airplane 73.5 86.8 91.0

Automobile 81.0 90.5 85.9
Ship 84.3 92.2 83.0
Truck 84.8 92.4 90.5

Table 5.10: Baseline and expected vs. achieved binary classification accuracies in the
hierarchical model

Notably, the combined average accuracy for this pair ‘Automobile’ vs. ‘Truck’ in the

third stage is 88.2%, which surpasses the accuracy of the ‘Airplane’ vs. ‘ship’ pair at 87.0%.

This is a reversal from the previous stage, where the accuracy for the (‘Automobile’, ‘Truck’)

pair was lower than for the (‘Airplane’, ‘Ship’) pair (Table 5.8). This shift demonstrates

the variability in classification performance at different levels of the hierarchy and suggests

that the model’s effectiveness can fluctuate based on the characteristics of the categories

involved. It highlights that while hierarchical classification can improve performance for
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certain categories, it may introduce challenges for others, particularly those with visually

similar features.

Acc % Automobile Truck
Automobile 85.9 14.1

Truck 9.5 90.5

Table 5.11: Confusion matrices for automobiles and trucks in the third stage of the vehicles’
three-stage model.

Analysis of Animal Classification

The second stage within the animal superclass (Table 5.12) introduces a greater difficulty

in classifying animals into their respective subclasses than the previous stage, having an

accuracy of 92.7%. In this second stage (Table 5.12), the classification accuracies drop to

80.3% for (‘Bird’, ‘Frog’), 78.9% for (‘Cat’, ‘Dog’), and 74.3% for (‘Deer’, ‘Horse’) (Table 5.12).

These results suggest that distinguishing between these closely related animal subclasses is

more challenging than making broader classifications. Specifically, the second stage confusion

matrix shows that the (‘Bird’, ‘Frog’) pair is primarily misclassified as the (‘Cat’, ‘Dog’)

pair compared to the (‘Deer’, ‘Horse’) pair(Table 5.12). The (‘Cat’, ‘Dog’) pair is mainly

misclassified as the (‘Bird’, ‘Frog’) pair compared to the (‘Deer’, ‘Horse’) pair (Table 5.12).

The (‘Deer’, ‘Horse’) pair is primarily misclassified as the (‘Cat’, ‘Dog’) pair compared to

the (‘Bird’, ‘Frog’) pair (Table 5.12). These trends are consistent with the baseline model,
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indicating that the inherent visual similarities between these subclasses maintain the same

order of difficulty.

Acc % (‘Bird’, ‘Frog’) (‘Cat’, ‘Dog’) (‘Deer’, ‘Horse’)
(‘Bird’, ‘Frog’) 80.3 12.4 7.2
(‘Cat’, ‘Dog’) 12.9 78.9 8.2

(‘Deer’, ‘Horse’) 12.7 13.0 74.3

Table 5.12: Confusion matrices for the second stage of the animals’ three-stage model.

In the third stage of the hierarchical model, we observed notable improvements despite

previous challenges. Specifically, although the ‘Deer’ vs. ‘Horse’ subclass had the lowest

classification accuracy in the second stage at 74.3%, this pair showed a great turnaround in

the third stage. Here, the classification accuracy for ‘Deer’ and ‘Horse’ reached 91.4% and

86.1%, respectively, marking the highest average accuracy observed in the third stage for

animal categorization (Table 5.13). Despite that it has the lowest accuracy in the second

stage (Table 5.12) compared to other pairs, this demonstrates a subgroup having better

performance in the previous stage of the hierarchical model is not a must to also have a

better performance in its next stage classification.

Acc % Deer Horse
Deer 91.4 8.6
Horse 13.9 86.1

Table 5.13: Confusion matrices for deers and horses in the third stage of the animals’ three-
stage model.

The third stage results for the other pairs, such as (‘Bird’, ‘Frog’) and (‘Cat’, ‘Dog’), show
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varying levels of success. For the ‘Bird’ vs. ‘Frog’ pair, the model achieves an accuracy of

84.8% for ‘Bird’ and 89.6% for ‘Frog’ (Table 5.14), both increases from the 80.3% accuracy

observed in the second stage (Table 5.12). This indicates that the model is becoming more

adept at distinguishing between these two classes as it progresses through the hierarchical

stages.

Acc % Bird Frog
Bird 84.8 15.2
Frog 10.4 89.6

Table 5.14: Confusion matrices for birds and frogs in the third stage of the animals’ three-stage
model.

Conversely, the ‘Cat’ vs. ‘Dog’ classification presents a greater challenge. Initially, cat

and dog accuracies were 52.6% and 71.7% in the baseline model respectively (Figure 5.1);

their total confusion rates were 47.4% and 28.3% respectively (Figure 5.1). If these confusion

rates were split evenly for a binary classification problem, one might expect accuracies of

76.3% accuracy for ‘Cat’ and 85.9% for ‘Dog’. However, this assumption does not hold

as shown in Table 5.15: The accuracies actually decrease to 64.3% for ‘Cat’ and 78.6%

for ‘Dog’ (Table 5.15) in the three-stage model. Both also fall below the 78.9% accuracy

achieved in the previous stage (second stage) (Table 5.12). This decline explains that the

hierarchical model for the particular challenging pair has more potential for its high-level

group classification than its specific category classification. In the final overall confusion
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matrix of the three-stage model (Figure 5.8), it was observed that the confusion rates between

‘Cat’ and ‘Dog’ increased, as did their confusion with ‘Frog’. This suggests that while the

hierarchical model was designed to refine classifications by addressing the most confused

pair combinations, it inadvertently made it more difficult to distinguish between classes with

subtle differences. This is especially true when these classes were grouped closely together

based on their initial confusion patterns.

Acc % Cat Dog
Cat 64.3 35.7
Dog 21.4 78.6

Table 5.15: Confusion matrices for cats and dogs in the third stage of the animals’ three-stage
model.

To fully understand the performance changes and verify if they meet the expected

improvement based on a 50-50 distribution of the misclassified rates, we evaluate the initial

accuracies of ‘Deer’, ‘Horse’, ‘Bird’, ‘Frog’, ‘Cat’ and ‘Dog’ in the baseline model, which were

64.0%, 74.5%, 55.2%, 85.7%, 52.6%, and 71.7%, respectively. Based on these, we expected

the binary classification accuracies to be 82.0%, 87.3%, 77.6%, 92.9%, 76.3%, and 85.9%,

respectively. These expectations are derived by adding half of their confusion rates (36.0%,

25.5%, 44.8%, 14.3%, 47.4%, and 28.3%) to their baseline model accuracies. The results in

the third stage of the three-stage model show that ‘Deer’ and ‘Bird’ classes outperformed

their expected accuracies (Table 5.16). This indicates that the hierarchical model’s deeper
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layers succeeded in refining the classification accuracy of these specific categories beyond the

anticipated binary classification performance.

Acc % Baseline Accuracy Expected Binary Accuracy Achieved Accuracy
Deer 64.0 82.0 91.4
Horse 74.5 87.3 86.1
Bird 55.2 77.6 84.8
Frog 85.7 92.9 89.6
Cat 52.6 76.3 64.3
Dog 71.7 85.9 78.6

Table 5.16: Baseline and expected vs. achieved binary classification accuracies in the
hierarchical model

Overall Model Performance

The average overall accuracy further dropped to 68.8% (Figure 5.8) with an increased time

cost of 2,152 seconds, which is added by 538 seconds of the third stage of the vehicle model

and 807 seconds of the third stage of the animal model into the previous 806 seconds of the

two-stage model. This result shown in Figure 5.8 suggests the additional stages can lead

to error propagation and impact overall performance, where misclassifications at one level

affect subsequent levels, a common challenge in hierarchical models [56]. Furthermore, the

increased model complexity resulted in longer training times and higher computational costs,

detracting from the overall performance.
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Figure 5.8: Confusion matrix for each class’ accuracy of the three-stage model. The vertical
axis represents the true classes, while the horizontal axis represents the predicted labels.

5.2.3 Four-Stage Hierarchical Classification for Animals

In the earlier hierarchical models, the overall accuracy for classifying animal superclasses did

not improve from the first stage when compared to the vehicle classes (Table 5.7). However,

there was a notable improvement in the overall accuracy calculated by Formula 4.13 for the
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‘Bird’ category. The accuracy for ‘Bird’ increased from 55.2% in the baseline model to 59.0%

in the two-stage hierarchical model and further to 60.8% in the three-stage hierarchical model.

This enhancement suggests that intermediate stages in the hierarchy effectively isolate and

refine features unique to birds, thereby reducing their confusion with other classes. Given

this success, further refining the hierarchy to segregate the (‘Bird’, ‘Frog’) pair from other

animal pairs is hypothesized to enhance the accuracy for birds even more.

In response to this hypothesis, the four-stage hierarchical classification model introduces

a separation of ‘Visually Two-Legged’ animals from ‘Four-Legged’ ones at an earlier stage.

This is done before specifically distinguishing (‘Bird’, ‘Frog’) from (‘Cat’, ‘Dog’), and (‘Deer’,

‘Horse’) as shown in Figure 5.9. This additional layer aims to simplify subsequent classification

stages by assigning the (‘Bird’, ‘Frog’) pair to an independent branch, allowing the (‘Cat’,

‘Dog’), and (‘Deer’, ‘Horse’) pairs to be classified separately in their respective branches.

Acc % Two-legged Four-legged
Two-legged 83.9 16.2
Four-legged 18.6 81.4

Table 5.17: Confusion matrices for the second stage of the animals’ four-stage model.

Acc % (‘Cat’, ‘Dog’) (‘Deer’, ‘Horse’)
(‘Cat’, ‘Dog’) 88.4 11.6

(‘Deer’, ‘Horse’) 16.8 83.2

Table 5.18: Confusion matrices for (‘Cat’, ‘Dog’) and (‘Deer’, ‘Horse’) pairs in the third stage
of the animals’ four-stage model.
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Figure 5.9: Diagram of the four-stage hierarchical classification framework

Table 5.17 presents the confusion matrix for the second stage, which categorizes animals

into two broad groups: two-legged and four-legged. The model achieves an accuracy of 83.9%

for the two-legged animal group and 81.4% for the four-legged animal group. The two-legged

group shows higher accuracy than its counterpart in the second stage of the previous three-

stage model (80.3% accuracy for the (‘Bird’, ‘Frog’) pair, which is the counterpart of the

two-legged group from Table 5.12. Furthermore, Table 5.18 shows the performance of the

(‘Cat’, ‘Dog’) and (‘Deer’, ‘Horse’) subgroups within the four-legged group in the third stage.

The accuracies are 88.4% for (‘Cat’, ‘Dog’) and 83.2% for (‘Deer’, ‘Horse’), which both show
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improved accuracy compared to their performance in the second stage of the three-stage

model, which were 78.9% and 74.3%, respectively (Table 5.12). These results suggest that

the added level of granularity improves the model’s ability to initially sort animal images

effectively. The initial separation into more homogeneous groups helps the model focus on

more distinct features relevant to each group, thus enhancing classification accuracy at this

stage.

As discussed in the previous section, we expected the binary classification accuracies

of ‘Bird’, ‘Frog’, ‘Cat’, ‘Dog’, ‘Deer’, and ‘Horse’ to be 77.6%, 92.9%, 76.3%, 85.9%, 82%,

and 87.3%, respectively. When evaluating the confusion matrices of the last stage of the

two-legged and four-legged groups (Table 5.19, Table 5.20, Table 5.21), only ‘Bird’ (93.4%

improved from 84.8% of the three-stage model (Table 5.14)), ‘Cat’ (82.7% from 64.3% of the

three-stage model (Table 5.15)), and ‘Deer’ (90.0% dropped from 91.4% of the three-stage

model (Table 5.13) met the assumption this time. The results suggest that while adding more

stages to the hierarchical model can refine classification for certain categories by focusing on

similar features, the increased complexity can also lead to more confusion for classes with

overlapping features.

Acc % Bird Frog
Bird 93.4 6.6
Frog 18.3 81.7

Table 5.19: Confusion matrices for birds and frogs in the third stage of the animals’ four-stage
model.
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Acc % Cat Dog
Cat 82.7 17.3
Dog 31.8 68.2

Table 5.20: Confusion matrices for cats and dogs in the fourth stage of the animals’ four-stage
model.

Acc % Deer Horse
Deer 90.0 10.0
Horse 14.5 85.5

Table 5.21: Confusion matrices for deers and horses in the fourth stage of the animals’
four-stage model.

Overall, the average accuracy of the four-stage hierarchical classification model decreased

to 67.6% (Figure 5.10) because of the error propagation, and the time required to complete the

classification also increased to 2,346 seconds, added 194 seconds into the previous three-stage

model. While the average accuracy of the animal categories in the hierarchical model declined

to 60.6% (Figure 5.10) from the baseline model’s 67.3% (Figure 5.1), ‘Bird’ experienced

notable improvements. In the four-stage hierarchical model, the accuracy for ‘Bird’ surged to

67.6% from 60.8% of the three-stage model, an impressive rise from the baseline accuracy of

55.2%. This reflects the model’s enhanced ability to isolate and focus on the distinguishing

characteristics of birds.
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Figure 5.10: Confusion matrix for each class’ accuracy of the two-stage hierarchical model.
The vertical axis represents the true classes, while the horizontal axis represents the predicted
labels.
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6. Summary

Analyzing the confusion matrix results for the baseline model, we observed challenges such

as high intra-class variation and similarities between different classes leading to confusion,

a common issue in flat classification models noted in various studies [18, 76, 77]. The

hierarchical model was implemented to mitigate these issues by refining classification through

a multi-stage process that narrows the focus progressively, aiming to reduce the potential for

inter-class confusion.

The hierarchical approach successfully enhanced the model’s accuracy in certain areas,

notably increasing the accuracy for the ‘Bird’ category from 55.2% in the baseline model to

67.6% in the four-stage hierarchical model (Table 6.1) and subgroups of the most confused

pairs compared to the average of their respective initial accuracy in the baseline model as

calculated by Formula 4.13. This improvement illustrates the hierarchical approach’s ability

to focus on distinguishing features critical to specific classes and groups/pairs. Additionally,

the hierarchical approach improved the accuracy of vehicle classification in the first-stage
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hierarchical model, as shown in Table 5.7.

Furthermore, the hierarchical models provide enhanced transparency over the baseline

model by allowing a granular examination of classification performance across multiple stages.

This structure not only aids in pinpointing where misclassifications occur but also helps track

how classification accuracy evolves through each stage, which is essential for diagnosing errors

and developing mitigation strategies.

Acc % Baseline Model Two-Stage Model Three-Stage Model Four-Stage Animal Model
Airplane 73.5 76.9 76.3 76.3

Automobile 81.0 81.9 80.4 80.4
Bird 55.2 59.0 60.8 67.6
Cat 52.6 52.2 44.1 51.4
Deer 64.0 67.0 68.1 52.8
Dog 71.7 64.3 64.3 53.9
Frog 85.7 74.4 74.7 72.4
Horse 74.5 77.9 63.6 65.3
Ship 84.3 83.0 75.4 75.4
Truck 84.8 82.9 80.0 80.0
Mean 72.7 72.0 68.8 67.6

Table 6.1: The overall accuracy of each class calculated by Formula 4.13.

Also, training time can be reduced when focusing only on specific superclasses. For

example, the baseline model took 704 seconds for training. If we only need to fine-tune

vehicle classes, we could focus on training the model specifically for vehicles by first training

the initial stage of differentiating vehicles and animals in 404 seconds, and then training the

sub-model for categorizing vehicle categories in 165 seconds. This would reduce the total

training time to 569 seconds.
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However, while the hierarchical model introduced improvements, it also brought forth

new challenges, particularly the dependency of overall model accuracy on the success of

the initial categorization stages. This vulnerability was highlighted as the average accuracy

across most image classes in the CIFAR-10 dataset declined from 72.7% in the baseline

to 67.6% in the four-stage model. The decline underscores the issue of error propagation,

where initial misclassifications can exacerbate errors in subsequent stages, emphasizing the

need for robust initial classification to ensure model scalability and efficiency [78, 79]. This

complexity suggests that non-homogeneous hierarchical classifiers, which utilize different

classification approaches at various stages, could be a crucial area for further research to

optimize performance across diverse scenarios.

Additionally, the comparison between the baseline and the two-stage hierarchical models

revealed a consistent decline in accuracy of animal classifications (Table 5.6). This trend

indicates that the broad categorization into ‘Animal’ and ‘Vehicle’ superclasses may have been

too generalized, leading to great feature overlap and resulting in animals being misclassified

as vehicles more frequently. The CNN architecture employed may not have been adequately

tailored to address the diverse features within the broad ‘Animal’ category, highlighting the

necessity for more sophisticated hierarchical structures.
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7. Future Work

Given these insights, it is evident that each classifier in the hierarchy needs to be precisely

tailored to the specific sub-problems it addresses to prevent error propagation. Future research

should focus on several key areas to further optimize hierarchical classification models:

• Non-Homogeneous Hierarchical Classifiers: The hierarchical approach in this research

shows that the same key confusion pairs exist throughout the hierarchy. For example,

if a neural net architecture misclassifies an automobile as a truck, it will likely continue

this error across stages. This limitation underscores the need for non-homogeneous

hierarchical classifiers, which use different classification methods or algorithms at various

stages.

• Dynamic Confidence Thresholds: Implementing dynamic confidence thresholds within

the classification process offers a way to reassess and adjust predictions that fall below a

certain confidence level. For example, if a classifier returns a confidence score of less than
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50% for a given prediction, the system could flag this as uncertain and either revert to a

previous stage to re-predict the result using a different classifier or adjust the classifier

architecture to better handle such cases. This iterative process would continue until the

prediction confidence surpasses the threshold, or the model architecture is sufficiently

adapted to make a more confident prediction. This approach could help mitigate error

propagation by allowing the model to dynamically adjust its decision-making process

based on real-time performance metrics, ensuring that it remains responsive to the

classification challenges encountered.

• Refinement of Superclasses: The hierarchical model’s approach to classifying broad

categories like ‘Animal’ reduced accuracy for every animal class compared to the

baseline model (Table 5.6). The baseline model (Figure 5.1) also exhibited a wider

accuracy range for animal categories, indicating their overlapping features might not

be sufficiently distinctive. This suggests the ‘Animal’ superclass is too broad, leading

to considerable feature overlap and misclassification. We can reduce feature overlap

and improve classification accuracy by breaking these broad categories into narrower

categories (e.g., two-legged vs. four-legged). This refinement can capture more distinct

features within the animal categories, leading to better performance.

Addressing these areas will allow future work to build on the foundational insights gained
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from this research to develop more effective and efficient hierarchical classification models,

enhancing their applicability across various domains and datasets.
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8. Contributions

This research contributes to the broader field of computer vision by establishing a foundational

framework for the adoption and optimization of hierarchical classification models. These

models are designed not only to enhance targeted classification accuracy but also to improve

the interpretability of the decision-making process. By addressing class confusion through a

structured, multi-stage approach, this work advances the understanding of how hierarchical

models can be effectively utilized to manage and reduce errors in specific contexts, such as

distinguishing closely related subclasses.

The insights gained from this study are particularly valuable for applications requiring high

reliability and precision, such as in automobile safety systems and medical diagnostics [80]. In

these domains, the ability to increase specificity in distinguishing between critical categories

while providing a transparent and interpretable decision-making process is crucial. Moreover,

the hierarchical approach facilitates the involvement of professionals at different levels of the

decision-making process, enabling them to understand and intervene where necessary, which
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is especially important in fields like healthcare where expert judgment is critical.

Our progressive hierarchical classification model has shown that, despite challenges

in maintaining consistent accuracy across diverse categories, the advantages of enhanced

interpretability and targeted error correction offer a compelling case for further refinement

and broader adoption of this approach. The study highlights the importance of developing

hierarchical structures that are finely tuned to specific sub-problems, ensuring that the model

delivers balanced performance without compromising robustness.

This work moves towards a system-level view of image classification, where hierarchical

models play a key role in addressing targeted class confusion and ensuring that high-stakes

applications can achieve the necessary levels of reliability and transparency. Additionally,

the research underscores the value of hierarchical models in empowering professionals to

engage more effectively with the decision-making process, thereby improving the overall

efficacy of the system. The findings and proposed future work offer a clear direction for

continued advancements in hierarchical classification models, with the potential to greatly

benefit real-world applications.
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