Mg+ Chemistry
EXPLANATION OF table
This is a compilation of rate constants and product distributions for positive ion/molecule reactions involving silicon which have been measured with the selected-ion flow tube (SIFT) technique in the Ion Chemistry Laboratory at York University up to 2005.
The table is ordered according to the molecular weight of the reactant ion in the chemical equation. When reactant ions are the same, the reactions are ordered according to the neutral reactant. This latter procedure is based upon counting the number of carbon and hydrogen atoms in the neutral reactant. First priority is given to the number of carbon atoms. The greater the number of carbon atoms, the further down the table the neutral will appear. Within groups of neutrals containing the same number of carbon atoms, the order is determined by the number of hydrogen atoms. If the molecules contain the same number of hydrogen atoms, then the order is dependent alphabetically on the remaining atoms in the neutral. Neutral reactants that do not contain carbon atoms are ordered alphabetically with the earliest letter taking precedence, and precede carbon-containing molecules. In cases where the early letter is the same, the ordering is done by molecular weight with the lower molecular weight taking precedence.
The collision rate constants included in the tabulation, kc , are derived using the combined variational transition-classical trajectory treatment of T. Su and W.J. Chesnavich, J. Chem. Phys., 76, 5183 (1982). Rate constants are presented in units of 10-9 cm3 molecule-1 s-1 and are either bimolecular or pseudo-bimolecular. Reactions leading to association were not investigated as a function of total pressure. The experiments were conducted as 296±2K using the SIFT technique in a Helium buffer gas at ca. 0.35 Torr or 1.15 x 1016 helium atoms cm-3 .
REACTANTS
PRODUCTS
kexp
kc
kexp /kc
References
Mg+
HCN
not observed
<0.0001
1.1
CH3 CN (acetonitrile)
Mg(CH3 CN)+
0.79 ± 0.24
4.7
CH3 NC (methylisocyanide)
Mg(CH3 NC)+
0.025 ± 0.008
?
CH4
NR
<0.0001
1.2
4
CO
NR
<0.0001
0.94
CO2
NR
<0.0001
1
C2 H2 (acetylene)
1.2
C2 H4 (ethylene)
Mg(C2 H4 )+
0.00053 ± 0.00016
1.3
C2 H6 (ethane)
NR
4
HC3 N (cyanoacetylene)
Mg(HC3 N)+
1.3 ± 0.4
?
H3 C3 N (acrylonitrile)
Mg(H3 C3 N)+
3.3 ± 1.0
?
C3 H4 (propyne)
1.8
C4 H2 (diacetylene)
Mg(C4 H2 )+
0.13 ± 0.04
?
C4 H6 (1,3-butadiene)
Mg (C4 H6 )+
1.1 ± 0.3
1.7
C4 H8 (1-butene)
Mg(C4 H8 )+
1.1 ± 0.3
1.7
C4 H8 (isobutylene)
Mg(C4 H8 )+
0.68 ± 0.20
1.8
C4 H10 (n-butane)
Mg(C4 H10 )+
0.14 ± 0.04
1.6
4
n-C3 H8 (n-propane)
Mg(C3 H8 )+
≥0.0071
1.5
4
n-C5 H12
Mg(C5 H12 )+
0.49
1.8
4
n-C6 H14
Mg(C6 H14 )+
1.1
1.9
4
n-C7 H16
Mg(C7 H16 )+
2
1.97
4
HC3 N (cyanoacetylene)
Mg(HC3 N)+
1.3 ± 0.4
4.4
5
H2
NR
<0.00001
1.5
2
H2 O
NR
<0.00001
2.8
2
NH3
Mg(NH3 )+
0.0040 ± 0.0012
2.5
1
NO
NR
<0.0001
0.88
2
NO2
NR
<0.0001
1.1
2
N2
NR
<0.0001
0.86
2
N2 O
NR
<0.0001
1.1
2
O2
NR
<0.00001
0.8
2
CO
NR
<0.0001
0.94
2
CO2
NR
<0.0001
1.0
2
Mg(CH3 CN)+
CH3 CN
Mg(CH3 CN)2 +
2.2 ± 0.7
Mg(CH3 CN)2 +
CH3 CN
Mg(CH3 CN)3 +
0.83 ± 0.25
Mg(CH3 CN)3 +
CH3 CN
Mg(CH3 CN)4 +
0.24 ± 0.10
Mg(C2 H4 )+
C2 H4 (ethylene)
Mg(C2 H4 )2 +
0.0022 ± 0.0007
Mg(C2 H4 )2 +
C2 H4 (ethylene)
Mg(C2 H4 )3 +
0.0044 ± 0.0013
Mg(C2 H4 )3 +
C2 H4 (ethylene)
Mg(C2 H4 )4 +
0.0065 ± 0.0033
Mg(C2 H4 )4 +
C2 H4 (ethylene)
Mg(C2 H4 )5 +
0.0099 ± 0.0050
Mg(C4 H2 )+
C4 H2 (diacetylene)
Mg(C4 H2 )2 +
0.16 ± 0.05
Mg(C4 H2 )2 +
C4 H2 (diacetylene)
Mg(C4 H2 )3 +
0.11 ± 0.04
Mg(C4 H2 )3 +
C4 H2 (diacetylene)
Mg(C4 H2 )4 +
0.10 ± 0.05
Mg(C4 H2 )4 +
C4 H2 (diacetylene)
Mg(C4 H2 )5 +
0.076 ± 0.038
Mg(C4 H2 )5 +
C4 H2 (diacetylene)
Mg(C4 H2 )6 +
0.028 ± 0.015
Mg(C4 H2 )6 +
C4 H2 (diacetylene)
not observed
< 0.0001
Mg(C4 H8 )+
C4 H8 (isobutylene)
Mg(C4 H8 )2 +
0.27 ± 0.08
Mg(C4 H8 )2 +
C4 H8 (isobutylene)
not fitted
Mg(C4 H8 )+
C4 H8 (1-butene)
Mg(C4 H8 )2 +
0.33 ± 0.10
Mg(C4 H8 )2 +
C4 H8 (1-butene)
not fitted
Mg(C4 H10 )+
C4 H10 (n-butane)
not observed
<0.0001
Mg(NH3 )+
NH3
Mg(NH3 )2 +
0.20 ± 0.06
1
Mg(NH3 )2 +
NH3
Mg(NH3 )3 +
0.039 ± 0.012
1
Mg(NH3 )3 +
NH3
Mg(NH3 )4 +
0.00054 ± 0.00027
1
Mg(NH3 )4 +
NH3
not observed
<0.0001
1
Mg(HC3 N)+
HC3 N (cyanoacetylene)
Mg(HC3 N)2 +
3.1 ±1.0
5
Mg(HC3 N)2 +
HC3 N (cyanoacetylene)
Mg(HC3 N)3 +
1.1 ± 0.4
5
Mg(HC3 N)3 +
HC3 N (cyanoacetylene)
Mg(HC3 N)4 +
2.2 ± 0.9
5
Mg(HC3 N)4 +
HC3 N (cyanoacetylene)
Mg(HC3 N)5 +
0.83 ± 0.30
5
Mg(HC3 N)5 +
HC3 N (cyanoacetylene)
Mg(HC3 N)6 +
1.7 ± 0.7
5
Mg(HC3 N)6 +
HC3 N (cyanoacetylene)
Mg(HC3 N)7 +
0.0037 ± 0.0015
5
Mg(HC3 N)7 +
HC3 N (cyanoacetylene)
not observed
<0.005
5
Mg(H3 C3 N)+
H3 C3 N (acrylonitrile)
Mg(H3 C3 N)2 +
2.0 ± 0.6
Mg(H3 C3 N)2 +
H3 C3 N (acrylonitrile)
Mg(H3 C3 N)3 +
0.9 ± 0.3
Mg(H3 C3 N)3 +
H3 C3 N (acrylonitrile)
Mg(H3 C3 N)4 +
1.3 ± 0.7
Mg(H3 C3 N)4 +
H3 C3 N (acrylonitrile)
Mg(H3 C3 N)5 +
1.8 ± 0.9
Mg(H3 C3 N)5 +
H3 C3 N (acrylonitrile)
Mg(H3 C3 N)6 +
0.30 ± 0.15
Mg(H3 C3 N)6 +
H3 C3 N (acrylonitrile)
not fitted
Mg(H3 C3 N)7 +
H3 C3 N (acrylonitrile)
not fitted
Mg(c-C5 H5 )+
CH4
Mg(c-C5 H5 )(CH4 )+
0.14 ± 0.42
1
4
CO
Mg(c-C5 H5 )(CO)+
0.17
0.73
2
CH3 CN (acetonitrile)
Mg(c-C5 H5 )(CH3 CN)+
2.9 ± 0.9
3.5
C2 H6 (ethane)
Mg(c-C5 H5 )(C2 H6 )+
0.95 ± 0.03
1.1
4
H3 C3 N (acrylonitrile)
Mg(c-C5 H5 )(H3 C3 N)+
4.6 ± 1.4
C4 H2 (diacetylene)
Mg(c-C5 H5 )(C4 H2 )+
0.89 ± 0.38
C4 H8 (isobutylene)
Mg(c-C5 H5 )(C4 H8 )+
0.87 ± 0.26
1.3
C4 H8 (1-butene)
Mg(c-C5 H5 )(C4 H8 )+
1.3 ± 0.3
1.2
C4 H10 (n-butane)
Mg(c-C5 H5 )(C4 H10 )+
1.0 ± 0.3
1.1
4
n-C3 H8 (n-propane)
Mg(c-C5 H5 )(C3 H8 )+
1
1.1
4
n-C5 H12
Mg(c-C5 H5 )(C5 H12 )+
1.1
1.17
4
n-C6 H14
Mg(c-C5 H5 )(C6 H14 )+
1.6
1.22
4
n-C7 H16
Mg(c-C5 H5 )(C7 H16 )+
1.3
1.26
4
H2
NR
0.00001
1.5
2
H2 O
Mg(c-C5 H5 )(H2 O)+
1.6 ± 0.5
2.3
2
NH3
Mg(c-C5 H5 )(NH3 )+
1.2
1,2
N2
Mg(c-C5 H5 )(N2 )+
0.038
0.67
2
NO
Mg(c-C5 H5 )(NO)+
0.052
0.68
2
O2
Mg(c-C5 H5 )(O2 )+
<0.0001
0.61
2
CO2
Mg(c-C5 H5 )(CO2 )+
0.71
0.74
2
N2 O
Mg(c-C5 H5 )(N2 O)+
0.31
0.78
2
NO2
Mg(c-C5 H5 )(NO2 )+
0.74
0.81
2
Mg(c-C5 H5 )(CH4 )+
CH4
Mg(c-C5 H5 )(CH4 )2 +
0.0001
Mg(c-C5 H5 )(CO)+
CO
Mg(c-C5 H5 )(CO)2 +
0.0026
2
Mg(c-C5 H5 )(CO)2 +
CO
not observed
<0.000050
2
Mg(c-C5 H5 )(CH3 CN)+
CH3 CN
Mg(c-C5 H5 )(CH3 CN)2 +
1.2 ± 0.6
CH3 CN
Mg(c-C5 H5 )(CH3 CN)2 +
1.2 ± 0.6
Mg(c-C5 H5 )(CH3 CN)2 +
CH3 CN
Mg(c-C5 H5 )(CH3 CN)3 +
0.11 ± 0.05
Mg(c-C5 H5 )(C2 H6 )+
C2 H6 (ethane)
Mg(c-C5 H5 )(C2 H6 )2 +
0.001
Mg(c-C5 H5 )(H3 C3 N)+
H3 C3 N (acrylonitrile)
Mg(c-C5 H5 )(H3 C3 N)2 +
2.8 ± 0.8
Mg(c-C5 H5 )(H3 C3 N)2 +
H3 C3 N (acrylonitrile)
Mg(c-C5 H5 )(H3 C3 N)3 +
1.8 ± 0.9
Mg(c-C5 H5 )(H3 C3 N)3 +
H3 C3 N (acrylonitrile)
not observed
<0.001
Mg(c-C5 H5 )(C4 H2 )+
C4 H2
Mg(c-C5 H5 )(C4 H2 )2 +
0.12 ± 0.06
Mg(c-C5 H5 )(C4 H2 )2 +
C4 H2
not observed
<0.0001
Mg(c-C5 H5 )( C4 H6 )+
C4 H6 (1,3-butadiene)
Mg(c-C5 H5 )( C4 H6 )2 +
0.031 ± 0.009
Mg(c-C5 H5 )( C4 H6 )2 +
C4 H6 (1,3-butadiene)
not observed
<0.0001
Mg(c-C5 H5 )(C4 H8 )+
C4 H8 (isobutylene)
Mg(c-C5 H5 )(C4 H8 )2 +
0.055 ± 0.017
Mg(c-C5 H5 )(C4 H8 )+
C4 H8 (1-butene)
Mg(c-C5 H5 )(C4 H8 )2 +
0.58 ± 0.17
Mg(c-C5 H5 )(C4 H10 )+
C4 H10 (n-butane)
Mg(c-C5 H5 )(C4 H10 )2 +
0.0005
Mg(c-C5 H5 )(NH3 )+
NH3
Mg(c-C5 H5 )(NH3 )2 +
1.4
1
Mg(c-C5 H5 )(NH3 )2 +
NH3
Mg(c-C5 H5 )(NH3 )3 +
0.37
Mg(c-C5 H5 )(NH3 )3 +
NH3
not observed
<0.00010
1
Mg(c-C5 H5 )2 +
CH4
NR
4
C2 H4
NR
C2 H6 (ethane)
NR
4
C4 H6 (1,3-butadiene)
Mg(c-C5 H5 )2 (C4 H6 )+
0.3 ± 0.09
1.1
C4 H10 (n-butane)
NR
4
n-C3 H8 (n-propane)
NR
<0.0001
1
4
n-C5 H12
NR
<0.0001
1.06
4
n-C6 H14
NR
<0.0001
1.09
4
n-C7 H16
NR
<0.0001
1.09
4
CO
NR
<0.0001
0.69
2
H2
NR
<0.00001
1.5
2
NH3
Mg(c-C5 H5 )2 (NH3 )+
1.2
2
1,2
H2 O
Mg(c-C5 H5 )2 (H2 O)+
0.26
2.2
2
N2
NR
<0.0001
0.63
2
NO
NR
<0.0001
0.64
2
O2
NR
<0.0001
0.57
2
CO2
NR
<0.0001
0.68
2
N2 O
NR
<0.0001
0.73
2
NO2
NR
<0.0001
0.75
2
Mg(c-C5 H5 )(H2 O)+
H2 O
Mg(c-C5 H5 )(H2 O)2 +
1.4
2
Mg(c-C5 H5 )(H2 O)2 +
H2 O
Mg(c-C5 H5 )(H2 O)3 +
0.27
2
Mg(c-C5 H5 )(H2 O)3 +
H2 O
Mg(c-C5 H5 )(H2 O)4 +
0.24
2
Mg(c-C5 H5 )(H2 O)4 +
H2 O
Mg(c-C5 H5 )(H2 O)5 +
0.22
2
Mg(c-C5 H5 )(H2 O)5 +
H2 O
Mg(c-C5 H5 )(H2 O)6 +
0.24
2
Mg(c-C5 H5 )(H2 O)6 +
H2 O
Mg(c-C5 H5 )(H2 O)7 +
0.23
2
Mg(c-C5 H5 )
NH3
Mg(c-C5 H5 )(NH3 )+
1.2
2
Mg(c-C5 H5 )(NH3 )+
NH3
Mg(c-C5 H5 )(NH3 )2 +
1.4
2
Mg(c-C5 H5 )(NH3 )2 +
NH3
Mg(c-C5 H5 )(NH3 )3 +
0.37
2
Mg(c-C5 H5 )(NH3 )3 +
NH3
Mg(c-C5 H5 )(NH3 )4 +
<0.0001
2
Mg(c-C5 H5 )
NO2
Mg(c-C5 H5 )(NO2 )+
0.74
2
Mg(c-C5 H5 )(NO2 )+
NO2
Mg(c-C5 H5 )(NO2 )2 +
≥0.0096
2
Mg(c-C5 H5 )+
N2 O
Mg(c-C5 H5 )(N2 O)+
0.31
2
Mg(c-C5 H5 )(N2 O)+
N2 O
Mg(c-C5 H5 )(N2 O)2 +
0.02
2
Mg(c-C5 H5 )(N2 O)2 +
N2 O
Mg(c-C5 H5 )(N2 O)3 +
<0.0001
2
Mg(c-C5 H5 )+
NO
Mg(c-C5 H5 )(NO)+
0.052
2
Mg(c-C5 H5 )(NO)+
NO
Mg(c-C5 H5 )(NO)2 +
0.012
2
Mg(c-C5 H5 )(NO)2 +
NO
Mg(c-C5 H5 )(NO)3 +
<0.0001
2
Mg(c-C5 H5 )+
CO2
Mg(c-C5 H5 )(CO2 )+
0.71
2
Mg(c-C5 H5 )(CO2 )+
CO2
Mg(c-C5 H5 )(CO2 )2 +
≥0.037
2
Mg(c-C5 H5 )(CO2 )2 +
CO2
Mg(c-C5 H5 )(CO2 )3 +
<0.0005
2
Mg(c-C5 H5 )+
CO
Mg(c-C5 H5 )(CO)+
0.17
2
Mg(c-C5 H5 )(CO)+
CO
Mg(c-C5 H5 )(CO)2 +
≥0.0026
2
Mg(c-C5 H5 )+
N2
Mg(c-C5 H5 )(N2 )+
0.038
2
Mg(c-C5 H5 )(N2 )+
N2
Mg(c-C5 H5 )(N2 )2 +
<0.0001
2
Mg(c-C5 H5 )2 (C4 H6 )+
C4 H6 (1,3-butadiene)
Mg(c-C5 H5 )2 (C4 H6 )2 +
0.0001
References
1. Sequential Ligation of Mg+ , Fe+ , (c-C5 H5 )Mg+ and (c-C5 H5 )Fe+ with Ammonia in the Gas Phase: Transition from Coordination to Solvation in the Sequential Ligation of Mg+ .
R.K. Milburn, V. Baranov, A.C. Hopkinson and D.K. Bohme, J. Phys. Chem. 102, 9803-9810 (1998).
2. Gas-Phase Reactions of Mg+ , (c-C5 H5 )Mg+ and (c-C5 H5 )2 Mg+ with Small Inorganic Ligands.
R.K. Milburn, V. Baranov, A.C. Hopkinson and D.K. Bohme, J. Phys. Chem., 103, 6373-6382 (1999).
3. A Study of Complexes Mg(NH3 )n + and Ag(NH3 )n + , where n = 1-8: Competition between Direct Coordination and Solvation through Hydrogen Bonding.
T. Shoeib, R.K. Milburn, G.K. Koyanagi, V.V. Lavrov, D.K. Bohme, K.W.M. Siu and A.C. Hopkinson, Int. J. Mass Spec. 201, 87-100 (2000).
4. Gas-Phase Coordination of Mg+ , (c-C5 H5 )Mg+ and (c-C5 H5 )2 Mg+ with Saturated Hydrocarbons.
R.K. Milburn, A.C. Hopkinson and D.K. Bohme, J. Phys. Chem. 104, 3926-3932 (2000).
5. Extraordinary Cluster Formation and Intramolecular Ligand-Ligand Interactions in Cyanoactylene Mediated by Mg+· : Implications for the Atmospheric Chemistry of Titan and for Circumstellar Chemistry.
R. K. Milburn, A.C. Hopkinson, D. K. Bohme, J. Am. Chem. Soc. 127, 13070 – 13078 (2005).