Si+ Chemistry
EXPLANATION OF TABLE
This is a compilation of rate constants and product distributions for
positive ion/molecule reactions involving silicon which have been
measured with the selected-ion flow tube (SIFT) technique in the Ion
Chemistry Laboratory at York University up to 2005.
The table is ordered according to the molecular weight of the reactant
ion in the chemical equation. When reactant ions are the same, the reactions
are ordered according to the neutral reactant. This latter procedure is based
upon counting the number of carbon and hydrogen atoms in the neutral reactant.
First priority is given to the number of carbon atoms. The greater the number
of carbon atoms, the further down the table the neutral will appear. Within
groups of neutrals containing the same number of carbon atoms, the order is
determined by the number of hydrogen atoms. If the molecules contain the same
number of hydrogen atoms, then the order is dependent alphabetically on the
remaining atoms in the neutral. Neutral reactants that do not contain carbon
atoms are ordered alphabetically with the earliest letter taking precedence,
and precede carbon-containing molecules. In cases where the early letter is
the same, the ordering is done by molecular weight with the lower molecular
weight taking precedence.
The collision rate constants included in the tabulation, kc ,
are derived using the combined variational transition-classical trajectory
treatment of T. Su and W.J. Chesnavich, J. Chem. Phys., 76, 5183 (1982).
Rate constants are presented in units of 10-9 cm3 molecule-1 s-1 and are either bimolecular or
pseudo-bimolecular. Reactions leading to association were not investigated as
a function of total pressure. The experiments were conducted as 296±2K
using the SIFT technique in a Helium buffer gas at ca. 0.35 Torr or 1.15 x
1016 helium atoms cm-3 .
REACTANTS
PRODUCTS
BR
kexp
kc
kexp /kc
HIGHER ORDER PRODUCTS
References
Si+ (2 P)
CH2 CCH2
SiC3 H3 + + H
0.70
1.2
1.4
0.86
10
SiC2 H+ + CH3
0.20
1.2
1.4
0.86
10
SiCH2 + + C2 H2
0.10
1.2
1.4
0.86
10
CH3 CCH
SiC3 H3 + + H
0.60
1.2
1.7
0.71
10
SiC2 H+ + CH3
0.25
1.2
1.7
0.71
10
SiCH2 + + C2 H2
0.15
1.2
1.7
0.71
10
CH3 CN
CH2 Si+ + CHN
0.50
2.4
4.49
0.53
3
C2 H3 NSi+
0.50
2.4
4.49
0.53
3
CH3 COOH
SiOH+ + CH3 CO
0.70
3.0
2.3
1.3
1
CH3 CO+ + SiOH
0.30
3.0
2.3
1.3
1
CH3 OH
SiOH+ + CH3
0.75
2.2
2.4
0.92
1
SiOCH3 + + H
0.25
2.2
2.4
0.92
1
CH3 NH2
SiNH2 + + CH3
0.55
1.2
2.03
0.59
2
CH2 NH2 + + SiH
0.35
1.2
2.03
0.59
2
SiNHCH3 + + H
0.10
1.2
2.03
0.59
2
(CH3 )2 CO
SiOH+ + C3 H5
0.45
0.28
3.4
0.08
6
CH3 CO+ + SiCH3
0.30
0.28
3.4
0.08
6
C3 H6 + + SiO
0.25
0.28
3.4
0.08
6
(CH3 )2 NH
CH2 NHCH3 + + SiH
0.60
1.2
1.82
0.66
2
(SiNH2 + + C2 H5 )
1.2
1.82
0.66
2
SiNHCH3 + + CH3
0.35
1.2
1.82
0.66
2
SiN(CH3 )2 + + H
0.05
1.2
1.82
0.66
2
(CH3 )3 N
CH2 N(CH3 )2 + + SiH
0.80
0.98
1.64
0.60
2
CH2 NHCH3 + + SiCH3
0.09
0.98
1.64
0.60
2
(SiNH2 + + C3 H7 )
0.98
1.64
0.60
2
SiN(CH3 )2 + + CH3
0.07
0.98
1.64
0.60
2
SiCH2 + + (CH3 )2 NH
0.04
0.98
1.64
0.60
2
(CH3 CNH+ + SiCH5 )
0.98
1.64
0.60
2
CH4
SiCH4 +
1.00
0.00
10
CH4
Si+ .CH4
1.00
0.00
1.17
0.00043
6,10
CO
NR
<0.00002
1,9
CO2
SiCO2 +
1.00
<0.00017
0.92
5
COS
SiS+ + CO
1.00
0.90
1.43
0.63
5
CS2
SiCS2 +
1.00
0.07
1.47
0.045
5
C2 H2
SiC2 H+ + H
0.70
0.35
1.16
0.30
6,10
SiC2 H2 +
0.30
0.35
1.16
0.30
6,10
C2 H2
SiC2 H+ + H
0.70
0.35
9
SiC2 H2 +
0.30
0.35
9
C2 H4
SiC2 H4 +
0.60
0.56
1.3
0.43
10
SiC2 H3 + + H
0.40
0.56
10
C2 H5 OH
SiOH+ + C2 H5
1.00
2.50
2.4
1.04
1
C2 H6
SiCH3 + + CH3
0.80
0.80
1.3
0.62
10
SiCH2 + + CH4
0.15
0.80
1.3
0.62
10
SiC2 H4 + + H2
0.03
0.80
1.3
0.62
10
SiC2 H6 +
0.02
0.80
1.3
0.62
10
C2 N2
CNSi+ + CN
0.55
0.15
3
C2 N2 Si+
0.45
0.15
3
C4 H2
C4 H+ + SiH
1.00
1.60
1.35
1.2
6,9
C6 H6
(SiC6 H6 )+
1.00
observed
9
C10 H8
(SiC10 H8 )+
0.90
observed
8
C10 H8 + + Si
0.10
observed
8
D2
NR
<0.0001
1.1
1,9
HCN
CHNSi+
0.80
0.007
3.75
0.0019
3
CNSi+ + H
0.20
0.007
3.75
0.0019
3
HCOOH
SiOH+ + CHO
1.00
2.3
1.9
1.21
1
HC2 CN
C2 HSi+ + CN
0.70
1.4
4.07
0.34
3
C3 HNSi+
0.30
1.4
4.07
0.34
3
H2
NR
<0.0002
1.5
1,9
H2 O
SiOH+ + H
1.00
0.23
2.1
0.11
1,9
NH3
SiNH2 + + H
1.00
0.64
2.41
0.27
2,9
NO
SiNO+
1.00
<0.01
0.85
5
NO2
SiO+ + N2
0.68
0.86
5
NO+ + SiO
0.30
0.86
5
SiNO2 +
0.02
0.86
5
N2 O
SiO+ + N2
1.00
0.40
1.07
0.37
5
O2
SiO2 +
1.00
<0.0001
5,9
SO2
SO+ + SiO
1.00
0.81
1.96
0.41
5
Si+ (4 P)
D2
SiD+ + D
1.00
0.77
1.1
0.7
1
SiCH2 +
CH2 CCH
SiC3 H3 + + CH3
0.95
0.61
1.3
0.47
10
SiC4 H5 + + H
0.05
0.61
1.3
0.47
10
CH3 CCH
SiC3 H3 + + CH3
0.85
0.91
1.5
0.61
10
SiC4 H5 + + H
0.15
0.91
1.5
0.61
10
SiC2 H+
CH2 CCH2
SiC5 H5 +
1.00
0.56
1.2
0.47
10
CH3 CCH
SiC5 H5 +
1.00
0.65
1.4
0.46
10
C2 H2
SiC4 H3 +
0.90
0.20
1
0.2
6
SiC4 H+ + H2
0.10
0.20
1
0.2
6
C2 H2
SiC4 H4 +
1.00
0.20
10
C2 H4
SiC2 H3 + + C2 H5
0.80
0.40
1.1
0.36
10
SiC4 H8 +
0.20
0.40
1.1
0.36
10
SiC2 H4 +
C2 H6
products
1.00
0.08
1.1
0.07
10
SiC3 H3 +
NH3
SiNH2 + + C3 H4
0.72 (0.66)
2.1
10
SiC3 H3 + .NH3
0.72 (0.66)
2.1
10
SiC6 H6 +
CO
NR
<0.00009
0.73
9
C2 H2
SiC6 H6 +. C2 H2
0.60
0.06
0.94
0.064
9
SiC8 H7 + + H
0.06
0.94
0.064
9
C4 H2
SiC4 H2 + + C6 H6
>0.3
0.70
0.98
0.71
9
SiC6 H6 +. C4 H2
<0.70
0.70
0.98
0.71
14
D2
NR
<0.0003
1.1
9
H2 O
SiC6 H6 +. H2 O
0.40
0.20
2
0.1
9
C6 H6 + + (SiOH2 )
0.35
0.20
2
0.1
9
C6 H7 + + SiOH
0.25
0.20
2
0.1
9
NH3
SiC6 H6 +. NH3
1.00
0.39
2
0.20
9
N2
NR
<0.0002
9
O2
C6 H6 + + (SiO2 )
0.90
0.003
0.6
0.005
9
C6 H6 O+ + SiO
0.10
0.003
9
SiC10 H8 +
D2
NR
<0.00035
1.1
9
H2 O
C10 H8 + + (SiOH2 )
1.00
0.0055
2.2
0.0025
9
NH3
SiC10 H8 +. NH3
1.00
0.41
2
0.21
9
N2
NR
<0.0004
0.63
8,9
O2
C10 H8 + + (SiO2 )
1.00
0.0004
0.58
0.00064
8,9
CO
NR
<0.00031
0.7
9
C2 H2
C10 H8 + + (SiC2 H2 )
0.90
0.063
0.91
0.069
8,9
(SiC10 H8 +. C2 H2 )
0.10
0.063
0.91
0.069
8,9
C4 H2
C10 H8 + + (SiC4 H2 )
1.00
1.0
0.93
1.1
8,9
C6 H6
NR
<0.0006
1
8
SiF+
CO
NR
< 0.0001
13
SiF2 .+
CO
SiF2 CO+
1.00
0.00036
7.6
4.737×10-05
13
SiF2 CO.+
CO
SiF2 (CO)2 .+
1.00
0.0002
7.3
2.740×10-05
13
SiF3 +
CO
SiF3 CO+
1.00
0.041
7.4
5.541×10-03
11,13
SiF3 (CO)+
CO
SiF3 (CO)2 +
1.00
0.00041
7.1
5.775×10-05
13
SiF+
NH3
NR
<0.001
22
14
SiF2 +
NH3
NH3 + + SiF2
8.0
21
14
SiF3 +
NH3
F2 SiNH2 + + HF
4.90
21
14
F2 SiNH2 +
NH3
FSi(NH2 )2 + +HF
5.3
21
0.25
14
F2 Si(NH2 )NH3 +
5.3
21
0.25
14
NH4 + + F2 SiNH
5.3
21
0.25
14
SiH+
O2
HSiO2 +
0.01
0.76
0.0066
12
SiOH+ + O
0.01
0.76
0.0066
12
HSiO+ + O
0.01
0.76
0.0066
12
CO2
SiOH+ + CO
0.19
0.91
0.21
12
HCO+ + SiO
0.19
0.91
0.21
12
N2 O
SiOH+ + N2
0.56
1
0.56
12
HSiO+ + N2
0.56
1
0.56
12
SO2
SiOH+ + SO
1.00
1.2
1.9
0.63
12
SiNH2 +
H2
NR
<0.00034
2
NH3
NH4 + + SiNH
1.00
0.58, 0.90
2.24
0.26,0.40
2,7
CO
NR
<0.0002
2
CH3 NH2
CH3 NH3 + + SiNH
1.00
1.0
1.83
0.55
(CH3 )2 S
CH2 SCH3 + + (SiNH3 )
0.70
1.5
2.1
0.71
SiNH2 + .(CH3 )2 S
0.25
1.5
2.1
0.71
CH4 NSi+ + CH3 SH
0.05
1.5
2.1
0.71
(CH3 )2 CO
CH4 NSi+ + (C2 H4 O)
0.85
2.4
3
0.8
SiNH2 + .(CH3 )2 CO
0.15
2.4
3
0.8
SiO+
N2 O
SiO2 + + N2
1.00
0.48
0.89
0.54
5
NO2
NO+ + SiO2
0.63
1.5
0.94
1.6
5
NO2 + + SiO
0.35
1.5
0.94
1.6
5
SiO2 + + NO
0.02
1.5
0.94
1.6
5
O2
NR
<0.0002
0.69
5
SiOH+
H2
NR
<0.0002
1.5
1
H2 O
SiH3 O2 +
1.00
0.01
2.5
0.004
1
H2 S
SiOH+ .H2 S
1.00
<0.001
1.5
4
NH3
NH4 + + SiO
1.00
2.5
2.2
1.1
4
CO
SiOH+ .CO
1.00
<0.0003
0.82
1
HCOOH
SiH3 O2 + + CO
>0.9
1.0
1.7
0.59
1
SiOH+ .HCOOH
<0.1
<0.01
1.7
1
CH3 OH
SiOCH3 + + H2 O
0.90
1.2
2.1
0.55
1
SiOH+ .CH3 OH
0.10
1.2
2.1
0.55
1
CH3 CN
SiOH+ .CH3 CN
0.55
0.48
4
0.12
4
CH3 CNH+ + SiO
0.45
0.48
4
0.12
4
CH3 COOH
CH3 CO+ + (SiH2 O2 )
0.90
2.3
2
1.15
1
CH3 COOH2 + + SiO
0.10
2.3
2
1.15
1
C2 H5 OH
SiH3 O2 + + C2 H4
0.60
2.4
2.1
1.1
1
SiOC2 H5 + + H2 O
0.30
2.4
2.1
1.1
1
C2 H5 OH2 + SiO
0.07
2.4
2.1
1.1
1
SiH3 O+ + C2 H4 O
0.03
2.4
2.1
1.1
1
(CH3 )2 O
SiOH+ .(CH3 )2 O
0.80
1.0
1.8
0.53
4
(CH3 )2 OH+ + SiO
0.20
1.0
1.8
0.53
4
H2 CCCH2
SiOH+ .C3 H4
0.80
1.2
4
C3 H5 + + SiO
0.20
1.2
4
SiNHCH3 +
CH3 NH2
CH3 NH3 + + SiNH
1.00
1.3
1.74
0.75
2
(CH3 )2 NH
(CH3 )2 NH2 + + SiNCH3
0.95
0.70
1.5
0.47
2
SiNHCH3 + (CH3 )2 NH
0.05
0.70
1.5
0.47
2
SiS+
H2
NR
>0.00002
1.52
5
O2
SO+ + SiO
0.70
0.089
0.65
0.14
5
SiO+ + SO
0.30
0.089
0.65
0.14
5
CO
NR
<0.00004
0.78
5
COS
SiS2 + + CO
1.00
1.4
1.14
1.2
5
SiSH+
H2 O
SiOH+ + H2 S
1.00
1.1
2.4
0.46
4
H2 S
H3 S+ + SiS
1.00
0.29
1.4
0.21
4
NH3
NH4 + + SiS
1.00
0.97
2.2
0.44
4
HCN
HCNH+ + SiS
1.00
0.61
1.6
0.38
4
C2 H4
SiSH+ .C2 H4
1.00
0.018
1.1
0.016
4
SiN(CH3 )2 +
(CH3 )3 N
SiN(CH3 )2 + .(CH3 )3 N
1.00
0.85
1.26
0.67
2
References
[1] Gas-Phase Reactions of Si+ and SiOH+ with Molecules Containing
Hydroxyl Groups: Possible Ion-Molecule Reaction Pathways toward Silicon
Monoxide, Silanoic Acid, and Trihydroxy-, Trimethoxy-, and
Triethoxysilane.
S. Wlodek, A. Fox and D.K. Bohme, J. Am. Chem. Soc. 109, 6663
(1987).
[2] Gas-Phase Reactions of Si+ with Ammonia and the
Amines (CH3 )x NH3-x (x = 1-3): Possible
Ion-Molecule Reaction Pathways toward SiH, SiCH, SiNH, SiCH3 ,
SiNCH3 , and H2 SiNH.
S. Wlodek and D.K. Bohme,
J. Am. Chem. Soc. 110, 2396 (1988).
[3] Gas-Phase Reactions of Si+ (2 P)
with Hydrogen Cyanide. Acetonitrile, Cyanogen, and Cyanoacetylene:
Comparisons with Reactions of C+ (2 P).
S. Wlodek and D.K. Bohme, J. Am. Chem. Soc. 111, 61 (1989).
[4] Experimental Proton Affinities for SiO
and SiS and their Comparison with the Proton Affinities of CO and CS Using
Molecular Orbital Theory.
A. Fox, S. Wlodek, A.C. Hopkinson, M.H. Lien, M. Sylvain, C.
Rodriguez and D.K. Bohme, J. Phys. Chem. 93, 1549 (1989).
[5] Gas-phase Oxidation and
Sulphidation of Si+ (2 P),
SiO+ and SiS+ .
S. Wlodek and D.K. Bohme, J. Chem. Soc., Faraday Trans. 2, 85, 1643
(1989).
[6] Chemical Pathways from Atomic Silicon Ions to Silicon Carbides and Oxides.
D.K. Bohme, S. Wlodek and A. Fox, in "Rate Coefficients in
Astrochemistry", T.J. Millar and D.A. Williams (Eds), Kluwer Academic
Press, 193 (1988).
[7] The Proton Affinity of SiNH and its
Formation from SiNH2 + in the Gas Phase.
S. Wlodek, C.F. Rodriguez, M.H. Lien, A.C. Hopkinson and D.K. Bohme,
Chem. Phys. Letters 143, 385 (1988).
[8] Novel Chemical Role for Polycyclic
Aromatic Hydrocarbons in the Synthesis of Interstellar Molecules.
D.K. Bohme and S. Wlodek, Astrophys. J. 342, L91 (1989).
[9] Formation of Adduct Ions of Si+ (2 P) with Benzene and
Naphthalene and Their Reactions in the Gas Phase: Graphitic Surface
Chemistry in the Gas Phase.
D.K. Bohme, S. Wlodek, and H. Wincel,
J. Am. Chem. Soc. 113, 6396 (1991).
[10] Gas-Phase Reactions of Si+ (2 P) with Small
Hydrocarbon Molecules: Formation of Silicon-Carbon Bonds.
S. Wlodek, A. Fox, and D.K. Bohme, J. Am. Chem. Soc. 113, 4461 (1991).
[11] Theoretical and Experimental Studies of
F3 SiCO+ and F3 SiOC+ .
A.E. Ketvirtis, V.I. Baranov, D.K. Bohme, and A.C. Hopkinson, Int.
J. Mass Spectrom. Ion Processes 153, 161 (1996).
[12] Formation of the high-energy isomer HSiO+ by chemical
reaction in the gas phase.
A Fox, and D.K. Bohme, Chem. Phys.
Letters 187, 5 (1991).
[13] Experimental and Theoretical Studies of SiFn(CO)2 + Cations with n =2 and 3: A Search for Pentacoordinate Cationic Silicon.
A.E. Ketvirtis, V.I. Baranov, A.C. Hopkinson, and D.K. Bohme, J. Phys.
Chem. 101, 7258 (1997).
[14] Experimental and Theoretical Studies of Gas-Phase Reactions of
SiFx + (x = 1-3) with Ammonia: Intramolecular H-atom
Transfer Reactions with SiF3 + and
F2 Si(NH2 )+ .
A.E. Ketvirtis, V.I.
Baranov, Y. Ling, A.C. Hopkinson, and D.K. Bohme, Int.
J. Mass Spectrom. Ion Processes 185/186/187, 381 (1999).
For a copy of this table measured with the selected-ion flow tube technique in
the Ion Chemistry Laboratory at York University up to 1999, right click and "save
target as" Silicon ion chemistry database (in MS WORD format).